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Abstract. The object of this paper is twofold. From one side we study the dichotomy,
in terms of the Extremal Index of the possible Extreme Value Laws, when the rare events
are centred around periodic or non periodic points. Then we build a general theory of
Extreme Value Laws for randomly perturbed dynamical systems. We also address, in both
situations, the convergence of Rare Events Point Processes. Decay of correlations against
L1 observables will play a central role in our investigations.
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1. Introduction

Deterministic discrete dynamical systems are often used to model physical phenomena.
In many situations, inevitable observation errors make it more realistic to consider ran-
dom dynamics, where the mathematical model is adjusted by adding random noise to the
iterative process in order to account for these practical imprecisions. The behaviour of
such random systems has been studied thoroughly in the last decades. We mention, for
example, [Kif86, KL06] for excellent expositions on the subject.

Laws of rare events for chaotic (deterministic) dynamical systems have also been exhaus-
tively studied in the last years. When these results first appeared these notions were
described as Hitting Times Statistics (HTS) or Return Times Statistics (RTS). In this
setting, rare events correspond to entrances in small regions of the phase space and the
goal is to prove distributional limiting laws for the normalised waiting times before hit-
ting/returning to these asymptotically small sets. We refer to [Sau09] for an excellent
review. More recently, rare events have also been studied through Extreme Value Laws
(EVLs), i.e., the distributional limit of the partial maxima of stochastic processes arising
from such chaotic systems simply by evaluating an observable function along the orbits of
the system. Very recently, in [FFT10, FFT11], the two perspectives have been proved to
be linked so that, under general conditions on the observable functions, the existence of
HTS/RTS is equivalent to the existence of EVLs. These observable functions achieve a
maximum (possibly∞) at some chosen point ζ in the phase space so that the rare event of
occurring an exceedance of a high level corresponds to an entrance in a small ball around ζ.
The study of rare events may be enhanced if we enrich the process by considering multiple
exceedances (or hits/returns to target sets) that are recorded by Rare Events Point Pro-
cesses (REPP), which count the number of exceedances (or hits/returns) in a certain time
frame. Then one looks for limits in distribution for such REPP when time is adequately
normalised.
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Surprisingly, not much is known about rare events for random dynamical systems. One
of the main goals here is to establish what we believe to be the first result proving the
existence of EVLs (or equivalently HTS/RTS) as well as the convergence of REPP, for
randomly perturbed dynamical systems.

We remark that in the recent paper [MR11] the authors defined the meaning of first
hitting/return time in the random dynamical setting. To our knowledge this was the
first paper to address this issue of recurrence for random dynamics. There, the authors
define the concepts of quenched and annealed return times for systems generated by the
composition of random maps. Moreover, they prove that for super-polynomially mixing
systems, the random recurrence rate is equal to the local dimension of the stationary
measure.

In here, we are interested in establishing the right setting in order to have the connection
between EVL and HTS/RTS, for random dynamics, and, eventually, to prove the existence
of EVLs and HTS/RTS for random orbits. Moreover, we also study the convergence of the
REPP for randomly perturbed systems. These achievements are, in our opinion, the main
accomplishments of this paper.

In general terms, we will consider uniformly expanding and piecewise expanding maps.
Then we randomly perturb these discrete systems with additive, independent, identically
distributed (i.i.d.) noise introduced at each iteration. The noise distribution is absolutely
continuous with respect to (w.r.t.) Lebesgue measure. The details will be given in Section 2.

The main ingredients will be decay of correlations against all L1 observables (we mean
decay of correlations of all observables in some Banach space against all observables in L1,
which will be made more precise in Definition 2.2 below) and the notion of first return
time from a set to itself.

We realised that the techniques we were using to study the random scenario also allowed
us to give an answer to one of the questions raised in [FFT12]. There the connection
between periodicity, clustering of rare events and the Extremal Index (EI) was studied. In
certain situations, like when rare events are defined as entrances in balls around (repelling)
periodic points, the stochastic processes generated by the dynamics present clustering of
rare events. The EI is a parameter ϑ ∈ [0, 1] which quantifies the intensity of the clustering.
In fact, in most situations the average cluster size is just 1/ϑ. No clustering means that
ϑ = 1 and strong clustering means that ϑ is close to 0. In [FFT12, Section 6], it is shown
that, for uniformly expanding maps of the circle equipped with the Bernoulli measure,there
is a dichotomy in terms of the possible EVL: either the rare events are centred at (repelling)
periodic points and ϑ < 1 or at non periodic points and the EI is 1. This was proved for
cylinders, in the sense that rare events corresponded to entrances into dynamically defined
cylinders (instead of balls) and one of the questions it raised was if this dichotomy could be
proved more generally for balls and for more general systems. In [FP12], the authors build
up on the work of [Hir93] and eventually obtain the dichotomy for balls and for conformal
repellers.
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One of our results here, Theorem A, allows to prove the dichotomy for balls and for sys-
tems with decay of correlations against L1 which include, for example, piecewise expanding
maps of the interval like Rychlik maps (Proposition 3.2) or piecewise expanding maps in
higher dimensions, like the ones studied by Saussol, in [Sau00], (Proposition 3.3). More-
over, as an end product of our approach, we can express the dichotomy for these systems
in the following more general terms (see Propositions 3.2 and 3.3): either we have, at non
periodic points, the convergence of the REPP to the standard Poisson process or we have,
at repelling periodic points, the convergence of REPP to a compound Poisson process con-
sisting of an underlying asymptotic Poisson process governing the positions of the clusters
of exceedances and a multiplicity distribution associated to each such Poisson event, which
is determined by the average cluster size. In fact, at repelling periodic points, we always
get that the multiplicity distribution is the geometric distribution (see [HV09, FFT13]).

We also consider discontinuity points of the map as centres of the rare events (see Proposi-
tion 3.4). A very interesting immediate consequence of this study is that, when we consider
the REPP, we can obtain convergence to a compound Poisson process whose multiplicity
distribution is not a geometric distribution. To our knowledge this is the first time these
limits are obtained for the general piecewise expanding systems considered and in the balls’
setting (rather than cylinders), in the sense that exceedances or rare events correspond to
the entrance of the orbits in topological balls.

In the course of writing this paper we came across a paper by Keller, [Kel12], where he
proved the dichotomy of expanding maps with a spectral gap for the corresponding Perron-
Frobenius operator (which also include Rychlik maps and the higher dimensional piecewise
expanding maps studied by Saussol [Sau00], for example). He uses of a powerful technique
developed in [KL09], based on an eigenvalue perturbation formula. Our approach here is
different since we use an EVL kind of argument and our assumptions are based on decay of
correlations against L1 observables. Moreover, in here, we also deal with the convergence
of the REPP and obtain, in particular, the interesting fact that at discontinuity points we
observe multiplicity distributions other than the geometric one.

We also mention the very recent paper [KR12], where the dichotomy for cylinders is es-
tablished for mixing countable alphabet shifts, but also in the context of nonconventional
ergodic sums. It also includes examples of non-convergence of the REPP, in the cylinder
setting.

We remark that in most situations, decay of correlations against L1 observables is a con-
sequence of the existence of a gap in the spectrum of the map’s corresponding Perron-
Frobenius operator. However, in [Dol98], Dolgopyat proves exponential decay of correla-
tions for certain Axiom A flows but along the way he proves it for semiflows against L1

observables. This is done via estimates on families of twisted transfer operators for the
Poincaré map, but without considering the Perron-Frobenius operator for the flow itself.
This means that the discretisation of this flow by using a time 1 map, for example, provides
an example of a system with decay of correlations against L1 for which it is not known if
there exists a spectral gap of the corresponding Perron-Frobenius operator. Apparently,
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the existence of a spectral gap for the map’s Perron-Frobenius operator, defined in some
nice function space, implies decay of correlations against L1 observables. However, the lat-
ter is still a very strong property. In fact, from decay of correlations against L1 observables,
regardless of the rate, as long as it is summable, one can actually show that the system
has exponential decay of correlations of Hölder observables against L∞. (See [AFLV11,
Theorem B]). So an interesting question is:

Question. If a system presents summable decay of correlations against L1 observables, is
there a spectral gap for the system’s Perron-Frobenius operator, defined in some appropriate
function space?

We note that, as we point out in Remark 3.1, we do not actually need decay of correlations
against L1 in its full strength.

Returning to the random setting, our main result asserts that the dichotomy observed
for deterministic systems vanishes and regardless of the centre being a periodic point
or not, we always get standard exponential EVLs or, equivalently, standard exponential
HTS/RTS (which means that ϑ = 1). Moreover, we also show that the REPP converges in
distribution to a standard Poisson process. We will prove these results in Section 4 using
an EVL approach, where the main assumption will be decay of correlations against L1.

Still in the random setting, motivated by the deep work of Keller, [Kel12], in Section 5, we
prove results in the same directions as before but based on the spectral approach used by
Keller and Liverani to study deterministic systems. As a byproduct we get an HTS/RTS
formula with sharp error terms for random dynamical systems (see Proposition 5.1). We
will point out the differences between the two techniques (which we name here as direct
and spectral, respectively), at the beginning of Section 5; let us simply stress that we
implemented the spectral technique in random situation only for one-dimensional systems
and the existence of EI was proved for a substantially large class of noises. On the other
hand, the direct technique worked for systems in higher dimensions as well, but it required
additive noise with a continuous distribution. However, the latter was necessary to prove
that EI is 1 in the spectral approach too.

2. Statement of Results

Consider a discrete time dynamical system (X ,B,P, T ) which will denote two different
but interrelated settings throughout the paper. X is a topological space, B is the Borel
σ-algebra, T : X → X is a measurable map and P is a T -invariant probability measure,
i.e., P(T−1(B)) = P(B), for all B ∈ B. Also, given any A ∈ B with P(A) > 0, let PA
denote the conditional measure on A ∈ B, i.e., PA := P|A

P(A)
.

Firstly, it will denote a deterministic setting where X = M is a compact Riemannian
manifold, B is the Borel σ-algebra, T = f : M → M is a piecewise differentiable map
and P = µ is an f -invariant probability measure. Let dist(·, ·) denote a Riemannian metric
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on M and Leb a normalized volume form on the Borel sets of M that we call Lebesgue
measure.

