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SUMMARY

In this paper two plane strain quadrilateral elements with two and four variables, are proposed. These
elements are applied to the analysis of .nite strain elasto-plastic problems. The elements are based
on the enhanced strain and B-bar methodologies and possess a stabilizing term. The pressure and
dilatation .elds are assumed to be constant in each element’s domain and the deformation gradient is
enriched with additional variables, as in the enhanced strain methodology. The formulation is deduced
from a four-.eld functional, based on the imposition of two constraints: annulment of the enhanced
part of the deformation gradient and the relation between the assumed dilatation and the deformation
gradient determinant. The discretized form of equilibrium is presented, and the analytical linearization
is deduced, to ensure the asymptotically quadratic rate of convergence in the Newton–Raphson method.
The proposed formulation for the enhanced terms is carried out in the isoparametric domain and does
not need the usually adopted procedure of evaluating the Jacobian matrix in the centre of the element.
The elements are very e@ective for the particular class of problems analysed and do not present any
locking or instability tendencies, as illustrated by various representative examples. Copyright ? 2001
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The de.ciencies of the standard low-order plane strain elements, related to locking behaviour,
are visible in many problems, such as in the analysis of near-incompressible situations (includ-
ing elasto-plastic problems as investigated by Nagtegaal et al. [1]) and in bending-dominated
situations.
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However, due to their simplicity, this class of elements is attractive for non-linear analyses,
and therefore, some improvements have been carried out over the years to eliminate that
undesirable behaviour. The use of higher order elements (quadratic and cubic) usually avoids
these diKculties, particularly when based on a mixed formulation [2]. Nevertheless, they are
more sensitive to mesh distortion [3] and the contact calculations are more diKcult. Under
these conditions, properly formulated low-order elements are suitable to a wide range of
applications.

For the linear elastic case, there are some reliable formulations as those described in Refer-
ences [4–6], therefore, the non-linear case is addressed in this paper. On the contrary, for the
non-linear case, the main diKculty is the trade-o@ between stability and accuracy. In fact, it
is the presence of instabilities (the so-called hourglass patterns) in several important cases of
compression and tension that has somehow compromised promising formulations (for example
the enhanced strain element of Simo and Armero [7]).

The enhanced strain method, theoretically justi.ed for non-linear problems by Simo and
Armero [7], consists in the enrichment of the deformation gradient with additional variables.
It is noticeable that, to satisfy the patch test, it is necessary to perform an ad hoc modi.cation
of the enhanced term (classi.ed as a trick by Lautersztajn and Samuelsson in Reference [8]),
based on the central evaluation of the Jacobian co-ordinate.

As an extension of the standard element, the enhanced strain method is very convenient for
the computational implementation of elasto-plastic material models, because the algorithmic
treatment is unchanged. On the contrary, the hybrid formulations (such as presented by Pian
and Sumihara [5]) and two-.eld u–p formulations (described, for example, by Brink and
Stein [9]) usually demand speci.c treatment.

Despite the generally good results obtained with the enhanced strain elements (for elastic
problems see Reference [10]), they present some imperfections such as increased mesh distor-
tion sensitivity and marked instabilities that appear in numerous practical problems [11; 3; 12];
even in the original work, Simo and Armero [7] recognize the presence of spurious modes in
situations of high dilatational deformations. Owing to this drawback, several authors proposed
modi.cations to the original work. Simo et al. [3] introduced a .ve-point integration rule, as
opposed to the original four-point rule, with the argument that the original rule under-integrates
the enhanced strain element. Notwithstanding, the instabilities are only mildly attenuated (as
illustrated by Glaser and Armero [12]). Additionally, the resulting element loses Nexibility
and computational eKciency.

The work developed by Korelc and Wriggers [13] over a single element’s instability led
to the introduction of additional orthogonality conditions and to the modi.cation of the in-
terpolation for the deformation-gradient-enhanced part. These improvements attenuated the
compression instabilities. However, the discrete strain–displacement operators lose their orig-
inal sparsity.

Subsequently, Glaser and Armero [12] alleged lack of objectivity in the previous pro-
posal [13] and introduced a correction based on a further evaluation of the deformation
gradient in the element’s centre. Additionally, to tackle the tension instability, a stabiliza-
tion term was added to the original functional and .ve-point or nine-point integration rules
were tested. Despite its e@ectiveness in controlling the instabilities, this last contribution in-
creases the analytical complexity of the element, particularly in the evaluation of the tan-
gent sti@ness, and further increases the computational cost due to the additional integration
points.
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The attenuation of the mesh distortion sensitivity has also drawn attention of some re-
searchers. For this purpose, the truncated Taylor expansion of the shape functions proposed
by Wriggers and Hueck [14] and Korelc and Wriggers [15] appears to be an e@ective way
of increasing the element’s robustness.

It is important to note that the enhanced strain methodology is not the only strategy devel-
oped with the aim of improving the results of the standard element. There are some worth
noting alternative strategies. The mean-dilatation technique of Nagtegaal et al. [1], and the
closely related B-bar technique presented by Hughes [16] and further extended by Simo et al.
[17] and Moran et al. [18], are appropriate to the analysis of nearly incompressible problems.
These techniques are based on the assumption of an independent interpolation of the dilata-
tion .eld. The derivations are supported by a three-.eld functional [17]. The B-bar technique
can be related, under certain conditions, to the selective integration technique (as discussed
by Hughes [16]). There is also an ad hoc B-bar procedure to avoid the shear locking (as
discussed by Zhu and Cescotto [19]). A particularly important issue is the linearization results
of the B-bar elements (addressed by Simo et al. [17] and Moran et al. [18]) that will be
detailed in this paper.

Although the results obtained with the B-bar formulation are frequently good, certain authors
[3] have noticed a di@use response in strain localization problems.

Another approach, advocated by various authors, is the reduced integration technique with a
stabilizing term (as detailed in References [20–23]) which is very eKcient and avoids locking
tendencies. However, this technique presents some drawbacks. In Reference [21], Reese et al.
proposes a stabilization technique based on an ‘equivalent parallelogram’ that can induce a
dependence between the results and the selected load increments (see Reference [21]), which
can be undesirable.

Besides this limitation, the single-point integration can be inadequate for elasto-plastic prob-
lems (as stated by Zhu and Cescotto [19]).

There are also some important contributions regarding the mixed u − p methods, with
pressure and displacement variables (a review is presented by Brink and Stein [9]). These
methods are usually based on two-.eld functionals (as adopted by Bathe [24]) or three-.eld
functionals (as in the recent paper by Cris.eld [25]). This last formulation is closely related
to the B-bar presented by Simo et al. [17].

Recently, some mixed=enhanced strain formulations were introduced, namely with the con-
tributions of Piltner and Taylor [26] with added internal stress variables and Pantuso and Bathe
[2] who included dilatation and pressure variables. In another context, Taylor [27] applied a
mixed=enhanced formulation to triangular elements. These mixed=enhanced formulations typ-
ically imply an increase in the number of variables and therefore, are computationally more
expensive than the usual enhanced strain elements.

Inspired by these last two works [2; 27], the authors of this paper propose two enhanced
strain=B-bar elements with assumed dilatation and enhanced distortional part of the deforma-
tion gradient. These two elements extend a previous work carried out by C0esar de S0a and
Natal Jorge [4]. The fundamental di@erence between the two elements is the number of addi-
tional variables: two or four. Therefore, the number of variables does not exceed the number
of variables present in the standard enhanced strain element.

The spurious mode control is carried out through a stabilization term included in the
original functional that imposes the annulment of the enhanced part of the deformation
gradient.
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The variational formulation as well as the discretization are fully detailed. The linearization
calculations, necessary to obtain an asymptotically quadratic rate in the Newton–Raphson
algorithm are also described.

The proposed formulation is tested by several representative numerical examples, with elas-
tic and elasto-plastic materials, covering a variety of situations. All the examples show the
e@ectiveness of the two newly proposed elements and the absence of spurious modes.

It is worth noting that, during the course of submission of this work, a paper describing an
apparently similar enhanced strain=B-bar element formulation has been published by Armero
[28]. However, as it will become clear, although there are some coincident points between
the two formulations, they present some di@erences.

