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Abstract. The conventional concepts of invariance are extended in this article
to include impulsive control systems represented by measure driven differential
inclusions. Invariance conditions and some of their main features are derived. The
solution concept plays a critical role in the extension of the conventional conditions
to the impulsive control context.
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1. INTRODUCTION

We consider impulsive control systems of the form
{

dx(t)∈F (t, x(t))dt+G(t, x(t))µ(dt), t∈[0,∞)

x(0)∈C0,
(1)

where F : [0,∞)× IRn ↪→ P(IRn), G : [0,∞)×
IRn ↪→ P(IRn×q) are given multi-functions and
µ∈C∗([0,∞); K) is the set in the dual space of
continuous functions from [0,∞) into IRq with
values in K. P(IRn) denotes the collection of
subsets of IRn and the set K is the positive pointed
cone in IRq.

In what follows, the space of absolutely continuous
functions and the space of functions of bounded
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variation from [0,∞) to IRn are, respectively, de-
noted by AC([0,∞); IRn) and BV +([0,∞); IRn).
µ̄ denotes the total variation of the measure µ,

i.e., µ̄(dt):=
q∑

i=1

µi(dt). L×B is the product σ-field,

where L denotes the Lebesgue subsets of [0,∞)
and B denotes the Borel subsets of IRq. B is the
open unit ball in the Euclidean space.

In several application areas, such as finance, man-
agement of renewable resources, and aerospace
navigation, (consider (Clark et al., 1979; Baumeis-
ter, 2001; Gurman, 1981; Brogliato, 1996; Marec,
1979), to name just a few references), the ad-
dressed class of problems play an important role in
modelling and analysis process. So, a considerable
body of theory for this class of systems (see, for
example, (Arutyunov et al., 2005; Bressan and
Rampazzo, 1991; Bressan and Rampazzo, 1994;
Dykhta, 1990; Dykhta and Samsonyuk, 2000; Gur-
man, 1972; Kolokolnikova, 1996; Miller, 1996;
Motta and Rampazzo, 1995; Pereira and Silva,
2000; Rishel, 1965; Silva and Vinter, 1996; Vinter
and Pereira, 1988; Silva and Vinter, 1997), and
references therein) and supporting control strate-
gies computation schemes, (Dykhta and Derenko,



1994; Baturin and Goncharova, 1999; Baturin and
Ourbanovich, 1997; Krotov and Gurman, 1987)
have been developed so far.

The research reported in this paper is part of
a larger effort to understand the features of im-
pulsive dynamical systems governed by measure
differential inclusions. In a previous work (Pereira
and Silva, 2002), an extension of the Lyapounov
stability theory to this class systems is presented.
The basic condition is that the Lyapounov func-
tion composed with any trajectory of the system
has to be strictly decreasing to zero as time goes
to infinity. This Lyapounov condition is relaxed to
allow for Lyapounov functions that are decreas-
ing in “average” (Pereira and Silva, 2004). That
roughly means that the composition of the Lya-
pounov function with the state trajectory might
jump to higher values, but tends to zero as time
goes to infinity. In other words, there is no need
for strict monotony. Here, we set out to extend
invariance results, i.e., conditions which ensure
that a trajectory starting within a specified set
remains there forever, to the impulsive context.

This article is organized as follows: in the next
section we introduce the solution concept and
some background results. Then, together with the
presentation of relevant preliminary conventional
definitions and results, we present, in Section 3,
both weak and strong invariance conditions as well
as the proofs of the main results.

2. SOLUTION CONCEPT AND BASIC
RESULTS

For the concept of solution we use that intro-
duced in (Pereira and Silva, 2000; Pereira and
Silva, 2002), making the necessary changes to
encompass the unbounded interval [0,∞). This
concept has some important robustness proper-
ties. For this we need to describe a change of
variables technique. Now, in order to define a
required change of variable, let, for i = 1, . . . , q,

Mi(t) =
∫

[0,t]

µi(ds), for t > 0 with Mi(0) = 0, and

consider:

• η(t) := t +
m∑

i=1

Mi(t),

• η̄(t) :=
{ {η(t)} if µ̄({t}) = 0,

[η(t−), η(t)] if µ̄({t}) > 0.