Secondly, it will denote a random setting which is constructed from the deterministic
system via perturbing the original map with random additive noise. We assume that M
is a quotient of a Banach vector space V , like M = Td = Rd/Zd, for some d ∈ N. In
the case d = 1, we will also denote the circle T1 by S1. Let dist(·, ·) denote the induced
usual quotient metric on M and Leb a normalised volume form on the Borel sets of M
that we call Lebesgue measure. Also denote the ball of radius ε > 0 around x ∈ M
by Bε(x) := {y ∈ M : dist(x, y) < ε}. Consider the unperturbed deterministic system
f :M→M. For some ε > 0, let θε be a probability measure defined on the Borel subsets
of Bε(0), such that

θε = gεLeb and 0 < gε ≤ gε ≤ gε <∞. (2.1)

For each ω ∈ Bε(0), we define the additive perturbation of f that we denote by fω as the
map fω :M→M, given by 1

fω(x) = f(x) + ω. (2.2)

Consider a sequence of i.i.d. random variables (r.v.) W1,W2, . . . taking values on Bε(0)
with common distribution given by θε. Let Ω = Bε(0)N denote the space of realisations
of such process and θNε the product measure defined on its Borel subsets. Given a point
x ∈ M and the realisation of the stochastic process ω = (ω1, ω2, . . .) ∈ Ω, we define the
random orbit of x as x, fω(x), f 2

ω(x), . . . where, the evolution of x, up to time n ∈ N, is
obtained by the concatenation of the respective additive randomly perturbed maps in the
following way:

fnω (x) = fωn ◦ fωn−1 ◦ · · · ◦ fω1(x), (2.3)

with f 0
ω being the identity map on M. Next definition gives a notion that plays the role

of invariance in the deterministic setting.

Definition 2.1. Given ε > 0, we say that the probability measure µε on the Borel subsets
of M is stationary if ∫∫

φ(fω(x)) dµε(x) dθε(ω) =

∫
φ(x) dµε(x),

for every φ :M→ R integrable w.r.t. µε.

1In the general theory of randomly perturbed dynamical systems one could consider perturbations other
than the additive ones and distributions θε which are not necessarily absolutely continuous. Our choice is
motivated by the fact that our main result for the extreme values in presence of noise could be relatively
easily showed with those assumptions, but it is also clear from the proof where possible generalizations could
occur. We were especially concerned in constructing the framework and in finding the good assumptions
for the theory, which is surely satisfied for more general perturbations and probability distributions. Let us
notice that other authors basically used additive noise when they studied statistical properties of random
dynamical systems [BBMD02, BBMD03, AA03], for instance.
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The previous equality could also be written as∫
Uεφ dµε =

∫
φ dµε

where the operator Uε : L∞(Leb) → L∞(Leb), is defined as (Uεφ)(x) =
∫
Bε(0)

φ(fω(x)) dθε
and it is called the random evolution operator.
The adjoint of this operator is called the random Perron-Frobenius operator, Pε : L1(Leb)→
L1(Leb), and it acts by duality as∫

Pεψ · φ dLeb =

∫
Uεφ · ψ dLeb

where ψ ∈ L1 and φ ∈ L∞.
It is immediate from this definition to get another useful representation of this operator,
namely for ψ ∈ L1:

(Pεψ)(x) =

∫
Bε(0)

(Pωψ)(x) dθε(ω),

where Pω is the Perron-Frobenius operator associated to fω.
We recall that the stationary measure µε is absolutely continuous w.r.t. the Lebesgue
measure and with density hε if and only if such a density is a fixed point of the random
Perron-Frobenius operator: Pεhε = hε

2

We can give a deterministic representation of this random setting using the following skew
product transformation:

S : M× Ω −→ M× Ω
(x, ω) 7−→ (fω1 , σ(ω)),

(2.4)

where σ : Ω → Ω is the one-sided shift σ(ω) = σ(ω1, ω2, . . .) = (ω2, ω3, . . .). We remark
that µε is stationary if and only if the product measure µε× θNε is an S-invariant measure.

Hence, the random evolution can fit the original model (X ,B,P, T ) by taking the product
space X =M×Ω, with the corresponding product Borel σ-algebra B, where the product
measure P = µε×θNε is defined. The system is then given by the skew product map T = S.

For systems we will consider, P has very good mixing properties, which in loose terms
means that the system loses memory quite fast. In order to quantify the memory loss we
look at the system’s rates of decay of correlations w.r.t. P.

Definition 2.2 (Decay of correlations). Let C1, C2 denote Banach spaces of real valued
measurable functions defined on X . We denote the correlation of non-zero functions φ ∈ C1

and ψ ∈ C2 w.r.t. a measure P as

CorP(φ, ψ, n) :=
1

‖φ‖C1‖ψ‖C2

∣∣∣∣∫ φ (ψ ◦ T n) dP−
∫
φ dP

∫
ψ dP

∣∣∣∣ .
2The duality explains why we take Pε acting on L1 and Uε on L∞. Moreover our stationary measures

will be absolutely continuous with density given by the fixed point of the Perron-Frobenius operator Pε.
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We say that we have decay of correlations, w.r.t. the measure P, for observables in C1

against observables in C2 if, for every φ ∈ C1 and every ψ ∈ C2 we have

CorP(φ, ψ, n)→ 0, as n→∞.

In the random setting, we will only be interested in Banach spaces of functions that do not
depend on ω ∈ Ω, hence, we assume that φ, ψ are actually functions defined onM and the
correlation between these two observables can be written more simply as

CorP(φ, ψ, n) : =
1

‖φ‖C1‖ψ‖C2

∣∣∣∣∫ (∫ ψ ◦ fnω dθNε

)
φ dµε −

∫
φ dµε

∫
ψ dµε

∣∣∣∣
=

1

‖φ‖C1‖ψ‖C2

∣∣∣∣∫ Unε ψ · φ dµε −
∫
φ dµε

∫
ψ dµε

∣∣∣∣ (2.5)

where (Unε ψ)(x) =
∫
· · ·
∫
ψ(fωn ◦ · · · ◦ fω1x) dθε(ωn) . . . dθε(ω1) =

∫
ψ ◦ fnω (x) dθNε .

We say that we have decay of correlations against L1 observables whenever we have decay
of correlations, with respect to the measure P, for observables in C1 against observables in
C2 and C2 = L1(Leb) is the space of Leb-integrable functions on M and ‖ψ‖C2 = ‖ψ‖1 =∫
|ψ| dLeb. Note that when µ, µε are absolutely continuous with respect to Leb and the

respective Radon-Nikodym derivatives are bounded above and below by positive constants,
then L1(Leb) = L1(µ) = L1(µε).

The goal is to study the statistical properties of such systems regarding the occurrence of
rare events. There are two approaches for this purpose which were recently proved to be
equivalent.

We first turn to the existence of an EVL for the partial maximum of observations made
along the time evolution of the system. To be more precise consider the time series
X0, X1, X2, . . . arising from such a system simply by evaluating a given random variable
(r.v.) ϕ :M→ R ∪ {+∞} along the orbits of the system:

Xn = ϕ ◦ fn, for each n ∈ N. (2.6)

Note that when we consider the random dynamics, the process will be

Xn = ϕ ◦ fnω , for each n ∈ N, (2.7)

which can also be written as Xn = ϕ̄ ◦ Sn, where

ϕ̄ : M× Ω −→ R ∪ {+∞}
(x, ω) 7−→ ϕ(x)

, (2.8)

Clearly, X0, X1, . . . defined in this way is not an independent sequence. However, invariance
of µ and stationarity of µε guarantee that the stochastic process is stationary in both cases.

We assume that the r.v. ϕ : M→ R ∪ {±∞} achieves a global maximum at ζ ∈ M (we
allow ϕ(ζ) = +∞). We also assume that ϕ and P are sufficiently regular so that:



LAWS OF RARE EVENTS FOR DETERMINISTIC AND RANDOM DYNAMICAL SYSTEMS 9

(R1) for u sufficiently close to uF := ϕ(ζ), the event

U(u) = {X0 > u} = {x ∈M : ϕ(x) > u}

corresponds to a topological ball centred at ζ. Moreover, the quantity P(U(u)), as
a function of u, varies continuously on a neighbourhood of uF .

In what follows, an exceedance of the level u ∈ R at time j ∈ N means that the event
{Xj > u} occurs. We denote by F the distribution function (d.f.) of X0, i.e., F (x) =
P(X0 ≤ x). Given any d.f. G, let Ḡ = 1−G and uG denote the right endpoint of the d.f.
G, i.e., uG = sup{x : G(x) < 1}.
The idea then is to consider the extremal behaviour of the system for which we define a
new sequence of random variables M1,M2, . . . given by

Mn = max{X0, . . . , Xn−1}. (2.9)

Definition 2.3. We say that we have an EVL for Mn if there is a non-degenerate d.f.
H : R → [0, 1] with H(0) = 0 and, for every τ > 0, there exists a sequence of levels
un = un(τ), n = 1, 2, . . ., such that

nP(X0 > un)→ τ, as n→∞, (2.10)

and for which the following holds:

P(Mn ≤ un)→ H̄(τ), as n→∞. (2.11)

Remark 2.1. We remark that one of the advantages of the EVL approach for the study of
rare events for random dynamics is that its definition follows straightforwardly from the
deterministic case. In fact, the only difference is that for random dynamical systems, the
r.v. Mn’s are defined on M× Ω where we use the measure P = µε × θNε as opposed to the
deterministic case where the ambient space is M and P = µ.

The motivation for using a normalising sequence un satisfying (2.10) comes from the case
when X0, X1, . . . are independent and identically distributed. In this i.i.d. setting, it is
clear that P(Mn ≤ u) = (F (u))n. Hence, condition (2.10) implies that

P(Mn ≤ un) = (1− P(X0 > un))n ∼
(

1− τ

n

)n
→ e−τ ,

as n→∞. Moreover, the reciprocal is also true. Note that in this case H(τ) = 1− e−τ is
the standard exponential d.f.

