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Abstract. We analytically investigate the effective-diffusivity tensor of a tracer

particle in a fluid flow endowed with a short correlation time. By means of functional

calculus and a multiscale expansion, we write down the main contributions to the

eddy diffusivity due to each single physical effect and to their interplays. Namely,

besides molecular diffusivity and a constant uniform mean streaming, we take into

account the possibility for the (incompressible, Gaussian, stationary, homogeneous,

isotropic) turbulent fluctuations to break parity invariance. With respect to the

classical turbulence-driven diffusivity amplification for delta-correlated flows, we find

that the presence of a short temporal correlation induces a diminution even when

coupled with such effects, with two principal exceptions. Notably, the diffusivity is —

perturbatively — enlarged not only by the helical contribution itself, but also by the

interference between molecular diffusion and mean flow.

1. Introduction

Turbulent transport is a problem of remarkable importance in many situations, ranging

from practical applications to pure sciences, where important achievements became

possible thanks to the interplay between statistical-mechanics methods and classical

fluid-dynamics analysis [1, 2, 3, 4, 5, 6, 7, 8]. A relevant limit (in short, the asymptotic

limit) in turbulent transport is the one characterized by the double limit of very large

spatial/temporal scales of the observed (transport) phenomena, with respect to the

typical scales characterizing the advecting velocity field. By means of standard central-

limit arguments, it is possible to see that the large-scale transport can be described

in terms of an effective-diffusion equation, where the molecular (bare) diffusivity is

replaced by a renormalized tensor named eddy diffusivity [9, 10]. This latter can be

calculated (at least at a formal level) in terms of a formal multiple-scale expansion

[9, 11, 12]. Although, in general, exact explicit expressions for the eddy diffusivity are

not available, approximate expressions have been proposed [13, 14, 15].
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The present paper deals with turbulent transport in the asymptotic limit where

the advecting velocity field is quasi delta-correlated in time. In the perfectly delta-

correlated case it is well known that the eddy diffusivity can be computed exactly, and

its expression is independent of the mean streaming, of the molecular diffusion, and

of possible contributions arising from helicity. Our aim here is to investigate such a

dependence once a small correlation time is allowed in the advecting velocity field. The

presence of a small correlation time naturally leads to the definition of a small expansion

coefficient, in terms of which a consistent perturbative approach can be carried out.

The idea of our approach is to combine functional-calculus techniques with an

exact result from the multiple-scale expansion obtained by [9, 11] to compute the eddy

diffusivity, with the final aim of arriving at exact (even if perturbative) expressions for

the eddy diffusivity, through which the interplay of a mean streaming in the carrier flow,

helicity in the turbulent fluctuations and molecular diffusion can be isolated.

The paper is organized as follows. In section 2 we sketch the problem under

investigation, we specify our assumptions on the flow and we enounce the entire final

result. In section 3 we discuss the role of each physical effect into play and how they

interfere to build up the eddy diffusivity. Conclusions and perspectives follow in section

4. The appendix Appendix A is devoted to show the details of the calculation and to

recall the mathematical tools employed.

2. Equations

The auxiliary equation (or “cell problem” [16, 17]), in the presence of a constant uniform

mean flow U [18, 19] and of molecular diffusivity κ, reads [12, 13, 14, 20]:

∂tw(x, t) + [U + v(x, t)] · ∂w(x, t)− κ∂2w(x, t) = −v(x, t) . (1)

(The notation ∂ is used for the gradient, and coherently ∂· for the divergence and ∂2

for the Laplacian.)

The random velocity fluctuations [21, 22] are assumed as incompressible,

∂ · v(x, t) = 0 , (2)

and Gaussian, with zero mean,

〈v(x, t)〉 = 0 , (3)

and stationary–homogeneous–isotropic pair correlations:

〈vα(x, t)vβ(x′, t′)〉 = Vαβ(x′ − x)V (t′ − t) . (4)

The exact form of the temporal part V (∆t) is unessential as long as the correlation

time T is short, namely much smaller than the smallest characteristic advection time

L/U (built from typical length and speed scales, L and U , to be introduced shortly);

to perform explicit calculations we will implement two specific forms, a decaying

exponential and the rectangular function, which are both representatives of the Dirac

delta in the limit of vanishing T and are always non-negative. For what concerns the
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spatial part Vαβ(r) [23], we can e.g. keep in mind an expression based on a Gaussian

of width L with prefactor D0 (proportional to the turbulent kinetic energy), possibly

modulated by a cosinusoid of wave number k to take into account the presence of

recirculation areas (the case k = 0 being the “classical” situation without such zones).

The mean flow U being uniform, the above-mentioned characteristic length scale Lmust

be deduced from the turbulent fluctuations, and for our purpose it corresponds to the

smaller between L and the wave length ` ≡ 2π/k. About the aforementioned typical

speed scale, it can derive from either the average streaming or the random perturbation.

