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Abstract: Crohn’s disease (CD) diagnosis is a tremendously serious health problem due to its ultimately 

effect on the gastrointestinal tract (GI) that leads to the need of complex medical assistance. In this study, 

the Back propagation neural network-fuzzy classifier and a neuro-fuzzy model are combined for 

diagnosing the CD. Factor analysis (FA) is used for data dimension reduction. The effect on the system 

performance has been investigated when using fuzzy partitioning and dimension reduction. Additionally, 

further comparison is done between the different levels of the fuzzy partition to reach the optimal 

performance accuracy level. The performance evaluation of the proposed system is estimated using the 

classification accuracy and other metrics. The experimental results revealed that the classification with 

level-8 partitioning provides a classification accuracy of 97.67%, with a sensitivity and specificity of 

96.07% and 100%, respectively. 

Keywords: Genome Sequencing, Factor analysis, Back propagation neural network, Neuro-fuzzy, 

Classification. 

1 Introduction 

Image classification, pattern recognition and database analysis of medical data are the most reliable ways 

to assist  physicians and achieve accurate diagnostics. Image classification is an important step in 

Computer Aided Diagnosis (CAD). Research in CAD systems is a rapidly developed domain with 

constantly new imaging modalities and applications.  Two of the most common objectives of the CAD 

systems is to locate the object of interest, such as a lesion and estimate the probability of a disease. 

Furthermore, image classification is the most important process implicated in the automatic CAD 

approach. This is the phase when features are extracted and the objects under interest are categorized into 

classes, e.g. into normal or abnormal. Recent studies deal with artificial intelligence techniques rather 

than with the conventional classifiers. This is due to the fact that artificial intelligence techniques have a 

very high classification accuracy and adaptive nature. Thus, automatic medical image classification has 

become a progressive area of research that facilitates the automatic diagnosis of various diseases [54]. 
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Crohn’s Disease (CD) is considered to be one of the most frequent clinical outcomes in modern 

epidemics. During the last 60 years, this apparently rare intestinal condition seems to increase rapidly [15, 

53]. The CD became extremely widespread in 1950s and emerged as a major gastrointestinal problem 

with a current estimate of 20,000  cases in the Great Britain [24, 42]. This disease recurrently  affects 

young people shortly after their puberty and lasts throughout their lives. Therefore, it has major 

implications for every individual patient and those who are involved in their management [14, 35]. 

Empirical and not curative treatments are usually recommended and are mostly based on the use of both 

steroids and surgical resection that carry a significant morbidity and mortality [34, 41, 52]. 

To date, CD is considered one of the heterogeneous entities and chronic syndrome disease. CD is a kind 

of an inflammatory bowel disease (IBD) that has enormous severe symptoms and affects any part of the 

gastrointestinal tract (GI) [4, 49]. Obstruction in Bowel due to CD has an enormous risk of bowel cancer 

[11]. It results in IBD in which the immune system of the body attacks the entire GI directed by microbial 

antigens [7,13, 36, 40, 56]. No medication or surgery procedure can completely cure the CD. However, 

effective diagnosis may lead to maintain remission and prevent relapse. Nowadays, colonoscopy is 

recommended to check the condition of the bowel every few years. CD diagnosis is commonly based on 

biopsy for medical imaging. 

Prior to medical imaging steps Multivariate analysis (MA) become essential to analyze the multiple 

independent variables with multiple dependent variables within the medical data. One of the MA is the 

factor analysis, which refers to a set of analytical techniques proposed to reduce data into smaller 

significant groups based upon their shared variance or inter-correlations to provide better explanation of 

the data. Since, preceding attempts of CD classification has been mainly based on the anatomic location 

and the disease behavior. However, no standard definition of the patient subgroups has been established 

yet. Thus, MA such as factor analysis can be used before the CD classification process. Such 

classification can be done using the artificial neural networks (ANNs), fuzzy systems or an integrated 

combination of these. Recent studies use the ANN-based techniques rather than conventional classifiers 

that  have very high classification accuracy and adaptive nature. While, the use of the fuzzy logic 

approach in diagnostic science is a robust method to deal with imprecise data, which requires an adequate 

expert knowledge in the rule base formulation and the combination of the sets and the defuzzification.  

Generally, ANNs can be used to classify data without indicating how the patterns are recognized. 