For every sequence (un)n∈N satisfying (2.10) we define:

Un := {X0 > un}. (2.12)

When X0, X1, X2, . . . are not independent, the standard exponential law still applies under
some conditions on the dependence structure. These conditions are the following:
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Condition (D2(un)). We say that D2(un) holds for the sequence X0, X1, . . . if for all `, t
and n

|P (X0 > un ∩max{Xt, . . . , Xt+`−1 ≤ un})− P(X0 > un)P(M` ≤ un)| ≤ γ(n, t),

where γ(n, t) is decreasing in t for each n and nγ(n, tn) → 0 when n → ∞ for some
sequence tn = o(n).

Now, let (kn)n∈N be a sequence of integers such that

kn →∞ and kntn = o(n). (2.13)

Condition (D′(un)). We say that D′(un) holds for the sequence X0, X1, X2, . . . if there
exists a sequence (kn)n∈N satisfying (2.13) and such that

lim
n→∞

n

bn/knc∑
j=1

P(X0 > un, Xj > un) = 0. (2.14)

By [FF08, Theorem 1], if conditions D2(un) and D′(un) hold for X0, X1, . . . then there
exists an EVL for Mn and H(τ) = 1− e−τ . Besides, as it can be seen in [FF08, Section 2]
condition D2(un) follows immediately if X0, X1, . . . is given by (2.6) and the system has
sufficiently fast decay of correlations.

Now, we turn to the other approach which regards the existence of HTS and RTS. In the
deterministic case, consider a set A ∈ B. We define a function that we refer to as first
hitting time function to A and denote by rA : X → N ∪ {+∞} where

rA(x) = min
{
j ∈ N ∪ {+∞} : f j(x) ∈ A

}
.

The restriction of rA to A is called the first return time function to A. We define the first
return time to A, which we denote by R(A), as the minimum of the return time function
to A, i.e.,

R(A) = min
x∈A

rA(x).

In the random case, we have to a make choice regarding the type of definition we want
to play the roles of the first hitting/return times (functions). Essentially, there are two
possibilities. The quenched perspective which consists of fixing a realisation ω ∈ Ω and
define the objects in the same way as in the deterministic case. The annealed perspective
consists of defining the same objects by averaging over all possible realisations ω. Here, we
will use the quenched perspective to define hitting/return times because it will facilitate
the connection between EVLs and HTS/RTS in the random setting. (We refer to [MR11]
for more details on both perspectives.)

For some ω ∈ Ω fixed, some x ∈ M and A ⊂ M measurable, we may define the first
random hitting time

rωA(x) := min{j ∈ N : f jω(x) ∈ A}
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and the first random return from A to A as

Rω(A) = min{rωA(x) : x ∈ A}.

Definition 2.4. Given a sequence of measurable subsets of X , (Vn)n∈N, so that P(Vn)→ 0,
the system has (random) HTS G for (Vn)n∈N if for all t ≥ 0

P
(
rVn ≤

t

P(Vn)

)
→ G(t) as n→∞, (2.15)

and the system has (random) RTS G̃ for (Vn)n∈N if for all t ≥ 0

PVn
(
rVn ≤

t

P(Vn)

)
→ G̃(t) as n→∞. (2.16)

In the deterministic case, X = M, P = µ and T = f . In the random case, X = M× Ω,
P = µε × θNε , T = S defined in (2.4), Vn = V ∗n × Ω, where V ∗n ⊂ M and µε(V

∗
n ) → 0, as

n→∞.

Note that

P
(
rVn ≤

t

P(Vn)

)
= µε × θNε

(
rωV ∗n ≤

t

µε(V ∗n )

)
.

The normalising sequences to obtain HTS/RTS, are motivated by Kac’s Lemma, which
states that the expected value of rA w.r.t. µA is

∫
A
rA dµA = 1/µ(A). So in studying the

fluctuations of rA on A, the relevant normalising factor should be 1/µ(A).

The existence of exponential HTS is equivalent to the existence of exponential RTS. In
fact, according to the Main Theorem in [HLV05], a system has HTS G if and only if it has
RTS G̃ and

G(t) =

∫ t

0

(1− G̃(s)) ds. (2.17)

In [FFT10], the link between HTS/RTS (for balls) and EVLs of stochastic processes given
by (2.6) was established for invariant measures µ absolutely continuous w.r.t. Leb. Essen-
tially, it was proved that if such time series have an EVL H then the system has HTS H
for balls “centred” at ζ and vice versa. (Recall that having HTS H is equivalent to saying
that the system has RTS H̃, where H and H̃ are related by (2.17)). This was based on
the elementary observation that for stochastic processes given by (2.6) we have:

f−1({Mn ≤ u}) = {r{X0>u} > n}. (2.18)

This connection was exploited to prove EVLs using tools from HTS/RTS and the other way
around. In [FFT11], we carried the connection further to include more general measures,
which, in particular, allows us to obtain the connection in the random setting. To check that
we just need to use the skew product map to look at the random setting as a deterministic
system and take the observable ϕ̄ :M×Ω→ R∪{+∞} defined as in (2.8) with ϕ :M→
R∪{+∞} as in [FFT11, equation (4.1)]. Then Theorems 1 and 2 from [FFT11] guarantee
that if we have an EVL, in the sense that (2.11) holds for some d.f. H, then we have HTS
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for sequences {Vn}n∈N, where Vn = Bδn × Ω and δn → 0 as n → ∞, with G = H and
vice-versa.

Lemma 2.1.

S−1({Mn ≤ un}) = {(x, ω) ∈M× Ω : rωUn(x) > n}

Proof.

S−1({Mn ≤ un}) = S−1({(x, ω) ∈M× Ω : x /∈ Un, rωUn(x) ≥ n}) =: S−1(A)

= {(x, ω) ∈M× Ω : S(x, ω) = (fω1(x), σ(ω)) ∈ A}

= {(x, ω) ∈M× Ω : fω1(x) /∈ Un, rσ(ω)
Un

(fω1(x)) ≥ n}
= {(x, ω) ∈M× Ω : rωUn(x) > n}

�

If we consider multiple exceedances we are lead to point processes of rare events counting
the number of exceedances in a certain time frame. For every A ⊂ R we define

Nu(A) :=
∑

i∈A∩N0

1Xi>u.

In the particular case where A = I = [a, b) we simply write N b
u,a := Nu([a, b)). Observe

that N n
u,0 counts the number of exceedances amongst the first n observations of the process

X0, X1, . . . , Xn or, in other words, the number of entrances in U(u) up to time n. Also,
note that

{N n
u,0 = 0} = {Mn ≤ u} (2.19)

In order to define a point process that captures the essence of an EVL and HTS through
(2.19), we need to re-scale time using the factor v := 1/P(X > u) given by Kac’s Theorem.
However, before we give the definition, we need some formalism. Let S denote the semi-
ring of subsets of R+

0 whose elements are intervals of the type [a, b), for a, b ∈ R+
0 . Let

R denote the ring generated by S. Recall that for every J ∈ R there are k ∈ N and k
intervals I1, . . . , Ik ∈ S such that J = ∪ki=1Ij. In order to fix notation, let aj, bj ∈ R+

0

be such that Ij = [aj, bj) ∈ S. For I = [a, b) ∈ S and α ∈ R, we denote αI := [αa, αb)
and I + α := [a + α, b + α). Similarly, for J ∈ R define αJ := αI1 ∪ · · · ∪ αIk and
J + α := (I1 + α) ∪ · · · ∪ (Ik + α).

Definition 2.5. We define the rare event point process (REPP) by counting the number of
exceedances (or hits to U(un)) during the (re-scaled) time period vnJ ∈ R, where J ∈ R.
To be more precise, for every J ∈ R, set

Nn(J) := Nun(vnJ) =
∑

j∈vnJ∩N0

1Xj>un . (2.20)
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Under similar dependence conditions to the ones just seen above, the REPP just defined
converges in distribution to a standard Poisson process, when no clustering is involved
and to a compound Poisson process with intensity θ and a geometric multiplicity d.f.,
otherwise. For completeness, we define here what we mean by a Poisson and a compound
Poisson process. (See [Kal86] for more details.)

Definition 2.6. Let T1, T2, . . . be an i.i.d. sequence of random variables with common
exponential distribution of mean 1/θ. Let D1, D2, . . . be another i.i.d. sequence of random
variables, independent of the previous one, and with d.f. π. Given these sequences, for
J ∈ R, set

N(J) =

∫
1J d

(
∞∑
i=1

DiδT1+...+Ti

)
,

where δt denotes the Dirac measure at t > 0. Whenever we are in this setting, we say that
N is a compound Poisson process of intensity θ and multiplicity d.f. π.

Remark 2.2. In this paper, the multiplicity will always be integer valued which means that
π is completely defined by the values πk = P(D1 = k), for every k ∈ N0. Note that, if
π1 = 1 and θ = 1, then N is the standard Poisson process and, for every t > 0, the random
variable N([0, t)) has a Poisson distribution of mean t.

Remark 2.3. When clustering is involved, we will see that π is actually a geometric distri-
bution of parameter θ ∈ (0, 1], i.e., πk = θ(1− θ)k, for every k ∈ N0. This means that, as
in [HV09], here, the random variable N([0, t)) follows a Pólya-Aeppli distribution, i.e.:

P(N([0, t)) = k) = e−θt
k∑
j=1

θj(1− θ)k−j (θt)j

j!

(
k − 1

j − 1

)
,

for all k ∈ N and P(N([0, t)) = 0) = e−θt.

When D′(un) holds, since there is no clustering, then, due to a criterion proposed by Kallen-
berg [Kal86, Theorem 4.7], which applies only to simple point processes, without multiple
events, we can simply adjust condition D2(un) to this scenario of multiple exceedances in
order to prove that the REPP converges in distribution to a standard Poisson process. We
denote this adapted condition by:

Condition (D3(un)). Let A ∈ R and t ∈ N. We say that D3(un) holds for the sequence
X0, X1, . . . if

|P ({X0 > un} ∩ {N (A+ t) = 0})− P({X0 > un})P(N (A) = 0)| ≤ γ(n, t),

where γ(n, t) is nonincreasing in t for each n and nγ(n, tn) → 0 as n → ∞ for some
sequence tn = o(n), which means that tn/n→ 0 as n→∞.