2. INCOMPRESSIBILITY AND LOCKING

A known deformation of a body denoted as B is said to be incompressible if any region of
the body has a constant volume.

This condition can be stated by the equation div v(X )=0, which can be obtained through
the conservation of mass equation, imposing �0 =� where � is the mass density in a given
con.guration and �0 is the mass density in the reference con.guration.

According to this de.nition, a given deformation is incompressible when the spatial diver-
gence of the velocity is null in any point X of B.

Denoting J =det[F], F being the deformation gradient, it is possible to restate the incom-
pressibility condition as

J (X )=1 (1)

An equally important case, due to its practical importance, is that of near-incompressible
case. The elasto-plastic materials, for isochoric plastic Nows, are frequently near-incompressible,
since the dilatation is purely elastic.

When numerical quadrature is used, the incompressibility condition is veri.ed only in each
integration point. The numerical integration induces a relaxation in the incompressibility con-
straint.

The locking behaviour, in the incompressible situation, of the standard four-node element is
related to the absence of the two hourglass deformation modes [29; 30; 4]. In fact, as referred
by de Souza Neto et al. [31] there is an inherent inability in the interpolation functions in
the correct representation of isochoric displacement .elds.

For a four node square element, C0esar de S0a et al. [4; 29; 30] have shown the relation be-
tween the incompressibility constraint, imposed at the four integration points, and the absence
of three deformation modes: the dilatation mode and the two hourglass modes. The lack of
hourglass deformation is responsible for the volumetric locking.

That analysis, carried out for the linear case, is further extended here, through the annulment
condition of the velocity spatial divergence:

div v=0 ⇒ @vi
@xi

=0 (2)

The discretized form of the velocity .eld, in each element, is stated as vi(�1; �2)=Nk(�1; �2) vk
i ,

where Nk is the shape function of node k. The nodal velocity variables are denoted as vk
i .

The co-ordinates �1 and �2 are denominated local co-ordinates of the element.
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According to this discretized form, it is possible to write, for the referred particular case,

@vi
@xi

(�1; �2)=
@Nk

@�i
(�1; �2)vk

i (3)

Imposing condition (2) in the standard four Gauss integration points (e.g. Reference [24])
whose local co-ordinates are denoted as �k

1 ; �
k
2 , k =1; : : : ; 4, it is possible to write

div v(�1
1 ; �

1
2)

div v(�2
1 ; �

2
2)

div v(�3
1 ; �

3
2)

div v(�4
1 ; �

4
2)

 =[Q]{v} (4)

where [Q] is the matrix described in References [4; 30]; making use of the same notation,
this matrix is de.ned for a square element in the usual local co-ordinates, i.e. with side size
equal to 2, as

[Q]=


−a1 −a1 a1 −a2 a2 a2 −a2 a1

−a2 −a1 a2 −a2 a1 a2 −a1 a1

−a1 −a2 a1 −a1 a2 a1 −a2 a2

−a2 −a2 a2 −a1 a1 a1 −a1 a2

 (5)

where a1 = 0:25(1 + a0); a2 = 0:25(1 − a0) and a0 = 1=
√

3.
The conclusions of C0esar de S0a et al., presented in References [4; 29; 30] keep their validity

in the present .nite strain case. The point-wise incompressibility constraint for a standard
square element is stated as

[Q]{v}= {0} (6)

The hourglass modes and the dilatation mode do not belong to the space of solutions of
nodal velocity vectors {v} that satisfy (6).

If a reduced=selective integration is used, the incompressibility constraint is imposed in the
element’s central point, and in the mean dilatation technique, the dilatation is calculated as
an average of its values at the four integration points.

For the selective integration case, C0esar de S0a et al. [4; 29; 30] have shown, based on
condition (6), that the hourglass modes, previously absent, are present in this case.

The [Q] matrix, corresponding to the selective integration case, can be written as

[Q]= 1
4 [−1 − 1 1 − 1 1 1 − 1 1] (7)

In the mean-dilatation technique, the incompressibility constraint is veri.ed in a global fash-
ion, since the equation ve =Ve is satis.ed, which states the coincidence between the material
and spatial volumes in each element for any isochoric deformation.

As it will become clear in this paper, the mean-dilatation method is strictly equivalent to
the selective integration method, if the volume ratio is calculated exactly.

Kinematically, it is possible to locally decompose the deformation gradient in a distortional
term and a dilatational term (as in Reference [31]). This type of decomposition can be spe-
cially useful when there is the intent of de.ning distinct interpolations for these two terms,
as it is the case in this paper.
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The kinematic decomposition can be stated as

F= F̂FV (8)

In agreement with Equation (8), the deformation gradient can be decomposed in a distor-
tional term, such as F̂: det[F̂]= 1 and a volumetric term FV = IJ 1=3 (where I denotes the
identity tensor), which can also be denominated as dilatation term because it corresponds to
a pure dilatation deformation.

In harmony with the previous remarks, the distortional term can be calculated through the
following relation:

F̂= J−1=3F (9)

The dilatation term will be considered as ‘assumed’ for the elements proposed in this paper.

3. A FOUR-FIELD FUNCTIONAL

The analysis of near-incompressible problems is frequently based on functionals with two or
three independent .elds. In the two-.eld case, a penalty parameter is present, related to the
bulk modulus [24], and the pressure p and the spatial position x are the assumed independent
.elds. In the three-.eld case, the pressure is a Lagrange multiplier and the independent .elds
are: the pressure itself p, the dilatation � and the spatial position x [17; 32]. In this paper, a
four-.eld functional is proposed. This functional is an extension of the three-.eld functional
presented in Reference [17].

As usual, a particle of the body B, observed in a given reference con.guration, denoted as
B, is given by its position in that con.guration, X.

It is assumed that the reference con.guration B is subjected to a conservative body force
whose density is denoted by B. The surface forces are also included, identi.ed by the nominal
stress vector TT de.ned in a subset of the reference con.guration boundary, Ut ⊂ @B.

In a subset of the boundary, Ux ⊂ @B, at least one component of the spatial position is
prescribed. It is also assumed that Ut ∩Ux = ∅.

A potential function associated with these conservative forces is written as

Vext(x)= −
∫
B
�0B ·x dV −

∫
Ut

TT ·x dV (10)

where �0 is the mass density in the reference con.guration.
The special class of materials considered in this paper is characterized by a stored energy

function W , which can be related to the free energy function [33]. This function depends on
the right Cauchy–Green deformation tensor C=FTF.

The .rst Piola–Kirchho@ stress tensor, denoted as P, can be determined by di@erentiating
W with respect to F, i.e. P= @FW , and the Kirchho@ stress tensor is related to P by the
equation �=PFT.

The elastic potential energy is calculated by the following expression:

Vint(x)=
∫
B
W (C) dV (11)
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The total potential is the sum of the internal and external potentials:

V(x)=Vint(x) + Vext(x) (12)

From the imposition of the stationarity condition for potential (12), it is possible to obtain
the local form of the momentum equations and the described boundary conditions.

The key idea in the following developments is the pre-established independence of the
following .elds:

• Spatial position: x(X)
• Dilatation: �(X)
• Deformation gradient: F(X)

As this independence is assumed, it turns out to be necessary to impose local (i.e. valid for
each X∈B) constraints to relate the .elds. These constraints are added to the original form
of the functional (12).

The considered local constraints can be written as

� = det[F] (13a)

F=∇0x ⇔ (F−∇0x) : (F−∇0x)=0 (13b)

The scalar components of ∇0x are written as ∇0 xij = @xi=@Xj.
The second constraint, in its scalar form, allows the use of a single parameter (or a Lagrange

multiplier), in contrast with the tensorial form, introduced by Simo and Armero [7] that makes
use of a second order tensorial Lagrange multiplier which is the .rst Piola–Kirchho@ stress
tensor.

In agreement with this particular form for the constraints, the resulting functional possesses
two scalar constraints.