As no assumption is in principle made on the relative magnitude of the fields U and v

[12, 13, 14], to build the smallest advective time one must choose U as the maximum

between the modulus U and the root-mean-square value
√
D0/T . Consequently, our

condition on T reads:

min(L, `)

U
� T � min(L2, `2)

D0

. (5)

A formal temporal integration of (1) gives:‡

w(x, t)−w(x,−∞) = (6)

= −
∫ t

−∞
dτ {[U + v(x, τ)] · ∂w(x, τ)− κ∂2w(x, τ) + v(x, τ)}

=

∫
dτ θ(t− τ){−v(x, τ) · [∂w(x, τ) + I]− (U · ∂ − κ∂2)w(x, τ)} .

From (1), notice that the auxiliary field can be assumed as having zero average, because

this latter obeys an unforced (due to (3)) advection–diffusion equation:

〈w(x, t)〉 = 0 . (7)

The expression for the eddy-diffusivity tensor of tracer particles is [11, 24, 12, 1]:

Kαβ = κδαβ −
〈vαwβ + vβwα〉

2
. (8)

Let us then compute the quantity

〈vα(x, t)wβ(x, t)〉 =

∫
dx∗

∫
dt∗ 〈vα(x, t)vσ(x∗, t∗)〉

〈
Dwβ(x, t)

Dvσ(x∗, t∗)

〉
, (9)

which — postponing the details to the appendix — results into:

−〈vα(x, t)wβ(x, t)〉

=

∫
dt∗ θ(t− t∗)〈vα(x, t)vβ(x, t∗)〉 (10)

+

∫
dt′
∫

dt′′
∫

dt∗ θ(t− t′)θ(t′ − t′′)θ(t′′ − t∗)×

×〈vα(x, t)∂µ∂νvβ(x, t∗)〉〈vµ(x, t′)vν(x, t
′′)〉+ . . .

+κ

(∫
dt′
∫

dt∗ θ(t− t′)θ(t′ − t∗)〈vα(x, t)∂2vβ(x, t∗)〉+ . . .

)
‡ All temporal integrals without explicit integration bounds are on the whole real axis, but of course

the presence of a Heaviside theta introduces a (in this case, upper) bound.
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+UµUν

(∫
dt′
∫

dt′′
∫

dt∗ θ(t− t′)θ(t′ − t′′)θ(t′′ − t∗)〈vα(x, t)∂µ∂νvβ(x, t∗)〉+ . . .

)
+3κUµUν

(∫
dt′
∫

dt′′
∫

dt′′′
∫

dt∗ θ(t− t′)θ(t′ − t′′)θ(t′′ − t′′′)θ(t′′′ − t∗)×

×〈vα(x, t)∂µ∂ν∂
2vβ(x, t∗)〉+ . . .

)
.

By rearranging the temporal integrals and symmetrizing on α ↔ β (which is a trivial

operation), one obtains:

Kαβ = κδαβ + Vαβ(0)

∫ +∞

0

dτ V (τ)

+ Vµν(0)∂µ∂νVαβ|r=0

∫ +∞

0

dτ V (τ)

∫ τ

0

dτ ′ (τ − τ ′)V (τ ′)

+ κ∂2Vαβ|r=0

∫ +∞

0

dτ τV (τ) +
1

2
UµUν∂µ∂νVαβ|r=0

∫ +∞

0

dτ τ 2V (τ)

+
1

2
κUµUν∂µ∂ν∂

2Vαβ|r=0

∫ +∞

0

dτ τ 3V (τ) + h.o.t. , (11)

where “h.o.t.” stands for “higher-order terms” (here neglected).

Notice that expression (11) only holds if the velocity field is parity invariant, i.e. if

the spatial part of its pair correlation in (4) can be expressed as:

Vαβ(r) = A(r)δαβ +B(r)
rαrβ
r2

. (12)

As a consequence, odd-order derivatives of Vαβ(r) vanish when computed in r = 0,

while for the (spatial part of) relevant even-order counterparts one finds:

〈vαvβ〉 = δαβA(0) ,

〈vα∂µ∂νvβ〉 = δαβδµν
A′(r)

r

∣∣∣∣
r=0

+ (δαµδβν + δανδβµ)
B(r)

r2

∣∣∣∣
r=0

,

〈vα∂µ∂ν∂2vβ〉 = (d+ 2)δαβδµν

[
A′′(r)

r2
− A′(r)

r3

]
r=0

+ [2δαβδµν

+ (d+ 4)(δαµδβν + δανδβµ)]

[
B′(r)

r3
− 2

B(r)

r4

]
r=0

.

2.1. Parity-breaking flows

It was shown in [11] that different contributions due to helicity (the averaged scalar

product between velocity and its curl, i.e. vorticity) arise if the flow is invariant under

translations and rotations but not under reflections, viz. if also an addend showing the

fully-antisymmetric pseudotensor εαβγ is allowed on the right-hand side of (12) in the

3D case, so that [25]:

Vαβ(r) = A(r)δαβ +B(r)
rαrβ
r2

+ C(r)εαβγ
rγ
r
. (13)



Eddy diffusivity of short-correlated random flows 5

The appearance of the new terms is due to the fact that, while even-order derivatives

of Vαβ(r) computed at r = 0 keep unchanged, now also their odd-order counterparts

do not vanish. Namely, from (13) for the spatial part one has:

〈vα∂λvβ〉 = εαβλ
C(r)

r

∣∣∣∣
r=0

,

〈vα∂λ∂µ∂νvβ〉 = (εαβλδµν + εαβµδλν + εαβνδλµ)

[
C ′(r)

r2
− C(r)

r3

]
r=0

.