Condition D3(un) follows, as easily as D2(un), from sufficiently fast decay of correlations.
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In [FFT10, Theorem 5] a strengthening of [FF08, Theorem 1] is proved, which essentially
says that, under D3(un) and D′(un), the REPP Nn defined in (2.20) converges in distribu-
tion to a standard Poisson process.

Next, we give an abstract result, in the deterministic setting, that allows to check conditions
D2(un) and D′(un) for any stochastic process X0, X1, . . . arising from a system which has
decay of correlations against L1 observables. As a consequence of this result in Section 3,
more precisely in Propositions 3.2, 3.3 and 3.4, we will obtain the announced dichotomy
for the EI based on the periodicity of the point ζ.

Theorem A. Consider a dynamical system (M,B, µ, f) for which there exists a Banach
space C of real valued functions such that for all φ ∈ C and ψ ∈ L1(µ),

Corµ(φ, ψ, n) ≤ Cn−2, (2.21)

where C > 0 is a constant independent of both φ, ψ. Let X0, X1, . . . be given by (2.6), where
ϕ achieves a global maximum at some point ζ for which condition (R1) holds. Let un be
such that (2.10) holds, Un be defined as in (2.12) and set Rn := R(Un).

If there exists C ′ > 0 such that for all n we have 1Un ∈ C, ‖1Un‖C ≤ C ′ and Rn → ∞, as
n→∞, then conditions D2(un) and D′(un) hold for X0, X1, . . .. This implies that there is
an EVL for Mn defined in (2.9) and H(τ) = 1− e−τ .

In light of the connection between EVLs and HTS/RTS it follows immediately:

Corollary B. Under the same hypothesis of Theorem A we have HTS/RTS for balls around
ζ with G(t) = G̃(t) = 1− et.

Since, under the same assumptions of Theorem A, condition D3(un) holds trivially then
applying [FFT10, Theorem 5] we obtain:

Corollary C. Under the same hypothesis of Theorem A, the REPP Nn defined in (2.20)

is such that Nn
d−→ N , as n→∞, where N denotes a Poisson Process with intensity 1.

Remark 2.4. Note that condition Rn → ∞, as n → ∞, is easily verified if the map is
continuous at every point of the orbit of ζ. We will state this formally in Lemma 3.1.

Remark 2.5. Observe that decay of correlations as in (2.21) against L1(µ) observables is
a very strong property. In fact, regardless of the rate (in this case n−2), as long as it is
summable, one can actually show that the system has exponential decay of correlations
of Hölder observables against L∞(µ),i.e., C1 is the space of Hölder continuous and C2 is
L∞(µ). (See [AFLV11, Theorem B].)

Now, we give an abstract result in the random setting which concludes by stating that by
adding random noise, regardless of the point ζ chosen, we always get an EI equal to 1.

Theorem D. Consider a dynamical system (M× Ω,B, µε × θNε , S), where M = Td, for
some d ∈ N, f : M → M is a deterministic system which is randomly perturbed as
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in (2.2) with noise distribution given by (2.1) and S is the skew product map defined in
(2.4). Assume that there exists η > 0 such that dist(f(x), f(y)) ≤ ηdist(x, y), for all
x, y ∈ M. Assume also that the stationary measure µε is such that µε = hεLeb, with
0 < hε ≤ hε ≤ hε <∞. Suppose that there exists a Banach space C of real valued functions
defined on M such that for all φ ∈ C and ψ ∈ L1(µε),

Corµε×θNε (φ, ψ, n) ≤ Cn−2, (2.22)

where Corµε×θNε (·) is defined as in (2.5) and C > 0 is a constant independent of both φ, ψ.

For any point ζ ∈ M, consider that X0, X1, . . . is defined as in (2.7), let un be such that
(2.10) holds and assume that Un is defined as in (2.12).If there exists C ′ > 0 such that for
all n we have 1Un ∈ C and ‖1Un‖C ≤ C ′, then the stochastic process X0, X1, . . . satisfies
D2(un) and D′(un), which implies that we have an EVL for Mn such that H̄(τ) = e−τ .

Again, using the connection between EVLs and HTS/RTS we get

Corollary E. Under the same hypothesis of Theorem D we have exponential HTS/RTS
for balls around ζ, in the sense that (2.15) and (2.16) hold with G(t) = G̃(t) = 1− et and
Vn = Bδn(ζ)× Ω, where δn → 0, as n→∞.

Moreover, appealing to [FFT10, Theorem 5] once again, we have

Corollary F. Under the same hypothesis of Theorem D, the stochastic process X0, X1, . . .
satisfies D3(un) and D′(un), which implies that the REPP Nn defined in (2.20) is such that

Nn
d−→ N , as n→∞, where N denotes a Poisson Process with intensity 1.

Remark 2.6. We remark that we do not need to consider thatM is a d dimensional torus
in order to apply the theory. Basically, we only need that fω(M) ⊂M, for all ω ∈ Bε(0).
As we will see in more details in Section 4, for example, piecewise expanding maps of the
interval, with finitely many branches, satisfy all the conclusions of Theorem D .

3. Extremal Index dichotomy for deterministic systems

In this section we will start by proving Theorem A, Corollary C and a simple lemma
asserting that continuity is enough to guarantee that Rn →∞, as n→∞.

Next, we give examples of systems to which we can apply Theorem A in order to prove a
dichotomy regarding the existence of an EI equal to 1 or less than 1, depending on whether
ζ is non-periodic or periodic, respectively. This will be done for uniformly expanding and
piecewise expanding maps, when all points in the orbit of ζ are continuity points of the
map.

In the third subsection, we will consider Rychlik maps, which are piecewise expanding
maps of the interval, and will analyse the EI also in the cases when the orbit of ζ hits a
discontinuity point of the map.
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3.1. Decay against L1 implies exponential EVL at non-periodic points.

Proofs of Theorem A and Corollary C. As explained in [Fre13, Section 5.1], conditions
D2(un) and D3(un) are designed to follow easily from decay of correlations. In fact, if
we choose φ = 1Un and ψ = 1{M`≤un}, in the case of D2(un), and ψ = 1N (A)=0, for some
A ∈ R, in the case of D3(un), we have that we can take γ(n, t) = C∗t−2, where C∗ = CC ′.
Hence, conditions D2(un) and D3(un) are trivially satisfied for the sequence (tn)n given by
tn = n2/3, for example.

Now, we turn to condition D′(un). Taking ψ = φ = 1Un in (2.21) and since ‖1Un‖C ≤ C ′

we easily get

µ
(
Un ∩ f−j(Un)

)
≤ (µ(Un))2 + C ‖1Un‖C ‖1Un‖L1(µ) j

−2 ≤ (µ(Un))2 + C∗µ(Un)j−2, (3.1)

where C∗ = CC ′ > 0. By definition of Rn, estimate (3.1) and since nµ(Un)→ τ as n→∞
it follows that there exists some constant D > 0 such that

n

bn/knc∑
j=1

µ(Un ∩ f−j(Un)) = n

bn/knc∑
j=Rn

µ(Un ∩ f−j(Un)) ≤ n
⌊
n
kn

⌋
µ(Un)2 + nC∗µ(Un)

bn/knc∑
j=Rn

j−2

≤ (nµ(Un))2

kn
+ nC∗µ(Un)

∞∑
j=Rn

j−2 ≤ D

(
τ 2

kn
+ τ

∞∑
j=Rn

j−2

)
−−−→
n→∞

0.

�

Remark 3.1. In the above demonstration it is important to use L1-norm to obtain the
factor µ(Un) in the second summand of the last term in (3.1), which is crucial to kill off
the n factor coming from the definition of D′(un). However, note that we actually do not
need decay of correlations against L1 in its full strength, which means that it holds for all
L1 functions. In fact, in order to prove D′(un) we only need it to hold for the functions
1Un .

Also, note that we do not need such a strong statement regarding the decay of correlations
of the system in order to prove D2(un) or D3(un). In particular, even if 1Un /∈ C (as when
C is the space of Hölder continuous functions), we can still verify these conditions by using
a suitable Hölder approximation. (See [Fre13, Proposition 5.2].)

According to Theorem A, in general terms, if the system has decay of correlations against
L1 observables, then to prove D′(un) one has basically to show that Rn →∞, as n→∞.
Next lemma gives us a sufficient condition for that to happen.

Lemma 3.1. Assume that ζ is not a periodic point and that f is continuous at every
point of the orbit of ζ, namely ζ, f(ζ), f 2(ζ), . . ., then limn→∞Rn =∞, where Rn is as in
Theorem A.

Proof. Let j ∈ N. We will show that if n ∈ N is sufficiently large then Rn > j. Let ε =
mini=1,...,j dist(f i(ζ), ζ). Our assumptions assure that each f i, for i = 1, . . . , j, is continuous
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at ζ. Hence, for every i = 1, . . . , j, there exists δi > 0 such that f i(Bδi(ζ)) ⊂ Bε/2(f i(ζ)).

Let U :=
⋂j
i=1 Bδi(ζ). If we choose N sufficiently large that Un ⊂ U for all n ≥ N , then

using the definition of ε it is clear that f i(Un) ∩ Un = ∅, for all i = 1, . . . , j, which implies
that Rn > j. �

3.2. The dichotomy for specific systems. One of the results in [FFT12] is that for
uniformly expanding systems like the doubling map, there is a dichotomy in terms of
the type of laws of rare events that one gets at every possible centre ζ. Namely, it was
shown that either ζ is non-periodic, in which case, one always gets a standard exponential
EVL/HTS, or ζ is a periodic (repelling) point, in which case one obtains an exponential
law with an EI 0 < ϑ < 1 given by the expansion rate at ζ (see [FFT12, Section 6]).
This was proved for cylinders rather than balls, meaning that the sets Un are dynamically
defined cylinders (see [FFT12, Section 5] or [FFT11, Section 5], for details). Results for
cylinders are weaker than the ones for balls, since, in rough terms, it means that the limit
is only obtained for certain subsequences of n ∈ N rather than for the whole sequence.