It is noticeable that, according to the multiplicative decomposition of F, de.ned by Equation
(8), it is possible to introduce an assumed deformation gradient, with an assumed dilatation
.eld, making use of the following notation:

F̃= �1=3F̂ (14)

where F̂ is the distortional part of F:

F̂= J−1=3F (15)

and J = det[F].
According to these developments and noting the de.nition J =det[F], the local constraints

can be rewritten as

�=det[F] (16a)(
3

√
J
�
F̃−∇0x

)
:

(
3

√
J
�
F̃−∇0x

)
=0 (16b)

With this notation, the .rst constraint represents the relation J = � and the second one is
equivalent to ∇0x=F.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:883–917
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The second constraint will be imposed by means of a penalty parameter and the .rst one
by a scalar Lagrange multiplier which can be straightforwardly related to the pressure .eld,
p. If r represents the penalty parameter, then, a four-.eld functional is written as

V(x;F; p; �)=
∫
B

W (F̃TF̃) +
r
2
(F−∇0x) : (F−∇0x)︸ ︷︷ ︸

S

+p(J − �)

 dV + Vext(x) (17)

where F= 3
√

(J=�)F̃.
A practical advantage of this functional, in comparison with the modi.ed three-.eld prin-

ciple introduced in Reference [7], is the imposition of the deformation-gradient constraint
without the necessity of explicitly assuming the .rst Piola–Kirchho@ stress tensor. In the case
of the formulation proposed by Armero [28], the .rst Piola–Kirchho@ stress tensor must be
assumed as well. This author proposes a .ve-.eld functional, to subsequently use an orthogo-
nality condition, so that the assumed .rst Piola–Kirchho@ tensor, corresponding to a Lagrange
multiplier, is absent from the .nal equilibrium equations. The present form is distinct from
the one proposed by Armero [28].

The criterion for the determination of the penalty parameter will be addressed later.
The inclusion of the term identi.ed as S, related to the imposition of the constraint (13b),

acts as a stabilizing term, where the r parameter allows the adjustment of the relation F=∇0x.
This term avoids the necessity of assumptions described by Simo and Armero [7] about

the constant Piola–Kirchho@ stress .eld.
It is noticeable that in the classical enhanced strain formulation this constraint is generally

not veri.ed, as it is assumed that there is an orthogonality between the multiplier tensor and
the constraint F=∇0x (see the assumptions established by Simo and Armero in Reference
[7]).

The stationarity condition of the proposed functional (17) gives the momentum equation,
the boundary conditions, and if r→∞, the local imposed constraints.

Imposing the annulment of the variation of functional (17), it can be stated that

∫
B

[
3

√
�
J
P̃ + r(F−∇0x) − 1

3

(
�
J

)−1=3

(P̃ :F)F−T + pJF−T

]
: �F dV = 0 (18a)

∫
B

[
1
3J

(
�
J

)−2=3

P̃ :F− p

]
�� dV = 0 (18b)

∫
B
(J − �)�p dV = 0 (18c)∫

B
−r(F−∇0x) :∇0�x dV + �Vext(x) = 0 (18d)

where P̃= @F̃W is the .rst Piola–Kirchho@ stress tensor calculated with previously introduced
assumed deformation gradient.
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These equations were calculated using the de.nition J =det[F] and the following equation:

�J = JF−T : �F (19)

From Equation (18c), it is possible to write the following relation:

J =det[F]= � (20)

Isolating the pressure, p, from Equation (18b), the result is

p=
1
3J

P̃ :F=
1
3J

tr �̃ (21)

where �̃= P̃FT.
Equation (18a) and the previous relations allow the following equation for the .rst

Piola–Kirchho@ stress tensor:

P̃= − r(F−∇0x) (22)

This equation is somewhat predictable as it relates the introduced penalty parameter with
the Lagrange multiplier used in the work of Simo and Armero [7] to impose the relation
F−∇0x. The stress tensor P̃ is the cited Lagrange multiplier, assumed to be constant in the
work of Simo and Armero [7].

Clearly, if r→∞, the local constraint F=∇0x should be satis.ed.
The substitution of relation (22) in Equation (18d) gives the virtual work principle in the

material form. Making use of the notation ∇0�x=∇�xF and noting the property P̃ : (∇xF)=
P̃FT :∇x, it is possible to write the virtual work principle in the spatial form∫

B
� :∇�x dV =

∫
B
�0B · �x dV +

∫
Ut

TT · �x da (23)

which is a weak form of the local momentum equation.
The purpose of this exposition was to clarify the introduction functional (17), and to show

that it includes the local momentum equations, boundary conditions and constraint equations.
It is noticeable that there has not been any discussion about appropriate particular forms for
the dilatation �, pressure p, and deformation gradient F. This will be the objective of the
following sections.

4. ASSUMED FIELDS

The general concepts presented in Section 3 will be used to develop two plane strain elements
with assumed dilatation and pressure and 2 or 4 internal variables, respectively.

These elements have an additional stabilization term, that corresponds to the imposed con-
straint with the penalty parameter r. It will become apparent that the stabilization term is
extremely simple when compared with others (for example References [20; 21]), specially in
the linearized form.
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4.1. Assumed deformation gradient

The particular form of F was not imposed in the previous discussion. The notation J =det[F]
was established, and, as F will be assumed, implies that, generally, J �=det[∇0x].

The denomination for the dilatation, �, is here a synonym of assumed dilatation, since a
di@erent interpolation will be used for this .eld. Also, as computationally 1=r is never null,
there is a numerical di@erence between ∇0x and F.

In a similar fashion, as locally J �= �, then in general F �= F̃, which requires some precaution
with the nomenclature used, particularly in the de.nition of the spatial tensors.

According to the already presented functional, the central idea consists in re-parameterizing
the deformation gradient with the assumed dilatation, through the following equation:

F̃= 3

√
�
J

(∇0x + A) (24)

The term A is calculated by an interpolation and can be viewed as an enhancement to the
deformation gradient.

Comparing the equation (24) with the one originally proposed in Reference [7], it can be
stated that the dilatation is assumed and the distortional part of the deformation gradient is
enhanced. Therefore, this formulation is equivalent to a projection (using the nomenclature
used by Simo et al. [17]) of the deformation gradient of an enhanced strain element. Equation
(24) has been introduced by the authors in Reference [34].

It is noticeable that, for Equation (24), it is implied that the expression 3
√

(1=J )(∇0x+A) is
the distortional part of the deformation gradient. The dilatation, �, is imposed in an independent
fashion of the particular form of 3

√
(1=J )(∇0x +A). The important comments about the non-

intersection of the spaces spanned by ∇0x and A carried out by Simo and Armero [7], remain
valid in this particular projected form.

Equation (24), in the absence of A, is formally equivalent to that presented by Simo et al.
[17].

A hypothetical alternative form for Equation (24), would consist in writing F̃= 3
√

(�′=J ′)
∇0x+A′, with now J ′ =det[∇0x]. However, this type of decomposition, which was explored
by the authors, introduces some complexities in the .nal form of the discretized equations
and was, therefore, abandoned.

The examples presented in this paper obey to the plane strain hypothesis. For that case, the
3× 3 deformation gradient is written as follows:

F3×3 =

 F11 F12 0
F21 F22 0
0 0 1

 (25)

from which a 2× 2 matrix may be de.ned as

F2×2 =

[
F11 F12

F21 F22

]
(26)

It is clear that F̃ should have a form similar to (25), which assures the plane strain
hypothesis.
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Therefore, the discussed tensors ∇0x, F and F̃, are, under plane strain conditions, two
dimensional tensors. Hence, decomposition (24) is written as

F̃=

√
�
J

(∇0x + A) (27)

where the square root follows from the property det[cFn×n]= cndet[Fn×n] where c is a scalar
and n is the dimension of F.

This particular form appears to be di@erent from the one proposed by Armero [28].
Nevertheless, the original form (24) is used in the remaining discussions, without loss of

generality.

4.2. Stationarity condition

By inserting Equation (24) in functional (17), it is possible to write it as

V(x;A; p; �)=
∫
B

[
W (�;x;A) +

r
2
A :A + p(J − �)

]
dV + Vext(x) (28)

Given this .nal form for (17), the form adopted for the stabilization term in the initial
functional is now clear. The penalty parameter, r, allows the adjustment of the local constraint
A=000.

Before imposing the stationarity conditions to (28) we will establish some relations and
notations that will be useful.

