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Abstract. We consider semigroups of Ruelle-expanding maps, parameterized by random walks
on the free semigroup, with the aim of examining their complexity and exploring the relation
between intrinsic properties of the semigroup action and the thermodynamic formalism of the

associated skew-product. In particular, we clarify the connection between the topological en-
tropy of the semigroup action and the growth rate of the periodic points, establish the main
properties of the dynamical zeta function of the semigroup action and relate these notions to
recent research on annealed and quenched thermodynamic formalism. Meanwhile, we examine

how the choice of the random walk in the semigroup unsettles the ergodic properties of the
action.

1. Introduction

In the mid seventies the thermodynamic formalism was brought from statistical mechanics
to dynamical systems by the pioneering work of Sinai, Ruelle and Bowen [20, 4, 5, 24]. The
correspondence between one-dimensional lattices and uniformly hyperbolic dynamics conveyed
several notions from one setting to the other, introducing, via Markov partitions, Gibbs measures
and equilibrium states into the realm of dynamical systems. Within non-invertible dynamics, a
complete description of the thermodynamic formalism has been established for Ruelle-expanding
maps [21] and for expansive maps with a specification property [23, 15]. In particular, it is known
that, for every potential under some regularity condition, there exists a unique equilibrium state,
which is a Gibbs measure and has exponential decay of correlations. The classical strategy to prove
these properties ultimately relies on the analysis of the spectral properties of the Perron-Frobenius
transfer operator, and it is known how to extend this method to finitely generated group actions.
Yet, the attempts to generalize the previous results have so far been riddled with difficulties, and
a global theory is still out of reach. Some success has been registered for continuous actions of
finitely generated abelian groups. More precisely, the statistical mechanics of expansive Zd-actions
satisfying a specification property has been studied by Ruelle in [19], after introducing a suitable
notion of pressure and discussing its link with measure theoretical entropy and free energy. The
key ingredient in this context has been the fact that continuous Zd-actions on compact spaces
admit probability measures invariant under every continuous map involved in the group action.
With it, Ruelle proved a variational principle for the topological pressure and built equilibrium
states as the class of pressure maximizing invariant probability measures. This duality between
topological and measure theoretical complexity of the dynamical system has been later used by
Eizenberg, Kifer and Weiss [13] to establish large deviations principles for Zd-actions satisfying a
specification property.

A unified approach to the thermodynamic formalism for continuous group actions in the absence
of probability measures invariant under all elements of the group is still unknown. Although these
actions are not dynamical systems, a few definitions of topological pressure have been proposed,
although most of them unrelated and assuming either abelianity, amenability or some growth rate
of the corresponding group. Inspired by the notion of complexity presented by Bufetov in [7] in the
context of skew-products, where no commutativity or conditions on the semigroup growth rate are
required, the second and third named authors introduced in [18] a notion of topological pressure
for semigroup actions, and showed that it reflects the complex behavior of the action. In the
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present paper we push this analysis further, considering finitely generated semigroups of Ruelle-
expanding maps. We relate the notion of topological entropy of a semigroup action introduced
in [18] with the growth of the set of periodic orbits, the concepts of fibred and relative entropies
and the radius of convergence of a dynamical zeta function for the semigroup action. Moreover,
we generalize the classical Ruelle-Perron-Frobenius transfer operator and construct equilibrium
states for semigroup actions of C2 expanding maps. In the meantime, we will verify the impact
of changing the random walk inside the semigroup on the dynamical and ergodic attributes of the
semigroup action.

2. Setting

LetM be a compact metric space and C0(M) denote the space of all continuous observable func-
tions ψ :M → R. Given a finite set of continuous maps gi :M →M , i ∈ {1, 2, . . . , p}, p ≥ 1, and
the finitely generated semigroup (G, ◦) with the finite set of generators G1 = {id, g1, g2, . . . , gp},
writeG =

∪
n∈N0

Gn, withG0 = {id}, and g ∈ Gn if and only if g = gin . . . gi2gi1 , with gij ∈ G1 (for

notational simplicity’s sake we will use gj gi instead of the composition gj ◦ gi). Set G∗
1 = G1\{id}.

As a semigroup can have multiple generating sets, we will assume that the generator set G1 is
minimal, meaning that no function gj , for j = 1, . . . , p, can be expressed as a composition from
the remaining generators.

Free semigroups. In G, one considers the semigroup operation of concatenation defined as
usual: if g = gin . . . gi2gi1 and h = him . . . hi2hi1 , where n = |g| and m = |h|, then g h =
gin . . . gi2gi1him . . . hi2hi1 ∈ Gm+n. Each element g of Gn may be seen as a word that originates
from the concatenation of n elements in G1. Clearly, different concatenations may generate the
same element in G. Nevertheless, in most of the computations to be done, we shall consider
different concatenations instead of the elements in G they create. One way to interpret this
statement is to consider the itinerary map

ι : Fp → G
i = in . . . i1 7→ g

i
:= gin . . . gi1

where Fp is the free semigroup with p generators, and to regard concatenations on G as images by ι
of paths on Fp. Set G

∗
1 = G1 \{id} and, for every n ≥ 1, let G∗

n denote the space of concatenations
of n elements in G∗

1. To summon each element g of G∗
n, we will write |g| = n instead of g ∈ G∗

n.

Semigroup actions. We say that the finitely generated semigroup G induces a semigroup action
S : G × M → M in M defined by S(g, x) = g(x) if, for any g, h ∈ G and all x ∈ M , we
have S(g h, x) = S(g, S(h, x)). The action S is said to be continuous if, for any g ∈ G, the
map g : M → M given by g(x) = S(g, x) is continuous. A point x ∈ M is a fixed point of
g ∈ G if g(x) = x; the set of these fixed points will be denoted by Fix(g). A point x ∈ M is a
periodic point with period n of the action S if there exists g ∈ G∗

n such that g(x) = x. We let
Per(Gn) =

∪
|g|=n Fix(g) denote the set of all these periodic points with period n. Accordingly,

Per(G) =
∪
n≥1 Per(Gn) will stand for the set of periodic points of the whole semigroup action. We

observe that, when G∗
1 = {f}, this definition coincides with the usual one for the single dynamical

system f .

Ruelle-expanding maps. Let (X, d) be a compact metric space and T : X → X a contin-
uous map. T is said to be expansive if there exists ε > 0 such that, for any x ̸= y ∈ X,
supn∈N d(Tn(x), Tn(y)) > ε. The map T is locally expanding if there exist λ > 1 and δ > 0 such
that d(T (x), T (y)) > λd(x, y) for all x, y ∈ X with d(x, y) < δ These two notions are bonded: ev-
ery locally expanding system is expansive and an expansive map is locally expanding with respect
to an adapted metric (cf. [10]).

Definition 2.1. The system (X,T ) is Ruelle-expanding if T is locally expanding and open, i.e.:
(i) there exists c > 0 such that, for all x, y ∈ X with x ̸= y, T (x) = T (y) implies d(x, y) > c.
(ii) there are r > 0 and 0 < ρ < 1 such that, for each x ∈ X and all a ∈ T−1({x}) there is a
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map φ : Br(x) → X, defined on the open ball centered at x with radius r, such that φ(x) = a,
T ◦ φ(z) = z and, for all z, w ∈ Br(x), we have d(φ(z), φ(w)) ≤ ρ d(z, w).

Examples of Ruelle-expanding maps include one-sided Markov subshifts of finite type, deter-
mined by aperiodic square matrices with entries in {0, 1}, and C1-expanding maps on compact
manifolds. We remark that, due to the spectral decomposition, if the domain of a Ruelle-expanding
map is connected, then it is topologically mixing. For more details we refer the reader to [5, 21, 9].

3. Main results

We start with a topological description of finitely generated semigroups of uniformly expanding
maps. Later, we will assume that G1 is either a finite subset of Ruelle-expanding maps acting on
a compact connected metric space M or a finite subset of the space End2(M) of non-singular C2

endomorphisms in a compact connected manifold M . In this setting, we will show that the set
of periodic points with period n for such a semigroup dynamics has a definite exponential growth
rate with the period n, which is given by the topological entropy of the semigroup htop(S) (see
Definition 6.1). Moreover, we will prove that this entropy is equal to the logarithm of the spectral
radius of a suitable transfer operator L0 (cf. Subsections 5 and 6).

Theorem A. Let G be the semigroup generated by G1 = {Id, g1, . . . , gp}, where G∗
1 is a set of

Ruelle-expanding maps on a compact connected metric space M , and let S : G ×M → M be its
continuous semigroup action. Then

0 < htop(S) = lim
n→∞

1

n
log
( 1

pn

∑
|g|=n

♯Fix(g)
)
= log sp (L0).

