
Towards Detecting and Solving Aspect Conflicts
and Interferences Using Unit Tests

André Restivo
Faculdade de Engenharia da Universidade do Porto

arestivo@fe.up.pt

Ademar Aguiar
Faculdade de Engenharia da Universidade do Porto,

INESC Porto
aaguiar@fe.up.pt

Abstract
Aspect Oriented Programming (AOP) is a programming paradigm
that aims at solving the problem of crosscutting concerns being
normally scattered throughout several units of an application.

Although an important step forward in the search for modular-
ity, by breaking the notion of encapsulation introduced by Object
Oriented Programming (OOP), AOP has proven to be prone to nu-
merous problems caused by conflicts and interferences between as-
pects.

This paper presents work that explores the proven unit testing
techniques as a mean to help developers describe the behavior
of their aspects and to advise them about possible conflicts and
interferences.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Design, Languages, Verification

Keywords AOP, Conflicts, Interferences, Unit Testing

1. Introduction
Separation of concerns (SoC) has always been the main goal of
software engineering. It refers to the ability to identify,encapsulate,
and manipulate only those parts of software that are relevant to a
particular concept, goal, or purpose [1].

Aspect-Oriented Programming(AOP) [2] is a new programming
paradigm that builds on the success of proved paradigms, like
Object-Oriented Programming(OOP). The main idea behind AOP
is that concerns crosscutting several modules of an application can
be developed as single units of modularity and weaved into the
application, through a process of composition, in specific points
called joinpoints. The motivation behind AOP is to improve the
overall modularity of an application by enabling the ability to
develop crosscutting concerns as separate units.

AOP also aims for obliviousness [3], i.e. a developer shouldnot
have to know about any other aspects that are being weaved into the
application code. To make this a reality, aspects have to be allowed
to attach virtually to any position of the original source code. In
this way, each developer only has to be concerned about his own
modules.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Workshop SPLAT ’07 March 12-13, 2007 Vancouver, British Columbia, Canada
Copyright c© 2007 ACM 1-59593-656-1/07/03. . . $5.00

However, obliviousnesshas been harder to achieve than ex-
pected, as conflicts between aspects are prone to occur in large
applications with an heavy usage of AOP. In the OOP world con-
flicts are avoided by using encapsulation techniques and also by us-
ing Unit Testing or the Design by Contract (DbC) [4] approaches.
Encapsulation allowed developers to know that changing theinner
working of an unit would not break another part of the applica-
tion as long as their public interfaces would be kept the same. Unit
testing and the DbC approaches helped developers detect problems
caused by an unit changing its public behavior in an easier way (i.e.
Regression Testing).

As most AOP languages allow to weave aspects into the private
methods of an unit, thus changing their inner workings, encapsu-
lation is no longer a guarantee. However, this is an important fea-
ture of the AOP paradigm that allows crosscutting concerns,such
asloggingandsecurity, to be easily added by means of a separate
modular unit. The problem is that conflicts will certainly arise due
to the new possibilities this brings.

Besides the loss of encapsulation, unit tests and contractssud-
denly became harder to use mainly because aspects can changethe
public behavior of an unit thus making obsolete some unit tests and
contracts attached to that unit. Unit testing and the DbC approaches
have therefore to be rethought in order to accommodate this new
way of programming.

In this position paper we will argue how the unit testing ap-
proach can still be effectively used in AOP, retaining the same char-
acteristics that made it a very popular Regression Testing method-
ology, and also be helpful in detecting conflicts between aspects.

Our final objective is to create a methodology that will improve
the current state of managing conflicts in AOP and to develop tools
to support that methodology.

The paper is organized in the following sections: Section 1,this
section, introduced the problem of conflicts and interferences as
an important issue in AOP; Section 2 will describe some proposed
categorization of both aspects and conflicts; Section 3 willexplain
how these conflicts could be detected using unit tests; Section 4
will show how the different types of conflicts described in Section
2 can be identified by using the methodology explained in Section
3; Section 6 will introduce a small example that will help under-
standing how the presented methodology could be used in a real
situation; Section 7 will describe several important worksin the
conflict detection field; finally Section 8 will list some conclusions
and pointers for future work.

2. Conflicts and Interferences
Before tackling the problems posed by the introduction of aspects
into an application, we have to understand the different type of
changes they can perform and the objectives behind these changes.

Several attempts of categorizing aspects have been done in recent
literature.