The notation used here for the enhanced deformation gradient is

F=∇0x + A (29)

where F is analog to the one proposed by Simo and Armero [7] (and distinct from the
assumed deformation gradient F̃).

The .rst variation of J can be written through the enhanced deformation gradient, according
to the following equation:

�J = J �F :F−T (30)

Two divergence operators may be introduced as

div �x=∇0�x :F−T = (∇�xF) :F−T (31)

div �a= �A :F−T = (�aF) :F−T (32)

The notation div �a is a convenient notation, and does not correspond to a truly divergence
operator.

Inserting these de.nitions in Equation (30), the following relation is obtained:

�J = J div �x + J div �a (33)

From these equations, it is possible to write the .rst variation of the assumed deformation
gradient, F̃ as:

�F̃=
[
��
3�

− 1
3
(div �x + div �a)

]
F̃ + 3

√
�
J
∇0�x + 3

√
�
J
�A (34)
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The variation of the stored energy function, W , can be calculated resorting to the .rst
Piola–Kirchho@ stress tensor, P̃, as

�W = @F̃W : �F̃= P̃ : �F̃ (35)

The already alluded spatial tensors ∇�x and �a can be written as

∇0�x=∇�xF (36)

�A= �aF (37)

It is important to note that these two Equations (36), (37) are notations and not applications
of the chain rule. This is also true to the average spatial divergence operators that will be
introduced in Section 4.3.

From these conclusions and the stationarity condition of functional (28), it is possible to
present the following set of equations:

∫
B

[
3

√
�
J
P̃ : (�A + ∇0�x) + pJ (div �a + div �x)

+ 1
3 P̃ : F̃(div �a + div �x) + rA : �A

]
dV + �Vext = 0 (38a)

∫
B

(
1
3�

P̃ : F̃��− p��
)

dV = 0 (38b)

∫
B

(J − �)�p dV = 0 (38c)

It can be observed that Equation (38a) is a B-bar extension of the enhanced strain formu-
lation.

Equations (38) are the formal support of the discretized equilibrium equations. The partic-
ular forms of the pressure and dilatation .elds, will now be discussed.

4.3. Dilatation and assumed pressure

The discretization of the .elds p and � in each element’s reference domain (denoted as
B, which is the notation of reference con.guration of a body) can be made compatible or
incompatible with the adjacent elements.

In particular, these .elds can be assumed constant in each element. Using this approxima-
tion, there is a particularly simple relation between � and J .

In detail, using Equation (38c), the dilatation is written as the following average:

�=
1
V

∫
B
J dV =

v
V

(39)

in which v is the current volume of the element.
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This dilatation is generally distinct from the one obtained by the displacement .eld alone.
This can be stated as the following inequality:

v �= vx =
∫
B

det[∇0x] dV (40)

vx being the current volume obtained from the displacement .eld alone.
This inequality may raise some questions about the physical signi.cance of the volume v.

The particular form adopted to the term A has a direct inNuence on the relation between the
displacement .eld and the deformation gradient F.

When F is calculated through the incompatible mode method (brieNy described in the Ref-
erence [7]), the displacement .eld is clearly de.ned. However, for the more general enhanced
strain formulation it may not be possible to identify the displacement .eld from the enhanced
deformation gradient.

This conclusion led the authors to investigate a methodology that avoids the contribution
of A in (39) to the assumed dilatation.

In the case where A ≡ 0, the B-bar quadrilateral element can be formulated on a mean-
dilatation basis (as in Reference [17]) or on the selective integration of the dilatation (as in
Reference [18]). The two strategies are, in fact, analytically equivalent as it will be shown.

The small di@erences in the results, frequently obtained (in the linear case C0esar de S0a and
Natal Jorge [4] noticed slight di@erences), are due to integration errors present in the mean
dilatation method.

It will also be shown that the reduced integration strategy leads to an exact value of the
dilatation.

For the mean dilatation technique [1; 17], the dilatation is calculated as follows:

�=
1
V

∫
B

det[∇0x] dV = vx=V (41)

If a Gauss integration rule is used to evaluate Equation (41), and as the expression det[∇0x]
is generally a rational function of the element’s co-ordinates, the volume vx determined by
(39) is generally di@erent from the exact deformed volume of the element. If the thickness
is assumed constant, the exact deformed volume can be easily determined.

For a constant thickness .eld, denoted as h, the exact volume of a standard deformed
element can be stated as

vx =
h
2
[(x3 − x1)(y4 − y2) + (x2 − x4)(y3 − y1)] (42)

xi and yi being the current global co-ordinates of a node i.
The mean dilatation of the element is calculated, according to this equation, as follows:

�=
[(x3 − x1)(y4 − y2) + (x2 − x4)(y3 − y1)]
[(X3 − X1)(Y4 − Y2) + (X2 − X4)(Y3 − Y1)]

(43)

where Xi and Yi are the global reference co-ordinates of a node i.
Equation (43) is coincident with that obtained with a central point integration of det[∇0x].

This statement can be veri.ed using the shape function derivatives at the element’s centre
(as deduced by Flanagan and Belytschko in Reference [35]) and calculating, from those
expressions, the gradient ∇0x.
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Conclusively, the four-point numerical integration of det[∇0x] is generally inaccurate, and
the reduced integration of the same expression is clearly exact.

From Equation (38b) it is possible to isolate the assumed pressure, p, which can be related
to the other .elds through the following equation:

p=
1

3V�

∫
B
P̃ : F̃ dV (44)

This equation allows the interpretation that the assumed pressure p is a mean element
pressure.

The de.nition of dilatation (39) allows the possibility to de.ne mean spatial divergence
operators (in agreement with the notation introduced by Simo et al. [17]), using the dilatation
variation, ��, and the following property:

�J = J (div �x + div �a) (45)

The dilatation variation can be written as

��=
1
V

∫
B
�J dV =

1
V

∫
B
J div �x dV +

1
V

∫
B
Jdiv �a dV (46)

From Equations (46) it is possible to relate the .elds ��; �x and �a and eliminate �� from
Equations (38).

According to this conclusion, the dilatation variation is written as

��= � div �x + � div �a (47)

where the terms

div �x=
1
�V

∫
B
J div �x dV (48a)

div �a=
1
�V

∫
B
Jdiv �a dV (48b)

are de.nitions of the average divergence operators. In fact, these are weighted averages of
div �x and div �a, which is in an extension of the referred work developed by Simo et al.

In fact, Equation (48a) is similar to that presented in the work of Simo et al. [17] and
Equation (48b) is an extension of the concept presented by that author for the enhanced term
A introduced here. This extension is supported by the notation previously introduced for the
term div �a.

4.4. Equilibrium equations

It is now possible to simplify the form of Equation (38a), using relations (48) and some
further relations.

After some analytical calculations, the following equation can be written∫
B
pJ (div �x + div �a) dV =

∫
B

1
3
P̃ : F̃(div �x + div �a) dV (49)
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The nomenclature for the assumed pressure is introduced as

Tp= 1
3 P̃ : F̃ (50)

therefore, it is possible to write∫
B

[
3

√
�
J
P̃ : (�A+∇0�x)+rA : �A+ Tp(div �a−div �a+div �x−div �x)

]
dV +�Vext = 0 (51)

Further, the term F̃= 3
√

(�=J )F can be isolated from Equation (51).
In this paper the equilibrium is written in a spatial setting, with the use of the Kirchho@

stress tensor  ̃  = P̃F̃T.
By separating, in (51), the terms that depend on �a from the terms that depend on �x

and transforming the results to the spatial con.guration, the following set of equations can
be written ∫

B
�̃ :∇�x + Tp(div �x − div �x) dV + �Vext = 0 (52a)

∫
B
�̃ : �a + Tp(div �a − div �a) + rA : �A dV =0 (52b)

Equations (52) will serve as the basis of the discretized form of equilibrium. These equations
di@er from those presented by Armero [28].

4.5. Approximated dilatation 0eld

The full quadrature of J , in Equation (39), has a penalizing e@ect in the analytical calculations
carried out to linearize that term, as it will become apparent. Additionally, the numerical
evaluation of that integral is generally approximated, resulting an approximated value for �.
This is particularly relevant as J =det[F] is a rational function of the element’s co-ordinates.

