Towards Detecting and Solving Aspect Conflicts
and Interferences Using Unit Tests

André Restivo Ademar Aguiar
Faculdade de Engenharia da Universidade do Porto Faculdade de Engenharia da Universidade do Porto,
arestivo@fe.up.pt INESC Porto

aaguiar@fe.up.pt

Abstract However, obliviousnesshas been harder to achieve than ex-

; : ; ; ; ted, as conflicts between aspects are prone to occurge lar
Aspect Oriented Programming (AOP) is a programming paradig P€¢!€d: .
that aims at solving the problem of crosscutting concerringoe aPPlications with an heavy usage of AOP. In the OOP world con-

: s flicts are avoided by using encapsulation techniques andglss-
normally scattered throughout several units of an apptinat .) . .
Although an important step forward in the search for modular Eg Unit T@““g Icl)r th% Igesmfn by Conlzract (Ebc)h[4] appraeeh
ity, by breaking the notion of encapsulation introduced Hyjeot ncapsulation allowed developers to know that changingrier

Oriented Programming (OOP), AOP has proven to be prone to nu- /orking of an unit would not break another part of the applica

merous problems caused by conflicts and interferences batae 110N as long as their public interfaces would be kept the sainé

pects. testing and the DbC approaches helped developers detéitpre
This paper presents work that explores the proven unitgsti ¢2used by an unit changing its public behavior in an easigr(ie

techniques as a mean to help developers describe the behavioRegression Testing). . .
of their aspects and to advise them about possible conflius a As most AOP languages allow to weave aspects into the private
interferences. methods of an unit, thus changing their inner workings, psaa

)) _ _ lation is no longer a guarantee. However, this is an impoffear
Categories and Subject Descriptors D.2.4 [Software Engineer- ture of the AOP paradigm that allows crosscutting concesush
ing]: Software/Program Verification aslogging andsecurity to be easily added by means of a separate
General Terms Design, Languages, Verification modular unit. The_ p_robler_n is _that conflicts will certainlysar due

to the new possibilities this brings.

Keywords AOP, Coniflicts, Interferences, Unit Testing Besides the loss of encapsulation, unit tests and contsadts
] denly became harder to use mainly because aspects can ¢hange
1. Introduction public behavior of an unit thus making obsolete some unis$ tasd

contracts attached to that unit. Unit testing and the DbCagahes
have therefore to be rethought in order to accommodate &vis n
way of programming.

In this position paper we will argue how the unit testing ap-

Aspect-Oriented Programming(AOP) [2] is a new programming proaqh can still be effeptwely used in AOP, retaining thag;a:har-
paradigm that builds on the success of proved paradigms, lik acteristics that made it a very popular Regression Testieiool-
Object-Oriented Programming(OOP). The main idea behin® AO ology, aﬂd alsq be.h9|PfU| in detecting conflicts betweerpaqm)
is that concerns crosscutting several modules of an aiplicaan Our final objective is to create a methodology that will imy@o
be developed as single units of modularity and weaved into th the current state of managing conflicts in AOP and to develolst
application, through a process of composition, in specifimfs to support that methodology.

called joinpoints. The motivation behind AOP is to improve t The paper is organized in the following sections: Secticthis,
overall modularity of an application by enabling the ailto section, introduced the problem of conflicts and interfeesnas

develop crosscutting concerns as separate units. an important issue in AOP; Section 2 will describe some pserlo
AOP also aims for obliviousness [3], i.e. a developer shaold ~ c&tegorization of both aspects and conflicts; Section 3ewfilain
have to know about any other aspects that are being weawethent ~ HOW these conflicts could be detected using unit tests; et
application code. To make this a reality, aspects have tdidee will show how the different types of conflicts described ircsen
to attach virtually to any position of the original sourcedeoIn 2 can be identified by using the methodology explained iniSect

this way, each developer only has to be concerned about his ow 3 S€ction 6 will introduce a small example that will help end
modules: standing how the presented methodology could be used inla rea

situation; Section 7 will describe several important woikghe
conflict detection field; finally Section 8 will list some cdusions
and pointers for future work.

Separation of concerns (SoC) has always been the main goal of
software engineering. It refers to the ability to identépcapsulate,
and manipulate only those parts of software that are reteécaa
particular concept, goal, or purpose [1].