In [FFT12], it was conjectured that this dichotomy should hold in greater generality, namely
for balls rather than cylinders and more general systems. As a consequence of Theorem A
we will be able to show that the dichotomy indeed holds for balls and more general systems.
We remark that from the results in [FP12], one can also derive the dichotomy for conformal
repellers and, in [Kel12], the dichotomy is also obtained for maps with a spectral gap
for their Perron-Frobenius operator. In both these papers, the results were obtained by
studying the spectral properties of the Perron-Frobenius operator.

3.2.1. Rychlik maps. We will introduce a class of dynamical systems considered by Rychlik
in [Ryc83]. This class includes, for example, piecewise C2 uniformly expanding maps of
the unit interval with the relevant physical measures. We first need some definitions.

Definition 3.1. Given a potential ψ : Y → R on an interval Y , the variation of ψ is
defined as

Var(ψ) := sup

{
n−1∑
i=0

|ψ(xi+1)− ψ(xi)|

}
,

where the supremum is taken over all finite ordered sequences (xi)
n
i=0 ⊂ Y .

We use the norm ‖ψ‖BV = sup |ψ|+Var(ψ), which makesBV := {ψ : Y → R : ‖ψ‖BV <∞}
into a Banach space. We also define

Snψ(x) := ψ(x) + · · ·+ ψ ◦ fn−1(x).

Definition 3.2. For a measurable potential ψ : X → R, we define the pressure of (X , f, φ)
to be

P (φ) := sup
P∈Mf

{
h(P) +

∫
φ dP : −

∫
φ dP <∞

}
,
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where Mf is the set of f -invariant probability measures and h(P) denotes the metric
entropy of the measure P, see [Wal82] for details. If P is an invariant probability measure
such that h(Pφ) +

∫
φ dP = P (φ), then we say that P is an equilibrium state.

Definition 3.3. A measure m is called a φ-conformal measure if m(M) = 1 and if when-
ever f : A→ f(A) is a bijection, for a Borel set A, then m(f(A)) =

∫
A
e−φ dm. Therefore,

if fn : A→ fn(A) is a bijection then m(fn(A)) =
∫
A
e−Snφ dm.

Definition 3.4 (Rychlik system). (Y, f, ψ) is a Rychlik system if Y is an interval, {Yi}i
is an at most countable collection of open intervals such that

⋃
i Y i ⊃ Y (where Y i is the

closure of Yi), f :
⋃
i Yi → Y is a function continuous on each Yi, which admits a continuous

extension to the closure of Yi that we denote by fi : Y i → Y and ψ : Y → [−∞,∞) is a
potential such that

(1) fi : Y i → f(Y i) is a diffeomorphism;
(2) Var eψ < +∞, ψ = −∞ on Y \

⋃
i Yi and P (ψ) = 0;

(3) there is a ψ-conformal measure mψ on Y ;
(4) (f, ψ) is expanding: sup

x∈Y
ψ(x) < 0.

Rychlik [Ryc83] proved that these maps have exponential decay of correlations against L1

observables. To be more precise, if (Y, f, ψ) is a topologically mixing Rychlik system, then
there exists an equilibrium state µψ = hmψ where h ∈ BV and mψ and µψ are non-atomic
and (Y, f, µψ) has exponential decay of correlations, i.e., there exists C > 0 and γ ∈ (0, 1)
such that ∣∣∣∣∫ ς ◦ fn · φ dµψ −

∫
ς dµψ

∫
φ dµψ

∣∣∣∣ ≤ C‖ς‖L1(µψ)‖φ‖BV γn, (3.2)

for any ς ∈ L1(µψ) and φ ∈ BV . Note that, in the original statement, instead of the
L1(µψ)-norm, the L1(mψ)-norm appeared. However, we will assume that h > c, for some
c > 0, which means that we can write (3.2) as it is. We remark that h being bounded below
by a positive constant is not very restrictive. That is the case if, for example, h is lower
semi-continuous (see [BG97, Theorem 8.2.3]) or if the system has summable variations as
uniformly expanding systems with Hölder continuous potentials do.

Let S = Y \
⋃
i Yi and define Λ := {x ∈ Y : fn(x) /∈ S, for all n ∈ N0}. As a consequence

of Theorem A, Corollary C and Lemma 3.1 it follows immediately:

Proposition 3.2. Suppose that (Y, f, ψ) is a topologically mixing Rychlik system, ψ is
Hölder continuous on each Y i, and µ = µψ is the corresponding equilibrium state such that
dµψ
dmψ

> c, for some c > 0. Let X0, X1, . . . be given by (2.6), where ϕ achieves a global

maximum at some point ζ. Then we have an EVL for Mn and

(1) if ζ ∈ Λ is not a periodic point then the EVL is such that H̄(τ) = e−τ and the
REPP Nn converges in distribution to a standard Poisson process N of intensity 1.

(2) if ζ ∈ Λ is a (repelling) periodic point of prime period p then the EVL is such that
H̄(τ) = e−ϑτ where the EI is given by ϑ = 1− eSpψ(ζ) and the REPP Nn converges
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in distribution to a compound Poisson process N with intensity ϑ and multiplicity
d.f. π given by π(κ) = ϑ(1− ϑ)κ, for every κ ∈ N0.

Proof. We start by noting that statement (2) has already been proved in [FFT12, Propo-
sition 2] and [FFT13, Corollary 3].

Regarding statement (1), first note that for Rychlik maps, (3.2) clearly implies that con-
dition (2.21) is satisfied. Besides since Un must be an interval then 1Un ∈ BV and
‖1Un‖BV ≤ 2. Moreover, by definition of Λ, we can apply Lemma 3.1 and consequently
obtain that limn→∞Rn =∞. Hence, we are now in condition of applying Theorem A and
Corollary C to obtain the result. �

3.2.2. Piecewise expanding maps in higher dimensions. As a second example, we will con-
sider multidimensional piecewise uniformly expanding maps for which we follow the defini-
tion given by Saussol [Sau00]. As pointed out in [AFLV11], these maps generalize Markov
maps which also contains one-dimensional piecewise uniformly expanding maps.

We need some notation: dist(·, ·) being the usual metric in RN , given any ε > 0, we
introduce Bε(x) = {y ∈ RN : dist(x, y) < ε}. Moreover, Z being a compact subset of RN ,
for any A ⊂ Z and given a real number c > 0, we write Bc(A) = {x ∈ RN : dist(x,A) ≤ c};
Z◦ stands for the interior of Z, and Z is the closure.

Definition 3.5 (Multidimensional piecewise expanding system). (Z, f, µ) is a multidi-
mensional piecewise expanding system if Z is a compact subset of RN with Z◦ = Z,
f : Z → Z and {Zi} is a family of at most countably many disjoint open sets such that

Leb(Z \
⋃
i Zi) = 0 and there exist open sets Z̃i ⊃ Zi and C1+α maps fi : Z̃i → RN , for

some real number 0 < α ≤ 1 and some sufficiently small real number ε1 > 0 such that for
all i,

(1) fi(Z̃i) ⊃ Bε1(f(Zi));

(2) for x, y ∈ f(Zi) with dist(x, y) ≤ ε1,

| detDf−1
i (x)− detDf−1

i (y)| ≤ c| detDf−1
i (x)|dist(x, y)α;

(3) there exists s = s(f) < 1 such that ∀x, y ∈ f(Z̃i) with dist(x, y) ≤ ε1, we have

dist(f−1
i x, f−1

i y) ≤ s dist(x, y).

(4) Let us put G(ε, ε1) := supxG(x, ε, ε1) where

G(x, ε, ε1) :=
∑
i

Leb(f−1
i Bε(∂fZi) ∪B(1−s)ε1(x))

Leb(B(1−s)ε1(x))
(3.3)

and assume that sup
δ≤ε1

(
sα + 2 sup

ε≤δ

G(ε)
εα
δα
)
< 1.
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Now, let us introduce the space of quasi-Hölder functions in which the spectrum of corre-
sponding Perron-Frobenius operator is investigated. Given a Borel set Γ ⊂ Z, we define
the oscillation of ϕ ∈ L1(Leb) over Γ as

osc(ϕ,Γ) := ess sup
Γ

ϕ− ess inf
Γ

ϕ.

It is easy to verify that x 7→ osc(ϕ,Bε(x)) defines a measurable function (see [Sau00,
Proposition 3.1]). Given real numbers 0 < α ≤ 1 and ε0 > 0, we define α-seminorm of ϕ
as

|ϕ|α = sup
0<ε≤ε0

ε−α
∫
RN

osc(ϕ,Bε(x)) dLeb(x).

Let us consider the space of functions with bounded α-seminorm

Vα = {ϕ ∈ L1(Leb) : |ϕ|α <∞},

and endow Vα with the norm

‖ · ‖α = ‖ · ‖L1(Leb) + | · |α

which makes it into a Banach space. We note that Vα is independent of the choice of
ε0. According to [Sau00, Theorem 5.1], there exists an absolutely continuous invariant
probability measure (a.c.i.p.) µ. Also in [Sau00, Theorem 6.1], it is shown that on the
mixing components µ enjoys exponential decay of correlations against L1 observables on
Vα, more precisely, if the map f is as defined above and if µ is the mixing a.c.i.p., then
there exist constants C <∞ and γ < 1 such that∣∣∣ ∫

Z

ψ ◦ fn h dµ
∣∣∣ ≤ C‖ψ‖L1‖h‖αγn, ∀ψ ∈ L1, where

∫
ψ dµ = 0 and ∀h ∈ Vα. (3.4)

We refer the reader to [Sau00] for the exact values of the above constants. We point out
that the L1 norm on the right hand side should be intended with respect to Leb; whenever
the density of µ is bounded from below and Lebesgue almost everywhere by a strictly posi-
tive constant, such an L1 norm could be extended to µ; see also Appendix C.4 in [AFLV11]
for a similar derivation.