An alternative approximation, distinct from the reduced selective integration previously
discussed for the standard four-node element, is the reduced integration of the Jacobian J ,
whose value in the element’s centre is denoted as J0.

Using this approximated integration (which is not necessarily less accurate than the full
integration), the dilatation can be determined as

�=det[∇0x + A]0 = J0 (53)

Besides these motivations, there exists an intrinsic diKculty related to the enhancement
of the deformation gradient by the term A. Generally, it appears to be diKcult to obtain the
displacement .eld related to F=∇0x+A, since A is generally independent of any displacement
.eld. In this paper, only the element Qi5B-bar allows such a relation, because the additional
enhanced mode is the bubble mode.

It is therefore useful, according to the described approximation, to de.ne a particular form
of A that has the property of being null in the element’s centre. This condition is ful.lled by
the two proposed elements.
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5. DISCRETIZATION

The discretized form for a co-ordinate i of x, denoted as xi is written as xi =NKxk
i ; N k being

the shape function of node k: Nk = 1
4(1 + �k

1 �1)(1 + �k
2�2), with �1 and �2 being the local

co-ordinates and xk
i a nodal variable.

The spatial derivatives of �xi can be calculated as

�xi; j =Nk
j �xk

i (54)

and the shape function derivative is written as

Nk
j =

@Nk

@xj
=

@Nk

@�l

@�l

@xj
(55)

where @�l=@xj is calculated using the chain rule

@xj
@�l

=
@Nm

@�l
xmj (56)

The enhanced term A can be determined through the internal variables denoted as $k
i :

Aij = $k
i G

k
j (57)

Equation (57) de.nes the term A as a linear combination of the internal variables. The
terms identi.ed as Gk

j in (57) are given interpolation functions.
In the work of Armero [28], the form adopted for A is far more involved, as it uses

a central evaluation of the deformation gradient, and was .rst proposed by Glaser and
Armero [12].

The related spatial tensor, a, can be written as

aij =AikF−1
kj = $l

i g
l
j (58)

A matrix Gndim×nenh, whose dimension ndim is the spatial dimension of the problem and
dimension nenh is the number of additional deformation modes, can be de.ned with the scalar
components Gk

j .
The construction of A is carried out in the isoparametric domain following the steps de-

scribed by Simo et al. [3] but using an exact tensorial transformation. The .nal form is
simply:

G=J−TE (59)

where J is the Jacobian matrix of the transformation between the local co-ordinates and the
material co-ordinates: �i → Xj. Its scalar components can be written as Jij = @Xi=@�j.

It is important to note that, as shown by C0esar de S0a and Natal Jorge [4], the proposed
interpolation functions satisfy the following equation:∫

B
G dV = 0 (60)

so that the elements possess a zero mean A over the domain, as imposed by Simo and
Armero [7].
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It is noticeable that this condition is satis.ed without the need for evaluating the Jacobian
in the elements centre which is the case for the standard enhanced strain elements [7; 3].

The interpolation matrix E proposed in this paper has one of the two possible forms:

EQi5 =

[−2�1
(
1 − �2

2

)
−2�2

(
1 − �2

1

) ] (61a)

or

EQi6 =
[−2�1

(
1 − �2

2

)
0

0 −2�2
(
1 − �2

1

) ] (61b)

written for the Qi5B-bar and Qi6B-bar elements, respectively. These denominations are an
extension of those introduced in Reference [4]. As already mentioned, the mode related to the
form (61a) can be identi.ed as a bubble mode. In the work of Armero [28], a two variable
interpolation matrix is used.

Both the interpolation matrices (61) have the additional property of being null at the ele-
ments centre. Hence, the following statement is valid:

G|�1 = 0; �2 = 0 = 0 (62)

This property allows us to write Equation (53) as

�=det[∇0x]|�1 = 0; �2=0 (63)

The divergence operators and the average divergence operators can be written in the fol-
lowing discretized form:

div �a = �$l
i g

l
i (64)

div �a = �$l
i g

l
0i = 0 (65)

div �x = �xliN
l
i (66)

div �x = �xliN
l
0i (67)

where, according to relation (63),

Nl
0k ≡ Nl

k |�1=0; �2=0

gl
0k ≡ gl

k |�1=0; �2=0 = 0
(68)

In agreement with these particular forms, the discretized equations derived from the
equilibrium equations (52) can be written as

∫
B
 ij

[
Nk
j �x

k
i +

�ij

3
(
Nl

0m�x
l
m − Nl

m�x
l
m

)]
dV + �Vext = 0 (69a)

∫
B
 ij

(
gk
j �$

k
i −

�ij

3
gl
m�$

l
m

)
+ rGn

rG
p
r $

n
s �$

p
s dV = 0 (69b)

An inspection of the discretized forms (69) allows the conclusion that the discrete strain
operator is the so-called B-bar matrix discussed in References [17; 16]. Therefore, the proposed

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:883–917



900 J. M. A. C 0ESAR DE S 0A, P. M. A. AREIAS AND R. M. N. JORGE

elements are of the B-bar type. The internal force vector for node k can be straightforwardly
obtained as a consequence of the discretized equations (69).

6. LINEARIZATION

To ensure the asymptotically quadratic convergence rate in the Newton–Raphson method, an
exact linearization of the equilibrium equations (52) is carried out.

A rate analogy is used, so that the rates can be related to the iterative variations in the x
and Q variables:

vXt = Xx

Q̇Xt = XQ
(70)

where v is the spatial velocity nodal vector and Q̇ is the internal variable time derivative.
Equations (52) are linearized according to

˙�VXt ∼= − �V (71)

The .nal result is obtained using the chain rule. The discretized rates can be determined
by some straightforward calculations, as follows.

The time derivative of the Kirchho@ stress tensor is calculated using the Truesdell rate,
which is denoted as �̃T.

The Truesdell rate of the Kirchho@ stress can be related to the time derivative of Kirchho@
stress as in Reference [36]:

˙̃�= �̃T + l�̃+ �̃lT (72)

where l is the spatial velocity gradient whose co-ordinates are lij = @vi=@xj.
The Truesdell rate can be related to the deformation rate tensor through the spatial elasticity

tensor, c, according to the following product:

�̃T = c:U̇ (73)

where U̇=sym(l) is the deformation rate.
The spatial velocity gradient is calculated by its de.nition (noting that l is consistent with

�̃, i.e. assumed) as follows:

l= ˙̃FF̃−1 =

(
�̇
3�

− J̇
3J

)
I + ḟ =

1
3

(
div v − div v + div ȧ − div ȧ

)
I + ḟ (74)

where ḟ = ḞF−1 is an auxiliary term and Ḟ=∇0v + Ȧ is the time derivative of the enhanced
deformation gradient.

The deformation rate is simply

U̇= 1
3(div v − div v + div ȧ − div ȧ)I + 1

2(ḟ + ḟT) (75)
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The time derivative of ∇�x can be calculated using the chain rule:

˙∇�x=∇0�xḞ−1 = −∇�xḟ (76)

and for the time derivative of �a, the result is similar:

�̇a= − �aḟ (77)

The assumed pressure term Tp can be related to �̃ using Equation (50):

Tp= 1
3 P̃ : F̃= 1

3PijFij = 1
3 ikF

−1
jk Fij = 1

3 ik�ik = 1
3 �̃ : I (78)

so that its time derivative is simply:

Ṫp= 1
3
˙̃� : I (79)

The time derivatives of the divergence operators are calculated performing the contraction
between the identity tensor and the related gradients.

After some calculations it is possible to write the following relations:

˙div �a=−�aT : ḟ (80a)

˙div �x=−∇�xT : ḟ (80b)

The time derivatives of the average divergence operators div �x and div �a, are determined
using the previous relations (80) and the chain rule.