Notice that A(0) > 0 (a measure of the turbulent kinetic energy), while B(0) = 0 =

C(0).

Given first of all that the O(1) delta-correlated-like result (first line of (10)) cannot

be altered by this modification, at leading-correction order two new contributions

appear, but the only relevant is

+

∫
dt′
∫

dt′′
∫

dt∗ θ(t− t′)θ(t′− t′′)θ(t′′− t∗)〈vα(x, t)∂µvν(x, t
∗)〉〈vµ(x, t′)∂νvβ(x, t′′)〉(14)

(which can also be recast as (∂µVαν × ∂νVµβ)r=0

∫ +∞

0

dτ V (τ)

∫ τ

0

dτ ′ (τ − τ ′)V (τ ′)).

Expression (14) can be considered as modifying the second line of the right-hand side

of (10), but with a different distribution of the spatial derivatives which is finite only

for flows not symmetric under reflections [11].

The other main contribution, appearing in (10) but not in (11), is

−Uλ
∫

dt′
∫

dt∗ θ(t−t′)θ(t′−t∗)〈vα(x, t)∂λvβ(x, t∗)〉 = −Uλ∂λVαβ|r=0

∫ +∞

0

dτ τV (τ) .(15)

Actually, (15) does not induce any correction to the eddy diffusivity because it is

proportional to εαβλ and antisymmetric in the indices α ↔ β, so that a cancellation

takes place when symmetrizing according to (8).

Analyzing the following order, one obtains the leading coupling between molecular

diffusivity and helicity popping up on the right-hand side of (10),

+κ

∫
dt′
∫

dt′′
∫

dt′′′
∫

dt∗ θ(t− t′)θ(t′ − t′′)θ(t′′ − t′′′)θ(t′′′ − t∗)× (16)

×(〈vα(x, t)∂λ∂
2vγ(x, t

′′′)〉〈vλ(x, t′)∂γvβ(x, t∗)〉
+〈vα(x, t)∂λvγ(x, t

′′′)〉〈vλ(x, t′)∂γ∂2vβ(x, t∗)〉
+〈vα(x, t)∂λ∂

2vγ(x, t
′′′)〉〈vλ(x, t′′)∂γvβ(x, t∗)〉

+〈vα(x, t)∂λvγ(x, t
′′)〉〈vλ(x, t′)∂γ∂2vβ(x, t∗)〉)

(i.e.

κ
(
∂λ∂

2Vαγ × ∂γVλβ + ∂λVαγ × ∂γ∂2Vλβ
)
r=0

∫ +∞

0

dτ

{∫ τ

0

dτ ′ ττ ′ +

∫ +∞

τ

dτ ′ τ 2

}
V (τ)V (τ ′)

equivalently), but — as provable by means of lengthy algebra — not yet the leading

term of the coupling between mean flow and helicity.

As it is nevertheless interesting to write down this latter, we have pushed the calculation
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at the next-to-following order and, among all possible terms, we can state that only few

of them survive and represent this coupling. Namely, on the right-hand side of (10)

there appears

+UµUν

∫
dt′
∫

dt′′
∫

dt′′′
∫

dt†
∫

dt∗ θ(t− t′)θ(t′ − t′′)θ(t′′ − t′′′)θ(t′′′ − t†)θ(t† − t∗)×

×(〈vα(x, t)∂µ∂ν∂λvγ(x, t
†)〉〈vλ(x, t′)∂γvβ(x, t∗)〉

+〈vα(x, t)∂λvγ(x, t
†)〉〈vλ(x, t′)∂µ∂ν∂γvβ(x, t∗)〉

+〈vα(x, t)∂µ∂ν∂λvγ(x, t
†)〉〈vλ(x, t′′)∂γvβ(x, t∗)〉

+〈vα(x, t)∂λvγ(x, t
′′′)〉〈vλ(x, t′)∂µ∂ν∂γvβ(x, t∗)〉

+〈vα(x, t)∂µ∂ν∂λvγ(x, t
†)〉〈vλ(x, t′′′)∂γvβ(x, t∗)〉

+〈vα(x, t)∂λvγ(x, t
′′)〉〈vλ(x, t′)∂µ∂ν∂γvβ(x, t∗)〉) (17)

(or

1

2
UµUν (∂µ∂ν∂λVαγ × ∂γVλβ + ∂λVαγ × ∂µ∂ν∂γVλβ)r=0 ×

×
∫ +∞

0

dτ

{∫ τ

0

dτ ′ τ ′τ 2 +

∫ +∞

τ

dτ ′ τ 3

}
V (τ)V (τ ′)

equivalently). Expressions (16) and (17) can be shown to be already symmetric in their

two free indices, and thus appear in the same form also in the eddy diffusivity (11).