However, fuzzy systems are more reliable for computing and explaining decisions by excluding adaptive 

changes to allow new environmental conditions. Consequently, a combination of these two approaches 

interweaves their benefits together to be fully exploited. The application of neuro-fuzzy systems in data 

detection and classification of medical images is an interesting field for further research. In particular, 

classification techniques are essensial for the application of neuro-fuzzy systems to assess medical 

outcomes. Fuzzy set theory has an essential role in dealing with uncertainty about decision-making in 

medicine and patient management [33]. Neuro-fuzzy systems are mainly fuzzy systems that use the 

ANNs theory to facilitate the determination of the fuzzy sets/ rules by processing data samples. A neuro-

fuzzy approach as a combination of ANNs and fuzzy logic has been considered to overcome the 

individual weaknesses and to propose more interesting features. This exploits the learning capabilities 

using the ANN and the descriptive power of systems using the Fuzzy logic. Thus,  results of this 

combined methodological approach are expected to have high interpretability and satisfying accuracy [6, 

8]. Typically, this approach ultimately leads to a system that can recognize and classify the abnormalities 

in the biomedical images and assists physicians in the diagnostic procedures. 

Consequently, the main contribution of the current study can be pointed as follows: 

1- Combine the Back propagation neural network-fuzzy classifier and a neuro-fuzzy model for 

diagnosing the CD. 

2- Study and use the Factor analysis (FA) for data dimension reduction. 



3 
 

3-  Use the fuzzy partitioning and dimension reduction to study the effect on the system 

performance. 

4-  Compare between the different levels of the fuzzy partition to reach the optimal performance 

accuracy level.  

5- Evaluate the performance of the proposed system using the classification accuracy and other 

metrics.  

The current work emphasized on the classification of CD medical images using neuro-fuzzy automated 

classification. The aim of the neuro-fuzzy approach is to extract features to classify them.  
The structure of the remaining sections is as follows. Section 2 introduced the literature review of various 

related work. The methodology is presented in section 3, and the use of the proposed system is addressed 

in section 4. Then, in section 5, the results and discussion are given. Finally, the conclusion is presented 

in section 6. 

2    Related Work 

Research findings in the literature suggest that CD is one of the most frequent diseases in North America 

and northern Europe; currently emerging in southern Europe and less frequent in other regions of the 

world. Studies from different parts of the world support that CD prevalence is higher  in urban rather than 

in rural areas. 

Maglinte  et al. 2003 [38] reviewed the imaging features that support patient classification into clinical 

sub-types of CD. Through this review, a study indicated that radiologic features on barium studies were 

closely correlated with the CD Activity Index. As per our knowledge, no more work has been done in this 

domain. Thus, further research has to be done in this domain to find the most effective classification 

method and employ it in the proposed system. 

Model-based decision-support tools/intelligent analysis is imperative in the medical imaging for 

computer-assisted diagnosis and evaluation. In [47], a novel scheme was proposed to combine a neural 

network based auto-associator for the classification of breast cancer patterns. The results were proved to 

be extremely acceptable as obtained a classification accuracy of 85% using 14 image features.  

There are several types on the neural network (NN) techniques [20] such as Back Propagation Neural 

Network (BPNN)[45], General Regression Neural Network (GRNN) [18], Probabilistic Neural Network 

(PNN) [55] and Radial Basis Function Neural Network (RBFNN) [19]. A comparison of different NN 

techniques for classification of local prostate neoplasia diseases data sets was conducted in [21]. The 

experimental results proved that the BPNN network provided a real-valued prediction between 0 and 1. 

BPNN is a robust model and it can provide competent results in different real problem domains, where it 

is effective and performs fairly well on most of the medical datasets.  

In [2], the principal components analysis (PCA) was applied to identify key features from the Fourier 

transform and back propagation network is used for classification. A neuro-fuzzy technique was 

considered a vital approach in image analysis, especially in biomedical applications of training data to 

resolve medical diagnosis problems [23, 46].  

Li and Chi (2005) proved that the Self Organizing Feature Map (SOFM) ANN had superior results in the 

classification of brain tumor images [37]. Benamrane et al. combined three metaphors: Neural Networks, 

Fuzzy Logic and Genetic Algorithms in a hybrid system [5]. They used this approach for the detection 

and specification of anomalies in medical images. The Fuzzy Neural Network detected the expected 

regions that were interpreted via the Fuzzy Neural Network of specification. 

Sang et al. (2007) [25] suggested a new fuzzy c-means (FCM) technique based on parallel ANNs via 

employing FCM for classifying breast cancer data. The results showed a correct diagnosis rate around 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Maglinte%20DD%5BAuthor%5D&cauthor=true&cauthor_uid=12659339
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99%. Thus, it was found to be practical for classification problems of nonlinear system of high 

complexity with huge data.  

In [30], a classification of endoscopic images using an advanced fuzzy inference neural network that 

combines fuzzy systems and a Radial Basis Function (RBF) was suggested. The principal of multiple 

classifier fusion was dedicated to specific feature parameters with a classification accuracy of 94.28%. 

But the RBF was characterized to have a very fast training rate in comparison to the fuzzy system. This 

approach, extracted both texture and statistical features. 

Joshi et al. [28] used a conceptually classification approach based on neuro-fuzzy logic to design a brain 

cancer detection and classification system. Texture features were used for the ANN training. Co-

occurrence matrices at different directions were calculated, and the Grey Level Co-occurrence Matrix 

(GLCM) for the features was extracted from the co-ocurrence matrices. This scheme provided a high 

precision detection as well as a high classification rate of the Astrocytoma cancer. 