For ˙div �x, the following equation can be written as

˙div �x= − �̇
�2V

∫
B
J div �x dV +

1
�V

∫
B
J̇ div �x dV +

1
�V

∫
B
J ˙div �x dV (81)

Using the derivative of div �x in Equation (80b) and noting the following relations:

�̇= �(div v + div ȧ) (82a)

and

J̇ = J (div v + div ȧ) (82b)

it is possible to write the .nal result for ˙div �x:

˙div �x = −(div v + div ȧ)div �x +
1
�V

∫
B
(J div v + J div ȧ)div �x dV − 1

�V

∫
B
J∇�xT : ḟ dV (83)

Equation (83) is visibly distinct from the equation derived by Simo et al. [17].
The di@erence is not only the absence of the .eld a in that paper [17], but even the

linearized average spatial divergence is clearly di@erent.
Introducing the approximation discussed in Section 4.5, the result is much simpler:

˙div �x=−∇�xT
0 : ḟ0 (84a)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:883–917



902 J. M. A. C 0ESAR DE S 0A, P. M. A. AREIAS AND R. M. N. JORGE

˙div �a=−�aT
0 : ḟ0 (84b)

where the subscript 0 indicates that the quantity is evaluated at the element’s central point.
Using these results, the time derivative of the Kirchho@ stress tensor can be written as

˙̃�= c :

[(
�̇
3�

− J̇
3J

)
I + ḟ

]
+

2
3

(
�̇
�
− J̇

J

)
�̃+ ḟ �̃+ �̃ḟT (85)

It is now appropriate to introduce the discretized results, necessary for the numerical im-
plementation.

The auxiliary term ḟ can be written as

ḟ =∇v + ȧ ⇔ ḟij =Nk
j v

k
i + gl

j $̇
l
i (86a)

And the term �ȧij can be discretized as

�ȧij = − �aikḟkj = − �aik

(
Nm
j vmk + gl

j $̇
l
k

)
(86b)

The time derivatives of the discretized forms of the spatial divergence operators and diver-
gence averages are written as follows:

˙div �a = −�$l
j g

l
i

(
N k
j vk

i − gm
j $̇m

i

)
(86c)

˙div �a = 0 (86d)

˙div �x = −�xlj N
l
i

(
N k
j vk

i − gm
j $̇m

i

)
(86e)

˙div �x = −�xlj N
l
0iN

k
0jv

k
i (86f)

Therefore, the .nal discretized form of the time derivative of the Kirchho@ stress tensor
can be written as

˙̃ ij = cijkl
{

1
3�kl

[−gl
p$̇

l
p +

(
Nm

0q − Nm
q

)
vmq

]
+ 1

2 (Nm
k vml + N n

l v
n
k + gs

l $̇
s
k + gr

k $̇
r
l )
}

+ 2
3

[−gl
p$̇

l
p +

(
Nm

0q − Nm
q

)
vmq

]
 ij +

(
Nm

k vmi + gl
k $̇

l
i

)
 kj +

(
N m

k vm
j + gl

k $̇j
l)  ik (87)

and the linearized form for the assumed pressure is written as

Ṫp= ˙̃ ii (88)

Finally, the term Ȧ is calculated as

Ȧij = $̇k
i G

k
j (89)

from which results a particularly simple form for the stabilizing term in the sti@ness matrix.
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Now the following auxiliary notations are introduced:

∇̂�x=∇�x + 1
3(div �x − div �x) (90a)

and

�̂a= �a + 1
3(div �a − div �a) (90b)

From which the linearized form of Equations (52) can be written as follows:

∫
B
U̇ : c : ∇̂�x +

(
l�̃+ �̃lT

)
: ∇̂�x

+ �̃ :
[
−∇�xḟ + 1

3I
(
−∇�xT

0 : ḟ0 + ∇�xT : ḟ
)]

dV + ˙�Vext = − �V(�x)=Xt (91a)

∫
B
U̇ : c : �̂a+(l�̃+ �̃lT) : �̂a+ �̃ :

[
−�aḟ+ 1

3I
(
�aT : ḟ

)]
+rȦ : �A dV = −�V(�a)=Xt (91b)

The sti@ness matrix is straightforwardly derived from Equations (91) and the discussed
time derivatives.

7. STABILIZATION PARAMETER

The proposed stabilization term, dependent on the r parameter, allows the control of the
instability modes (i.e. hourglass modes) often present in the element formulations of the
enhanced strain type.

For some element formulations, based on reduced integration or uniform integration (as, for
instance, the technique developed by Bonet and Bhargava [20]), there are some alternative
ways of stabilizing the element which are also based on some sort of stabilizing term.

The experiences carried out by the authors of this paper, with the present elements, allow
the conclusion that the technique gives an eKcient control of the element’s instabilities. For
the element that possesses 4 internal variables, denoted as Qi6B-bar, the following constant
stabilization parameter, r is proposed:

r = 1
100. (92)

. being the shear modulus of the material.
Usually, this value does not increase too much the element’s hourglass sti@ness to the point

of damaging the intrinsic good results, but allows the control of instabilities otherwise present
in several tests.

The technique suggested by Bonet and Bhargava [20], was also tested with successful
results, particularly for regular meshes.

However, the proposed technique has a natural justi.cation for enhanced strain elements
and has a variational support.

It seems appropriate to refer that the Qi6B-bar element, in the absence of a stabilizing term
possesses a marked stability de.ciency. However, the element with two internal variables,
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denoted as Qi5B-bar, was tested here with a null r, with good results. A null r is equivalent
to the orthogonality condition set by Simo and Armero [7] between the tensorial Lagrange
multiplier and the constraint A= 0. This statement can be veri.ed through Equation (22).

It is clear that the imposition of a constraint by a multiplier that is assumed to be orthogonal
to the constraint is equivalent to not imposing the constraint.

8. NUMERICAL EXAMPLES

The following set of numerical examples attempts to validate the new proposed formulations
and compare its results with those obtained using well established techniques. A variety
of situations is tested, which allow to get a grasp of the elements’ behaviour, namely in
compression, tension and bending situations.

The presented examples are two-dimensional and obey to the plane strain hypothesis, in
agreement with the discussion of Section 4.1.

The Newton–Raphson method is employed, with automatic load increasing and line-search.
Beginning with the second load-step, the predictor displacement is calculated as a quadratic

extrapolation of the displacements, and possesses the peculiarity of including a sti@ness matrix
decomposition:

n+1Xu= n−1uk1 +nu k2 +nK−1 (n+1f −n i
)
k3 (93)

where n+1Xu is the displacement variation foreseen for the n+1 step. The terms n−1u and nu
are the calculated displacements at the penultimate and last steps, respectively.

The nK matrix is the tangent sti@ness matrix calculated at the end of the nth step, and the
di@erence n+1f −n i= nXZf is the .rst residual corresponding to the step n + 1.

The parameters k1; k2 and k3 are evaluated by the load factors at the steps n and n−1: nZ,
n−1Z, and by the load factor variation nXZ. Hence,

k1 = z1x1 + z2x4 + z3x7

k2 = −z1 + z1x2 + z2x5 + z3x8

k3 = z1x3 + z2x6 + z3x9

(94)

where

x1 =
nZ2

y
; x2 =

n−1Z2 − 2n−1ZnZ
y

x3 =
n−1Z nZ2 −n−1 Z2 nZ

y
; x4 = − 2

nZ
y

x5 = 2
nZ
y

; x6 =
n−1Z2 −nZ2

y

x7 =
1
y
; x8 = − 1

y

x9 =
nZ −n−1Z

y
y=(nZ −n−1Z)2
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and

z1 =
1

nXZ
z2 = z1(nZ +nXZ) z3 = z1(nZ +nXZ)2 (95)

This extrapolation often allows a speed-up of the convergence rate in elasto-plastic prob-
lems, that can be irregular in the early iterations. However, if divergence occurs, this predictor
is temporarily turned o@.

8.1. Material model

The elasto-plastic J2 model for .nite strains is based on the multiplicative decomposition of
the deformation gradient and on the assumption of existence of a hyperelastic potential. The
assumed deformation gradient is, in this model, decomposed in agreement with the following
hypothesis:

F̃= F̃e F̃p (96)

where F̃e is the elastic term and F̃p the plastic term of the assumed deformation gradient.
The proposed formulation corresponds to that developed by Simo in References [37; 32],

in its spatial form. The yield condition is given by the equation ’= ‖s‖−
√

2
3 [Y0 +h(1p)]=0

where 1p is the e@ective plastic strain and s is the deviatoric part of the Kirchho@ stress
tensor.