For the sake of completeness, even if we do not report it here, we point out that the

leading coupling between molecular diffusivity – mean flow – helicity is captured by

further increasing the order of investigation by one. In summary, leading corrections due

to helical terms take place at an order higher by unity with respect to the corresponding

non-helical contributions.

3. Interference

Our main objective is to show the leading contribution due to each physical effect into

play, and of course the interplay between these latter. To make our analysis more

precise and quantitative, it is desirable to express the results in terms of interference

[26, 27, 28, 29]. Let us focus first on the helicity-free case, i.e. on reflection-symmetric

flows. For the sake of notational simplicity, the eddy diffusivity computed in (11) (before

introducing the possibility of parity breakup) is denoted as Kαβ ≡ Kαβ|C(r)=0.

To quantify our results, let us specify explicit forms for the turbulent-velocity

correlations. For the temporal part, the two simplest representatives of the Dirac delta

are

V (∆t) = (I)
e−|∆t|/T

2T
, (II)

θ(T − |∆t|)
2T

(18)

(note that this choice is convenient and possible because, in the time domain, we have

to perform only integrals but no derivative, so the discontinuity at the step and the non-

differentiability of the modulus do not rise any problem). About the space domain, we
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notice that according to our formulas spatial derivatives have to be performed at zero

separation. Consequently, a suitable choice for what is usually dubbed “longitudinal

structure function” [23] is

D(r) = D0e−r
2/2L2

cos(kr) . (19)

The incompressibility constraint allows one to simply deduce the “normal” counterpart

and then the full tensor Vαβ(r) in (12), with

A(r) = D(r) +
r

d− 1
D′(r) =

D0

d− 1
e−r

2/2L2

[(
d− 1− r2

L2

)
cos(kr)− kr sin(kr)

]
(20)

and

B(r) = − r

d− 1
D′(r) =

D0

d− 1
e−r

2/2L2

[
r2

L2
cos(kr) + kr sin(kr)

]
. (21)

Turbulent contribution The first obvious result is about the role of the turbulent flow. If

all other effects (molecular diffusion and mean flow) are switched off, the eddy diffusivity

(11) keeps a diagonal form:

Kαβ|κ=U=0 = δαβA(0)

∫ +∞

0

dτ V (τ)

{
1 +

[
d
A′

r
+ 2

B

r2

]
r=0

∫ τ

0

dτ ′ (τ − τ ′)V (τ ′)

}
+h.o.t. . (22)

An incompressible turbulent flow, as is well known, enhances the eddy diffusivity.

However, it can easily be shown that this enhancement is maximum for delta-correlated

flows (where only the former term in curly braces survives), because in the presence of

time correlation the latter term — negative because of the factor in square brackets —

contributes to an attenuation of this effect [11]. Indeed, for any admissible form of the

temporal correlation, it is evident that the former term in (22) is O(T 0) and positive,

and exactly gives rise to the equivalent of Taylor’s formula for delta-correlated flows:

Kαβ|T=0 = κδαβ +
1

2
Vαβ(0) = δαβ

(
κ+

D0

2

)
. (23)

(Notice that, due to the chaoticity of the random flow under consideration, the limit

case κ = 0 can be analyzed without any singularity.) On the contrary, the latter term

in (22) evaluates explicitly through (18I) and (19) as

−1

8
D2

0(d+ 2)

(
k2 +

1

L2

)
δαβT ,

with the numerical prefactor becoming −1/24 for (18II). It contributes negatively

at O(T 1) to the eddy diffusivity, is larger in magnitude in 3D than in 2D, and

becomes relevant when either k2 or L−2 is non-negligible (but anyhow small, always

in a perturbative spirit: see (5)) with respect to (D0T )−1. We point out that this

contribution, as well as the ones shown in the next paragraphs, can get the opposite

sign if the assumption of non-negativity for V (∆t) is released [12] — e.g. by considering

a sinc function or a modulated decaying exponential.
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Role of molecular diffusivity Secondly, let us study the role of molecular diffusivity in

the absence of mean flow. If, from the full non-helical expression of the eddy diffusivity

computed at U = 0, we subtract both the expression in the absence of molecular diffusion

and the one in the absence of turbulent flow (which trivially reduces to κδαβ), we get:

Kαβ|U=0 −Kαβ|κ=U=0 −Kαβ|D(r)=U=0 = κδαβ

[
d
A′

r
+ 2

B

r2

]
r=0

∫ +∞

0

dτ τV (τ) + h.o.t. .

Again because of the negativity of the factor in square brackets, we can assert that —

at leading order O(T 1) — molecular diffusion and turbulence interfere destructively in

building up the eddy diffusivity. The exact result is

−1

2
κD0(d+ 2)

(
k2 +

1

L2

)
δαβT ,

for (18I) and (19), with the numerical prefactor becoming −1/4 for (18II).