The second part of this work concerns the asymptotic growth of the periodic points of a semi-
group action. Inspired by the Artin-Mazur zeta function (cf. [1]), we define the zeta function
associated to the continuous semigroup action S : G×M →M by the formal power series

z ∈ C 7→ ζS(z) = exp

( ∞∑
n=1

Nn(G)

n
zn

)
, (1)

where Nn(G) = 1
pn

∑
|g|=n ♯Fix(g). (We refer the reader to [8] for an account on random zeta

functions.) Our next result relates the regularity of ζS to the exponential growth rate of periodic
points, given by

℘(S) = lim sup
n→+∞

1

n
log (max{Nn(G), 1}).

Theorem B. Let G be the semigroup generated by G1 = {Id, g1, . . . , gp}, where G∗
1 is a set

of Ruelle-expanding maps on a compact connected metric space M , and S : G × M → M be
the corresponding continuous semigroup action on M . Then ζS is rational and its radius of
convergence ρS is equal to e−℘(S) = e−htop(S).

Afterwards, we will study the ergodic properties of semigroup actions of maps in End2(M).
Although one does not expect to find an absolutely continuous common invariant probability
measure, we may hope to discover some probability measure which reflects an averaged distribution
of the Lebesgue measure under the action of the semigroup. We say that Rθ is a random walk on

G if Rθ = ι∗θ
N, where θ is a probability measure on ι−1(G∗

1) = {1, . . . , p}, the set of generators

of Fp. For instance, if θ(i) = 1
p for any i ∈ {1, . . . , p}, then ηp = θN is the equally distributed

Bernoulli probability measure on the Borel sets of the unilateral shift Σ+
p = {1, . . . , p}N. If,

instead, θ(i) = ai > 0 for each i ∈ {1, . . . , p}, then a = (a1, a2, . . . , ap) is a non-trivial probability
vector and ηa = θN will stand for the Bernoulli probability measure θN on Σ+

p , while Ra = ι∗(ηa)
will denote the corresponding random walk Rθ on G. More generally, we may take a σ-invariant
probability measure η on Σ+

p and consider the associated random walk Rη = ι∗(η). Given a
σ-invariant probability measure η, a probability measure ν on M is said to be Rη-stationary if

ν =

∫
g∗ν dRη(g). (2)



4 M. CARVALHO, F. RODRIGUES, AND P.VARANDAS

As probability measures invariant under all elements of the semigroup are unlikely to exist, the
concept of stationary measure is the most natural to be addressed while studying ergodic prop-
erties of semigroup actions. However, there is evidence that this is not the suitable notion for
describing maximal entropy measures for semigroup actions (cf. Section 9). Finally, we will dis-
cuss a thermodynamic formalism and find an adequate definition of measure of maximal entropy
for a semigroup action with respect to a fixed random walk.

Theorem C. Let G be the semigroup generated by G1 = {id, g1, . . . , gp}, where G∗
1 is a set of

C2 expanding maps on a compact connected manifold M . Consider the corresponding continuous
semigroup action S : G×M →M and the random walk Rp = ι∗(ηp). Then the semigroup action

has a probability measure of maximal entropy which can be computed as the weak∗-limit of an
averaged distribution of either pre-images or periodic points.

4. Overview

To complement the classical approach of random dynamical systems, we are mainly interested
in determining intrinsic objects for the dynamics of the semigroup action. Ruelle-Perron-Frobenius
transfer operators suitable for the analysis of semigroup actions will be defined in Section 5. These
operators are in a strong relation with the classical transfer operator for a locally constant skew-
product dynamics. For that reason, we also discuss the dependence of the ergodic properties
of the skew-product dynamics on the chosen probability measure in the underlying shift, which
describes the random walk on the free semigroup. In Sections 6 and 7 we will justify the choice
of the notion of topological entropy for semigroup actions: we shall prove not only that the
entropy can be computed by the growth rate of the mean number of periodic orbits but also
that it arises naturally as the radius of convergence of the zeta function of the semigroup action
(Theorems A and B). The rationality of the zeta function for semigroup actions of expanding
maps will follow as a consequence of Lemma 7.1. In Section 8 we focus on building a bridge
between the several concepts of the thermodynamic formalism for skew-products and the intrinsic
objects for semigroup actions. In particular, we compare the notion of classical topological entropy
with the fibred and relative entropies, and relate the quenched and annealed equilibrium states for
symmetric and non-symmetric random walks. For instance, we prove that the topological entropy
of the semigroup coincides with Ledrappier-Walters’ entropy, introduced in [17], if and only if
all maps have the same degree (Proposition 8.2); and that this fibred entropy coincides with a
quenched pressure in random dynamics (Proposition 8.8). Additionally, the topological entropy
of the semigroup is showed to coincide with an annealed pressure in random dynamical systems
(Corollary 8.7), and to be equal to the classical topological pressure of a suitable potential for the
skew-product dynamics (cf. (18)). In Section 9 we will introduce a procedure to select measures
for the semigroup action using some variational insight. More precisely, from connections between
the semigroup action, the classical thermodynamic formalism and the annealed pressure function,
we will provide an intrinsic construction of probability measures (not necessarily stationary) on
the ambient space which arise as marginals of equilibrium states. The two different approaches will
allow us to conclude that maximal entropy measures can be computed using either an averaged
equidistribution of periodic points or of pre-images (Theorem C).

5. Ruelle-Perron-Frobenius operators

In this section we shall introduce the Ruelle-Perron-Frobenius transfer operator to be assigned
to a semigroup action which is a natural extension of the concept of transfer operator for an
individual dynamical system. The operator will depend on the chosen set G1 of generators of G
and on the selected random walk Rη on G (we will come back to this subject in Subsection 8.2).
Let G be a semigroup generated by a finite subset G1 of Ruelle-expanding maps acting on a
compact connected metric space M and S : G×M →M the corresponding continuous semigroup
action. Given a continuous observable φ : M → R, let Lg,φ : C0(M) → C0(M) denote the usual
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Ruelle-Perron-Frobenius operator associated to the dynamical system g and the observable φ:

Lg,φ (ψ)(x) =
∑

g(y)=x

eφ(y) ψ(y). (3)

It is not hard to check that Lg,φ = Lgin ,φ ◦Lgin−1
,φ · · ·◦Lgi1 ,φ for all g = gin ...gi1 ∈ Gn and n ≥ 1.

Consider now the non-stationary dynamical system whose complexity is indexed by the time n,
corresponding to the ”ball of radius n” in the semigroup. Such viewpoint has turned to be very
fruitful in the description of the topological entropy and the complexity of semigroup actions [18],
and motivates the definition of the following weighted mean sequence of transfer operators.

Definition 5.1. Given a continuous potential φ : M → R and a shift-invariant probability
measure η on Σ+

p , the Ruelle-Perron-Frobenius sequence of bounded linear operators (Ln,η,φ)n≥1

acting on C0(M) is defined, for every n ≥ 1, by

Ln,η,φ =

∫
Σ+

p

Lgin ,φ . . .Lgi2 ,φLgi1 ,φ (1) dη([i1, . . . , in]).

Given φ = (φ1, . . . , φp) ∈ C0(M)p and a non-trivial probability vector a, we define the integrated

transfer operator L̃a,φ : C0(M) → C0(M) by

L̃a,φϕ(x) =

p∑
i=1

ai
∑

gi(y)=x

eφi(y)ϕ(y).

For instance, if η is the symmetric random walk ηp, then, for all n ≥ 1,

Ln,ηp,φ =
1

pn

∑
|g|=n

Lg,φ = L̃np,φ.

Taking into account that the semigroup action is naturally associated to the skew-product
dynamics

FG : Σ+
p ×M → Σ+

p ×M
(ω, x) 7→ (σ(ω), gω1(x))

(4)

where ω = (ω1, ω2, . . . ), given a Bernoulli probability measure ηa on Σ+
p we assign to any φ =

(φ1, . . . , φp) ∈ C0(Σ+
p ×M)p the integrated transfer operators L̂a,φ : C0(Σ+

p ×M) → C0(Σ+
p ×M)

for FG, defined by

L̂a,φψ(ω, x) =

p∑
i=1

ai Lgi,φiψ(iω, x) =

p∑
i=1

ai
∑

gi(y)=x

eφi(iω,y)ψ(iω, y) (5)

where ψ ∈ C0(Σ+
p × M) and iω stands for the sequence (i, ω1, ω2, . . . ). For instance, if φ =

(0, . . . , 0) and ψ = 1, one gets L̂a,φ1 =
∫
deg (gi) da(i), where deg stands for the degree of the map.

Now, for each φ ∈ C0(M) we may consider the map φ(ω, x) = (φ(x), . . . , φ(x)) in C0(Σ+
p ×M)p

and, dually, if ψ ∈ C0(Σ+
p ×M) does not depend on ω, we may take ϕ : M → R defined by

ϕ(x) = ψ(1, x). Then, L̂a,φ ψ = L̃a,φ ϕ. As L̂a,φ and L̃a,φ are positive operators, the logarithm

of each spectral radius is equal to the exponential growth rate of ∥L̂na,φ1Σ+
p ×M∥0 and ∥L̃na,φ1M∥0,

respectively. Thus, sp (L̂a,φ) = sp (L̃a,φ). A similar link between transfer operators on the phase

space and on the skew-product dynamics has been considered previously in [26]. However, in this
reference the operators are built averaging normalized transfer operators for individual dynamics.