The above defined function η is a reparameteri-
zation of the time variable t. Now, we introduce
the notion of graph completion for the set-valued
measure µ.

Definition 2.1. A family of graph completions as-
sociated to the set-valued measure µ is the set
of the pairs (θ, γµ) : [0,∞) → [0,∞)×K, where

θ : [0,∞)→ [0,∞) is the “inverse” of η̄ : [0,∞) ↪→
P([0,∞)) in the sense that θ(s)=t, ∀s∈η̄(t) and
γµ:[0,∞)→IRq is defined ∀s∈η̄(t), ∀t∈[0,∞), by

γ(s) :=





M(θ(s)) if µ̄({t}) = 0

M(t−) +

s∫

η(t−)

v(σ)dσ if µ̄({t}) > 0,

for some v(·)∈V t, where t= θ(s). Here, M(·) :=
col(M1(·), . . . , Mq(·)) and

V t :=
{

v : η̄(t)→K| θ̇(s)+
m∑

i=1

vi(s)=1 ∀s∈η̄(t),

∫

η̄(t)

v(s)ds=µ({t})
}
.

Finally, we introduce the concept of robust solu-
tion.

Definition 2.2. The trajectory x, with x(0) = x0,
is admissible for (1) if x(t) = xac(t) + xs(t),
∀t∈[0,∞), where




ẋac(t)∈F (t, x(t))+G(t, x(t))·wac(t) a.e.

xs(t)=
∫

[0,t]

gc(τ)wc(τ)d̄µsc(dτ)+
∫

[0,t]

ga(τ)µ̄sa(dτ).

Here, µ̄ is the total variation measure associated
with µ, µsc, µsa and µac are, respectively, the
singular continuous, the singular atomic, and the
absolutely continuous components of µ, wac is the
time derivative of µac, wsc is the Radon-Nicodym
derivative of µsc with respect to its total variation,
gc(·) is a µ̄sc measurable selection of G(·, x(·))
and ga(·) is a µ̄sa measurable selection of the
multifunction

G̃(t, x(t−); µ({t})) : [0,∞)×IRn×K↪→P(IRn)

that takes, as values, the set of all ξ(η(t)) where
(ξ(·), γµ(·)) satisfies:

ξ(η(t−)) = x(t−), (2)

ξ̇(s) = G(t, ξ(s))γ̇µ(s) a.e. in η̄(t), (3)

µ({t}) = γµ(η(t))− γµ(η(t−)), (4)

for some function G ∈ G continuous in t and
Lipschitz in x. Here, (ξ, γµ)∈AC([0,∞); IRn×IRq),
and the pair (θ, γµ) is a graph completion of µ.

Remark. We treat the trajectories of (1) as path-
valued functions. That means that their images
are curves in n, for each time t. We denote such a
trajectory by xt(·). When t is a continuity point
of the control measure µ, xt(·) is a singleton
(x(t−) = x(t+) = x(t)), while if t is an atom of
the control measure µ, xt(·) is regarded as a set
of curves:

xt(·) := {ξ : η̄(t) → IRn : ξ satisfies (2)-(4)}.



Let {ti}∞i=1 be a sequence of atoms of µ and (x, µ)
be a feasible process. Then, xt(·) ∈ S means

x(t)∈S, ∀t∈[0,∞) and xti
(s)⊂S, ∀s∈η̄(ti).

We say that (x, µ) is a feasible process for (1) if
µ∈C∗([0,∞); K) and x is robust solution to (1).

By using a change of variables technique, we can
define conventional differential inclusions associ-
ated to the impulsive differential inclusion. In the
first case, Theorem 2.3 below, the control measure
is fixed and then we have a particular conventional
differential inclusion, stated with dependence on
the graph completions of the measure. A more
elaborated result that allows for the measure be-
ing a choice variable (a desired feature) is stated
as Theorem 2.4 soon after.