2.1 Types of Interferences

Tessier [5] classified aspects by the different type of interferences
they can cause. In his work, he identified problems like:

• the use of wildcards leading to accidental joinpoints;

• conflicts between aspects and the importance of the order in
which these are weaved into the application;

• circular dependencies between aspects;

• conflicts between concerns where a concern needs to change a
functionality needed by another concern.

2.2 Types of Changes

Katz [6] took a different approach by classifying aspects according
to the type of changes they introduce in an application. According
to this author three types of aspects can be identified:

• spectative aspects, that only gather information about the sys-
tem to which they are woven, usually by adding fields and meth-
ods, but do not influence the possible underlying computations;

• regulatory aspects, that change the flow of control (e.g., which
methods are activated in which conditions) but do not change
the computation done to existing fields;

• invasive aspects, that change values of existing fields (but still
should not invalidate desirable properties).

2.3 Types of Dependencies

Kienzle [7] approached the problem from a different point ofview
by considering only the dependency relationships between aspects
and the original code. Three different kinds of aspect dependencies
have been identified:

• orthogonal aspects, that provide functionality to an application
that is completely independent from the other functionalities to
the application;

• uni-directional aspects, that depend from some functionality of
the application (these can be further divided as preserving, if the
application functionality is maintained or enhanced without any
current functionalities being altered or hidden, or modifying, if
the application functionality is altered or hidden);

• circular aspects, which are aspects that are mutually dependent
of each other.

Katz and Tessier works are extremely interesting as a starting
point for our research. We intend to analyze how the different
type of changes introduced by aspects (as defined by Katz) can
create different types of interferences (as defined by Tessier) and
how these can be tackled using unit testing. The following section
explains our approach to this problem.

3. Detecting Conflicts Using Unit Tests
Unit testing is used to informally proof the correctness of modules.
Each module has its own set of unit tests. By running these tests
one can verify if changes to a module have changed its tested
external behavior. Unit tests can be seen as a specification of the
desired behavior of a module. With the introduction of aspects these
specifications and their respective implementations can beeasily
changed by external entities, so units may no longer behave as
expected. When an aspect is weaved into the code of an application,
other aspects might have been weaved before and changed the
expected behavior of the affected unit in a way that interferes with
the new aspect being weaved.

Base Classes

A

BC

Unit Test

Add Test

Require Test

Suppress Test

Figure 1. Aspects and Unit Tests

In this way, it should be possible to specify which unit testshave
to be valid for an aspect to be correctly weaved into the system.
In the same way, it should be possible for an aspect to determine
which tests it expects to break.

Many times aspects depend on each other. This happens when
one aspect needs some behavior to be present in the system to work
properly and this behavior is introduced by another aspect.It should
also be possible for aspects to introduce new unit tests intothe
system specifying which new behaviors are being introducedby
them.

It might also happen that an aspect needs a certain behavior to be
present in the system but the unit providing this behavior does not
have a specific unit test for this particular behavior. Aspects should
be able to add new unit tests to code already in the application.

Figure 1 shows a possible diagram for an example where aspects
add, remove and depend from unit tests. In this figure the dark
square boxes are unit tests. The arrowed lines identify which unit or
aspect created the unit test. The circled lines identify a dependency
relationship, while lines with a diamond represent an invalidation
of an unit test by an aspect (the big circles). From this explanation
we can see that the initial OOP code already provided severalunit
tests. Aspect ”A” depends on two of those unit tests and adds
another one. Aspect ”B” depends on the unit test created by Aspect
”A” and at the same time suppresses one of the initial unit tests.
And finally, Aspect ”C” also depends on the unit test created by
Aspect A.

From this simple example we can already extract some conclu-
sions: Aspect ”A” is probably aspectativeaspect (as defined by
Katz) that simply added some new fields and methods to the unit;
Aspect ”B”, on the other hand, has probably changed the behavior
of the original code. We can also easily conjecture a possible or-
der for the weaving process (e.g. ”A” followed by ”B” followed by
”C”).

Finding a possible weaving order in which dependencies be-
tween aspects are assured can probably be accomplished by using
a simple Breadth-First Search (BFS) or using the A* algorithm (as
this is a typical path finding in a graph problem) . If such an order-
ing cannot be found then we are facing a conflict between aspects.
In this case, an error message should be presented stating which as-
pects failed to weave, which unit tests are missing for theseaspects,
and which aspects removed them (if any).

The next section will explain how this approach relates to
Tessier and Katz classification of aspect interferences andconflicts.