The constant Y0 is the initial yield stress.
The strain hardening function is the one presented in Reference [17]:

h(1p)= (Y∞ − Y0)
[
1 − e−�1p

]
+ H1p (97)

where Y∞ is the saturation stress, � is the saturation exponent and H is the linear hardening
parameter.

The hyperelastic potential has an uncoupled form and can be written with the following
notation, as referred in Reference [9] (distinct from the hyperelastic potential proposed by
Simo et al. [36; 7]):

W =3U (J e) + W (be) (98)

and

U (J e)= 1
2 [ln(J e)]2W (be)= 1

2.(tr[be] − 3) (99)

where be = F̃eF̃eT; be = J e−2=3be and J e = det[F̃e].
The elastic material constants 3 and . are the standard bulk modulus and shear modulus,

respectively.
This material model is analytically simple and, due to the use of the radial return algorithm

(for implementation details, consult Reference [36]) is computationally eKcient.

8.2. Nomenclature of the tested elements

In the examples given here, there are 6 di@erent element formulations.
The formulations are based on the calculations presented and on References [4; 7]. A 2 × 2

point, Gauss integration rule is used for all the formulations. Although this type of integration
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Figure 1. Block compression; geometry, .nite element mesh and boundary conditions.

is often said to be reduced for enhanced strain formulations (as discussed by Simo et al. [3]),
it is known that the instabilities do not disappear completely (as illustrated by Glaser and
Armero [12]) when the number of integration points is increased.

Due to this fact, the use of a higher quadrature rule was avoided, as it penalizes the
computing times in plasticity problems.

The standard formulation of the four-node element is identi.ed by the symbol Q4. The
B-bar formulation, in agreement with the exposed formulation but without additional modes,
is identi.ed by the symbol Q4B-bar. The fundamental di@erence between this formulation
and the well known B-bar element is the discussed (in Section 4.5) approximation of the
dilatation .eld.

The well established enhanced strain formulation, originally proposed for geometrically non
linear problems by Simo and Armero [7], is identi.ed by its original denomination Q1E4.

The non-linear extension of the recently proposed element by C0esar de S0a and Natal Jorge
[4] is denoted Qi6.

The B-bar element with two internal variables, corresponding to the bubble mode, is iden-
ti.ed as Qi5B-bar. The B-bar extension of the Qi6 element is named Qi6B-bar.

Finally, we note that the truncated Taylor expansion of the element-shape functions, as
discussed in Reference [14] was tested. Some slight di@erences were noted for coarse meshes.
However, the results presented were obtained with the standard-shape functions.

8.3. Block upsetting

This problem consists of a compression of an elasto-plastic block. The corresponding model
is presented in Figure 1.

It is noticeable that a similar problem was inspected in a paper by Cris.eld et al. [38], for
an upsetting displacement, corresponding to 30 per cent of the block’s height. In that paper
the presence of hourglass instabilities was detected, although a .ve-point integration rule was
used. A 5 × 10 element mesh was used, taking advantage of the existence of one symmetry
plane.
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Figure 2. Block compression; deformed meshes of the 6 analysed element formulations.

Schonauer et al. [39], using an elasto-plastic formulation based on the Hencky strain tensor,
managed to reduce the instabilities presented in Reference [38], maintaining the .ve-point
quadrature rule.

The mesh proposed by Cris.eld et al. appears to be (as discussed by Schonauer et al.
[39]), excessively coarse to model adequately the shear band zone. With the mesh used in
this work, it is possible to obtain those bands with just 10 per cent upsetting, as it will be
veri.ed.

The material properties are the same as in Cris.eld et al., with shear modulus .=92:53
and bulk modulus 3=200:47. The yield stress is Y0 = 4:81 and the material is considered to
be elastic=perfectly plastic.

The deformed meshes related to the 6 formulations are exhibited in Figure 2. The presence
of slight instabilities, on some mesh regions, exhibited by the Qi6 and Q1E4 elements is
clear. The distortions present in these regions tend to increase with the imposed vertical
displacement. It is also visible that all the other elements present less distorted meshes. The
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Figure 3. Block compression; contour plot of the
e@ective plastic strain for the Q4B-bar element.

Figure 4. Block compression; 100× 100 element
deformed mesh for the Q4B-bar element.

Qi6B-bar element manifests a visible ‘shear-band’ deformation, in well de.ned areas. These
areas are somewhat related to the concentration of the e@ective plastic strain, as it can be
observed in the contour plot of Figure 3, which corresponds to the e@ective plastic strain
obtained with the Q4B-bar element.

It is important to comment the apparent similarity between the results of the Q4 element
and the other elements. In this type of tests, where the displacement is imposed, the volumetric
locking e@ect is not explicitly apparent. An analysis of the reaction forces can be useful to
conclude that these are far superior for the Q4 element. A reaction analysis was carried out
by Wriggers and Hueck [14] for a similar problem (in the elastic range), comparing various
formulations.

The instabilities exhibited by the Qi6 and Q1E4 formulations are not directly related to the
e@ective plastic strain distribution, as the Q1E4 element presents the same symptoms in some
purely elastic problems (as shown in References [13; 11]).

Whether or not an hourglass free formulation can reproduce the shear bands is a relevant
question. An analysis using a 100 × 100 element mesh and the Q4B-bar formulation allows
the clear identi.cation of the bands. Figure 4 shows the deformed mesh.

8.4. Cook’s membrane

This test consists on a examination of the proposed elements performance, in situations of
simultaneous shear and bending. The problem consists of a trapezoidal panel clamped on one
side and subject to a shear load on the opposite side. Figure 5 displays the geometry and the
boundary conditions of the problem analysed.

This problem is very common in both linear and non-linear analysis [27; 9; 26; 12].
In the present paper the material is considered elasto-plastic, with the following property

values: bulk modulus 3=164:21; shear modulus .=80:1983; initial yield stress Y0 = 0:45 and
the hardening parameters Y∞ =0:715; �=16:93; H =0:12924.
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Figure 5. Cook’s membrane; geometry and boundary conditions.

Table I. Top vertical displacement in the Cook’s membrane problem for the tested elements.

Number of elements in one side
Formulation 2 5 10 15 20 25 30 35

Q4 0.359 1.36 2.89 3.97 4.71 5.21 5.59 5.8
Q1E4 3.80 6.35 6.82 6.88 6.93 6.95 6.97 6.97
Qi6 4.63 6.58 6.83 6.89 6.95 6.96 6.97 6.98
Q4B-bar 2.71 5.85 6.51 6.74 6.81 6.86 6.91 6.92
Qi5B-bar 3.75 6.33 6.74 6.83 6.9 6.92 6.95 6.97
Qi6B-bar 6.05 6.77 6.71 6.91 6.92 6.94 6.96 6.97

The identi.ed total shear force f has a value of 5 consistent units and is applied in variable
force increments. This force is equally distributed by the extremity nodes and possesses a
constant direction.

An analysis of the tip vertical displacement was carried out. The results obtained with that
analysis are presented both in tabular (Table I) and chart form (Figure 6).

In the presented chart there is a plot of the results obtained with the Qi6, Q1E4, Qi6B-bar
and Qi5B-bar elements, and the results for all the formulations are tabulated.

Observing Figure 6 and Table I presented, one can verify the very good results obtained
with element Qi5B-bar (almost at the level obtained with the Q1E4 element) and with Qi6
element, whose performance is always superior or at least equal to the Q1E4. The Qi6B-bar
element usually presents very good results, however, its convergence is non-monotonous due
to the value obtained with the 10 × 10 mesh.

8.5. Indentation problem

This problem is inspired in the one carried out by Cris.eld et al. [38] for a Mooney–Rivlin
elastic material.
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Figure 6. Cook’s membrane; top vertical displacement convergence for several mesh densities.

Figure 7. Block indentation; geometry and boundary conditions.

The test consists on a partially compressed block, with an indentation of 20 per cent of
the total height (25 per cent in the elastic case described in the Reference [38]) by a friction
plate. The block geometry and the boundary conditions are detailed in Figure 7.