In Fernandes et al., 2010 [16], an adaptive neuro-fuzzy system for the classification of regions of interest 

(ROIs) in mammograms as malignant or benign was proposed. The neuro-fuzzy ANFIS model employed 

in the mammogram ROI’s classification stage achieved a maximum accuracy rate of 99.75%. 

3    Methods 

Several concepts were used in the solution proposed in this work for the automated classification of the 

Crohn’s Disease based on neuro-Fuzzy. These concepts are presented as follows. 

3.1 Multivariate Data Analysis 

Multivariate Data Analysis refers to any statistical technique used to analyze data that arise from more 

than one variable. Despite the quantum of data available, the ability to obtain a clear expression to build 

intelligent decision schemes is a challenging. When the available information is stored in database tables 

containing rows and columns, multivariate analysis can be used to process the information in a 

meaningful way. 

Factor Analysis (FA) is one of these methods that is commonly used to describe variability among 

observed and correlated variables in terms of a potentially lower number of unobserved variables called 

factors. It searches for such joint variations in response to unobserved latent variables. The observed 

variables are modeled as linear combinations of the potential factors, plus the "error" terms. The 

information gained about the interdependencies between observed variables can be then used to reduce the 

set of variables in a dataset. This technique is equivalent to a low-rank approximation of the matrix of 

observed variables and is used in the applied science domains that deals with large quantities of data.  The 

total effect as well as the cumulative effect are obtained from the FA.  

Therefore, for CD classification, the input data can be analyzed using FA which is mainly a data reduction 

technique  to  reduce the number of data by grouping them. Thus, it provided data reduction and by 

examining the data content in each group, the structure or composition of each group can be determined 

thereby giving a better explanation of the data. 

3.2 Back propagation neural network 

Generally, classification is an imperative process in different applications that can be found in the medical 

area [31, 43, 44]. As regards the classification methodologies, the back propagation neural network 

(BPNN) can be considered to be quite essential neural net as it is essentially a learning/training algorithm 

rather than a separate network by itself [22]. Back propagation networks are ideal for pattern recognition 

and mapping tasks [1] as it is robust and applied easily in various problem domains. Pattern recognition network 

[27] is a feedforward network that can be trained to classify inputs along with target classes. The target 

data consist of vectors of all zero values except for a 1 in element i, where i is the class they are to 
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represent. The built-in Matlab function called ‘patternnet’ was used in the present work create a pattern 

recognition network. The BPNN is generally learned using training datasets, with the network adjusting 

its weights until the training process is completed and the best set of weight is found. 

 

3.2.1. BPN Algorithm 

 

Initially, all the data inputs were applied and corresponding outputs were obtained with the initial weights 

assuming random values. The error of neuron C is: 

 

ErrorC = OutputC (1-OutputC)(TargetC – OutputC) 

Next the weight is changed. 

Let WAC+ be the new (trained) weight and WAC the old weight, thus: 

WAC
+= WAC + (ErrorCxOutputA). 

The errors for the hidden layer of neurons needed to be calculated. After the errors of the hidden layer 

neuron were obtained, the hidden layer weights were changed. This process was repeated during the 
training of the network. 

The back propagation network has proved to be effective when used for classification in cases of: 

i) Due to the large amount of inputs/outputs in the dataset, so the inputs to its output relation 
are unknown. 

ii) The classification problem appeared to have overwhelming complexity, but a clear 
solution exists. 

iii) The solution to the problem may change over time within the bounds of input and output 
parameters. 

3.2.2.  Neural network training 

Once the network structure has been designed for a particular application,the training phase begins. The 

initial weights are randomly assigned to start the training process. There are two approaches that are 

generally used for training a neural network: supervised and unsupervised training. Various BPN training 

algorithms can be used, the most popular ones are: Bayesian Regularization, BFGS Quasi-Newton, 

Resilient Back propagation, Scaled Conjugate Gradient (SCG), Conjugate Gradient with Powell/Beale 

Restarts, Fletcher-Powell Conjugate Gradient, Polak-Ribiére Conjugate Gradient, One Step Secant (OSS), 

Variable Learning Rate Gradient Descent, Gradient Descent with Momentum, Gradient Descent and 

Levenberg-Marquardt. 