Base Class

A

Base Class

B

spectative regulatory or invasive

Figure 2. Different types of aspects

Base Class

A

Base Class

C

B

D

Base Class

E

F

circular dependency conflict dependency

Figure 3. Different types of interferences

4. Mapping aspects and interferences to unit tests
As we have seen in Section 2, aspects can be classified as being
spectative, regulatoryor invasive. Using the notation introduced in
Section 3 we can depict these different type of aspects with relation
to the unit tests they add, depend on, or suppress.

In Figure 2 there are two different aspects. Aspect ”A” is proba-
bly aspectativeaspect as it doesn’t suppress any existing unit tests.
It could also be aninvasiveaspect that happened to be ”lucky”
enough to change something the original developer wasn’t expect-
ing to be changed and didn’t include in his unit tests. Aspect”B”,
on the other hand, is clearly aregulatory or invasiveaspect as it
suppresses some of the original unit tests that would fail after it
had been weaved into the system.

In Figure 3, three types of interferences or conflicts are depicted.
In the first one, aspects ”A” and ”B” are creating a circular depen-
dency problem. The middle diagram depicts a conflict betweentwo
concerns, where aspect ”C” is changing some functionality needed
by aspect ”D”. The rightmost diagram shows aspects that needto
be weaved in the correct order to function properly and at thesame
time a dependency between aspect ”F” and ”E”.

This shows that if unit tests are correctly used they can help
detecting most of the conflicts that aspects can introduce and that
have been plaguing AOP. In the following sections we will show
how these conflicts can be tackled with our proposed methodology
with the help of a short example a short example.

5. Using annotations to specify changes to unit
tests

As has been stated before, breaking an unit test is not a clearsign of
an aspect misbehaving. Due to their own nature, aspects are bound
to change the functionality of other units of code and hence break
their unit tests. In this way, aspects must have a way of announcing
what unit tests they expect to break.

Very often, aspects are also depending on some functionality to
be present into the system. This functionality can be delivered by
the system base code or by other aspects. Conflicts between aspects
are often caused by one aspect removing a functionality needed by
another aspect, and dependency problems are commonly caused by
one aspect expecting another aspect to deliver some functionality
which somehow is not effectively delivered.

Therefore we claim that, there is a clear need for aspects to be
able to announce which aspects they are expected to break, which
aspects they depend on, and which they are adding to the overall
system. In this paper we propose that aspects should be able to
make this announcements using Java annotations. An examplewill
now be introduced to explain how this could be attainable.

6. An example of conflicting aspects
Imagine a simple class depicting an User. This class would have
fields like its username and password. It would also have setters
and getters for those fields and averifyPasswordmethod. Listing 1
shows some simple unit tests that could have been used to ensure
that the class was working properly.

Listing 1. User Class Unit Tests

p u b l i c vo id testSetGetPassword() {
user.setPassword("foo");

assertEquals("foo", user.getPassword());
}

p u b l i c vo id testVerifyPassword() {
user.setPassword("foo");

assertEquals(t rue , user.verifyPassword("foo"));
assertEquals(f a l s e , user.verifyPassword("bar"));

}

It is also common that, for security reasons, passwords do not
get stored in clear text. It is a common practice to store them
using some hash function. However, to achieve a clear separation of
concerns between the user data model and the security concern, this
feature should be coded as a separate aspect. Listing 2 showshow
this aspect could have been coded. By introducing these aspects
some of the unit tests shown in Listing 1 get broken.

Listing 2. Encrypted Password Aspect

@SupressTest("user.UserTest .testSetGetPassword")

privileged a s p e c t EncryptedPassword {
p r o t e c t e d p o i n t c u t

passwordChanged(User user , String password):

t a r g e t (user) && a r gs(password)
&& c a l l (vo id setPassword(String));

p r o t e c t e d p o i n t c u t
verifyPassword(User user , String password):

t a r g e t (user) && a r gs(password)
&& c a l l (boo le an verifyPassword(String));

vo id around(User user , String password)

: passwordChanged(user , password)
{

// ... calculates md5 hash

user.password = md5hash ;
}

boo le an around(User user , String password)

: verifyPassword(user , password)
{

// ... calculates md5 hash

r e t u r n (user.password .equals(md5hash);

}
}

After introducing the aspect into the system, the developer
should be warned that his aspect broke some unit tests. This could
be easily computed by compiling and testing the system with and
without the aspect. The developer could then inspect the broken
unit test and decide if that would be an expected result from his
aspect. In this case he would decide that it was because the getter
and setter methods of the User class would not work as expected so
he could just add a notation expressing that. The first line ofListing
2 shows how that notation could look like.