Let S = Z \
⋃
i Zi and define Λ := {x ∈ Z : fn(x) /∈ S, for all n ∈ N0}. As a consequence

of Theorem A, Corollary C and Lemma 3.1 it follows immediately:

Proposition 3.3. Suppose that (Z, f, µ) is a topologically mixing multidimensional piece-
wise expanding system and µ is its a.c.i.p. with a Radon-Nikodym density bounded away
from zero. Let X0, X1, . . . be given by (2.6), where ϕ achieves a global maximum at some
point ζ. Then we have an EVL for Mn and

(1) if ζ ∈ Λ is not a periodic point then the EVL is such that H̄(τ) = e−τ and the
REPP Nn converges in distribution to a standard Poisson process N of intensity 1;
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(2) if ζ ∈ Λ is a (repelling) periodic point of prime period p then the EVL is such that
H̄(τ) = e−ϑτ where the EI is given by ϑ = 1 − | detD(f−p)(ζ)| and the REPP Nn

converges in distribution to a compound Poisson process N with intensity ϑ and
multiplicity d.f. π given by π(κ) = ϑ(1− ϑ)κ, for every κ ∈ N0.

Proof. Statement (2) has already been proved in [FFT13, Corollary 4].

For proving (1), we can start by remarking that the condition (2.21) is satisfied since we
have (3.4). Since Un corresponds to a ball, by definition of | · |α, it follows easily that
1Un ∈ Vα and ‖1Un‖α is uniformly bounded by above. Now, considering the definition of
Λ, we can apply Lemma 3.1 and consequently obtain that limn→∞Rn = ∞. The result
then follows by applying Theorem A and Corollary C. �

3.3. The extremal behaviour at discontinuity points. In this section, we go back to
Rychlik maps introduced in Section 3.2.1, but with finitely many branches, and study the
extremal behaviour of the system when the orbit of ζ hits a discontinuity point of the map.

Consider a point ζ ∈ Y . Note that here we consider at most finitely many collection of
open intervals such that

⋃
i Y i ⊃ Y . If ζ ∈ Λ then we say that ζ is a simple point. If ζ is

a non-simple point, which means that rS(ζ) is finite, then let ` = rS(ζ) and z = f `(ζ). We
will always assume that z ∈ S is such that: there exist i+, i− ∈ N so that z is the right
end point of Yi− and the left end point of Yi+ . We consider that the point z is doubled
and has two versions: z+ ∈ Yi+ and z− ∈ Yi− , so that f(z+) := fi+(z) = limx→z, x∈Yi+ f(x)
and f(z−) := fi−(z) = limx→z, x∈Yi− f(x). When ζ is a non-simple point we consider that
its orbit bifurcates when it hits S and consider its two possible evolutions. We express this
fact by saying that when ζ is non-simple we consider the “orbits” of ζ+ and ζ− which are
defined in the following way:

• for j = 1, . . . , ` we let f j(ζ±) := f j(ζ);
• for j = `+ 1, we define f j(ζ±) := fi±(f j−1(ζ±))
• for j > `+ 1 we consider two possibilities:

– if j − 1 is such that f j−1(ζ±) /∈ S, then we set f j(ζ±) := f(f j−1(ζ±))
– otherwise we set f j(ζ±) := fi(f

j−1(ζ±)), where i is such that f j−`(z±) ∈ Yi

Remark 3.2. Note that for the “orbits” of ζ± just defined above, there is a sequence (i±j )j∈N
such that, for all n ∈ N, we have fn(ζ±) ∈ Y i±n

and fn(ζ±) = fi±n ◦· · ·◦fi±1 (ζ). Also observe

that, in the notation above, i±` = i±.

A non-simple point ζ is aperiodic if for all j ∈ N we have f j(ζ+) 6= ζ 6= f j(ζ−).

If there exists p± such that fp
±

(ζ±) = ζ and for j = 1, . . . , p± − 1 we have f j(ζ±) 6= ζ,
but, for all j ∈ N, we have f j(ζ∓) 6= ζ, then we say that ζ is singly returning. If ζ is
singly returning and f±(ζ±) = ζ±, which means that fp

±
(z±) ∈ Yi± , then we say that ζ is

a singly periodic point of period p±.
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ζ

6

fp
+

Fig.1 - Singly returning, singly periodic ζ

If ζ is singly returning and fp
±

(ζ±) = ζ∓, which means that fp
±

(z±) ∈ Yi∓ , then we say
that ζ is an eventually aperiodic point.

ζ

6

fp
+

Fig.2 - Singly returning, eventually aperiodic ζ

If there exist p+ and p− such that fp
+

(ζ+) = ζ = fp
−

(ζ−) and for j = 1, . . . , p+ − 1 and
k = 1, . . . , p−− 1 we have f j(ζ+) 6= ζ 6= fk(ζ−), then we say that ζ is doubly returning. In
the case, ζ is a doubly returning point and both fp

+
(ζ+) = ζ+ and fp

−
(ζ−) = ζ−, then we

say that ζ is doubly periodic with periods p+ and p−, respectively.

ζ

6

fp
+

6

fp
−

Fig.3 - Doubly returning, doubly periodic ζ (no switches)

If ζ is doubly returning, fp
±

(ζ±) = ζ± and fp
∓

(ζ∓) = ζ± then we say that ζ is doubly
returning with one switch.

ζ

6

fp
+

6

fp
−

Fig.4 - Doubly returning ζ with one switch
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If ζ is doubly returning, fp
±

(ζ±) = ζ∓ and fp
∓

(ζ∓) = ζ± then we say that ζ is doubly
returning with two switches.

ζ

6

fp
−

6

fp
+

Fig.5 - Doubly returning ζ with two switches

In what follows consider that
U±n = Un ∩ f−`(Yi±).

The main goals of this section are to compute the EI and also the limit for the REPP at
non-simple points as defined above. In the case of aperiodic non-simple points, the analysis
is very similar to the one held for non-periodic points, in the previous sections, and we get
an EI equal to 1 and the convergence of the REPP to the standard Poisson process. In the
case of singly returning and doubly returning points, we have periodicity and consequently
clustering. This means that the analysis should follow the footsteps of [FFT12, FFT13]
with the necessary adjustments. For completeness we include a brief review of the results
needed in Appendix A and in particular the formulas (B.1) and (B.2) in Appendix B, that
we will use to compute the EI and the multiplicity distribution of the limiting compound
Poisson process.

Proposition 3.4. Suppose that (Y, f, ψ) is a topologically mixing Rychlik system with
finitely many branches, ψ is Hölder continuous on each Y i, and µ = µψ is the corresponding
equilibrium state. Let X0, X1, . . . be given by (2.6), where ϕ achieves a global maximum at
some point ζ ∈ Y \Λ. Let un be such that (2.10) holds and Un be defined as in (2.12). We
assume that µ(U±n ) ∼ α±µ(Un), where 0 < α−, α+ < 1 and α− + α+ = 1. Then we have
an EVL for Mn and

(1) if ζ is an aperiodic non-simple point then the EVL is such that H̄(τ) = e−τ ;
(2) if ζ is a non-simple, repelling singly returning point then the EVL is such that

H̄(τ) = e−ϑτ where the EI is given by ϑ = 1− α±eSp±ψ(ζ±);
(3) if ζ is a non-simple, repelling doubly returning point, then the EVL is such that

H̄(τ) = e−ϑτ where the EI is given by ϑ = 1 − α+eSp+ψ(ζ+) − α−eSp−ψ(ζ−), when

ζ has no switches; ϑ = 1 − α±(eSp+ψ(ζ+) + eSp−ψ(ζ−)), when ζ has one switch;

ϑ = 1− α−eSp+ψ(ζ+) − α+eSp−ψ(ζ−), when ζ has two switches.

Remark 3.3. We remark that, in the particular case when µψ is absolutely continuous with
respect to the Lebesgue measure and the invariant density is continuous at the points ζ
considered in the proposition above, the formulas for the EI can be seen as special cases
of the formula in [Kel12, Remark 8].
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Proof. If ζ is an aperiodic non-simple point then we just have to mimic the argument for
non-periodic points in the previous sections. The proof of D2(un) is done exactly as before.
Using decay of correlations against L1, stated in 3.2, the proof that D′(un) holds for these
points follows the same footsteps except for the adjustments in order to consider the two
possible evolutions corresponding to the “orbits” of ζ+ and ζ−. For example, to prove that
R(Un)→∞, as n→∞, in the argument of Lemma 3.1 we would define

ε = min

{
min
k=1,...j

dist(fk(ζ+), ζ), min
k=1,...j

dist(fk(ζ−), ζ)

}
,

and proceed as before.

When ζ is a non-simple (singly or doubly) returning point, we just need to adjust the
definition (A.1) of Qp(un) to cope with the two possibly different evolutions of ζ+ and ζ−.
Everything else, namely the proofs of conditions Dp(un) and D′p(un) follow from decay of

correlations against L1, stated in 3.2, exactly in the same lines as in the proof of [FFT13,
Theorem 2]. Hence, essentially, for each different case we have to define coherently Qp(un)
and compute the EI using formula (B.1).

Assume first that ζ is a singly returning (eventually aperiodic or not) non-simple point.
Without loss of generality (w.l.o.g.), we also assume that there exists p such that fp(ζ+) =
ζ+. In this case, we should define Qp(un) = U−n ∪ (U+

n \ f−p(Un)), as seen in the figure
below.

6 6

U−n U+
n \ f−p(Un)

ζ

6

fp

Fig.6 - Qp = U−n ∪ (U+
n \ f−p(Un))

We can now compute the EI:

ϑ = lim
n→∞

µ(Qp(un))

µ(Un)
= lim

n→∞

µ(U−n ) + (1− eSpψ(ζ+))µ(U+
n )

µ(Un)

= lim
n→∞

α−µ(Un) + α+(1− eSpψ(ζ+))µ(Un)

µ(Un)
= 1− α+eSpψ(ζ+).

Let ζ be a non-simple, repelling doubly returning point and p−, p+ be such that fp
−

(ζ−) = ζ

and fp
+

(ζ+) = ζ . For definiteness, we assume w.l.o.g. that p− < p+.
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First we consider the case where no switching occurs. In this case, we have two different

“periods”, hence we should define Qp−,p+(un) =
(
U−n \ f−p

−
(U−n )

)
∪
(
U+
n \ f−p

+
(U+

n )
)

.