Since, Levenberg-Marquardt (LM) algorithm is the most widely used optimization algorithm and 
outperforms simple gradient descent as well as other conjugate gradient methods in a wide variety of 
problems. In the current study, Matlab was extensively using the Neural Network Toolbox™ that supports 
supervised learning with feedforward networks. An inbuilt network training function ‘trainlm’ was used to 
update the weight and bias values according to Levenberg-Marquardt optimization. This used function is 
often the fastest backpropagation algorithm in the toolbox. Castillo et al. [9] revealed that the Levenberg-
Marquardt scheme combines both the gradient and the Gauss-Newton approximation of the hessian of the 
error function. The influence of each term is determined by an adaptive parameter, which is automatically 
updated. Therefore, in this study the Levenberg-Marquardt algorithm was considered the fastest and 
applicable for training moderate sized feed forward neural network. It is focused to approach a second 
order training speed without computing the Hessian matrix. The Hessian function can be approximated by 
H = JTJ and its gradient can be computed using g = JTe when the performance function has the form of a 
sum of squares, J being the Jacobian matrix and e the vector of network errors. This algorithm is trained 
and immediately stops when any of these conditions occurs: 

 The maximum number of epochs is reached; 

 The maximum amount of time is exceeded; 

 Performance is minimized to the goal; 
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 Performance gradient falls below the minimum gradient;

 When the adaptive value crosses the maximum limit.

3.3  Fuzzy Model 

Fuzzy logic is a multi-valued logic value in the closed interval [0, 1], where 0 (zero) is associated with the 

classical false value and 1 (one) with the classical true value. Values in (0, 1) indicate varying degrees of 

truth. Simple fuzzy operations may be defined in numerous ways, but the simplest way as follows: 

Given two fuzzy values a and b with the following operations: 

i. (a and b) = min(a, b);

ii. (a or b) = max(a, b);

iii. Not a = 1 – a;

iv. (a implies b) = max(a, 1-b);

3.3.1 Fuzzy Membership Function 

Let’s consider a fuzzy set S, where the operator in( ) is given by: 

( ) (x)sx s   (1) 

Thus, for a fuzzy set S, in will return a value between 0 and 1. The operator “in” returns either true or 

false, thus it is no longer a Boolean operator when the right-hand side is a fuzzy set. Generalize the set 

operators using the pre-defined operations (and, or ,not , and implies), given two fuzzy sets S and T, the 

membership functions of S T  , S T  and 'S are presented as: 

( )

( )

'

(S implies T)

( \T)

(x) ( (x) (x)) max( (x), (x))

(x) ( (x)and (x)) min( (x), (x))

(x) not (x) 1 (x)

( (x) (x))

(x) max(0, (x) (x))

S T iff (x) (x) for all

S T s T s T

S T s T s T

S s s

s T

S s T

s T

or

implies

    

    

  

  

  

 





 

 

 

  

  

 

      x U respectively  
(2) 

3.3.2 Fuzzy Packaging and Partitioning 

The Fuzzy Sets package used also includes a number of routines that build fuzzy sets. These routines are 

referred to as fuzzy set constructors, which are: 

, ,L, ,FuzzySet and partition   
  (3)

The function FuzzySet is similar to the piecewise function with the following differences: 

1. The form of the calling sequence is 1 1 2 2(x x , y , x x , y ,..., x x , y )N NFuzzyset    , where o  may be 

one of <,= , or <=  and the values 1 2, ,..., Nx x x  must be in order. 
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n 1 1(..., x x ,f (x), x x , y ,...)n n nFuzzyset   
 (4)

2. Interpolates the interval n n 1[x , x ]  with a linear function connecting the points ( xn , n nf (x ) ) and 

( 1 1x , yn n  ). 

The names of the constructors ,L, ,    are chosen because the shape of the letter represents the object 

being represented: 

 =generates a fuzzy set for which the membership function is monotonically increasing. 

L = generates a fuzzy set for which the membership function is monotonically decreasing. 

 = generates a fuzzy set for which the membership function achieves a maximum at a point and decrease 

to zero on both sides. 

 = generates a fuzzy set for which the membership function achieves a maximum on an interval and 

decrease to zero on both sides.  

4 Proposed Method 

The neuro fuzzy-based classification of the CD that has been followed in this study is described below. 

Additionally, the effects on accuracy using fuzzy partitioning is compared, followed by an application 

towards problem dimension reduction using fuzzy logic to get optimal classification results. 

The image database used is public available from 

(https://www.stat.auckland.ac.nz/~paul/ItDT/Exercises/Crohns.html) and has genetic sequences of 387 

individuals with CD. Both normal and chronic data were included. Out of the 387 individuals, there are 

144 individuals that are CD patients (cases) and 243 healthy individuals (controls) .The dataset describes 

the Genotype for each individual at 103 different locations; the marker 1A indicates the individual’s first 

allele at locus 1, whereas the marker 1B signifies the individual’s second allele at locus 1 and so on.  

The proposed neuro-fuzzy classification technique is illustrated in Figure 1. Through the current proposed 

methodology, a multivariate data analysis using the FA was applied to provide data reduction and to 

determine better explanation of the data, followed by employing a triangular shape membership function 

to define the fuzzy sets. Based on the partition values, a matrix generation is performed from the fuzzy 

relationship. After getting the total effect/cumulative effect of the FA, the fuzzy model has been applied 

to generate a forecasted output fuzzy value. The forecasted output generation was then used to select the 

input and targeted output, which used to create a pattern recognition network. These forecasted value 

finally served as an input to the back propagation neural network with Levenberg-Marquardt algorithm. 