Role of mean flow As a third point, we look for the effect of the mean flow in the

absence of molecular diffusivity:

Kαβ|κ=0 −Kαβ|κ=U=0 =

(
1

2
U2δαβ

A′

r
+ UαUβ

B

r2

)
r=0

∫ +∞

0

dτ τ 2V (τ) + h.o.t. .

Here, the matrix in round parentheses shows positive off-diagonal terms which however

can be eliminated by moving to the principal axes, but its trace is negative. The

quantitative result for (18I) and (19) is

−1

2

D0

d− 1
[(d+ 1)U2δαβ − 2UαUβ]

(
k2 +

1

L2

)
T 2 ,

with the numerical prefactor becoming −1/12 for (18II). Therefore, the conclusion

about the leading role of the mean flow points in the same direction of depletion of

the eddy diffusivity, but with three remarks: 1) the effect is here O(T 2), and becomes

perturbatively relevant when T is non-negligible with respect to U2/D0; 2) the depletion

in the direction aligned with the mean flow is reduced with respect to the orthogonal

one(s); 3) of course it does not make any sense to compute Kαβ in the presence of mean

flow and absence of turbulent fluctuations, because a deterministic (constant) flow alone

introduces an advective feature but no diffusion at all.

Coupling κ-U Lastly, it is also interesting to investigate the coupling between

molecular diffusivity and mean flow (clearly in concourse with a turbulent flow):

Kαβ −Kαβ|κ=0 −Kαβ|U=0 +Kαβ|κ=U=0 =

= κ

{
1

2
(d+ 2)U2δαβ

[
A′′

r2
− A′

r3

]
+ (U2δαβ + (d+ 4)UαUβ)

[
B′

r3
− 2

B

r4

]}
r=0

×

×
∫ +∞

0

dτ τ 3V (τ) + h.o.t. .

The former square bracket is positive, while the latter is negative. If one computes

the trace, a positive overall result is found, meaning that molecular diffusion and mean
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flow — with the essential aid of turbulence — interfere constructively to build up the

eddy diffusivity. As for the previous point, the effect (in this case, with the opposite

sign and at O(T 3)) is larger in the direction(s) perpendicular to the mean flow than

for the parallel one, and the negative result for non-diagonal terms can be discarded by

changing the reference frame. The effective result for (18I) and (19) is

1

2
κD0

d+ 4

d− 1
[(d+ 1)U2δαβ − 2UαUβ)]

(
k4 +

6k2

L2
+

3

L4

)
T 3 ,

with the numerical prefactor becoming 1/48 for (18II).

3.1. Parity-breaking flows

Let us now take helicity into account, i.e. C(r) 6= 0 in d = 3. In particular, following

(19), a suitable choice is

C(r) = c
√
−rD(r)D′(r) = cD0e−r

2/2L2 r

L

√
cos2(kr) +

kL2

r
cos(kr) sin(kr) . (24)

Even if C(r) has the same physical dimensions as A(r) and B(r), and the helicity

and energy spectra obey an important inequality in the Fourier space [11, 25, 30], the

dimensional prefactor is in general different from D0 and has been written here as

cD0. The non-dimensional constant c vanishes for non-helical flows and always appears

as squared in physically-relevant results, in accordance with the fact that its sign is

meaningless since dependent on the choice of a positive rotation convention.

Turbulent contribution Computing the turbulent contribution to the eddy diffusivity

again, one has:

Kαβ|κ=U=0 = δαβ

∫ +∞

0

dτ V (τ)

{
A(0) +

[
A

(
3
A′

r
+ 2

B

r2

)
+ 2

C2

r2

]
r=0

×

×
∫ τ

0

dτ ′ (τ − τ ′)V (τ ′)

}
+ h.o.t. . (25)

The new helical contribution is positive, as already shown in [11]. Helicity itself thus

provides an augmentation of the eddy diffusivity at O(T 1), e.g. for (18I) and (19) the

third term in (25) (corresponding to (14) and absent in (23)) is

c2

4
D2

0

(
k2 +

1

L2

)
δαβT ,

with the numerical prefactor becoming c2/12 for (18II).

Role of molecular diffusivity The computation of the coupling between molecular

diffusion and helicity from (16) gives:

10κδαβ

[
C

r

(
C ′

r2
− C

r3

)]
r=0

∫ t

−∞
dt′
∫ t′

−∞
dt′′
∫ t′′

−∞
dt′′′
∫ t′′′

−∞
dt∗

{V (t′′′ − t)[V (t∗ − t′) + V (t∗ − t′′)] + [V (t′′ − t) + V (t′′′ − t)]V (t∗ − t′)} .
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More specifically, imposing (18I) and (19), one gets

−5c2

4
κD2

0δαβ

(
2k4 +

6k2

L2
+

3

L4

)
T 2 ,

while for (18II) the numerical prefactor is −25c2/72. Therefore, the interplay between

molecular diffusion and turbulent fluctuations brings about a reduction of the effective

diffusivity even when the helical component is taken into account, but this time at

O(T 2).