6 6

U−n \ f−p
−

(U−n ) U+
n \ f−p

+
(U+

n )

ζ

6

fp
+

6

fp
−

Fig.7 - Qp−,p+(un) =
(
U−n \ f−p

−
(U−n )

)
∪
(
U+
n \ f−p

+
(U+

n )
)

It follows that

ϑ = lim
n→∞

α−(1− eSpψ(ζ−))µ(Un) + α+(1− eSpψ(ζ+))µ(Un)

µ(Un)
= 1− α−eSpψ(ζ−) − α+eSpψ(ζ+).

Next, we consider the case with one switch. In this case, we also have two different
“periods” and for definiteness we assume w.l.o.g. that fp

−
(ζ−) = ζ− and fp

+
(ζ+) = ζ−.

Then we define Qp−,p+(un) =
(
U−n \ f−p

−
(U−n )

)
∪
(
U+
n \ f−p

+
(U−n )

)
.

6 6

U−n \ f−p
−

(U−n ) U+
n \ f−p

+
(U−n )

ζ

6

fp
+

6

fp
−

Fig.8 - Qp−,p+(un) =
(
U−n \ f−p

−
(U−n )

)
∪
(
U+
n \ f−p

+
(U−n )

)
It follows that

ϑ = lim
n→∞

α−(1− eSpψ(ζ−))µ(Un) + α−(1− eSpψ(ζ+))µ(Un)

µ(Un)
= 1− α−eSpψ(ζ−) − α−eSpψ(ζ+).

Finally, we consider the case with two switches. In this case, we also have two different

“periods” and we should define Qp−,p+(un) =
(
U−n \ f−p

−
(U+

n )
)
∪
(
U+
n \ f−p

+
(U−n )

)
.
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6 6

U−n \ f−p
−

(U+
n ) U+

n \ f−p
+

(U−n )

ζ

6

fp
−

6

fp
+

Fig.9 - Qp−,p+(un) =
(
U−n \ f−p

−
(U+

n )
)
∪
(
U+
n \ f−p

+
(U−n )

)
It follows that

ϑ = lim
n→∞

α+(1− eSpψ(ζ−))µ(Un) + α−(1− eSpψ(ζ+))µ(Un)

µ(Un)
= 1− α−eSpψ(ζ+) − α+eSpψ(ζ−).

�

Next result gives the convergence of the REPP at non-simple points. Note that, contrarily
to the usual geometric distribution obtained, for example, in [HV09, CCC09, FFT13],
in here, the multiplicity distribution is quite different. In fact, for eventually aperiodic
returning points, for example, we have that π(κ) = 0 for all κ ≥ 3.

Proposition 3.5. Let a± := eSp±ψ(ζ±). Under the same assumptions of Proposition 3.4,
we have:

(1) if ζ is an aperiodic non-simple point then the REPP converges to a standard Poisson
process of intensity 1;

(2) if ζ is a non-simple, singly returning point
(a) not eventually aperiodic then the REPP converges to a compound Poisson pro-

cess of intensity ϑ, given in Proposition 3.4, and multiplicity distribution de-
fined by:

π(1) = ϑ−(1−ϑ)(1−a±)
ϑ

, π(κ) = α±(1−a±)2(a±)−(κ−1)

ϑ
, κ ≥ 2.

(b) eventually aperiodic then the REPP converges to a compound Poisson process
of intensity ϑ, given in Proposition 3.4, and multiplicity distribution defined
by:

π(1) = 2ϑ−1
ϑ
, π(2) = 1−ϑ

ϑ
, π(κ) = 0, κ ≥ 3.

(3) if ζ is a non-simple, repelling doubly returning point
(a) with no switches then the REPP converges to a compound Poisson process of

intensity ϑ, given in Proposition 3.4, and multiplicity distribution defined by:

π(1) = 2ϑ−1+α−(a−)2+α+(a+)2

ϑ

π(κ) = α−(1−a−)2(a−)−(κ−1)+α−(1−a+)2(a+)−(κ−1)

ϑ
, κ ≥ 2.
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(b) with one switch then the REPP converges to a compound Poisson process of
intensity ϑ, given in Proposition 3.4, and multiplicity distribution defined by:

π(1) = 2ϑ−1+a±(1−ϑ)
ϑ

, π(κ) = (1−ϑ)(a±)κ−2(1−a±)2

ϑ
, κ ≥ 2.

(c) with two switches then the REPP converges to a compound Poisson process of
intensity ϑ, given in Proposition 3.4, and multiplicity distribution defined by:

π(1) = 1−2(1−ϑ)+a−a+

ϑ
, π(2j) =

(a−a+)j−1((1−ϑ)(1+a−a+)−2a−a+)
ϑ

,

π(2j + 1) =
(a−a+)j(1−2(1−ϑ)+a−a+)

ϑ
, j ≥ 1.

Proof. When ζ is an aperiodic non-simple point then as we have seen in Proposition 3.4,
condition D′(un) holds. Clearly, D3(un) follows from decay of correlations and, by [FFT10,
Theorem 5], we easily conclude that the REPP converges to the standard Poisson process
of intensity 1.

When ζ is a non-simple (singly or doubly) returning point, we just need to adjust the
definition of the sets U (κ) given in (A.3), which ultimately affects the sets Qκ

p(u), given in
(A.4), in order to cope with the two possibly different evolutions of ζ+ and ζ−. Everything
else, namely the proofs of conditions Dp(un)∗ and D′p(un)∗ follow from decay of correlations

against L1, stated in 3.2, exactly in the same lines as in the proof of [FFT13, Theorem 2].
Hence, essentially, for each different case we have to define coherently the sets U (κ) and
compute the multiplicity distribution using formula (B.2).

In all cases, U (0) = Un = U−n ∪ U+
n .

Let ζ be a singly returning non-simple point which is not eventually aperiodic. We assume
w.l.o.g. that there exist p such that fp(ζ+) = ζ+ and f j(ζ−) 6= ζ, for all j ∈ N. For every
κ ∈ N, we define

U (κ) :=

(
κ⋂
i=0

f−ip(U+
n )

)
Using (A.4), we can now easily define Qκ := U (κ) \ U (κ+1), for all κ ≥ 0. We have
P(Q0) ∼ P(Un)− a+P(U+

n ) ∼ P(Un)(1− α+a+). The same computations would lead us to
P(Qκ) ∼ P(Un)(α+(1− a+)(a+)κ). Using formula (B.2), it follows:

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0)

= (1−α+a+)−(α+(1−a+)a+)
(1−α+a+)

= ϑ−(1−ϑ)(1−a±)
ϑ

π(κ) = lim
n→∞

P(Qκ−1)−P(Qκ)

P(Q0)
= (α+(1−a+)(a+)κ−1)−(α+(1−a+)(a+)κ)

(1−α+a+)
= α+(1−a+)2(a+)κ−1

ϑ
.

Let ζ be a singly returning non-simple point which is eventually aperiodic. We assume
w.l.o.g. that there exist p such that fp(ζ+) = ζ− and f j(ζ−) 6= ζ, for all j ∈ N. For every
κ ∈ N, we define

U (1) :=
(
U+
n ∩ f−ip(U−n )

)
, U (κ) := ∅, κ ≥ 2
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Note that Q0 = Un \ U (1), Q1 = U (1) and Qκ = ∅, for all κ ≥ 2. We have P(Q0) ∼
P(Un) − a+P(U−n ) ∼ P(Un)(1 − α−a+), P(Q1) ∼ P(Un)α−a+, P(Qκ) = 0, for all κ ≥ 2.
Using formula (B.2), it follows:

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0)

= (1−α−a+)−(α−a+)
(1−α−a+)

= 2ϑ−1
ϑ

π(2) = lim
n→∞

P(Q1)−P(Q2)
P(Q0)

= α−a+

(1−α−a+)
= 1−ϑ

ϑ
, π(κ) = 0, k ≥ 3.

Let ζ be a doubly returning non-simple point with no switches. Let p−, p+ be such that
fp
−

(ζ−) = ζ− and fp
+

(ζ+) = ζ+. For every κ ∈ N, we define

U (κ) :=

(
κ⋂
i=0

f−ip
−

(U−n )

)⋃(
κ⋂
i=0

f−ip
+

(U+
n )

)
.

Note that using (A.4), we can now easily define Qκ := U (κ) \U (κ+1), for all κ ≥ 0. We have
P(Q0) ∼ P(Un)−a−P(U−n )−a+P(U+

n ) ∼ P(Un)(1−α−a−−α+a+). The same computations
would lead us to P(Qκ) ∼ P(Un)(α−(1−a−)(a−)κ+α+(1−a+)(a+)κ). Using formula (B.2),
it follows:

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0)

= (1−α−a−−α+a+)−(α−(1−a−)a−+α+(1−a+)a+)
(1−α−a−−α+a+)

= 2ϑ−1+α−(a−)2+α+(a+)2

ϑ

π(κ) = lim
n→∞

P(Qκ−1)−P(Qκ)

P(Q0)
= α−(1−a−)2(a−)κ−1+α+(1−a+)2(a+)κ−1

ϑ
.

Let ζ be a doubly returning non-simple point with one switch. We assume w.l.o.g. that
there exist p−, p+ such that fp

−
(ζ−) = ζ− and fp

+
(ζ+) = ζ−. For every κ ∈ N, we define

U (κ) :=

(
κ⋂
i=0

f−ip
−

(U−n )

)⋃(
U+
n ∩ f−p

+

(U−n ) ∩
κ⋂
i=0

f−p
+−ip−(U−n )

)
.