6. Topological entropy of the semigroup action

This section is devoted to the proof of Theorem A. First, let us recall the concept of separated
points and topological entropy of a semigroup action adopted in [7, 18]. Given ε > 0 and g :=
gin . . . gi2 gi1 ∈ Gn, the dynamical ball B(x, g, ε) is the set B(x, g, ε) := {y ∈ X : d(g

j
(y), g

j
(x)) ≤

ε, for every 0 ≤ j ≤ n} where, as before, for every 1 ≤ j ≤ n−1 we denote by g
j
the concatenation
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gij . . . gi2 gi1 ∈ Gj , and g0 = id. We also assign a dynamical metric dg to M by setting dg(x, y) :=

max0≤j≤n d(gj(x), gj(y)). Notice that both the dynamical ball and the metric depend on the

underlying concatenation of generators gin . . . gi1 and not on the group element g, since the latter
may have distinct representations. Given g = gin . . . gi1 ∈ Gn, we say that a set K ⊂M is (g, n, ε)-
separated if dg(x, y) > ε for any distinct x, y ∈ K. The maximal cardinality of a (g, ε, n)-separated

set on M will be denoted by s(g, n, ε). The topological entropy of a semigroup action estimates
the growth rate in n of the number of orbits of length n up to some small error ε.

Definition 6.1. The topological entropy of the semigroup action S : G×M →M is

htop(S) = lim
ε→0

lim sup
n→∞

1

n
log
( 1

pn

∑
|g|=n

s(g, n, ε)
)
. (6)

Ghys, Langevin and Walczak proposed in [14] another definition of topological entropy of a
semigroup action using the asymptotic exponential growth rate of points that are separated by
some group element. This corresponds to the largest exponential growth rate, while the definition
we have adopted observes the growth rates of separated points averaged along semigroup elements.

In the context of a single Ruelle-expanding dynamics, the topological entropy is related to
the largest exponential growth rate of periodic points (cf. [9]). This motivates considering the
following asymptotic speed.

Definition 6.2. The periodic entropy of a semigroup action S : G×M →M is

℘(S) = lim sup
n→+∞

1

n
log (max{Nn(G), 1})

where Nn(G) has been defined in (1).

Observe that in order for ℘(S) to be a finite value, the set Fix(g) must be finite for each
g ∈ G \ {id}, as happens when g is expansive (that is, when there exists εg > 0 such that,

whenever x ̸= y ∈ M , we have max {d(gℓ(x), gℓ(y)) : ℓ ∈ N0} ≥ εg.) After [18], we know that an

action of a finitely generated semigroup of C1-expanding maps is even strongly δ-expansive for
some δ > 0, a notion that we now recall and which will ease the task of computing htop(S).

Definition 6.3. Given δ > 0, we say that a continuous semigroup action S : G ×M → M is
δ-expansive if, whenever x ̸= y ∈ M , there exist κ ∈ N and g ∈ Gκ such that d(g(x), g(y)) > δ.
The action S is said to be strongly δ-expansive if, for any γ > 0, there exists κγ ≥ 1 such that,
for every x ̸= y ∈ M with d(x, y) ≥ γ, for all κ ≥ κγ and any g ∈ G∗

κ, we have dg(x, y) =

max0≤j≤n d(gj(x), gj(y)) > δ.

Lemma 6.4. [18, Theorem 25] Let G be the semigroup generated by a set G1 = {Id, g1, . . . , gp},
where G∗

1 is a finite set of Ruelle-expanding maps on a compact metric space M , and S : G×M →
M its continuous semigroup action. Take 0 < ε < δ. Then

htop(S) = lim sup
n→∞

1

n
log
( 1

pn

∑
|g|=n

s(g, n, ε)
)
.

Additionally, it was proved in [18, Theorem 28] that htop(S) ≤ ℘(S). We are left to show the
opposite inequality. For that purpose, we will have to specify in advance what is the path, or
concatenation of elements, one is interested in tracing.

Definition 6.5. We say that a continuous semigroup action S : G ×M → M , associated to a
finitely generated semigroup G, satisfies the (strong) orbital specification property if, for any δ > 0,
there exists T (δ) > 0 such that, given k ∈ N, for any hpj ∈ G∗

pj with pj ≥ T (δ) for every 1 ≤ j ≤ k,
for each choice of k points x1, . . . , xk inM , for any natural numbers n1, . . . , nk and any semigroup
element g

nj ,j
= ginj

,j . . . gi2,j gi1,j ∈ Gnj , where j ∈ {1, . . . , k}, there exists x ∈ M such that

d(g
ℓ,1

(x), g
ℓ,1

(x1)) < δ for all 1 ≤ ℓ ≤ n1 and d(g
ℓ,j
hpj−1

... g
n2,2

hp1 gn1,1
(x), g

ℓ,j
(xj)) < δ for

all 2 ≤ j ≤ k, 1 ≤ ℓ ≤ nj , where gℓ,j = giℓ,j . . . gi1,j . The semigroup action satisfies the periodic

orbital specification property if the point x can be chosen periodic.



SEMIGROUP ACTIONS OF EXPANDING MAPS 7

6.1. Proof of Theorem A. We start proving that the class of Ruelle-expanding maps is closed
under concatenation, and so forms a semigroup.

Lemma 6.6. If each map in the finite set G∗
1 is Ruelle-expanding, then g is Ruelle-expanding for

any g ∈ G− {Id}. Moreover, there exists δ > 0 such that the semigroup action S : G×M → M
is strongly δ-expansive.

Proof. If g1 and g2 are Ruelle-expanding maps on a compact metric space, then it is not hard to
use uniform continuity to prove that the composition g2 g1 is a Ruelle-expanding map: if ρi ∈ (0, 1)
denotes the backward contraction rate for gi ∈ G∗

1 and ri > 0 is so that all inverse branches for gi
are defined in balls of radius ri, then every map gi2gi1 is Ruelle-expanding and its inverse branches
are defined in balls of radius r with backward contraction rates ρ, where

r = min{ri : 1 ≤ i ≤ p} and ρ = min{ρi : 1 ≤ i ≤ p}. (7)

We now proceed by induction on n. If, for a fixed positive integer n, the concatenation of n Ruelle-
expanding maps is Ruelle-expanding, then, considering n+ 1 such maps, say gin+1 gin · · · gi1 , we
may split their composition into the concatenation of two Ruelle-expanding maps gin+1 (gin · · · gi1)
and apply what we have just proved.

Concerning the strong δ-expansiveness of the action S for some δ > 0, take δ = r
2 and, given

γ > 0, let κγ ≥ 1 be such that ρκγ δ < γ, where ρ is defined by (7). Now, for any points x ̸= y ∈ X
with d(x, y) ≥ γ and any g ∈ G∗

κ with κ ≥ κγ , clearly dg(x, y) > δ, otherwise we would get

d(x, y) ≤ ρκγd(g(x), g(y)) ≤ ρκγdg(x, y) < γ which leads to a contradiction. �

Recall now, from Lemma 6.4 and the fact that the semigroup action is strongly expansive, that
the computation of the topological entropy of the semigroup action may be done with a well chosen,
but fixed, ε. More precisely, if δ > 0 is given by the proof of Lemma 6.6 and we fix 0 < ε < δ,

then htop(S) = lim supn→∞
1
n log

(
1
pn

∑
|g|=n s(g, n, ε)

)
. We claim that for every g ∈ G such that

|g| = n, the set Fix(g) is (g, n, ε)-separated. Otherwise, there would exist P ̸= Q ∈ Fix(g) which
were not (g, n, ε)-separated, that is, such that d(g

m
(P ), g

m
(Q)) < ε for every 0 ≤ m ≤ n. But

then, if γ = d(P,Q)/2 and kγ ≥ 1 is given by Lemma 6.6, we have |gκγ | = nκγ ≥ κγ and
dgκγ (P,Q) = dg(P,Q) < ε, a contradiction. Therefore, s(g, n, ε) ≥ ♯Fix(g), for every g ∈ G with

|g| = n, and, consequently,

htop(S) = lim sup
n→∞

1

n
log

 1

pn

∑
|g|=n

s(g, n, ε)

 ≥ lim sup
n→∞

1

n
log

 1

pn

∑
|g|=n

Fix(g)

 = ℘(S).