Then, the data is divided into training, validation and testing sets that used for the classification process.   

https://www.stat.auckland.ac.nz/~paul/ItDT/Exercises/Crohns.html
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Figure 1. Proposed Neuro fuzzy based classification system for CD automated diagnosis 

 

5 Results  

 

Based on the formerly mentioned proposed system steps, the total effect and the cumulative effect 

obtained from the FA is used in the following steps.  

 

Step 1: In Fuzzy partitioning, a quantitative attribute has been divided into a number of linguistic values 

with membership function for the generalization of classical sets. Generally, membership functions (MFs) 

are the building blocks of fuzzy set theory. Accordingly, the MFs shapes are imperative based on the 

particular problem under concern. Different literatures [29, 48, 10] were clearly reported that amongst 

different membership function for the estimation of the fuzzy set, the triangular and trapezoidal shapes are 

the most used in various engineering domains. Thus, the motivation of using the Triangular shapes 

membership function in the present work is their simple implement and fast computation. A 

triangular_function (trimf) as a membership function has been used. The corresponding partitioned fuzzy 

sets are defined below, and the composition of the fuzzy set defined based on the membership function is 

illustrated in Figure 2. This figure represents the fuzzy set based on membership function. The actual data 

indicate the value of the total effect after using the FA. In addition, A1 to A8 points to the partition where 

the actual data belong as well as other neighboring fractional values that were estimated using the 

triangular membership functions.  
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Figure 2. Composition of the fuzzy set established based on membership function 

 

Step 2: In this step, all fuzzy logical relationships needed to be stored, i.e. the number of unique conflict 

cases in the fuzzy set. A total of 30 unique relationships were found. Table 1, shows the observed unique 

changes in the fuzzy set variables during the experiment. A total of 30 changes resulted. In Table 1, A2 -> 

A6 specifies that after A2, a change towards A6 was observed. 

 

Table 1. Fuzzy logical relationships  

A1->A1 A5->A5 A7->A3 

A1->A2 A5->A6 A7->A4 

A1->A8 A5->A7 A7->A5 

A2->A1 A5->A8 A7->A6 

A2->A2 A6->A5 A7->A7 

A2->A6 A6->A6 A7->A8 

A3->A5 A6->A7 A8->A5 

A4->A6 A6->A8 A8->A6 

A4->A7 A7->A1 A8->A7 

A5->A4 A7->A2 A8->A8 

 

 

Step 3: An NXN Sparse matrix was built by transposing and multiplication of the fuzzy logical 

relationships. Here, 8 partitions were used, so the starting point of each matrix was given and the 

remaining elements were set equal to 0. Table 2 presentes the 30 relationship matrices built with the 

indicated start point of each. The start of each matrix was determined from the fuzzy relationships where 

the matrices were generated. Considering the case A2 -> A6, so A6 was transposed and multiplied with 

A2 resulting the 8x8 matrix. The resulted matrix is sparse and its values are in clustered, so the starting 

point is shown and the remaining elements are equal to zero. 
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Table 2. Matrix of the fuzzy relationships  

Matrix 1 

Start(1,1) 

1 0.552 

0.6665 0.3679 
 

Matrix 2 

Start(1,1) 

0.9

508 

1 0.0

492 

0.6

337 

0.6

665 

0.0

328 
 

Matrix 3 

Start(1,7) 

0.7732 0.9508 

0.8132 1 

0.04 0.0492 
 

Matrix 4 

Start(1,1) 

0.9508 0.5248 

1 0.552 

0.0492 0.0272 
 

Matrix 5 

Start(1,1) 

0.6

16 

0.6

48 

0.0

31 

0.9

50 

1 0.0

49 

0.3

3 

0.3

5 

0.0

17 
 

Matrix 6 

Start(2,5) 

0.02

32 

0.

19 

0.16

68 

0.12

21 

1 0.87

79 

0.09

89 

0.

81 

0.71

11 
 

Matrix 7 

Start(3,4) 

0.0

593 

0.1

14 

0.0

547 

0.5

202 

1 0.4

798 

0.4

609 

0.8

86 

0.4

251 
 

Matrix 8 

Start(4,5) 

0.0

635 

0.5

202 

0.4

567 

0.1

221 

1 0.8

779 

0.0

586 

0.4

798 

0.4

212 
 

Matrix 9 

Start(4,6) 

0.0

407 

0.5

202 

0.4

796 

0.0

782 

1 0.9

218 

0.0

375 

0.4

798 

0.4

423 
 

Matrix 10 

Start(4,3) 