Permission to make digital or hard copies of all or part of thiork for personal or

classroom use is granted without fee provided that copesarmade or distributed

for profit or commercial advantage and that copies bear itismand the full citation 2. Conflicts and Interferences

on the first page. To copy otherwise, to republish, to posteswess or to redistribute . . .

to lists, requires prior specific permission and/or a fee. Before tackling the problems posed by the introduction pleats
Workshop SPLAT '07 March 12-13, 2007 Vancouver, British Columbia, Canada into an application, we have to understand the differene tgp
Copyright© 2007 ACM 1-59593-656-1/07/03. .. $5.00 changes they can perform and the objectives behind thesgeha

Several attempts of categorizing aspects have been doeeeéntr
literature.
2.1 Types of Interferences

Tessier [5] classified aspects by the different type of fetences
they can cause. In his work, he identified problems like:

¢ the use of wildcards leading to accidental joinpoints;

o conflicts between aspects and the importance of the order in
which these are weaved into the application;

e circular dependencies between aspects;

¢ conflicts between concerns where a concern needs to change a

functionality needed by another concern.

2.2 Types of Changes

Katz [6] took a different approach by classifying aspectsading
to the type of changes they introduce in an application. Adicg
to this author three types of aspects can be identified:

e spectative aspectshat only gather information about the sys-
tem to which they are woven, usually by adding fields and meth-
ods, but do not influence the possible underlying computatio

e regulatory aspectsthat change the flow of control (e.g., which
methods are activated in which conditions) but do not change
the computation done to existing fields;

e invasive aspectghat change values of existing fields (but still
should not invalidate desirable properties).

2.3 Types of Dependencies

Kienzle [7] approached the problem from a different poinviefv
by considering only the dependency relationships betwspadis
and the original code. Three different kinds of aspect ddpecies
have been identified:

e orthogonal aspectghat provide functionality to an application
that is completely independent from the other functioreito
the application;

¢ uni-directional aspectghat depend from some functionality of
the application (these can be further divided as preserifitite
application functionality is maintained or enhanced withany
current functionalities being altered or hidden, or moididy if
the application functionality is altered or hidden);

e circular aspectswhich are aspects that are mutually dependent
of each other.

Katz and Tessier works are extremely interesting as a istarti
point for our research. We intend to analyze how the differen
type of changes introduced by aspects (as defined by Katz) can
create different types of interferences (as defined by &Bsand
how these can be tackled using unit testing. The followirgiise
explains our approach to this problem.

3. Detecting Conflicts Using Unit Tests

Unit testing is used to informally proof the correctness ofdules.
Each module has its own set of unit tests. By running theds tes
one can verify if changes to a module have changed its tested
external behavior. Unit tests can be seen as a specificatithe o
desired behavior of a module. With the introduction of aspttese
specifications and their respective implementations capasdy
changed by external entities, so units may no longer behave a
expected. When an aspect is weaved into the code of an aptica

Base Classes

' Unit Test
—» Add Test

—O Require Test
— Suppress Test

Figure 1. Aspects and Unit Tests

In this way, it should be possible to specify which unit téstge
to be valid for an aspect to be correctly weaved into the gyste
In the same way, it should be possible for an aspect to datermi
which tests it expects to break.

Many times aspects depend on each other. This happens when
one aspect needs some behavior to be present in the systesrkto w
properly and this behavior is introduced by another asptegtiould
also be possible for aspects to introduce new unit teststheo
system specifying which new behaviors are being introduned
them.

It might also happen that an aspect needs a certain behavier t
present in the system but the unit providing this behavi@sduot
have a specific unit test for this particular behavior. Aspsbould
be able to add new unit tests to code already in the applitatio

Figure 1 shows a possible diagram for an example where aspect
add, remove and depend from unit tests. In this figure the dark
square boxes are unit tests. The arrowed lines identifyhwidt or
aspect created the unit test. The circled lines identifypeddency
relationship, while lines with a diamond represent an iiczdion
of an unit test by an aspect (the big circles). From this exqtian
we can see that the initial OOP code already provided seuvaital
tests. Aspect "A” depends on two of those unit tests and adds
another one. Aspect "B” depends on the unit test created pg&s
"A” and at the same time suppresses one of the initial unistes
And finally, Aspect "C” also depends on the unit test creatgd b
Aspect A.

From this simple example we can already extract some conclu-
sions: Aspect "A” is probably &pectativeaspect (as defined by
Katz) that simply added some new fields and methods to the unit
Aspect "B”, on the other hand, has probably changed the hehav
of the original code. We can also easily conjecture a passibl
der for the weaving process (e.g. "A” followed by "B” followéoy
"C").

Finding a possible weaving order in which dependencies be-
tween aspects are assured can probably be accomplisheihiy us
a simple Breadth-First Search (BFS) or using the A* alganiifas
this is a typical path finding in a graph problem) . If such adenr
ing cannot be found then we are facing a conflict between &spec
In this case, an error message should be presented staticly g
pects failed to weave, which unit tests are missing for tlaspects,

other aspects might have been weaved before and changed thand which aspects removed them (if any).

expected behavior of the affected unit in a way that intedevith
the new aspect being weaved.