To complete the proof we are left to show that the lim sup in the definition of ℘(S) is indeed
a limit. First notice that, as G is finitely generated by Ruelle-expanding maps, by [18, Theorem
16] it satisfies the periodic orbital specification property. Fix ε ∈ (0, δ), let T (ε/2) ∈ N be given
by this property and take g ∈ G∗

m+n+T (ε/2), to which there exist a ∈ Gn, b ∈ G∗
T (ε/2) and

c ∈ Gm such that g = a b c. Let Fix(c) = {P1, . . . , Pr} and Fix(a) = {Q1, . . . , Qs} be the sets
of fixed points of c and a, respectively. By the periodic specification property, for the semigroup
elements c, a and the points Pi ∈ Fix(c) and Qj ∈ Fix(a) there exists xij ∈ Fix(a b c) such that
d(cℓ(xij), cℓ(Pi)) <

ε
2 and d(au b c (xij), au(Qj)) <

ε
2 for every ℓ = 0, . . . ,m and every u = 0, . . . , n.

As the set Fix(c) is (c,m, ε)-separated, we have xi1j1 ̸= xi2j2 for (i1, j1) ̸= (i2, j2). This implies
that ♯Fix(g) ≥ ♯Fix(a) ♯Fix(c) and so,

∑
|g|=m+n+T (ε/2)

♯Fix(g) ≥
∑

|c|=m,|a|=n

♯Fix(c) ♯Fix(a) =

 ∑
|c|=m

♯Fix(c)

 ∑
|a|=m

♯Fix(a)

 .

This yields

1

pm+n+T (ε/2)

∑
|g|=m+n+T (ε/2)

♯Fix(g) ≥ 1

pT (ε/2)

 1

pm

∑
|c|=m

♯Fix(c)

 1

pn

∑
|a|=n

♯Fix(a)

 . (8)
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Write αn = log
(

1
pn

∑
|a|=n ♯Fix(a)

)
. The inequality (8) implies that αm+n+T (ε/2) ≥ αn +αm for

all m,n ≥ 1. As T (ε/2) is a fixed constant, by a simple adaptation of the proof of Fekete’s Lemma
([28, Theorem 4.9]), it follows that the sequence (αn

n )n∈N converges to its supremum. Therefore,
the lim sup in the definition of ℘(S) may be replaced by a limit.

Finally, by Lemma 6.6, each g ∈ G is a Ruelle-expanding map and ♯Fix(g) = deg (g). So,

taking the observable φ ≡ 0, we get ℘(S) = log sp (L̂p,0) = log (
∑p

i=1 deg (gi)

p ).

7. The zeta function of the semigroup action

Recall that the dynamical Artin-Mazur’s zeta function of a dynamical system f computes

ζf (z) = exp
(∑∞

n=1
♯Fix(fn)

n zn
)
(cf. [1]). The function ζS we associate to the action of a semi-

group G, generated by a finite set G∗
1 of Ruelle-expanding maps, is linked to the notion of the

annealed zeta function introduced in [2, 22] within the context of random families of C2 expand-
ing maps. The aim of this section is to show that, when we consider Ruelle-expanding maps
and the random walk Rp, this annealed zeta function is rational and its radius of convergence is

exp (−htop(S)).

7.1. Proof of Theorem B. We will start estimating the radius ρS of convergence of ζS and
relating it with htop(S). Notice that, as limn→∞

n
√
n = 1, then

1

ρS
= lim sup

n→∞

n

√
Nn(G)

n
= lim sup

n→∞

n
√
max{Nn(G), 1} = exp(℘(S)). (9)

Thus, whenever ℘(S) > 0, the zeta function ζS has a positive radius of convergence and is well
defined in {z ∈ C : |z| < exp(−℘(S))}. Under the assumptions of Theorem A, one also has
ρS = exp(−htop(S)).We are left to show that the zeta function of a semigroup of Ruelle-expanding
maps is rational.

Lemma 7.1. The skew-product FG is Ruelle-expanding and topologically mixing.

Proof. Denote by dM and d∑ the metrics in M and Σ+
p , respectively. We are considering in

Σ+
p × M the product topology, which is metrizable; its topology is given, for instance, by the

metric D((ω0, x0), (ω
1, x1)) = max {dM (x0, x1), d∑(ω0, ω1)}. As σ and each gi ∈ G∗

1 are Ruelle-
expanding, there exist positive constants cσ and ci, for i ∈ {1, . . . , p}, such that: (a) if x, y ∈
M, x ̸= y, gi(x) = gi(y) then dM (x, y) > ci; and (b) ω0, ω1 ∈ Σ+

p , ω
0 ̸= ω1, σ(ω0) = σ(ω1)

implies d∑(ω0, ω1) > cσ. Let (ω0, x0) ̸= (ω1, x1) be such that FG((ω0, x0)) = FG((ω1, x1)),

that is, σ(ω0) = σ(ω1) and gω0
1
(x0) = gω1

1
(x1). Then, either ω0 ̸= ω1, in which case we have

D((ω0, x0), (ω
1, x1)) > cσ; or else ω0 = ω1, and then D((ω0, x0), (ω

1, x1)) > cω0
1
. Therefore,

if c = min {cσ, c1, c2, . . . , cd} and (ω0, x0) ̸= (ω1, x1) are so that FG((ω0, x0)) = FG((ω1, x1))
then D((ω0, x0), (ω

1, x1) > c. The second property that characterizes Ruelle-expanding maps (cf.
Definition 2.1) is proved similarly by considering the minimal expansion rates and minimal radius
where convergence holds.

We now proceed showing that FG is topologically mixing. Consider a non-empty open subset
W of Σ+

p ×M , and take a cylinder U = C(1; a1 a2 . . . , ak) and an open set V of M such that
U × V ⊂ W. As the maps σ and gak . . . ga1 are topologically mixing and Ruelle-expanding, there
exist positive integers mU and mV such that σℓ(U) = Σ+

p and (gak . . . ga1)
ℓ =M , for all ℓ ≥ m =

max {mU ,mV }. Hence, for all ℓ ≥ m we have Fℓ
G(U × V ) =

(
σℓ(U),

∪
ω∈U f ℓω(V )

)
= Σ+

p ×M

since V contains all the sequences of
∑+
d whose k first entries are a1 a2 . . . , ak, in particular those

which start with this block repeated ℓ times for every ℓ ∈ N. �

After Lemma 7.1, we conclude that the Artin-Mazur zeta function of FG, say ζFG
, is rational

(cf. [21, 9]). Moreover, given n ∈ N, if ♯Pern(FG) denotes the number of periodic points with
period n of FG, then it is straightforward to check that

♯Pern(FG) =
∑

σn(ω)=ω

♯Fix(fnω ) =
∑
|g|=n

♯Fix(g) = pn ×Nn(G).
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This implies that, for any z ∈ C,

ζS(z) = exp
( +∞∑
n=1

♯Pern(FG)
n× pn

zn
)
= exp

( +∞∑
n=1

♯Pern(FG)
n

(
z

p

)n )
= ζFG

(
z

p

)
and so ζS is a rational function.

8. Intrinsic objects vs skew-product dynamics

In this section we will establish a bridge between topological Markov chains and semigroup
actions regarding the notions of fibred and relative topological entropies and the concepts of
annealed and quenched topological pressures.

8.1. Thermodynamic formalism for the skew-product. There have been several approaches
to study the thermodynamic formalism of skew-product dynamics. For instance: (i) Ruelle ex-
panding skew-product maps. (ii) Fibred entropy for factor maps. (iii) Quenched and annealed
equilibrium states for random dynamical systems. (iv) Relative measures for skew-products. For
future use, we briefly collect some of them, referring the reader to [2, 11, 12, 16, 25].

Topological entropy of the skew-product. Since the skew product FG is a Ruelle-expanding
map (cf. Lemma 7.1), for any Hölder continuous potential φ on Σ+

p ×M the map FG admits
a unique equilibrium state. In particular, if φ ≡ 0, there is a unique measure µm of maximal
entropy of FG, which is equally distributed along the

∑p
i=1 deg (gi) elements of the natural Markov

partition Q on Σ+
p ×M and may be computed by the limit process using distribution by pre-images

(cf. [21]). From [26], the projection of µm in Σ+
p is ηm, where

m =
( deg (g1)∑p

k=1 deg (gk)
,

deg (g2)∑p
k=1 deg (gk)

, . . . ,
deg (gp)∑p
k=1 deg (gk)

)
. (10)

Moreover, the topological entropy of the skew-product FG is given by

htop(FG) = htop(S) + log p (11)

(cf. [7]), so htop(FG) = log(
∑p
i=1 deg (gi)) and htop(S) = log(

∑p
i=1 deg (gi)

p ). Notice that the

last equality for htop(S) depends only on the ingredients that set up the semigroup action. More
generally (see [21]), if φ is piecewise constant along the

∑p
i=1 deg (gi) elements of Markov partition

Q, then there exists a unique equilibrium state µφ for FG with respect to φ, it is a Bernoulli
measure and satisfies

Ptop(FG, φ) = log
( ∑
Q∈Q

eφ(Q)
)

and µφ(Q) = e−φ(Q)
∑
Q̃∈Q

eφ(Q̃), ∀Q ∈ Q.