0.0

911 

0.7

989 

0.7

078 

0.1

14 

1 0.8

86 

0.0

229 

0.2

011 

0.1

782 
 

Matrix 11 

Start(5,4) 

0.1

908 

0.3

668 

0.1

76 

0.5

202 

1 0.4

798 

0.3

294 

0.6

332 

0.3

038 
 

Matrix 12 

Start(5,5) 

0.0

968 

0.7

933 

0.6

965 

0.1

221 

1 0.8

779 

0.0

252 

0.2

067 

0.1

815 
 

Matrix 13 

Start(5,6) 

0.0

095 

0.1

221 

0.1

125 

0.0

782 

1 0.9

218 

0.0

686 

0.8

779 

0.8

093 
 

Matrix 14 

Start(5,7) 

0.0993 0.1221 

0.8132 1 

0.7139 0.8779 
 

Matrix 15 

Start(7,1) 

0.3

827     

0.7

356     

0.3

529 

0.5

202     

1.0

000     

0.4

798 

0.1

375 

0.2

644 

0.1

268 
 

Matrix 16 

Start(6,5) 

0.0

114 

0.0

935 

0.0

821 

0.1

221 

1 0.8

779 

0.1

107 

0.9

065 

0.7

959 
 

Matrix 17 

Start(6,6) 

0.0

24 

0.3

07 

0.2

830 

0.0

78 

1 0.9

218 

0.0

542 

0.6

930 

0.6

388 
 

Matrix 18 

Start(5,7) 

0.0636 0.0782 

0.8132 1 

0.7496 0.9218 
 

Matrix 19 

Start(6,1) 

0.4181 0.2308 

1 0.5520 

0.5819 0.3212 
 

Matrix 20 

Start6,1) 

0.3

976 

0.4

181 

0.0

206 

0.9

508 

1 0.0

492 

0.5

532 

0.5

819 

0.0

286 
 

Matrix 21 

Start(6,2) 

0.1

082 

0.5

697 

0.4

615 

0.1

9 

1 0.8

1 

0.0

818 

0.4

303 

0.3

485 
 

Matrix 22 

Start(6,3) 

0.0

669 

0.5

869 

0.5

2 

0.1

140 

1 0.8

860 

0.0

471 

0.4

131 

0.3

360 
 

Matrix 23 

Start(7,4) 

0.4

414 

0.8

485 

0.4

071 

0.5

202 

1 0.4

798 

 

 

 

Matrix 24 

Start(7,5) 

0.0

885 

0.7

246 

0.6

361 

0.1

221 

1 0.8

779 
 

Matrix 25 

Start(6,6) 

0.0

540 

0.6

904 

0.6

364 

0.0

782 

1 0.9

218 
 

Matrix 26 

Start(7,7) 

0.5990 0.7366 

0.8132 1 

 

 

Matrix 27 

Start(7,4) 

0.3

7 

0.7

366 

0.3

667 

0.5

022 

1 0.4

978 
 

Matrix 28 

Start(7,5) 

0.2

354 

0.7

366 

0.5

013 

0.3

195 

1 0.6

805 
 

Matrix 29 

Start(7,6) 

0.3

602 

0.7

366 

0.3

764 

0.4

89 

1 0.5

11 
 

Matrix 30 

Start(7,7) 

0.2629 0.7366 

0.3569 1 
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Step 4: From the fuzzy relationship matrices, a Total Union was generated as shown in Table 3. It 

consists of eight rows and eight columns, as the table was generated taking the union of all 30 fuzzy 

relationship matrices (8x8) obtained from the previous table, therefore the resultant union matrix has also 

8x8 dimension. 

 

Table 3. Union Generation  

1 1 0.05 0 0 0 0.77 0.95 

1 1 0.05 0 0.02 0.19 0.81 1 

0.33 0.35 0.02 0.059 0.12 1 0.88 0.05 

0 0 0.09 0.80 1 0.81 0.71 0.48 

0 0 0.11 1 0.89 1 1 0.92 

0.42 0.42 0.57 0.59 1 1 1 1 

1 1 1 1 1 1 1 1 

0.58 0.58 0.43 0.52 1 1 1 1 

 

Step 5: The correlations between the original data and the estimating fuzzy relations were then generated. 

Figure 3 shows the composition of the fuzzy set established and the estimated correlation between the 

original data and the fuzzy relations defined. 