It is also common to prevent users from using passwords that
are easily retrievable using brute force attacks. One way ofdoing
it is to prevent them from using passwords that are too small.Once
again, preventing this should be considered a separate aspect from
the user data model and could be coded as seen in Listing 3. Notice
that this aspect could have been coded in a much better fashion but
for demonstration purposes it has been coded in a way that it needed
the getter and setter methods of the original user class to work as
originally intended. The developer should then announce that this
aspect depends on thetestSetGetPasswordunit test. He could easily
do so by adding a single line stating that in the beginning of the
aspect.

Listing 3. Minimum Password Size Aspect

@RequiresTest("user.UserTest .testSetGetPassword")
@SupressesTest("user.UserTest .testVerifyPassword")

@AddsTest("user.UserTest .testVerifyPasswordML")
public a s p e c t MinimumLengthPassword {

p r o t e c t e d p o i n t c u t
setPassword(User user , String password)
: t a r g e t (user) && a r gs(password)

&& c a l l (vo id setPassword(String))
&& !w i t h i n (MinimumLengthPassword);

a f t e r (User user , String password)
: setPassword(user , password)

{
i f (user.getPassword().length ()<6) {

user.setPassword(password);
throw new RuntimeException();

}

}
}

However, after introducing the aspect into the system, the devel-
oper would be warned that another aspect has suppressed thatunit
test. Besides that, this aspect would break thetestVerifyPassword
unit test. This is a typical case of a conflict between aspects. To
solve this problem the aspect has to be rewritten in a different way
and the broken unit test must be suppressed and, perhaps, a new
unit test should be added to verify if everything is still working.

This example shows how unit tests, if correctly used, can help
detecting conflicts between aspects. It has also shown that the
developer of each different concern did not have to know about
other aspects being weaved into the system, at least until conflicts
occurred thus promoting obliviousness.

In the following section some of the related work done in this
field will be presented and discussed.

7. Related Work
In this section some of the work that has been done in the field of
conflict detection in AOP will be described briefly. The work done

so far can be divided into two different categories. Automatic de-
tection of conflicts without human intervention and forcingaspect
developers to somehow express the possible points of conflict. The
first two works described fall in the first category, while theremain-
ing three fall in the second one.

7.1 Program Slicing

Balzarotti [8] claims that this problem can be solved by using a
technique proposed in the early 80’s called program slicing. A slice
of a program is the set of statements that affect a given pointin an
executable program. According to the author the following holds:

Let A1 and A2 be two aspects and S1 and S2 the corre-
sponding backward slices obtained by using all the state-
ments defined in A1 and A2 as slicing criteria. A1 does not
interfere with A2 ifA1 ∩ S2 = ∅;

According to the author, this technique is accurate enough to
identify all interferences introduced by an aspect but can also detect
some false-positives. Furthermore, the existence of pointcuts that
are defined based on dynamic contexts, forces the analysis ofev-
ery execution trace increasing the number of these false-positives.
However the approach has the advantage of removing the burden
of having to declare formally the expected behavior of each aspect.

7.2 Introduction and Hierarchical Changes Interferences

Störzer [9] developed a technique to detect interferencescaused by
two different, but related, properties of AOP languages.

Störzer claims that the possibility of aspects introducing mem-
bers in other classes can lead to undesired behaviors as it can result
in changes of dynamic lookup if the introduced method redefines a
method of a superclass. He calls this type of interferencebinding
interference.

The other problem Störzer refers to is the possibility of aspects
changing the inheritance hierarchy of a set of classes. He claims
that this type of changes can also give place tobinding interfer-
encesas well as some unexpected behavior caused by the fact that
instanceofpredicates will no longer give the same results as before.

To detect this kind of conflicts the author proposes an analysis
based on the lookup changes introduced by aspects.

Kessler [10] also studied how structural interferences could be
detected. However, his approach is based in a logic engine where
programmers can specify rules (ordering, visibility, dependencies,
...). In [10], Kessler also described the different type of interfer-
ences that are possible with introductions and hierarchical changes
and proposed solutions for each one of them.

7.3 Aspect Integration Contracts

Contracts have been introduced by Meyer [4] as a defensive so-
lution against dependency problems in OOP. Some authors claim
that contracts can be imported into the AOP world in order to assist
programmers in avoiding interference problems.