Fibred entropy of the skew-product. Following [17], consider the skew-product FG and the
projection on the first coordinate, say π : Σ+

p ×M → Σ+
p , π(ω, x) = ω. We say that a subset E of

π−1(ω) is (n, ε)-separated if there exists i ∈ {0, . . . , n} such that d(gωi . . . gω1(x), gωi . . . gω1(y)) ≥ ε
where g = gωn

. . . gω1
∈ G and |g| = n. Therefore, if s(n, ε, π−1(ω)) is the maximal cardinality of a

(n, ε)-separated subset of π−1(ω), then s(n, ε, π−1(ω)) = s(g, n, ε). Given a σ-invariant probability

measure η on Σ+
p , the map ω 7→ htop(FG, π−1(ω)) := limε→0 lim supn→∞

1
n log s(n, ε, π−1(ω)) is

measurable and (cf. [17])

sup
{µ : FG∗(µ)=µ, π∗(µ)= η}

hµ(FG) = hη(σ) +

∫
Σ+

p

htop(FG, π−1(ω)) dη(ω). (12)

We will refer to htop(FG, π−1(ω)) as the relative entropy on the fiber π−1(ω). The fibred entropy
of the semigroup action S with respect to η is

∫
Σ+

p
htop(FG, π−1(ω)) dη(ω).
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Quenched and annealed equilibrium states for the skew-product. Following [2], given a
continuous potential φ : Σ+

p ×M → R and a probability measure a on {1, . . . , p}, the annealed
topological pressure of FG with respect to φ and a is defined by

P
(a)
top(FG, φ, a) = sup

{µ : FG∗µ=µ}

{
hµ(FG)− hπ∗(µ)(σ) + ha(π∗(µ)) +

∫
φ(ω, x) dµ(ω, x)

}
where ω = (ω1, ω2, . . .), π∗(µ) is the marginal of µ in Σ+

p and the entropy per site ha(π∗(µ)) with
respect to ηa is given by

hηa(π∗(µ)) = −
∫
Σ+

p

logψπ∗(µ)(ω) dπ∗(µ)(ω) =

∫
Σ+

p

−ψπ∗(µ)(ω) logψπ∗(µ)(ω) da(ω1) dπ∗(µ)(σ(ω))

if dπ∗(µ)(ω1, ω2, . . . ) ≪ da(ω1) dπ∗(µ)(ω2, ω3, . . . ) and ψπ∗(µ) :=
dπ∗(µ)

da dπ∗(µ)◦σ denotes the Radon-

Nykodin derivative of π∗(µ) with respect to a× π∗(µ) ◦ σ; and ha(π∗(µ)) = −∞ otherwise. Recall
from [2, page 676] that ha(π∗(µ)) = 0 if and only if π∗(µ) = ηa. According to [2, Equation (2.28)],
the annealed pressure can also be evaluated by

P
(a)
top(FG, φ, a) = sup

{µ : FG∗µ=µ}

{
hµ(FG) +

∫
Σ+

p ×M
log
(
a(ω1)e

φ(ω,x)
)
dµ(ω, x)

}
. (13)

The quenched topological pressure of FG with respect to φ and a is defined by

P
(q)
top(FG, φ, a) = sup

{µ : FG∗µ=µ, π∗(µ)=ηa}

{
hµ(FG)− hηa(σ) +

∫
φ(ω, x) dµ(ω, x)

}
. (14)

It follows from the definitions that we always have P
(a)
top(FG, φ, a) ≥ P

(q)
top(FG, φ, a).

An FG-invariant probability measure is said to be an annealed (resp. quenched) equilibrium
state for FG with respect to φ and a if it attains the supremum in equation (13) (resp. (14)). In
the case of finitely generated semigroups of C2 expanding maps, there exists a unique quenched
and a unique annealed equilibrium state for every Hölder continuous observable φ and every a,
and they exhibit an exponential decay of correlations (cf. [2]). For instance, for a semigroup G
with generators G1 = {id, g1, . . . , gp} where each gi is a C

2 expanding map, we may consider the

Hölder potential φ(ω, x) = − log |detDgω1(x)|; its annealed equilibrium state µ
(a)
φ,a was described

in [2, Proposition 2] and is also the quenched equilibrium state for this potential. In less demand-
ing setting of a semigroup action of Ruelle expanding maps, relative (or quenched) equilibrium
states have been constructed by Denker, Gordin and Heinemann in [11, 12]. Beyond uniform hy-
perbolicity, Benedicks and Young [3] constructed absolutely continuous stationary measures using
appropriate skew-product dynamics to model the random perturbations of quadratic maps.

Given a continuous potential φ : Σ+
p ×M → R and a σ-invariant probability measure η on Σ+

p ,

the notion of relative pressure of φ on the fiber π−1(ω), denoted by Ptop(FG, φ, π−1(ω)), was also
studied in [17, Section 2]. In this reference, the authors showed that the relative pressure satisfies
the following relative variational principle:∫

Σ+
p

Ptop(FG, φ, π−1(ω)) dη(ω) = sup
{µ : FG∗(µ)=µ, π∗(µ)=η}

{
hµ(FG)− hη(σ) +

∫
φdµ

}
. (15)

In particular, when φ ≡ 0 and η = ηa, the equations (14) and (12) imply that the fibred entropy
coincides with the quenched pressure, that is,∫

Σ+
p

htop(FG, π−1(ω)) dηa(ω) = P
(q)
top(FG, 0, a).

Example 8.1. Let G be a semigroup with generators G1 = {id, g1, . . . , gp}, where each gi is a C2

expanding map. For the potential φ ≡ 0 we will analyze how the annealed and quenched pressures
vary with a. When a = p = ( 1p , . . . ,

1
p ), we obtain

P
(a)
top(FG, 0, p) = sup

{µ : FG∗µ=µ}

{
hµ(FG) +

∫
log
(
p(ω1)

)
dµ(ω, x)

}
= htop(FG)− log p = htop(S).

(16)
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The corresponding annealed equilibrium state µ
(a)
p is the measure of maximal entropy µm of FG.

Moreover, by [2, Equation (2.28)], for any non-trivial probability vector a and the corresponding

annealed equilibrium state µ
(a)
a we have

ha(π∗(µ
(a)
a )) = h

π∗(µ
(a)
a )

(σ) +

∫
Σ+

p ×M
log
(
a(ω1)

)
dµ(a)

a (ω, x)

so,

hp(π∗(µ
(a)
p )) = h

π∗(µ
(a)
p )

(σ) +

∫
Σ+

p ×M
log
(
p(ω1)

)
dµ(a)

p (ω, x) = hηm(σ)− log p = hηm(σ)− hηp(σ).

(17)
Concerning the quenched operator, we get

P
(q)
top(FG, 0, p) = sup

{µ : FG∗µ=µ, π∗(µ)=ηp}

{
hµ(FG)

}
− log p.

Yet, as π∗(µm) = ηm, if m ̸= p (which happens if the degrees of gi are not equal; cf. (10)), then

the quenched equilibrium state differs from µ
(a)
p . In general, for a non-trivial probability vector a,

we obtain

P
(a)
top(FG, 0, a) = sup

{µ : FG∗µ=µ}

{
hµ(FG) +

∫
Σ+

p ×M
log
(
a(ω1)

)
dµ(ω, x)

}
= Ptop(FG, φa) (18)

where φa : Σ+
p ×M → R is the locally constant potential given by φa(ω, x) = log a(ω0). Therefore,

a quenched equilibrium state µ
(q)
a for φ ≡ 0 and a satisfies π∗(µ

(q)
a ) = ηa and

h
µ
(q)
a
(FG) = sup

{µ : FG∗µ=µ, π∗(µ)=ηa}
hµ(FG). (19)

In particular, when a = m, we conclude that

µ(q)
m = µm = µ(a)

p and P
(q)
top(FG, 0,m) = htop(FG)− hηm(σ). (20)

Relative measures for the skew-product. In [26, Theorem 1.3] it was shown that, having
fixed a Bernoulli probability measure ηa on Σ+

p , one may find a self-similar probability measure µa
which is invariant under the skew-product FG, whose projection to the base space is π∗(µa) = ηa
and which satisfies

hµa(FG) = sup
{µ : FG∗(µ)=µ, π∗(µ)= ηa}

hµ(FG) = hηa(σ) +

p∑
k=1

ak log deg (gk). (21)

When a = m, the measure µm is the unique probability of maximal entropy of the skew-product

FG, and a simple computation indicates that htop(FG) = log
(∑p

i=1 deg (gi)
)
. A generalization

for other potentials was obtained in [27].

8.2. Topological entropy of the semigroup action with respect to a random walk. In
what follows we will compare the notions of entropy for the semigroup action with the previous
notions of fibred, quenched, annealed and relative pressures.

Fibred entropy for the symmetric random walk. We first study the case of the symmetric
random walk, that is, when each semigroup generator receives the same weight 1

p and η = ηp.