 
 

    Figure 3. Correlation found between the original data and fuzzy relations established 

 

Step 6: The forecasted output was defined containing the actual data, input fuzzy data, output fuzzy data 

and relative error. Since, the dataset used consists of 387 individual data, thus 388 forecasted outputs 

were obtained. Only 11 instances were obtained from the 387 occurrences, as indicated in Table 4. The 

actual data signifies the total effect estimated from the FA and the output indicates the value obtained 

after the defuzzification process. Though, they were irrelevant during the classification overall process. 
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Table 4. Forecasted Output 
No. of 

Occurrence 

Actual 

Data 

Input Fuzzy Output Fuzzy Output Error in 

% 

1 
68.35113 [ 000000 0.81 1] [ 1.391.39 1.24 1.33 1.81 1.811.811.81 ] 62.02 9.26 

2 
68.75938 [ 000000 0.73 1] [ 1.311.31 1.166 1.25 1.73 1.731.731.73 ] 62.02 9.80 

3 
66.93808 [ 00000 0.07 1 0.92 ] [ 1.561.56 1.44 1.52 2 222 ] 62.02 7.34 

4 
65.7175 [ 00000 0.30 1 0.69 ] [ 1.531.53 1.47 1.54 2 222 ] 62.02 5.62 

5 
64.91788 [ 00000 0.45 1 0.54 ] [ 1.501.50 1.49 1.55 2 222 ] 62.02 4.46 

6 
67.10209 [ 00000 0.04 1 0.95 ] [ 1.571.57 1.43 1.52 2 222 ] 62.02 7.57 

7 
69.00599 [ 000000 0.69 1 ] [ 1.271.27 1.12 1.21 1.69 1.691.691.69 ] 62.02 10.12 

8 
65.97561 [ 00000 0.25 1 0.74 ] [1.53 1.53 1.46 1.53 2 222 ] 62.02 5.99 

9 
68.68868 [ 000000 0.74 1 ] [1.33 1.33 1.18 1.27 1.74 1.741.741.74 ] 62.02 9.71 

10 
63.21996 [ 00000 0.77 1 0.22 ] [ 1.451.45 1.53 1.57 2 222 ] 62.02 1.90 

11 
67.24971 [ 00000 0.01 1 0.98 ] [ 1.571.57 1.43 1.52 2 222 ] 62.02 7.77 

 

Step 7: In this step, the back propagation neural network was applied on the estimated fuzzy relationship 

data for the CD classification. The performance of the proposed system was assessed using the data in the 

confusion matrix shown in Figure 4. This matrix contained data regarding the actual and predicted 

classifications conducted by the proposed system. The entries presented in the matrix are indicated in 

Table 5. 

Table 5. The representation of the confusion matrix entries 

 Predicted 

Negative Positive 

Actual Negative X Y 

Positive Z M 

 X  -the number of correct predictions that an instance is negative; 

 Y -the number of incorrect predictions that an instance is positive; 

 Z -the number of incorrect predictions that an instance is negative; and 

 M -the number of correct predictions that an instance is positive. 

 
Figure 4. Confusion matrix of the actual and predicted classifications 
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From Figure 4, it is clear that 96.1% of the CD negative cases were correctly classified as negative. 

Besides, 100% of the cases were correctly classified as positive CD cases. The overall performance of the 

classification was equal to 97.7%. 

To validate the ANN performance for classification, a regression plot was built  as  illustrated in Figure 5. 

This figure displays the relationship between the output of the network and the targets. The plot indicated 

that the network output and the targets were approximately equal, proving that the training data achieved 

good fit. The performance function also confirmed the good ability of the trained network, Figure 6. In 

Figure 6, the number of epochs indicates the iterations at which the validation performance reaches a 

minimum. The Error histogram built using 20 bins is shown in Figure 7. 

 
Figure 5. Regression plot for the between the network output and the targets 

 

 
Figure 6.Performance plot for the mean square error versus the number of epochs      
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Figure 7. Error Histogram using 20 bins 

 

The performance of a classifier is commonly assessed using the receiver operating characteristics (ROC) 

curve. The ROC assists in measuring the performance of a classifier and its plot denotes the false positive 

rate on the X axis and the true positive rate on the Y axis. The point (0,1) denotes a perfect classifier. It is 

commonly used to check the accurate classification of all the positive cases and negative cases. The (0,1) 

point denotes that the false positive rate is 0 (none case) and the true positive rate is 1 (all case). The (0,0) 

point denotes a classifier that predicts all the cases to be negative, whereas the point (1,1) corresponds to a 

classifier that predicts each and every case to be positive. Point (1,0) is for the classifier that represents 

that it is incorrect for all the classifications. Figure 8, illustrates the ROC curve of the NN classifier used 

in the proposed system. It is denoted from the figure that the classifier is perfect as it reaches the 

point(0,1). 