The next section will explain how this approach relates to
Tessier and Katz classification of aspect interferencesantiicts.

Base Class

y 3
(e)

regulatory or invasive

Base Class

y
.

spectative

Figure 2. Different types of aspects

Base Class Base Class Base Class
) u 5 R .
circular dependency conflict dependency

Figure 3. Different types of interferences

4. Mapping aspects and interferences to unit tests

5. Using annotations to specify changes to unit
tests

As has been stated before, breaking an unit test is not asitgaof
an aspect misbehaving. Due to their own nature, aspectarelb
to change the functionality of other units of code and herrealo
their unit tests. In this way, aspects must have a way of amring
what unit tests they expect to break.

Very often, aspects are also depending on some functignalit
be present into the system. This functionality can be dedivdoy
the system base code or by other aspects. Conflicts betweectas
are often caused by one aspect removing a functionalityeteby
another aspect, and dependency problems are commonlyddayise
one aspect expecting another aspect to deliver some foatitip
which somehow is not effectively delivered.

Therefore we claim that, there is a clear need for aspects to b
able to announce which aspects they are expected to bre& wh
aspects they depend on, and which they are adding to thellovera
system. In this paper we propose that aspects should be @ble t
make this announcements using Java annotations. An exaviiple
now be introduced to explain how this could be attainable.

6. An example of conflicting aspects

Imagine a simple class depicting an User. This class woule ha
fields like its username and password. It would also haversett
and getters for those fields anderifyPasswordnethod. Listing 1
shows some simple unit tests that could have been used toeensu
that the class was working properly.

Listing 1. User Class Unit Tests

public void testSetGetPassword() {
user.setPassword("foo");
assertEquals("foo", user.getPassword());

}

public void testVerifyPassword() {
user.setPassword("foo");
assertEquals(true , user.verifyPassword("foo"));
assertEquals(false, user.verifyPassword("bar"));

}

It is also common that, for security reasons, passwords tlo no

As we have seen in Section 2, aspects can be classified as bein@et stored in clear text. It is a common practice to store them

spectativeregulatoryor invasive Using the notation introduced in
Section 3 we can depict these different type of aspects wittion
to the unit tests they add, depend on, or suppress.

In Figure 2 there are two different aspects. Aspect "A” ishiaro
bly aspectativeaspect as it doesn’t suppress any existing unit tests.
It could also be annvasiveaspect that happened to be "lucky”
enough to change something the original developer wasp&aix
ing to be changed and didn’t include in his unit tests. AspBtt
on the other hand, is clearlyragulatory or invasiveaspect as it
suppresses some of the original unit tests that would féélr af
had been weaved into the system.

In Figure 3, three types of interferences or conflicts areateg.

In the first one, aspects "A” and "B” are creating a circulapele-
dency problem. The middle diagram depicts a conflict betvieen
concerns, where aspect "C” is changing some functionaégded
by aspect "D”. The rightmost diagram shows aspects that teed
be weaved in the correct order to function properly and asémee
time a dependency between aspect "F” and "E”.

This shows that if unit tests are correctly used they can help
detecting most of the conflicts that aspects can introdudetlzat
have been plaguing AOP. In the following sections we will\gho
how these conflicts can be tackled with our proposed metbgglol
with the help of a short example a short example.

using some hash function. However, to achieve a clear sipact
concerns between the user data model and the security cottusr
feature should be coded as a separate aspect. Listing 2 sloows
this aspect could have been coded. By introducing thesec@spe
some of the unit tests shown in Listing 1 get broken.

Listing 2. Encrypted Password Aspect

@SupressTest("user.UserTest.testSetGetPassword")
privileged aspect EncryptedPassword {
protected pointcut
passwordChanged(User user, String password):
target (user) && args(password)
&& call(void setPassword(String));

protected pointcut
verifyPassword(User user, String password):
target (user) && args(password)
&& call(boolean verifyPassword(String));

void around(User user, String password)
: passwordChanged(user, password)

{
V72

user.password =

calculates md5 hash
md5hash;
}

boolean around(User user, String password) so far can be divided into two different categories. Autdmee-

: verifyPassword(user, password) tection of conflicts without human intervention and forcimgpect
{ developers to somehow express the possible points of coriitie

// ... calculates md5 hash ' . .) K .

return (user.password.equals(md5hash); first two works described fall in the first category, while teenain-
} ing three fall in the second one.