Under this assumption, the formula (12) becomes

sup
{µ : FG∗(µ)=µ, π∗(µ)= ηp}

hµ(FG) = log p+

∫
Σ+

p

htop(FG, π−1(ω)) dηp(ω). (22)

Thus, taking into account that htop(FG) = supµ hµ(FG), we conclude that

log p+

∫
Σ+

p

htop(FG, π−1(ω)) dηp ≤ htop(FG) ≤ log p+ sup
ω∈Σ+

p

htop(FG, π−1(ω)). (23)
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Besides, (11) together with (23) imply that∫
Σ+

p

htop(FG, π−1(ω)) dηp ≤ htop(S) ≤ sup
ω∈Σ+

p

htop(FG, π−1(ω)).

So, it makes sense to ask under what conditions htop(S) =
∫
Σ+

p
htop(FG, π−1(ω)) dηp.

Proposition 8.2. Let G1 = {id, g1, · · · , gp}, p ≥ 2, be a finite set of expanding maps in End2(M),
G be the semigroup generated by G1 and FG : Σ+

p ×M → Σ+
p ×M be the corresponding skew-

product. Then the following conditions are equivalent:

(1) htop(S) =
∫
Σ+

p
htop(FG, π−1(ω)) dηp.

(2) ηp = π∗(µm), where µm is the unique maximal entropy measure for FG.
(3) The degrees of the maps gi are the same for all 1 ≤ i ≤ p.

Moreover, if any of these conditions holds, then htop(S) =
∫
Σ+

p
log deg (gω) dηp(ω).

Proof. Recall that FG is a topologically mixing Ruelle-expanding map (cf. Lemma 7.1). Hence,
taking φ ≡ 0, we deduce from [21] that FG has a unique maximal entropy measure µm. Further-
more, it follows from the variational principle for FG and the relations (22) and (11) that

htop(S) = htop(FG)− log p ≥ sup
FG∗(µ)=µ
π∗(µ)= ηp

[hµ(FG)− log p] =

∫
Σ+

p

htop(FG, π−1(ω)) dηp(ω).

Clearly the previous inequality becomes an equality if an only if π∗(µm) = ηp, which proves that

(1) is equivalent to (2). The remaining of the proof relies on the property of µm stated in (10).
It implies that htop(S) =

∫
Σ+

p
htop(FG, π−1(ω)) dηp if and only the degrees of the maps gi are the

same for all 1 ≤ i ≤ p. This proves that (2) is equivalent to (3). Finally, as ηp is a Bernoulli

measure, hηp(σ) = log p and hµm(FG) = htop(FG), then htop(S) =
∫
Σ+

p
log deg (gω1) dηp(ω). �

Relative entropy for non-symmetric random walks. If, instead of ηp, we take another σ-

invariant Borel probability measure η on Σ+
p , then η portrays an asymmetric random walk on G

and it suggests a generalization of the concept of topological entropy of S.

Definition 8.3. The relative topological entropy of the semigroup action S with respect to η is given
by htop(S, η) = limϵ→0 lim supn→∞

1
n log

∫
Σ+

p
s(gωn . . . gω1 , n, ϵ) dη(ω), where s(gωn . . . gω1 , n, ϵ) is

the maximum cardinality of a (g, n, ε)-separated set (cf. Section 6).

The previous notion is well defined since the map ω → s(gωn
. . . gω1

, n, ϵ) is constant on n-
cylinders (hence measurable), bounded by en maxi∈{1,...,p} {htop(gi)} and s(gωn . . . gω1 , n, ϵ) is mono-
tonic in the variable ϵ. For instance, htop(S, ηp) = htop(S). In view of Definition 8.3, htop(S, η) is

also given by htop(S, η) = lim supn→∞
1
n log

(∑
|g|=n ι∗(η)(g)Lg,0 (1)

)
. (Notice that this formula

makes sense since g 7→ Lg,0 (1) is bounded, its values are away from 0 and ∞ and ι∗(η) is a

probability measure.) Following an argument analogous to the one used to prove [18, Theorem
25], we obtain:

Corollary 8.4. Assume that the continuous action of G on the compact metric spaceM is strongly
δ∗-expansive. Then, if 0 < ε < δ∗, we have htop(S, η) = limn→∞

1
n log

∫
Σ+

p
s(gωn . . . gω1 , n, ϵ) dη(ω).

A variational principle for the relative entropy. Denote by MB(Σ
+
p ) the space of Bernoulli

measures on Σ+
p , that is, the probability measures η = ηa for some probability vector a =

(a1, . . . , ap), where some of the entries may be zero. This space of σ-invariant measures, which
encodes all random walks on the semigroup G we have considered so far, is homeomorphic to
the finite dimensional simplex {a = (a1, . . . , ap) ∈ Rp : ai ≥ 0 and

∑p
i=1 ai = 1}, and therefore it

is a closed subset of Mσ(Σ
+
p ). Let H be the entropy map with respect to the random walks in

MB(Σ
+
p ), given by

H : MB(Σ
+
p ) → [0,+∞]

η 7→ htop(S, η).
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Lemma 8.5. The map H is continuous.

Proof. Firstly, recall that the action of G on the compact metric spaceM is strongly δ∗-expansive.
To prove that H is lower semicontinuous, we go back to the proof of Theorem A where it was
established that, having fixed ε ∈ (0, δ∗), the periodic specification property produces T (ε/2) ∈ N
such that very g ∈ G∗

m+n+T (ε/2) can be written as g = a b c (for a ∈ G∗
n and c ∈ G∗

m) and

♯Fix(g) ≥ ♯Fix(a) ♯Fix(c). This proves that
∫
♯Fix(g) dη ≥

(∫
♯Fix(c) dη

) (∫
♯Fix(a) dη

)
and

so, as we are restricting to MB(Σ
+
p ), the map

H(η) = sup
n≥1

1

n
log

∫
♯Fix (gωn . . . gω1) dη(ω) (24)

is the supremum of the continuous functions η 7→ 1
n log

∫
♯Fix (gωn . . . gω1) dη, hence lower semi-

continuous. We proceed by showing that H is upper semicontinuous as well. This is due to
the characterization of of the topological entropy via generating sets. Indeed, the same steps
of the proof of Theorem 25 in [18] (where integration is considered with respect to the equidis-
tributed Bernouli measure ηp) imply that, as S is a strongly δ∗-expansive continuous semigroup
action, then htop(S, η) = lim supn→∞

1
n log

∫
Σ+

p
c(gωn . . . gω1 , n, ϵ)dη(ω) for every 0 < ε < δ∗,

where c(gωn . . . gω1 , n, ϵ) = inf {♯U : U is a (gωn . . . gω1 , ε) − cover}. Take ε > 0, n ∈ N and
g = gωn+m . . . gω1 ∈ G, and consider ℓ = gωn+m . . . gωn+1 and k = gωn . . . gω1 . Given an (ℓ, ε)-

cover U and a (k, ε)-cover V, the set W = k−1(U) ∨ V is a (g, ε)-cover with ♯W ≤ ♯U ♯V. This
implies that c(gωn+m . . . gω1 , n+m, ϵ) ≤ c(gωn+m . . . gωm+1 ,m, ϵ) c(gωn . . . gω1 , n, ϵ). Since all mea-
sures in MB(Σ

+
p ) are Bernoulli, the previous inequality implies that the sequence (βn)n∈N =(

log
∫
Σ+

p
c(gωn . . . gω1 , n, ϵ) dη(ω)

)
n∈N is subadditive and H is upper semicontinuous as it can be

expressed as the infimum of continuous functions: H(η) = infn≥1
1
n log

∫
c(gωn . . . gω1) dη(ω). �

Proposition 8.6. There exists η0 ∈ MB(Σ
+
p ) such that supη∈MB(Σ+

p ) htop(S, η) = htop(S, η0).

Moreover,

sup
η∈MB(Σ+

p )

htop(S, η) = log
(

max
1≤i≤p

deg (gi)
)

(25)

and ηp attains the supremum if and only if the degrees of the maps gi are the same for all 1 ≤ i ≤ p.

Proof. The first assertion is a direct consequence of the compactness of MB(Σ
+
p ) together with

the continuity of the function H. We are left to prove (25). Let 1 ≤ j ≤ p be such that
deg (gj) = max1≤i≤p deg (gi). Take a = (ai)1≤i≤p, where ai = δij is the Kronecker delta func-
tion, and ηa = δjjj.... Then supη∈MB(Σ+

p ) htop(S, η) ≥ htop(S, ηa) = htop(gj) = log deg (gj) =

log
(
max1≤i≤p deg (gi)

)
. Conversely, assume that supη∈MB(Σ+

p ) htop(S, η) > log
(
max1≤i≤p deg (gi)

)
.

Using (24), we may find δ > 0 and η ∈ MB(Σ
+
p ) satisfying

lim
n→∞

1

n
log

∫
♯Fix(gωn . . . gω1) dη(ω) > log

(
max
1≤i≤p

deg (gi)
)
+ 2δ.