Role of mean flow What is more interesting is the coupling between mean flow and

helicity. Computing all the contributions in (17) and summing up, we are left with:

(4U2δαβ − 2UαUβ)

[
C

r

(
C ′

r2
− C

r3

)]
r=0

∫ t

−∞
dt′
∫ t′

−∞
dt′′
∫ t′′

−∞
dt′′′
∫ t′′′

−∞
dt†
∫ t†

−∞
dt∗

{V (t† − t)[V (t∗ − t′) + V (t∗ − t′′) + V (t∗ − t′′′)]
+[V (t† − t) + V (t′′ − t) + V (t′′′ − t)]V (t∗ − t′)} .

For the explicit benchmark correlations (18I) and (19), this becomes

−7c2

24
D2

0(2U2δαβ − UαUβ)

(
2k4 +

6k2

L2
+

3

L4

)
T 3 ,

with the numerical prefactor becoming −c2/40 for (18II). The conclusion is that the

presence of a mean streaming always diminishes the eddy diffusivity even when coupled

with helical turbulence, but this effect is O(T 3), and is relevant from a perturbative

viewpoint when either k2 or L−2 is small-but-not-negligible (see (5)) with respect to

(UT )−2.

4. Conclusions and perspectives

We have analyzed the eddy diffusivity of a tracer particle in incompressible random

flows, namely in those endowed with a homogeneous isotropic Gaussian probability

density function. By means of functional calculus and of the Furutsu–Novikov–Donsker

theorem, we have expressed our result in a power series in the (small) velocity correlation

time T . Taking into account the presence of molecular diffusivity κ and of a constant

uniform mean streaming U , and the possibility for the turbulent fluctuations to break

parity invariance in the form of a non-zero helicity, our focus was on the role of each

single effect as well as on their interplay in building up the effective-diffusivity tensor.

Besides the “classical” turbulent contribution which augments diffusion by potentially

many orders of magnitude, and acts at O(T 0) also in the case of temporal delta-

correlation, we have explicitly obtained the physical-space expressions — already

investigated in [11] in the Fourier space — of the two O(T 1) corrections purely due

to turbulence. They act in an opposite sense with respect to each other, as the term

related to kinetic energy (through a Laplacian, i.e. an even-order derivative) decreases
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the diffusivity, while the one possibly arising from helicity (involving a curl, i.e. an odd-

order derivative) increases it. The sweeping effect of a mean flow is always to deplete

the eddy diffusivity, both when interacting at O(T 2) with usual parity-invariant flows

as already known, and when coupled with a helical component at O(T 3). The role of

molecular diffusivity points in the same direction (at O(T 1) and O(T 2) respectively),

however it is worth mentioning that the coupling between κ and U interestingly enough

amplifies the effective diffusion, even if as a subleading perturbative correction.

Our global result, gleaning the non-helical expression (11) together with the leading

helical corrections from (14), (16) and (17), is:

Kαβ = κδαβ + Vαβ(0)

∫ +∞

0

dτ V (τ)

+ (Vµν∂µ∂νVαβ + ∂µVαν × ∂νVµβ)r=0

∫ +∞

0

dτ V (τ)

∫ τ

0

dτ ′ (τ − τ ′)V (τ ′)

+ κ∂2Vαβ|r=0

∫ +∞

0

dτ τV (τ) +
1

2
UµUν∂µ∂νVαβ|r=0

∫ +∞

0

dτ τ 2V (τ)

+ κ
(
∂λ∂

2Vαγ × ∂γVλβ + ∂λVαγ × ∂γ∂2Vλβ
)
r=0
×

×
∫ +∞

0

dτ

∫ +∞

0

dτ ′ τ min(τ, τ ′)V (τ)V (τ ′)

+
1

2
UµUν (∂µ∂ν∂λVαγ × ∂γVλβ + ∂λVαγ × ∂µ∂ν∂γVλβ)r=0 ×

×
∫ +∞

0

dτ

∫ +∞

0

dτ ′ τ 2 min(τ, τ ′)V (τ)V (τ ′)

+
1

2
κUµUν∂µ∂ν∂

2Vαβ|r=0

∫ +∞

0

dτ τ 3V (τ) + h.o.t. . (26)

Notice that, for these results to hold, it is crucial to have an always-positive temporal

correlation function for the turbulent fluctuation. It is known [12] that different

conclusions can be drawn if this positivity assumption is loosened, because the presence

of negatively-correlated time shifts can alter the sign of the temporal integrals under

investigation.

As a possible perspective, it would be interesting to extend this analysis from tracers

to inertial particles, i.e. inclusions endowed with non-negligible relative inertia with

respect to the carrier fluid, typically because of their small-but-finite size and/or different

mass density. For these particles, an expansion in the Stokes number (if small) can be

performed along with the multiple-scale procedure [16, 17, 29], yielding an equation

for the leading inertia-driven correction to the auxiliary field — and thus to the eddy

diffusivity — very similar to (1) for the operatorial structure on the left-hand side, but

with a forcing term on the right-hand side extremely more cumbersome and intricated.