The compression is applied by displacement control. Two materials are analysed: near-
incompressible elastic and elasto-plastic, with the purpose of showing the qualitative di@er-
ences in the instabilities.

The elastic material properties are bulk’s modulus 3=3:5×1014 and shear modulus .=7×
109. This near-incompressible properties tend to force the distinction between elements.

For the elasto-plastic material, a lower bulk modulus is used; 3=3:5 × 1012 and the shear
modulus is .=7:047× 109. This material is considered elastic=perfectly plastic and the yield
stress is Y0 = 1 × 109.
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Figure 8. Block indentation; deformed meshes resulting from the elastic analysis.

The deformed meshes corresponding to the 6 analysed elements for the two problems,
elastic and elasto-plastic, are presented in Figures 8 and 9, respectively.

For the elastic case, the hourglass patterns presented by the elements Qi6 and Q1E4 (and
also the similarity between the obtained results) is noticeable. The violation of the near-
incompressibility condition by these elements is clear, in .nite strain situations, which presents
a serious limitation to the general use of the standard enhanced strain elements.

The behaviour of the elements Q4B-bar, Qi5B-bar and Qi6B-bar is similar, with some
distortion in critical zones. Nevertheless, these results are far more reasonable than those
obtained with the Qi6 and Q1E4 elements.

In the elasto-plastic case the elements Q4B-bar, Qi5B-bar and Qi6B-bar present tiny di@er-
ences between themselves, with larger distortions than those in the elastic case. The results
obtained with elements Qi6 and Q1E4 are clearly unrealistic.

The apparently acceptable results exhibited by the Q4 element in the elasto-plastic case
deserve a .nal comment. The vertical reactions in the indented zone are far larger than
those presented by all the other elements, revealing a developing locking behaviour. A chart
representing the vertical reactions along the indented zone for the 6 elements is presented in
the Figure 10.
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Figure 9. Block indentation; deformed meshes resulting from the elasto-plastic analysis.

Figure 10. Block indentation; vertical reaction in the indented zone for the 6 analysed elements
in the elasto-plastic analysis.
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Figure 11. Elastic instability of a ring; origi-
nal geometry, deformed geometry and boundary

conditions.

Figure 12. Elastic instability of a ring; load factor
versus top displacement curve.

8.6. Elastic stability of a circular ring

In this example, the adequacy of these continuum elements to the analysis of a structural
problem is examined.

With this purpose, a 180◦ arch is analysed, with an interior radius of 3 and width 0:1, subject
to a vertical point force P =0:2 on its top. This arch is twice clamped in its extremities, as
Figure 11 indicates.

This problem is particularly demanding for the tested elements, since they present a length=
width ratio that is admittedly penalizing (see, about the bending of a slender beam using this
type of elements, Reference [21]).

The material is elastic, with the following properties: .=80:77 and 3=175. An alternative
stabilizing parameter value of r =6 was adopted. The solution algorithm is the Newton–
Raphson method with spherical arc-length control. The initial arc-length and its variation are
automatic.

The 8 element mesh (due to the geometry’s symmetry) was chosen to indicate the absence
of critical load (in the interval [0,0.2]) when using the elements Q4, Q4B-bar and Qi5B-bar.

The charts with the load factor versus displacement curves corresponding to the point under
the load are plotted for the 6 analysed elements in Figure 12. From the curves represented
in Figure 12 it is possible to see the locking behaviour of the Q4, Q4B-bar and Qi5B-bar
elements and the acceptable behaviour of the Qi6 and Q1E4 elements. The Qi6B-bar gives
more accurate answers than the other elements in this test, when compared with the results
obtained with a re.ned 10 × 200 mesh (half the arch).

For that mesh density, the load–displacement curves of the examined elements (including
the Q4 element) are similar.

8.7. Tension test

This example consists on a tension test of a plane specimen, and has been widely published
[7; 3; 12; 31].
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Figure 13. Plastic localization problem; deformed meshes and e@ective plastic strain contour plots.

The test allows the examination of the plastic necking zones. The necking zones present,
with certain element formulations, several shear bands inclined 45◦ in relation to the loading
axis.

A 200 element mesh is used, with 12.826 width and 53.334 height, according to References
[7; 31]. An imperfection is introduced through the reduction of 1.8 per cent in the width at
the specimen’s centre (as described by de Souza Neto et al. [31]).

The specimen bar is discretized in 1=4 of the geometry, owing to the presence of two
symmetry planes. The analysis is carried out with displacement control with a total imposed
stretch of Tu=4:7.

The material properties are the same as in Reference [7], with the elastic properties 3=164:21,
.=80:1983. The initial yield stress is Y0 = 0:45 and the hardening properties are Y∞ =0:715,
�=16:93, H = − 0:012924.

Using distinct material properties, Glaser and Armero [12] detected the existence of insta-
bilities with the enhanced strain elements, even with .ve- and nine-point integration rule.

The deformed meshes related to the 6 examined elements are presented in Figure 13. The
e@ective plastic strain contour plots are also represented. It is visible that the Qi6 and Q1E4
elements present some instabilities and the e@ective plastic strain contour plot shows some
irregularity.

The Q4B-bar, Qi5B-bar and Qi6B-bar elements do not show any instabilities. It is also
observable that the plastic areas in elements Qi5B-bar and Qi6B-bar present a higher e@ective
plastic strain concentration than the one presented by Q4B-bar element.
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Figure 14. Geometry, boundary conditions and material properties for the mesh distortion test.

Figure 15. Vertical displacement of the nodes with applied forces, for various values
of the distortion parameter.

In this case the Q4 element exhibits a severe locking behaviour.

8.8. Mesh distortion test

The purpose of this linear elastic test is the inspection of the bending behaviour of the Qi6
element, proposed by C0esar de S0a and Natal Jorge [4], when compared with the standard
enhanced strain element, introduced by Simo and Armero [7]. This comparison is particularly
relevant as it has been recently stated by Lautersztajn and Samuelsson [8] that the Qi6 element
performs rather poorly for plane bending. One other important aspect is the evaluation of the
mesh distortion sensitivity of the two formulations in the bending case. Therefore, the bending
test presented in Reference [8] is reproduced here.

Figure 14 shows the mesh, the boundary conditions and material properties of the test.
In Figure 15, the vertical displacement of the nodes with applied forces is plotted and

compared with the result obtained using the beam theory.
It is clear that, in this test, the Qi6 element performs better than the original Q1E4

(incompatible) element. This conclusion somehow contradicts the statement referred in
Reference [8].
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9. CONCLUSIONS

In this paper two new elements have been described. These elements, named as Qi5B-bar
and Qi6B-bar possess two and four internal variables, respectively. The enhanced deformation
gradient, corresponding to an enhanced strain formulation is projected so that the dilatation
is constant in the element’s domain. The dilatation .eld results from an average reduced
integration, with the purpose of imposing its independence from the internal variables. The
variational basis of these elements is a four-.eld functional, which contains a stabilizing term
that corresponds to a constraint nullifying the distortional part of the enhanced deformation
gradient. Thus, it is more suited to the enhanced strain elements than other previously proposed
stabilizers (as the one presented in Reference [20]). The enhanced deformation gradient is
calculated with an exact tensorial transformation, as it does not need the usually adopted [7]
procedure of evaluating the Jacobian matrix in the centre of the element.

With the use of a J2 elasto-plastic material model, it is clear that both the Qi6 element
(proposed by C0esar de S0a and Natal Jorge [4]), and the Q1E4 element (proposed by Simo and
Armero [7]) present pronounced instabilities in practical .nite strain problems. It is, however,
noticeable that the Qi6 element has shown superior results than the Q1E4 element in the
Cook’s membrane problem.

The presented results lead to the conclusion that the Qi5B-bar and Qi6B-bar are suitable
to these problems, because they do not present any instabilities or any kind of locking.

The Qi5B-bar formulation is particularly attractive, since it has only two internal variables,
corresponding to the bubble mode, and the results obtained in the Cook’s membrane problem
are nearly as good as the ones presented by the original Q1E4 element.

This formulation can be extended to the analysis of tridimensional problems, but in that
case the selective integration can be advantageously replaced by an exact evaluation of the
assumed dilatation, as discussed by Bonet and Bhargava [20].
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