Theorem 2.3. Suppose that the multi-functions F
and G satisfy:

• F takes values in closed sets and is L × B-
measurable.

• G takes values in closed sets and is Borel-
measurable.

Fix a measure µ∈C∗([0,∞); K) and a initial value
x0. Let (θ, γµ) be the graph completion of µ and
η the reparameterization function.

(i) Suppose that x(·) ∈ BV + ([0,∞); IRn) is a
robust solution to (1) (with respect to µ
and x0). Then, there is a solution y(·) ∈
AC ([0,∞) ; IRn) to

{
ẏ(s) ∈F (θ(s), y(s))θ̇(s)+G(θ(s), y(s))γ̇µ(s)
y(0)=x0

(5)

for which

x(t)=y(η(t)) for all t∈(0,∞). (6)

Conversely,
(ii) Suppose that y(·) ∈ AC ([0,∞) ; IRn) is a

solution to (5). Then there exists a solution
x(·)∈BV + ([0,∞); n) to (1) for which (6) is
satisfied.

(iii) Take a solution x to (1). Let y be a solution
to (5) such that (6) is satisfied. Then

‖x‖T.V.≤ ‖y‖T.V..

Proof. The proof is similar to of a similar result
(see Theorem 4.1 of (Silva and Vinter, 1996)) in
which the control measure is scalar-valued and,
therefore, we omit it.

In the sequel, we will denote functions and vari-
ables of the extended reparameterized system by
,̃ i.e., we have ˙̃x∈F̃ (y) where x̃=col(x0, y) and

F̃ :={col(v0, Fv0+Gv): col(v0, v)∈V̄ }.
In this context S̃=[0,∞)×S.

Theorem 2.4. Assume that F and G are Borel
measurable.

If (x, µ) is a feasible control process for (1) then,
there exists a trajectory x̃ to





˙̃x(s) ∈ F̃ (x̃)
x0(0)=0, with x0(s)→∞ as s→∞
y(0) =x0.

(7)

Conversely, for each trajectory x̃ of (7), there
exists an admissible process (x, µ) for (1) such
that x(t) = x̃(η(t)).

Proof. The proof of this result is found in (Pereira
and Silva, 2004).

3. INVARIANCE RESULTS

In this section, we state the invariance results for
impulsive control systems. Let us first introduce
the notion of invariance informally.

Let S⊂IRn be a closed set and F be a set valued
map on the (t, x) space specifying the dynamics in
a differential inclusion form. We say that a certain
system (F, S) is invariant when all or some of the
trajectories of F that start in S remain in this set
for all future times.

Definition 3.1. Let S ⊂ IRn. We say that the
system ((F,G), S) is weakly invariant if ∀x0 ∈S
there exists a feasible process (x(·), µ(·)) of (1)
with x(0)=x0 and x(t)∈S, ∀t≥0. Also, ∀i∈IN ,
∃ξi(·)∈xti(·) such that ξi(s)∈S, ∀s∈η̄(ti).

Definition 3.2. If xt(·)∈S, ∀t≥ 0, for all feasible
process (x(·), µ(·)) of (1) such that x(0)∈S, we say
that the system ((F,G), S) is strongly invariant.

Definition 3.3. The attainable set A(x0;T ) from
x0 at the time T is given by:

A(x0; T ):=
{

x(T ): (x, µ) is a feasible process

of (1) with x(0)=x0

}
.

The results presented in this section require a
set of assumptions on the multi-functions F and
G that we call by Standing Hypotheses. These
assumptions will hold hereafter.

Standing Hypotheses

(H1) For every x ∈ IRn, F (x) and G(x) are
convex, compact and non-empty sets.

(H2) F and G are upper semicontinuous.
(H3) There are constants a and b such that, for

every x∈IRn,
if v∈F (x) then ‖v‖≤a‖x‖+b, and
if V ∈G(x), then ‖V ‖≤a‖x‖+b.



The hypothesis (H3) is known as linear growth
condition.