Then, for every large n, there exists ω ∈ Σ+
p such that ♯Fix (gωn . . . gω1) > eδn

(
max1≤i≤p deg (gi)

)n
which contradicts the growth rate of the fixed point sets of the expanding maps gωn . . . gω1 . Fi-

nally, recall that htop(S, ηp) = log
(∑p

i=1 deg (gi)

p

)
so ηp is a maximizing measure for H if and only

if the maps gi, for 1 ≤ i ≤ p, have equal degrees.
From equality (25) we also conclude that any probability measure in MB(Σ

+
p ) that attains the

maximum of H is of the form ηa ∈ MB(Σ
+
p ) for some a in the simplex

∆ =
{
a = (a1. . . . , ap) ∈ R+

0 :

p∑
i=1

ai = 1 and ak = 0whenever deg (gk) ̸= max
1≤i≤p

deg (gi)
}
.

In particular, we have uniqueness of such maximizing measures if and only if there exists a unique
expanding map with largest degree. �
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Relative entropy vs. annealed and quenched pressure. In order to compare the relative
entropies of the semigroup action with the several notions of pressure for skew-product dynamics
we shall use the transfer operators defined in Section 5. As previously remarked, when η = ηa, we

have htop(S, ηa) = lim supn→∞
1
n log ∥L̃na,φ (1)∥0 = lim supn→∞

1
n log ∥L̂na,φ (1)∥0. It follows from

[2, Proposition 3.2] that the spectral radius of L̂a,φ coincides with exp(−P (a)
top(FG, φ, a)) and, for

that reason,

htop(S, ηa) = P
(a)
top(FG, 0, a). (26)

This suggests the following generalization of Bufetov’s formula (11).

Corollary 8.7. Let G1 = {id, g1, · · · , gp}, p ≥ 2, where G∗
1 is a finite set of expanding maps in

End2(M). If ha(π∗(µ
(a)
a )) = h

π∗(µ
(a)
a )

(σ)− hηa(σ), then hµ(a)
a

(FG) = htop(S, ηa) + hηa(σ).

Proof. It is a direct consequence of the equality (26) since, under the assumption on ha(π∗(µa)),
we have

P
(a)
top(FG, 0, a) = sup

{µ : FG∗µ=µ}

{
hµ(FG)− hπ∗(µ)(σ) + ha(π∗(µ))

}
= h

µ
(a)
a

(FG)− hηa(σ).

Notice that the assumption on ha(π∗(µ
(a)
a )) is fulfilled when a = p (cf. (17)). �

Given a non-trivial probability vector a, for some potentials φ the transfer operator L̂a,φ co-

incides with the averaged normalized transfer operator used in [26]. Therefore, we may match
the values of the corresponding pressures and their equilibrium states, and deduce the following
thermodynamic criterium for the self-similar probability measures constructed in [26].

Proposition 8.8. Let G1 = {id, g1, · · · , gp}, p ≥ 2, where G∗
1 is a finite set of expanding maps

in End2(M). Given a Bernoulli probability measure ηa on Σ+
p and the corresponding self-similar

probability measure µa, then the following assertions are equivalent:

(1) hµa(FG) = sup{µ : FG∗(µ)=µ, π∗(µ)= ηa} hµ(FG).
(2) P

(q)
top(FG, 0, a) =

∫
log deg (gi) da(i).

Moreover,
∫
Σ+

p
htop(FG, π−1(ω)) dηa(ω) =

∑p
k=1 ak log deg (gk) =

∫
Σ+

p
log deg (gω1) dηa(ω).

We observe that the condition (1) is equivalent to say that µa = µ
(q)
a , where µ

(q)
a is the unique

quenched equilibrium state of FG with respect to φ ≡ 0 and a; notice also that (1) and (2) happen
when a = m.

Proof. Fix a = (a1, a2, . . . , ap) and the potential φ = (− log deg (g1), . . . ,− log deg (gp)). The

transfer operator L̂a,φ is precisely the averaged normalized transfer operator introduced in [26].

Therefore, L̂a,φ1 = 1, and consequently P
(a)
top(FG, φ, a) = 0. Moreover, µa = µ

(a)
φ,a, which is the

unique annealed equilibrium state for FG with respect to φ and a. So, equation (13) yields

hµa(FG) = −
∫

log(a(ω1)e
φ(ω,x)) dµa.

On the other hand, the quenched variational principle indicates that

sup
{µ : FG∗µ=µ, π∗(µ)=ηa}

{
hµ(FG)

}
− hηa(σ) = P

(q)
top(FG, 0, a).

Thus the first condition in the statement of the proposition is equivalent to the equality

P
(q)
top(FG, 0, a) = −

∫
log(a(ω1)e

φ(ω,x)) dµa − hηa(σ)

=

p∑
i=1

−ai log ai +
p∑
i=1

ai log deg (gi) +

p∑
i=1

ai log ai =

∫
log deg (gi) da(i).

Finally, equations (21) and (12) imply
∫
Σ+

p
htop(FG, π−1(ω)) dηa =

∑p
k=1 ak log deg (gk). The

second equality is immediate from the fact that ηa is a Bernoulli probability measure. �
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8.3. Examples. Let us analyze two (non-abelian) examples that illustrate the range of applica-
tions of our results on semigroup actions, transfer operators and the dynamical zeta function.

Example 8.9. Consider the semigroup G generated by G1 = {id, g1, g2} where g1, g2 are circle
expanding maps given by g1(z) = z2 and g2(z) = z3. A simple computation shows that, for

every n ∈ N, we have Nn(G) =
1
2n

∑n
k=0(2

k 3n−k − 1) = O
(
5
2

)n
; consequently, htop(S) = ℘(S) =

log 5 − log 2. If ηm is the Bernoulli probability measure on Σ+
2 determined by the weights m =

( 25 ,
3
5 ) ≡ (0.4, 0.6), equation (21) becomes hµm(FG) = htop(FG) = log 5 and equation (12) informs

that ∫
Σ+

2

htop(FG, π−1(ω)) dηm(ω) =
2

5
log 2 +

3

5
log 3.

So, htop(S) <
∫
Σ+

2
htop(FG, π−1(ω)) dηm(ω). Concerning a = ( 12 ,

1
2 ) ≡ (0.5, 0.5) and ηa = η2, we

deduce from Proposition 8.2 that htop(S) >
∫
Σ+

2
htop(FG, π−1(ω)) dη2(ω). If µ2 is the self-similar

measure assigned to ηa in [26], then, again by (21) and (12), we have hµ2
(FG) = log 2 + log 2+log 3

2
and

sup
µ : FG∗(µ)=µ, π∗(µ)= η2

hµ(FG) = log 2 +

∫
Σ+

2

htop(FG, π−1(ω)) dη2(ω).

Consequently,

log 2 + log 3

2
≤
∫
Σ+

2

htop(FG, π−1(ω)) dη2(ω) < htop(S) = log 5− log 2.

Moreover, from Proposition 8.8, we conclude that
∫
Σ+

2
htop(FG, π−1(ω)) dη2(ω) =

log 2+log 3
2 and,

more generally, that, for any choice of a = (a1, a2) with ai > 0 and a1 + a2 = 1, we have∫
Σ+

2
htop(FG, π−1(ω)) dηa(ω) = a1 log 2 + a2 log 3. Therefore, there is a (unique) vector a whose

corresponding probability measure ηa on Σ+
2 satisfies htop(S) =

∫
Σ+

2
htop(FG, π−1(ω)) dηa(ω),

namely a =
(

log 6
5

log 3
2

,
log 5

4

log 3
2

)
≈ (0.45, 0.55).

Example 8.10. Given q ∈ N, let Ai ∈ GL(q,Z) induce linear expanding endomorphisms gi := gAi

on Tq, for i = 1, . . . , p. Consider the locally constant potential φ : Σ+
p × Tq → R given by

φ(ω, x) = − log |detDgω1(x)| = − log deg (gω1). Then, by [2, Proposition 2], the quenched and
the annealed equilibrium states of φ coincide and are SRB measures. In this setting, for any
non-trivial probability vector a, the self-similar FG-invariant probability measure µa constructed
in [26] coincides with the annealed (hence quenched) SRB measure for FG with respect to F , φ

and a. In particular, we have hµa(FG) = P
(q)
top(FG, φ, a) + hηa(σ) −

∫
φdµa so, comparing this

equality with (21), we obtain

P
(q)
top(FG, φ, a) =

p∑
i=1

ai log deg (gi) +

∫
φdµa =

∫
log deg (gi) da(i) +

∫
φdµa.