3
7.1 Program Slicing

Balzarotti [8] claims that this problem can be solved by gsin
technique proposed in the early 80’s called program slidingjice
of a program is the set of statements that affect a given froizh
executable program. According to the author the followintik:

After introducing the aspect into the system, the developer
should be warned that his aspect broke some unit tests. ®hid c
be easily computed by compiling and testing the system with a
without the aspect. The developer could then inspect thkebro
unit test and decide if that would be an expected result frisn h

aspect. In this case he would decide that it was because tiee ge Let A1 and A2 be two aspects and S1 and S2 the corre-
and setter methods of the User class would not work as expsote sponding backward slices obtained by using all the state-
he could just add a notation expressing that. The first lingsting ments defined in Al and A2 as slicing criteria. A1 does not
2 shows how that notation could look like. interfere with A2 if A1 N S2 = (;

It is also common to prevent users from using passwords that
are easily retrievable using brute force attacks. One wajoofg
it is to prevent them from using passwords that are too si@alte
again, preventing this should be considered a separatetdsp®
the user data model and could be coded as seen in Listing @eNot
that this aspect could have been coded in a much better fabbio
for demonstration purposes it has been coded in a way thes:dted
the getter and setter methods of the original user class tk a®
originally intended. The developer should then announee ttiis 7.2 Introduction and Hierarchical Changes Interferences
aspect depends on ttestSetGetPasswornhit test. He could easily

do so by adding a single line stating that in the beginninghef t ~ Storzer [9] developed a technique to detect interfereoaased by
aspect. two different, but related, properties of AOP languages.

Storzer claims that the possibility of aspects introdgaimem-
— — - bers in other classes can lead to undesired behaviors asriésalt
Listing 3. Minimum Password Size Aspect in changes of dynamic lookup if the introduced method redsfan
method of a superclass. He calls this type of interferdsinding

According to the author, this technique is accurate enoogh t
identify all interferences introduced by an aspect but ¢smdetect
some false-positives. Furthermore, the existence of paistthat
are defined based on dynamic contexts, forces the analysig of
ery execution trace increasing the number of these fals#iaes.
However the approach has the advantage of removing the burde
of having to declare formally the expected behavior of eaeet.

QRequiresTest("user.UserTest.testSetGetPassword")

@SupressesTest("user.UserTest.testVerifyPassword") interference . o
@AddsTest("user.UserTest.testVerifyPasswordML") The other problem Storzer refers to is the possibility qfeass
P“blii atspde“ Mi?imltlmLengthPaSSW”d { changing the inheritance hierarchy of a set of classes. &imsl
protected pointcu A that this type of changes can also give placéitwling interfer-
setPassword(User user, String password) A
target (user) &% args(password) encesas well as some l_Jnexpected b_ehawor caused by the fact that
&& call (void setPassword(String)) instanceofpredicates will no longer give the same results as before.
&& !within (MinimumLengthPassword); To detect this kind of conflicts the author proposes an aimlys
after (User user, String password) based on the lookup changes introduced by. aspects.
. setPassword(user, password) Kessler [10] also s_tudled how ;tructural !nterfer(_enceslc_tbe
i detected. However, his approach is based in a logic engimgenh
if mser-g;t?asswzid().1en§§1}()<6) { programmers can specify rules (ordering, visibility, degencies,
e o eard passwerd). ...). In [10], Kessler also described the different type rikifer-
untimeException(); . o . .
ences that are possible with introductions and hierartbl@nges
¥
} and proposed solutions for each one of them.

}
7.3 Aspect Integration Contracts

Contracts have been introduced by Meyer [4] as a defensive so
lution against dependency problems in OOP. Some authaoirs cla
that contracts can be imported into the AOP world in ordeistist

However, after introducing the aspect into the system, ¢veld
oper would be warned that another aspect has suppressadihat
test. Besides that, this aspect would breaktdstVerifyPassword
unit test. This is a typical case of a conflict between aspdads

solve this problem the aspect has to be rewritten in a difteray programmers in avoiding interference problems.
and the broken unit test must be suppressed and, perhapg; a ne Lagaisse [11] proposed an extension to the Design by Cdntrac

unit test should be added to verify if everything is still \ioig. (DbC) approach by allowing aspects to define what they expect
This example shows how unit tests, if correctly used, cap hel ©f the system and how they will change it. This will allow the

detecting conflicts between aspects. It has also shown lieat t d€tection of interferences by other aspects that were widzfere,

developer of each different concern did not have to know fibou @S Well as the detection of interferences by aspects thabareded

other aspects being weaved into the system, at least unfiicts to be weaved later in the process. Accordin.g to the authorarﬁp
occurred thus promoting obliviousness. Aspect A bound to a component C the following should be defined

In the following section some of the related work done in this 1. The aspect should specify what it requires from compo@ent

field will be presented and discussed. and possibly from other software components.
2. The aspect also needs to specify in which way it affects the
7. Related Work component C and the functionality it provides (if appliabl

In this section some of the work that has been done in the ffeld o 3. The specification of component C must express which ietterf
conflict detection in AOP will be described briefly. The worbre ence is permitted from certain (types of) aspects.