The extension of the present study to keep particle inertia into account is therefore

possible from a conceptual point of view, and refrained only because of computational

difficulties.
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Appendix A. Calculation details

Let us remind that the Heaviside theta is defined as the primitive of the Dirac delta,

θ(y) =

∫ y

−∞
dz δ(z) (with θ(0) =

1

2
) , (A.1)

that the definition of the functional derivative is

DF [f(y)]

Df(z)
= lim

ε→0

F [f(y) + εδ(y − z)]− F [f(y)]

ε
, (A.2)

and that the Furutsu–Novikov–Donsker theorem [31, 32, 33] for integration by parts of

zero-mean Gaussian fields reads:

〈f(x, t)F [f(x′, t′)]〉 =

∫
dx′′

∫
dt′′ 〈f(x, t)f(x′′, t′′)〉

〈
DF [f(x′, t′)]

Df(x′′, t′′)

〉
. (A.3)

For future use, let us compute the first and second functional derivatives of w with

respect to v:

Dwβ(x, t)

Dvσ(x∗, t∗)
=

∫
dτ θ(t− τ)

{
− δ(x− x∗)δ(τ − t∗)[∂σwβ(x, τ) + δβσ]

−[v(x, τ) · ∂ + (U · ∂ − κ∂2)]
Dwβ(x, τ)

Dvσ(x∗, t∗)

}
= − θ(t− t∗)δ(x− x∗)[∂σwβ(x, t∗) + δβσ] (A.4)

−
∫

dτ θ(t− τ)v(x, τ) · ∂ Dwβ(x, τ)

Dvσ(x∗, t∗)

−
∫

dτ θ(t− τ)(U · ∂ − κ∂2)
Dwβ(x, τ)

Dvσ(x∗, t∗)
,

and

D2wβ(x, t)

Dvσ(x∗, t∗)Dvρ(x†, t†)

=

∫
dτ θ(t− τ)

{
− δ(x− x∗)δ(τ − t∗)∂σ

Dwβ(x, τ)

Dvρ(x†, t†)

−δ(x− x†)δ(τ − t†)∂ρ
Dwβ(x, τ)

Dvσ(x∗, t∗)

−[v(x, τ) · ∂ + (U · ∂ − κ∂2)]
D2wβ(x, τ)

Dvσ(x∗, t∗)Dvρ(x†, t†)

}
= θ(t− t∗)θ(t∗ − t†)δ(x− x∗)× (A.5)
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×{[∂ρwβ(x, t†) + δβρ]∂σδ(x− x†) + δ(x− x†)∂σ∂ρwβ(x, t†)}
+θ(t− t†)θ(t† − t∗)δ(x− x†)×

×{[∂σwβ(x, t∗) + δβσ]∂ρδ(x− x∗) + δ(x− x∗)∂ρ∂σwβ(x, t∗)}

−
∫

dτ
{
θ(t− τ)[v(x, τ) · ∂ + (U · ∂ − κ∂2)]

D2wβ(x, τ)

Dvσ(x∗, t∗)Dvρ(x†, t†)

−θ(t− t∗)θ(t∗ − τ)δ(x− x∗)∂σ[v(x, τ) · ∂ + (U · ∂ − κ∂2)]
Dwβ(x, τ)

Dvρ(x†, t†)

−θ(t− t†)θ(t† − τ)δ(x− x†)∂ρ[v(x, τ) · ∂ + (U · ∂ − κ∂2)]
Dwβ(x, τ)

Dvσ(x∗, t∗)

}
.

Equation (9) implies the use of expression (A.4), which in its turn brings about a

recursive substitution. Indeed, while the first term on right-hand side of (A.4) is closed,

the third one must be expressed through (A.4) itself — computed at a different time —

as well as the second one which however is better calculated as∫
dx∗

∫
dt∗ 〈vα(x, t)vσ(x∗, t∗)〉

〈∫
dτ θ(t− τ)v(x, τ) · ∂ Dwβ(x, τ)

Dvσ(x∗, t∗)

〉
=

∫
dx∗

∫
dt∗
∫

dτ θ(t− τ)〈vα(x, t)vσ(x∗, t∗)〉
〈
vµ(x, τ)∂µ

Dwβ(x, τ)

Dvσ(x∗, t∗)

〉
=

∫
dx∗

∫
dt∗
∫

dτ

∫
dx†
∫

dt† θ(t− τ)〈vα(x, t)vσ(x∗, t∗)〉 ×

×〈vµ(x, τ)vρ(x
†, t†)〉∂µ

〈
D2wβ(x, τ)

Dvσ(x∗, t∗)Dvρ(x†, t†)

〉
(A.6)

(i.e. by then using (A.5) in this latter expression). Let us thus analyse how each term

of the final result (10) is generated, and what is its order of magnitude if the forms (18)

are used for the temporal correlation.

• The substitution of the first line of (A.4) gives the first line on the right-hand side

of (10). This term is O(T 0) for any well-behaved form of V (∆t) and is exact for delta-

correlated flows, while for short-correlated ones it is corrected by the other contributions

that we are going to show. Notice that here the T 0 behaviour is due to the cancellation

between the factor T at denominator due to the appearance of one instance of the tensor

〈vv〉, and the factor T at numerator induced by the presence of one temporal integral

accompanied by one Heaviside theta.