9. Selection of measures for semigroup actions

The action of a semigroup generated by more than one dynamics is not a dynamical system,
thus it is not straightforward how to define equilibrium states and establish a variational principle
that might relate topological and measure theoretical aspects of the semigroup action. Yet, a
semigroup action can be embodied into a dynamical system whose topological and measure the-
oretical properties we may convey to the semigroup action. From the formulas (18) and (26) in

Section 8, recall that htop(S, ηa) = P
(a)
top(FG, 0, a) = Ptop(FG, φa). These two different flavored

equalities motivate the construction of maximal entropy measures for semigroup actions from the
skew-product dynamics, in a way that discloses periodic data and highlights the equidistribution
of pre-images.
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Projection of the maximal entropy measure of the skew product. Given an Hölder
potential ψ : M → R, consider the fiberwise constant potential in Σ+

p ×M defined by φ = φψ :

Σ+
p ×M → R such that φψ(ω, x) = ψ(x). Then we say that a probability measure ν on the Borel

sets of M is an equilibrium state for the semigroup action with respect to ψ if ν = (πM )∗(µφ),
where µφ is the unique equilibrium state for the (topologically mixing Ruelle-expanding) map
FG with respect to φψ. Notice, however, that such a ν may not be stationary with respect to a
previously fixed random walk η. It is true that, if µφ = (µω)ω∈Σ+

p
is a Rohlin disintegration of µφ

along the measurable partition (π−1(ω))ω∈Σ+
p
, then ν =

∫
Σ+

p
µω dη(ω). But, although this equality

resembles the η-stationarity condition (cf. (2)), these two notions do not necessarily coincide. For
instance, if the semigroup G is generated by a finite set of C2-expanding maps and ψ ≡ 0, then
µφ is the measure of maximal entropy of FG and it is also its annealed equilibrium state with
respect to ψ and ηa, where a was given in (10). Yet, (πM )∗(µφ) is also the measure constructed
in [6], and from this reference one infers that (πM )∗(µφ) is not, in general, stationary.

Marginals of quenched/annealed equilibrium states of the skew product. The discussion
in Subsection 8.1 suggests another approach. Given an Hölder continuous potential ψ : M → R
and its corresponding φ = φψ, we may associate to a random walk on G, determined by a
probability measure ηa on Σ+

p , two probability measures on M which are the marginals of the

unique annealed and quenched equilibrium states µ
(a)
a,φ and µ

(q)
a,φ of the potential φψ on the skew

product. Notice that, even when the quenched and annealed states are different (which may
happen; see [2, Section 2.4]), it is not plain that they have different marginals on M . Since the
physically observable measures are theseM -marginals, it is worth exploring under what conditions
on the semigroup action they coincide, in which case it would be natural to say that a probability
measure ν on the Borel sets of M is an equilibrium state for the semigroup action with respect to

ψ and a if ν = (πM )∗(µ
(⋆)
a,φ), where µ

(⋆)
a,φ is either the unique annealed or quenched equilibrium

state for the skew-product FG with respect to φ = φψ and ⋆ ∈ {a, q}. To find a candidate to
be a measure of maximal entropy, the appropriate potential would be φ ≡ 0 and, indeed, the
equalities (16) confirm that the corresponding annealed equilibrium state for FG with respect to
the symmetric random walk ηp has an annealed pressure equal to the topological entropy of the

semigroup. However, as we have verified in Example 8.1, in this case the annealed and quenched
equilibrium states may differ. We remark that it may happen that the annealed equilibrium

state µ
(a)
a,φ for FG with respect to a potential φ and a non-trivial probability vector a satisfies

π∗(µ
(a)
a,φ) = ηa, in which case ha(π∗(µ

(a)
a,φ)) = 0 and so µ

(a)
a,φ is also the quenched equilibrium state

of φ with respect to a (cf. [2, Proposition 2]). This occurs, for example, when G is generated by a
finite set G1 = {id, g1, . . . , gp} of C2 expanding maps on a Riemannian manifold and the potential
φ is defined by φ(ω, x) = − log |detDgω1 |(x). In this particular case, the marginal on M of this
common equilibrium state has a disintegration which is almost everywhere absolutely continuous
with respect to the Lebesgue measure onM (cf. [2, Remark 3.4]). Moreover, for the special vector
p, the transfer operator Lp,φ coincides with the averaged Ruelle-Perron-Frobenius of [2]. However,
this potential is not a φψ for any observable map ψ on M .

Proof of Theorem C. In the setting of a single topologically mixing Ruelle-expanding map
T , the maximal entropy measure is the equilibrium state of the potential φ ≡ 0 and may be
computed as a weak∗ limit of the sequence of averages of Dirac measures supported on pre-images
of any point (cf. [21]), namely ν = νn(x) =

1
deg (T )n

∑
Tn(y)=x δy, where δy is the Dirac measure

supported on {y} and deg (T ) = ♯ T−1({a}), a number independent of a ∈ M and such that
hν(T ) = log (deg (T )). This suggests a third approach to find the concept of maximal entropy
measure for a semigroup action. Consider a finitely generated semigroup G of of C2 expanding
maps, with a generating set G1 = {id, g1, · · · , gp} where p ≥ 2, and take the equidistributed
Bernoulli measure ηp. It follows from [6] that the sequence of measures

1

λn

∑
|g|=n

∑
g(y)=x

δy
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where λ = deg (g1) + . . . + deg (gp), is weak∗ convergent to a probability measure ν0,p on M
(independently of x). This motivates the choice of ν0,p as a measure of maximal entropy for the
semigroup action with respect to ηp, with the major advantage of being defined intrinsically, using

only the fixed generators of the semigroup.
More generally, for η = ηa and an Hölder potential φ on Σ+

p ×M , there is a natural station-

ary transfer operator L̃a,φ acting on C0(M) (cf. Section 5) satisfying sp (L̃a,φ) = sp (L̂a,φ) =

exp (P
(a)
top(FG, φ, a)). Moreover, by [2, Proposition 3.1], the spectral properties of the transfer

operators L̃a,φ and L̂a,φ are strongly related. For instance, λa,φ := exp (P
(a)
top(FG, φ, a)) is the

leading eigenvalue for the transfer operator L̃a,φ acting on Cr(M) (r ≥ 1) with a one-dimensional

eigenspace generated by some ρφ,a ∈ Cr(M). The dual operator L̃∗
a,φ defined, for every continu-

ous ψ : M → R, by
∫
ψ d L̃∗

a,φη =
∫
L̃a,φψ dη has also a one-dimensional eigenspace associated

to the leading eigenvalue λa,φ, generated by some probability measure γφ,a on M . Additionally,

(πM )∗ ◦ L̂∗
a,φ = L̃∗

a,φ ◦ (πM )∗ and, for each x ∈ M , the measures obtained by averaging the

pre-images of x according to the random walk ηa

λ−na,φ (L̃na,φ)∗ δx =
1

λna,φ

∫ ∑
gωn ...gω1 (y)=x

eSnφg(y) δy dηa(ω1, . . . , ωn) (27)

are convergent to the measure νφ,a = ρφ,a(x) · γφ,a on M . Indeed, observe that there exists

a Borel probability measure γ̂φ,a on Σ+
p × M such that L̃∗

a,φγ̂φ,a = λa,φ γ̂φ,a, µ
(a)
φ,a = ργ̂φ,a

and (πM )∗γ̂φ,a = γφ,a (cf. [2, Proposition 3.1(2) and Proposition 3.2]). Thus, the marginal

measure of µ
(a)
φ,a on M satisfies (πM )∗(µ

(a)
φ,a) = νφ,a. In particular, when φ ≡ 0, we obtain

ν0,a = ρ0,a(x) · γ0,a = (πM )∗(µ
(a)
0,a), for every x ∈M .

We now show that, having fixed the symmetric random walk Rp = ι∗(ηp), the probability

measure ν0,p also describes the distribution of the periodic points of the semigroup action, that is,

ν0,p = lim
n→∞

e−nhtop(S)
∑

σn(ω)=ω

∑
gωn ...gω1 (x)=x

δx.

By Lemma 7.1, the skew product FG is a Ruelle expanding map, so its measure of maximal entropy
µm is the weak∗ limit of the sequence

νn(ω, x) =
1

#Fix (Fn
G)

∑
Fn

G(ω̃,y)=(ω,x)

δ(ω̃,y).

Moreover, we have htop(S) = htop(S, ηp) = Ptop(FG, φp) and µm = µ
(a)
p . Consequently, by the

continuity of the push-forward map (πM )∗ and the known asymptotic growth rate of periodic
orbits (cf. Theorem A), we conclude that

ν0,p = (πM )∗(µ
(a)
p ) = (πM )∗(µm) = (πM )∗

(
lim
n→∞

∑
(ω,x)∈Fix (Fn

G) δ(ω,x)

#Fix (Fn
G)

)
= lim
n→∞

(πM )∗

(∑
σn(ω)=ω

∑
gωn ...gω1 (x)=x

δ(ω,x)∑
σn(ω)=ω#Fix(gωn . . . gω1)

)
= lim
n→∞

e−nhtop(S)
∑

σn(ω)=ω

∑
gωn ...gω1 (x)=x

δx.

In particular, ν0,p(A) = limn→∞ e−nhtop(S)
∑
σn(ω)=ω#

{
Fix(gωn . . . gω1)∩A

}
for any measurable

set A ⊂M whose boundary has ν0,p measure zero.
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Departamento de Matemática, Universidade Federal da Bahia, Brazil.
E-mail address: paulo.varandas@ufba.br