Lagaisse [11] proposed an extension to the Design by Contract
(DbC) approach by allowing aspects to define what they expect
of the system and how they will change it. This will allow the
detection of interferences by other aspects that were weaved before,
as well as the detection of interferences by aspects that arebounded
to be weaved later in the process. According to the author, for an
Aspect A bound to a component C the following should be defined:

1. The aspect should specify what it requires from componentC
and possibly from other software components.

2. The aspect also needs to specify in which way it affects the
component C and the functionality it provides (if applicable).

3. The specification of component C must express which interfer-
ence is permitted from certain (types of) aspects.

This approach has the disadvantage of forcing the programmer
to verbosely specify all requirements and modifications foreach
aspect as well as permitted interferences. On the other hand, the
formal specification of behaviors has be proven to be a valuable
tool in Software Engineering. However, the major drawback we se
in this approach is the necessity of components to specify which
interferences are permitted thus breaking obliviousness.

7.4 Regression Testing

Katz [6] proposed the use ofregression testingandregression ver-
ification as tools that could help identifying harmful aspects. The
idea behind this technique is to use regression testing as normally
and then weave each aspect into the system and rerun all regression
tests to see if they still pass.

Katz approach is very similar to ours but does not specify the
addition and removal of unit tests by aspects. Katz argues that to
use his technique one will have to specify what are the desired
properties of the augmented system (after the aspect being tested
is added) but does not explain how this can be done.

7.5 Service Based Approach

It has been noticed by Kienzle [7] that aspects can be defined as
entities that require services from a system, provide new services
to that same system and removes others. If some way of explic-
itly describing what services are requires by each aspect itwould
be possible to detect interferences (for example, an aspectthat re-
moves a service needed by another aspect) and to choose better
weaving orders.

8. Conclusions and Future Work
Detecting conflicts caused by the introduction of aspects isan area
where much research is being carried on and much more still needs
to be done. This position paper presented a methodology thatuses
unit tests to tackle the this problem.

Our work, although very similar to the approaches of both La-
gaisse and Katz (see Sections 7.3 and 7.4), has what we think
are some major and important differences: Lagaisse forces com-
ponents to specify permitted interferences thus breaking oblivious-
ness; Katz does not specify the possibility of aspects removing unit
tests in order to announce what functionalities have been changed
from the original code.

Therefore, we believe our approach as promising and deserves
further research and exploration to firmly confirm its value.

There is still a lot of ground to cover for this methodology to
be usable. We are planning to develop plugins for some important
development tools and IDEs that will allow the use of annotations
to help developers on describing the behavior of their aspects. This
would also allow these same development tools to give feedback
about possible conflicts and interferences.

Acknowledgments
We will like to thank Miguel Pessoa Monteiro for the help in de-
veloping this paper and for the constant broadening of our per-
spectives. We will also like to thank FCT for the support provided
through scholarship SFRH/BD/32730/2006.

References
[1] Ossher, H., Tarr, P.: Multi-dimensional separation of concerns and

the Hyperspace approach. In: Software Architectures and Component
Technology: The State of the Art in Research and Practice. (2000)

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.M., Irwin, J.: Aspect-oriented programming. In
Akşit, M., Matsuoka, S., eds.: 11th Europeen Conf. Object-Oriented

Programming. Volume 1241 of LNCS., Springer Verlag (1997) 220–
242

[3] Filman, R., Friedman, D.: Aspect-oriented programmingis quantifi-
cation and obliviousness (2000)

[4] Meyer, B.: Applying ”design by contract”. IEEE - Computer 25(10)
(1992) 40–51

[5] Tessier, F., Badri, M., Badri, L.: A model-based detection of conflicts
between crosscutting concerns: Towards a formal approach.In:
International Workshop on Aspect-Oriented Software Development.
(2004)

[6] Katz, S.: Diagnosis of harmful aspects using regressionverification
(2004)

[7] Kienzle, J., Yu, Y., Xiong, J.: On composition and reuse of
aspects. In: Software engineering Properties of Languagesfor Aspect
Technologies. (2003)

[8] Balzarotti, D., Monga, M.: Using program slicing to analyze aspect-
oriented composition (2004)

[9] Störzer, M., Krinke, J.: Interference analysis for AspectJ. In:
Foundations of Aspect-Oriented Languages (FOAL). (2003)

[10] Kessler, B., Tanter,́E.: Analyzing interactions of structural aspects.
ECOOP Workshop on Aspects, Dependencies and Interactions (ADI)
(2006)

[11] Lagaisse, B., Joosen, W., De Win, B.: Managing semanticinterference
with aspect integration contracts. In: Software Engineering Properties
of Languages and Aspect Technologies. (2004)