We recall that F is upper semicontinuous at x if,
given any ε > 0, there exists δ > 0 such that

‖y − x‖<δ =⇒ F (y)⊂F (x)+εB.

Before stating some equivalent forms to the weak
invariance of the system ((F,G), S), a result that
generalizes the one for conventional control prob-
lems to the impulsive context, we will introduce
the following assumption on the first component
of the extended trajectory x̃ of the extended sys-
tem.

x0(0) = 0 and lim
s→∞

x0(s) = ∞. (8)

Notice that this condition is naturally satisfied
if the total variation measure µ̄ of the control
measure µ satisfies

∀T > 0, lim
t→∞

µ̄([t, t + T ]) = 0.

Proposition 3.4. The system (F̃ , S̃) is weakly in-
variant if and only if the system ((F,G), S) is also
weakly invariant.

Proof. [⇒] Suppose that the system (F̃ , S̃) is
weakly invariant. Let x0 ∈ S. Then, there exists a
trajectory x̃ = col(x0, y) of F̃ such that x0(0) = 0,
y(0) = x0 ∈ S and x̃(s) ∈ S̃, ∀s ≥ 0. By Theorem
2.4, there exists a process (x, µ) of (F,G) such
that x(t) = y(η(t)), ∀t ≥ 0. That implies that
x(t) ∈ S, ∀t ≥ 0. Let {ti} be a sequence of the
atoms of µ. By construction of x (see (Pereira
and Silva, 2004)) we have that y(s) ∈ xti(s), ∀s ∈
η(ti). Thus, we may conclude that ((F,G), S) is
weakly invariant.

[⇐] Let x0 ∈ S. If ((F,G), S) is weakly invariant,
then there exists a feasible process (x, µ) of (1)
with x(0) = x0, x(t) ∈ S ∀t ≥ 0, and, ∀i,
∃ξi(·) ∈ xti(·) such that ξi(s) ∈ S, for all s ∈ η̄(ti).
Here, {ti} be a sequence of the atoms of µ. By
Theorem 2.3, there exists col(x0, y), a solution of
(7), satisfying

y(s) =





x(θ(s)), if s ∈ [0,∞) \
∞⋃

i=1

η̄(ti)

ξi(s), if s ∈
∞⋃

i=1

η̄(ti).

Hence, we have x̃(x) ∈ S̃, ∀s ≥ 0, and, therefore,
(F̃ , S̃) is weakly invariant.

Before pursuing, let us introduce the definition of
proximal normal cone (see (Clarke et al., 1998))
used in the next result.

Let S ⊂ IRn be a closed set and take x0 ∈ S. Then
ζ ∈ IRn is a proximal normal vector to S at x0 if
∃α > 0 such that

dS(x0 + αζ) = α‖ζ‖

where dS(·) is the distance function given by
dS(y) := inf{‖y − s‖ : s ∈ S}.
The proximal normal cone to S at x0, Np

S(x0), is
the set of all proximal normals of S at x0.

Theorem 3.5. Suppose that the condition (8)
holds. Then,





For each x̃ ∈ S̃, there exist (v0, v) ∈ V̄ ,
f ∈ F (x) and G ∈ G(x) such that

〈
(v0, v0f +

q∑

i=1

vigi), ζ̃
〉
≤ 0, ∀ζ̃ ∈ Np

S̃
(x̃)

(9)

if and only if

The system ((F,G),S) is weakly invariant.(10)

Proof. The proof of this result follows the struc-
ture of the corresponding result for conventional
systems in (Clarke et al., 1998).

From this reference, it can be shown that the
following sufficient condition for (9) in terms of
the Bouligand tangent cone TB

S̃
(x̃) 3 holds

F̃ (x̃) ∩ coTB
S̃

(x̃) 6= ∅, ∀x̃ ∈ S̃ (11)

which, in turn, is implied by

F̃ (x) ∩ TB
S̃

(x̃) 6= ∅, ∀x̃ ∈ S̃. (12)

Furthermore, it can be easily concluded that (10)
is equivalent to

∀x0 ∈ S, ∀ε > 0, ∃δ ∈ (0, ε) s.t.
A(x0; δ) ∩ S 6= ∅. (13)

Therefore, in order to complete the proof, we only
need to show that (9) implies (10) and that (13)
implies (12).