• The second line on the right-hand side of (10) is the leading correction O(T 1)

stemming from the substitution of the second line of (A.4). More precisely, it originates

from the closed contributions (first two lines, i.e. all terms without integrals) on the

right-hand side of (A.5) when replaced in (A.6), by virtue of the fact that many terms

vanish because of homogeneity/isotropy/parity (12) or incompressibility (2). One of

these terms, (14), keeps finite in case the assumption of parity invariance is relaxed into

(13). The substitution of the (unclosed) remaining three lines of the right-hand side of
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(A.5) in (A.6) results in contributions which have not been written explicitly in (10)

because subleading, as we will prove shortly.

• Lines 3÷5 on the right-hand side of (10) arise from the substitution of the third

line of (A.4) into (9). The only surviving closed term after one substitution consists in

the third line of (10), and constitutes the leading correction at O(T 1) due to molecular

diffusivity (dropped in [11]).

Among the unclosed contributions, let us focus on the one originating from a recursive

substitution of the third line of (A.4). After the second replacement, i.e. at O(T 2), two

closed terms pop up: one is proportional to κ2 but is not interesting because subleading;

the other — fourth line of (10) — represents the leading correction due to the mean

flow (absent in [11]), which because of parity only appears at this even order.

A third substitution of the third line of (A.4), besides a non-relevant subleading term

∝ κ3, allows us to capture the leading correction O(T 3) due to the interplay between

mean flow and molecular diffusivity, i.e. the fifth line of (10).

Notice that these three contributions arise from the coupling with the reflection-

symmetric part of the turbulent flow. Their couplings with the antisymmetric helical

part appear one order later, i.e. at O(T 2), O(T 3) (written explicitly in (16) and (17))

and O(T 4) respectively.

• To conclude the analysis, we still have to prove three assertions about the subleading

character of some terms not considered explicitly here. This can be done by means of a

simple dimensional analysis.

i) When replacing recursively the second line of (A.4) into (9), every substitution

increases by one the order of smallness in T . Indeed, to build a quantity with the

dimensions of a square length over time such as the eddy diffusivity, in this procedure the

only available quantity is a combination of factors 〈vv〉 (always evaluated at fused points,

which does not put any spatio-temporal separation into play), that has dimensions of

square length over square time, along with the appropriate number of temporal integrals

— accompanied by θ’s — or spatial derivatives. (Notice that temporal derivatives do

not appear because the starting point is the integrated equation (6), and that spatial

integrals disappear because they are accompanied by the same number of δ’s.) With

respect to the zeroth order (23), if one introduces further multiplicative factors 〈vv〉 for

n times, one in fact gets a factor T−n from V because of (18), times the n-th power of the

dimensions of V (square length over time). This dimension excess must be compensated

not only by 2n “harmless” spatial derivatives, but also by 2n temporal integrals, which

(as easily realizable e.g. for the decaying-exponential form) introduce a factor T 2n. The

net result is an increase in the smallness by an order T n. For instance, when comparing

the second line of the right-hand side of (10) with the first one, the procedure has n = 1,

and indeed there are two more spatial derivatives and two more temporal integrals

besides one more factor T at denominator, so this contribution is O(T 2−1) smaller than

the previous one. Additional recursive substitutions can be discarded, as they would
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increase n.

ii) When replacing recursively the third line of (A.4) into (9), again every substitution

increases by unity the order of smallness in T . This means that, if we want to explicitly

write down only the leading correction for each physical effect, we can confine ourselves

to: molecular diffusivity alone, i.e. third line in (10) atO(T 1); mean flow alone, i.e. fourth

line in (10) at O(T 2); interplay between κ and U , i.e. fifth line in (10) at O(T 3). To

prove this assertion, it is sufficient to note that now one has two additional dimensional

quantities available, κ (square length over time, which must appear with a positive

integer power) and U (length over time, which must appear with an even power due to

parity invariance), but that the factor 〈vv〉 only appears once, because of the absence

of additional applications of the Furutsu–Novikov–Donsker theorem besides (9). With

respect to the zeroth order given by the first line of (10), if κ and U appear m and l times

respectively, a total of 2m+ l spatial derivatives are implied, along with m+ l additional

temporal integrals. These latter induce a factor Tm+l that progressively increases the

order of smallness, as V appears only once and cannot introduce additional factor ∝ T

at denominator.

iii) What is left is a mix of cross substitutions of both the second and the third lines

of (A.4) into (9). In view of what stated in points i) and ii), they can safely be

completely neglected from (10). Indeed, all the quantities κ, U and 〈vv〉 have time

at denominator. For every time the molecular diffusivity or the mean flow pop up,

they must be accompanied by one temporal integral, which increases by unity the order

of smallness. For every time the tensorial quantity 〈vv〉 pops up, it brings about a

factor T−1 from (18) but also two temporal integrals that increase by two the order of

smallness, and the net result is again an increase by one.
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