 
Figure 8. The ROC curve for the false positive rate versus the true positive rate  

 

6 Discussion 

 

Typically, several studies used Support vector machine, fuzzy C-mean and classification for proper 

diagnosis of different diseases [3, 12, 17, 26, 32, 39, 50, 51, 57].  The proppsed system has been 

concerned with the Crohn’s Disease Classification using Fuzzy Partitioning in the Neuro-fuzzy based 

Approach. To evaluate the classification results based on the Fuzzy Partition, several metrics were 

considered to measure the proposed system performance adopting the following notation: true negative 

(TN), true positive (TP), false positive (FP) and false negative (FN). The used metrics are: i) the accuracy, 
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which is the ratio of the number of correctly classified healthy CD cases of the healthy dataset, ii) the 

sensitivity, which refers to the probability that the classifier gives a normal CD label for an actual healthy 

CD dataset, and is computed as TP/(TP+FN), iii) the specificity defined as the evaluation of the 

probability that the classifier result in an abnormal CD label when used on unhealthy CD dataset and 

is calculated by TN/(TN+FP), iv) the positive predictive value (PPV) that described as the probability that 

a patient labeled as normal CD case was correctly diagnosed and given as TP/(TP+FP), and v) the 

negative predictive value (NPV) that indicates the probability of a patient labeled as case incorrectly 

diagnosed using the formula TN/(TN+FN).   

The performance comparison based on a partition is summarized in Table 6. It indicates the estimation of 

all accuracy checking parameters and the CD classification based on the partitioning process. In this table, 

the experiment was performed using 2 to 9 partitions and satisfying results were obtained. We could 

continue doing and experimenting more partition. However, according to the data in Table 6, the result set 

was prepared with 8 partitions in step 3, as 8 partitions lead to the best classification results. 

 

Table 6. Accuracy comparison based on partition 

 

Partition Sensitivity Specificity Accuracy PPV NPV % Correct 

Classification 

% Incorrect 

Classification 

2 100.00 0.00 62.79 62.79 0.00 62.79 37.21 

3 84.60 28.86 63.86 66.31 54.13 63.86 36.14 

4 86.65 28.17 64.89 66.62 57.33 64.89 35.11 

5 87.07 59.42 76.78 77.97 74.00 76.78 23.22 

6 73.49 94.83 81.43 95.79 68.00 81.43 18.57 

7 96.53 90.67 94.35 94.18 94.65 94.35 5.65 

8 96.07 100.00 97.67 100.00 94.61 97.67 2.33 

9 94.69 89.35 93.27 96.83 93.85 93.27 6.73 

Table 6 provided the variation of metrics, namely the sensitivity, specificity, accuracy, PPV and NPV, 

based on the partitions. Since, 8 partitions led to the best classification results. Thus, to measure the 

correctness of the proposed system with 8 partitions, which was used through the experiments as it gives 

the best performance compared to the other partitions performance, quality metrics were employed as 

indicated in Table 7. 

 

 

Table 7. Correctness parameters 

Parameter Output in (%) 

Sensitivity 96.07 

Specificity 100 

Accuracy 97.67 

PPV 100 

NPV 94.61 

Percentage Correct Classification 97.67% 

Percentage Incorrect  2.32% 

Execution Time 9.48 seconds 

 

It can be established by the results obtained and described here that after fuzzification and defuzzification 

processes, comparing the results with the actual total effect, the FA achieved  94.44% of accuracy. Thus, 

in the experiments to be reported the FA was employed as it provided better results after defuzzification. 
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In addition, the proposed system based on a back propagation neural network with the Levenberg-

Marquardt training algorithm and neuro-fuzzy, achieved an accuracy of 97.67% using  only 8 partitions. In 

addition, instead of processing the entire database that has a dimension of 387x206, the system processed a 

fuzzified reduced matrix of dimension 387x8 making the neural network employed more effective. 

Generally, the goals achieved by the current study can be reported as combining the BPNN-fuzzy classifier 

and a neuro-fuzzy model for diagnosing the CD medical images. The neuro-fuzzy approach is to extract 

features to classify the CD images after FA that used for data dimension reduction. The experimental 

results proved that the classification with level-8 partitioning provides a classification accuracy of 97.67%, 

with a sensitivity and specificity of 96.07% and 100%, respectively. 

 

7 Conclusion 

Crohn’s disease is characterized by a range of signs and symptoms, so there is no single test for its 

diagnosis. Genome based wide association studies has successfully identified susceptibility of loci that 

can be triggered by environmental factors resulting disturbing innate or intestinal barrier.  

The present study, used a multivariate data analysis approach successfully and managed to assess the 

actual total effect of the data based on the factor analysis. After getting the total-/ cumulative- effect of 

factor analysis, the neuro-fuzzy based classification was performed. The effect on the accuracy based on 

fuzzy partitioning was studied. A strict comparison was performed between different levels of fuzzy 

partition to determine the optimal accuracy level. In the case of classification, instead of feeding the entire 

dataset to the neural network, the estimated partitioned fuzzified value was fed into the neural network. 

The results obtained proved that the proposed system with 8 partitions had an accuracy of 97.67% with 

sensitivity, specificity, positive predictive value and negative predictive value of 96.07%, 100%, 100% 

and 94.61%, respectively. Therefore, the fuzzy model can be thought of as a process of dimension 

reduction in the case of classification, as 95.33% reduction dimension is obtained. Another multivariate 

analysis method will be used in a next study for dimension reduction and compared against the FA. 
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