Observe that TB
S̃

(x̃) = IR × TB
S (x) and, as a

consequence, (12) is equivalent to

F̄ (x) ∩ TB
S (x) 6= ∅, ∀x ∈ S, (14)

being

F̄ := {Fv0 + Gv : col(v0, v) ∈ V̄ }. (15)

It can also be easy concluded that Np

S̃
(x̃) = {0} ×

Np
S(x) and, therefore, (9) is equivalent to

∃(v0, v) ∈ V̄ , f(x) ∈ F (x), G(x) ∈ G(x) s.t.
〈
v0f+

q∑

i=1

vigi, ζ
〉
≤ 0, ∀ζ ∈ Np

S(x), ∀x ∈ S.
(16)

Now let us start with the first implication. Con-
sider the system (F̄ (x), S), and let x0 ∈ S. From
(9), and, obviously (16), it follows that

h(x, ζ) ≤ 0, ∀ζ ∈ Np
S(x),

3 The Bouligand tangent cone to S at x defined as

T B
S (x) :=

{
lim

i→∞
xi − x

λi
: xi

S→ x, λi ↓ 0

}
,

where xi
S→ x means xi ∈ S and xi → x.



where h(x, p) := min{〈w, p〉 : w ∈ F̄}. This allows
us to use Theorem 4.2.4 of (Clarke et al., 1998)
to find a trajectory y(·) of F̄ in [0,∞) such that
y(0) = x0 and y(s) ∈ S, ∀s ≥ 0. Now, we only
have to construct a process (x, µ) of (1) with
x(t) = y(η(t)) for a suitable function η such that
x(0) = x0, x(t) ∈ S, ∀t ≥ 0, and ξti

(s) ∈ S,
∀s ∈ η̄(ti), for all atoms ti of µ and some function
ξi(·) ∈ xti

(·). This can be done as in Proposition
3.4 and, therefore the system ((F,G), S) is weakly
invariant.

Now, we show that (13) ⇒ (12) or, after the
remark earlier in this proof, its lower dimensional
equivalent (14). First, notice that (10) is equiv-
alent to (13). So, by Proposition 3.4, we can
conclude that the claim (13) holds also to the
attainable set for the absolutely continuous case

ẏ(s) ∈ F (y(s))θ̇(s) + G(y(s))γ̇µ(s).

This allow us adapt the proof of the similar result
for the conventional control problem in (Clarke
et al., 1998). Suppose that (13) holds for the
absolutely continuous version of the attainable
set, which we denote here by Ay(x0, t). Then, for
all n ∈, ∃δn ∈ (0, 1

n ) with Ay(x0, δn) ∩ S 6= ∅.
Therefore, for every n,

ẏn(s) ∈ F (yn(s))θ̇n(s) + G(yn(s))γ̇n(s)

⊂ {F (yn(s))v0 + G(yn(s))v : (v0, v) ∈ V̄ }
= F̄ (yn(s)).

Here (θn, γn) are graph completion of measures
µn ∈ C∗([0,∞); K).

The functions yn have the same Lipschitz constant
K, so that

‖yn(δn)− x0‖
δn

≤ K, ∀n.

Thus, by taking a subsequence (no relabelling),

there exists v ∈n such that v := lim
n→∞

yn(δn)− x0

δn
.

That is, v ∈ TB
S (x0). Then, we need only to show

that v ∈ F̄ (x0) in order to deduce (12). We can
write

yn(δn)− x0 =

δn∫

0

ẏn(s)ds.

We have that F̄ is upper semi-continuous. Let
ε ≥ 0. Then, for n sufficiently large, follows

yn(δn)− x0 ∈
δn∫

0

[F̃ (x0) + εB]ds.

By dividing by δn and passing to the limit when
n →∞ we obtain

v ∈ F̄ (x0) + εB.

The result is obtained by taking into account that
ε is arbitrary.