This approach has the disadvantage of forcing the programme

to verbosely specify all requirements and modificationseach
aspect as well as permitted interferences. On the other, ihed

formal specification of behaviors has be proven to be a véduab

tool in Software Engineering. However, the major drawbaekse
in this approach is the necessity of components to specifghwh

Programming. Volume 1241 of LNCS., Springer Verlag (1994092
242

[3] Filman, R., Friedman, D.: Aspect-oriented programmismguantifi-
cation and obliviousness (2000)

[4] Meyer, B.: Applying "design by contract”. IEEE - Comput25(10)
(1992) 40-51

interferences are permitted thus breaking obliviousness.
P 9 [5] Tessier, F., Badri, M., Badri, L.: A model-based detewtof conflicts

between crosscutting concerns: Towards a formal approach.

7.4 Regression Testin
9 9 International Workshop on Aspect-Oriented Software Dewelent.

Katz [6] proposed the use ofgression testingndregression ver- (2004)
ification as tools that could help identifying harmful aspects. The 5 katz, 5. Diagnosis of harmful aspects using regressimification
idea behind this technique is to use regression testing rasaty (2004)

and then weave each aspect into the system and rerun aksemgre
tests to see if they still pass.

Katz approach is very similar to ours but does not specify the
addition and removal of unit tests by aspects. Katz arguastth
use his technique one will have to specify what are the disire
properties of the augmented system (after the aspect bestect
is added) but does not explain how this can be done.

[7] Kienzle, J., Yu, Y., Xiong, J.: On composition and reusfe o
aspects. In: Software engineering Properties of Languagésspect
Technologies. (2003)

[8] Balzarotti, D., Monga, M.: Using program slicing to anzé aspect-
oriented composition (2004)

[9] Storzer, M., Krinke, J.: Interference analysis for Aspl. In:
Foundations of Aspect-Oriented Languages (FOAL). (2003)

[10] Kessler, B., TanteiE.: Analyzing interactions of structural aspects.
It has been noticed by Kienzle [7] that aspects can be defised a ECOOP Workshop on Aspects, Dependencies and Interactdpi (
entities that require services from a system, provide newices (2006)

to that same system and removes others. If some way of explic- [11] Lagaisse, B., Joosen, W., De Win, B.: Managing semamigzference
itly describing what services are requires by each aspewotld with aspect integration contracts. In: Software EngimegRroperties
be possible to detect interferences (for example, an asipeicte- of Languages and Aspect Technologies. (2004)

moves a service needed by another aspect) and to choose bette

weaving orders.

7.5 Service Based Approach

8. Conclusions and Future Work

Detecting conflicts caused by the introduction of aspecasiiarea
where much research is being carried on and much more stillsne
to be done. This position paper presented a methodology et
unit tests to tackle the this problem.

Our work, although very similar to the approaches of both La-
gaisse and Katz (see Sections 7.3 and 7.4), has what we think
are some major and important differences: Lagaisse foroes c
ponents to specify permitted interferences thus breakutigious-
ness; Katz does not specify the possibility of aspects réamgawnit
tests in order to announce what functionalities have beangdd
from the original code.

Therefore, we believe our approach as promising and deserve
further research and exploration to firmly confirm its value.

There is still a lot of ground to cover for this methodology to
be usable. We are planning to develop plugins for some irapbrt
development tools and IDEs that will allow the use of annotet
to help developers on describing the behavior of their asp&bis
would also allow these same development tools to give feddba
about possible conflicts and interferences.

Acknowledgments

We will like to thank Miguel Pessoa Monteiro for the help in-de
veloping this paper and for the constant broadening of ow pe
spectives. We will also like to thank FCT for the support pded
through scholarship SFRH/BD/32730/2006.

References

[1] Ossher, H., Tarr, P.: Multi-dimensional separation ohcerns and
the Hyperspace approach. In: Software Architectures amdgdaent
Technology: The State of the Art in Research and Practi@QR

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., ésip
C., Loingtier, J.M., Irwin, J.: Aspect-oriented progranmgi In
Aksit, M., Matsuoka, S., eds.: 11th Europeen Conf. Obf@dented