Proposition 3.6. The system (F̃ , S̃) is strongly
invariant if and only if the system ((F,G), S) is
also strongly invariant.

Proof. [⇒] Let (x, µ) a feasible process for (1) such
that x(0) ∈ S. Then, by Theorem 2.3, there exists
a trajectory y for F (y)θ̇(s) +G(y)γ̇(s)⊂ F̄ (y) 4

such that y(0) = x(0) ∈ S, y(s) = x(θ(s)), ∀s ∈
[0,∞) \ ∪∞i=1η̄(ti) and y(s)∈xti(s), ∀i ∈ IN .

Let x0(s) = θ(s) and notice that x̃ =col(x0, y) is a
trajectory for F̃ satisfying ỹ(0) ∈ S̃. Since (F̃ , S̃)
is strongly invariant, we have that y(s) ∈ S for
all s ≥ 0. Let {ti} be an ordering of the atoms
of µ. Since, at the interval η̄(ti), y(s) can be any
curve in xti

that satisfies (2)-(4), we conclude that
xti

(·) ⊂ S ∀i ∈ IN . Therefore, it follows from
x(t) = y(η(t)) that xt(·) ⊂ S for all t ≥ 0, i.e.,
((F,G), S) is strongly invariant.

[⇐] Let x̃ be an arbitrary trajectory of F̃ with
x̃(0) ∈ S̃. We will show that, for any arbitrary
T > 0, x̃(T ) ∈ S̃.

We can construct an admissible process (x, µ)
of (F,G) in [0, T ], with x(0) = y(0) ∈ S by
Theorem 2.4.

Let T ∗ := η(T ). By assumption ((F,G), S) is
strongly invariant, and, therefore, xt(·) ⊂ S for all
t ∈ [0, T ]. By construction, we have y(s) = x(θ(s))
for all s ∈ [0, T ∗] \ ∪∞i=1η̄(ti) and y(s) ∈ xti(s) for
all s ∈ η̄(ti). Then, y(s) ∈ S for all s ∈ [0, T ∗].
But T ∗ ≥ T and this implies that y(T ) ∈ S. Thus
(F̃ , S̃) is strongly invariant, since x̃ is an arbitrary
solution of (7).

In the next result, that is a generalization of the
similar result for the regular case (see e.g. (Clarke
et al., 1998)), we need the Lipschitz condition
for multi-functions. We say that a multi-function
Γ : IRn ↪→ IRm is locally Lipschitz if for each
x0 ∈ IRn, there exists δ, K > 0 such that

Γ(x) ⊂ Γ(y) + K‖x− y‖B, ∀x, y ∈ x0 + δB.

Theorem 3.7. Suppose that F and G are locally
Lipschitz. Then,





∀x̃∈S̃, ∀(v0, v)∈V̄ , we have, ∀ζ̃∈NP
S̃

(x̃),

max
f∈F (x), G∈G(x)

〈
v0f+

q∑

i=1

vigi, ζ̃
〉
≤ 0

(17)

if and only if

The system ((F,G), S) is strongly invariant.(18)

Remark. Following the arguments in (Clarke
et al., 1998) it is straightforward to show that
alternative equivalent characterizations of strong
invariance are:

4 The multifunction defined in (15)



(a) F̃ (x) ⊂ TC
S̃

(x̃) 5 , ∀x̃ ∈ S̃.
(b) F̃ (x̃) ⊂ TB

S̃
(x̃) ∀x̃ ∈ S̃.

(c) F̃ (x̃) ⊂ coTB
S̃

(x̃) ∀x̃ ∈ S̃.
(d) ∀x0∈S, ∃ε>0, such thatA(x0; t)⊂S ∀t∈[0, ε].

Proof. It follows from Theorem 4.3.8 of (Clarke
et al., 1998) that (17) is a necessary and suffi-
cient condition for strong invariance of the sys-
tem (F̃ , S̃) (as well as conditions (a) − (d) in
the above remark). Then, the conclusion follows
immediately from Proposition 3.6.
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