Using (A.4), we can now easily define Qκ := U (κ) \ U (κ+1), for all κ ≥ 0. We have
P(Q0) ∼ P(Un)−a−P(U−n )−a+P(U−n ) ∼ P(Un)(1−α−a−−α−a+). The same computations
would lead us to P(Qκ) ∼ P(Un)(α−(1− a−)(a−)κ +α−(1− a−)a+(a−)κ−1). Using formula
(B.2), it follows:

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0)

= (1−α−(a−+a+))−(α−(1−a−)a−+α−(1−a−)a+)
(1−α−a−−α−a+)

= 2ϑ−1+a−(1−ϑ)
ϑ

π(κ) = lim
n→∞

P(Qκ−1)−P(Qκ)

P(Q0)
= α−(1−a−)2(a−)κ−1+α−(1−a−)2a+(a−)κ−2

ϑ
= (1−ϑ)(a−)κ−2(1−a−)2

ϑ
.
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Let ζ be a doubly returning non-simple point with two switches. We assume that there
exist p−, p+ such that fp

−
(ζ−) = ζ+ and fp

+
(ζ+) = ζ−. For every j ∈ N0, we define

U (2j+1) :=

(
U−n ∩

j+1⋂
i=1

f−ip
−−(i−1)p+(U+

n ) ∩
j⋂
i=1

f−ip
−−ip+(U−n )

)
⋃(

U+
n ∩

j+1⋂
i=1

f−ip
+−(i−1)p−(U−n ) ∩

j⋂
i=1

f−ip
+−ip−(U+

n )

)

U (2j) :=

(
U−n ∩

j⋂
i=1

f−ip
−−(i−1)p+(U+

n ) ∩
j⋂
i=1

f−ip
−−ip+(U−n )

)
⋃(

U+
n ∩

j⋂
i=1

f−ip
+−(i−1)p−(U−n ) ∩

j⋂
i=1

f−ip
+−ip−(U+

n )

)

Using (A.4), we can now easily define Qκ := U (κ) \ U (κ+1), for all κ ≥ 0. We have
P(Q0) ∼ P(Un)−a−P(U+

n )−a+P(U−n ) ∼ P(Un)(1−α+a−−α−a+). The same computations
would lead us to P(Q2j) ∼ P(Un)(1− α+a− − α−a+)(a−a+)j and P(Q2j) ∼ P(Un)(α+a− +
α−a+ − a−a+)(a−a+)j. Using formula (B.2), it follows that, for every j ∈ N:

π(1) = lim
n→∞

P(Q0)−P(Q1)
P(Q0)

= (1−α+a−−α−a+)−(α+a−+α−a+−a−a+)
(1−α+a−−α−a+)

= 1−2(1−ϑ)+a−a+

ϑ

π(2j) = lim
n→∞

P(Q2j−1)−P(Q2j)
P(Q0)

= (a−a+)j−1(α+a−(1+a−a+)+α−a+(1+a−a+)−2a−a+)
ϑ

π(2j + 1) = lim
n→∞

P(Q2j)−P(Q2j+1)
P(Q0)

= (a−a+)j(1−2α+a−−2α−a++a−a+)
ϑ

.

�

4. Extremes for random dynamics

In this section we will start with the proof of Theorem D which states that the dichotomy
observed in Section 3 vanishes when we add absolutely continuous noise (w.r.t. Lebesgue)
and for every chosen point in the phase space we have a standard exponential distribution
for the EVL and HTS/RTS weak limits. We will also certify that the REPP converges to
a Poisson Process with intensity 1. Next, we will give some examples of random dynam-
ical systems for which we can prove the existence of EVLs and HTS/RTS as well as the
convergence of REPP.

In what follows, we denote the diameter of set A ⊂M by |A| := sup{dist(x, y) : x, y ∈ A}
and for any x ∈M we define the translation of A by x as the set: A+x := {a+x : a ∈ A}.
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4.1. Laws of rare events for random dynamics.

Proof of Theorem D. Firstly, we want to show that, as in the deterministic case, the con-
dition D2(un) can be deduced from the decay of correlations.

From our assumption the random dynamical system has (annealed) decay of correlations,
i.e., there exists a Banach space C of real valued functions such that for all φ ∈ C and
ψ ∈ L1(µε), ∣∣∣ ∫ φ(U tεψ)(x) dµε −

∫
φ dµε

∫
ψ dµε

∣∣∣ ≤ C‖φ‖C‖ψ‖L1(µε)t
−2 (4.1)

where C > 0 is a constant independent of both ϕ and ψ.

In proving D2(Un), the main point is to choose the right observable. We take

φ(x) = 1{X0>un} = 1{ϕ(x)>un}, ψ(x) =

∫
1{ϕ(x), ϕ◦fω̃1 (x), ... , ϕ◦f`−1

ω̃ (x)≤un} dθ`−1
ε (ω̃).

Substituting ψ in the random evolution operator, we get

(U tεψ)(x) =

∫∫
1{ϕ◦f tω(x), ... , ϕ◦f`−1

ω̃ ◦f tω(x)≤un} dθ`−1
ε (ω̃)dθtε(ω).

Since all ωi’s and ω̃j’s are chosen in an i.i.d. structure, we can rename the random iterates,
i.e., we lose no information in writing

(U tεψ)(x) =

∫
1{ϕ◦f tω(x), ... , ϕ◦f t+`−1

ω (x)≤un}dθ
N
ε (ω).

Therefore, we get∫
φ(x) (U tεψ)(x) dµε =

∫
µε

(
ϕ(x) > un, ϕ ◦ f tω(x) ≤ un, . . . , ϕ ◦ f t+`−1

ω (x) ≤ un

)
dθNε (ω).

On the other hand,∫
φ(x)dµε = µε(X0(x) > un) =

∫
µε(X0(x) > un) dθNε (ω)∫

ψ(x)dµε =

∫ (∫
1{ϕ(x),ϕ◦fω1 (x), ... ,ϕ◦f`−1

ω (x)≤un}dµε

)
dθNε (ω)

=

∫
µε

(
ϕ(x) ≤ un, ϕ ◦ fω1(x) ≤ un, . . . , ϕ ◦ f `−1

ω (x) ≤ un

)
dθNε (ω).
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Now, the decay of correlations can be written as∣∣∣ ∫ µε
(
X0(x) > un, ϕ ◦ f tω(x) ≤ un, . . . , ϕ ◦ f t+`−1

ω (x) ≤ un
)

dθNε (ω)−∫
µε(ϕ(x) > un) dθNε (ω)

∫
µε
(
ϕ(x) ≤ un, ϕ ◦ fω1(x) ≤ un, . . . , ϕ ◦ f `−1

ω (x) ≤ un
)

dθNε (ω)
∣∣∣

≤ C‖φ‖C‖ψ‖L1(µε)t
−2

which leads us to the conclusion that the condition D2(un) holds with

γ(n, t) = γ(t) = C∗t−2 (4.2)

for some C∗ > 0 and tn = nβ, with 1/2 < β < 1.

For proving D′(un), the basic idea is to use the fact that we have decay of correlations
against L1 as in Theorem A and then to show that except for a small set of ω’s, Rω(Un)
grows at a sufficiently fast rate. Hence, we split Ω into two parts: the ω’s for which
Rω(Un) > αn, where (αn)n is some sequence such that

αn →∞ and αn = o(log kn), (4.3)

which is designed, on one hand, to guarantee that for the ω’s for which Rω(Un) > αn, the
argument using decay of correlations against L1 is still applicable and, on the other hand,
the set of the ω’s for which Rω(Un) ≤ αn has θNε small measure. To show the latter we
make an estimate on the ω’s that take the orbit of ζ too close to itself.

First, note that since f is continuous (which implies that f jω is also continuous for all j ∈ N)

and η is the highest rate at which points can separate, the diameter of f jω(Un) grows at

most at a rate given by ηj, so, for any ω ∈ Ω we have |f jω(Un)| ≤ ηj|Un|. This implies that

if dist(f jω(ζ), ζ) > 2ηj|Un| > |Un|+ ηj|Un| then f jω(Un) ∩ Un = ∅. (4.4)

Note that, by equation (4.4), if for all j = 1, . . . , αn we have dist(f jω(ζ), ζ) > 2ηj|Un| then

clearly Rω(Un) > αn. Hence, we may write that
{
ω : Rω(Un) ≤ αn

}
⊂
⋃αn
j=1

{
ω : f jω(ζ) ∈

B2ηj |Un|(ζ)
}
. It follows that, there exists some C > 0 such that

θNε
({
ω : Rω(Un) ≤ αn

})
≤

αn∑
j=1

∫
θε

({
ωj : f

(
f j−1
ω (ζ)

)
+ ωj ∈ B2ηj |Un|(ζ)

})
dθNε

=
αn∑
j=1

∫
θε

({
ωj : ωj ∈ B2ηj |Un|(ζ)− f

(
f j−1
ω (ζ)

)})
dθNε

=
αn∑
j=1

∫∫
B

2ηj |Un|(ζ)−f(f
j−1
ω (ζ))

gε(x)dLeb dθNε

≤
αn∑
j=1

gεLeb
(
B2ηj |Un|(ζ)

)
=

αn∑
j=1

gεCη
jLeb(Un) ≤ CgεLeb(Un)

η

η − 1
ηαn .
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Now, observe that

n

bn/knc∑
j=1

P(Un ∩ f−jω (Un)) ≤ n

bn/knc∑
j=αn

P
({

(x, ω) : x ∈ Un, f jω(x) ∈ Un
})

+ n

bn/knc∑
j=1

P
({

(x, ω) : x ∈ Un, Rω(Un) ≤ αn
})

:= I + II.

Let us start by estimating I, which will be dealt as in Section 3. Taking ψ = φ = 1Un in
(4.1) and since ‖1Un‖C ≤ C ′ we get

P
(
{(x, ω) : x ∈ Un, f jω(x) ∈ Un}

)
≤ (µε(Un))2 + C ‖1Un‖C ‖1Un‖L1(µε)

j−2

≤ (µε(Un))2 + C∗µε(Un)j−2, (4.5)

where C∗ = CC ′ > 0. Now observe that by definition of Un and (2.10), we have that
µε(Un) ∼ τ/n. Using this observation together with the definition of Rω

n and the estimate
(4.5), it follows that there exists some constant D > 0 such that

n

bn/knc∑
j=αn

P
(
{(x, ω) : x ∈ Un, f jω(x) ∈ Un}

)
≤ n

⌊
n
kn

⌋
µε(Un)2 + nC∗µε(Un)

bn/knc∑
j=αn

j−2

≤ (nµε(Un))2

kn
+ nC∗µε(Un)

∞∑
j=αn

j−2 ≤ D

(
τ 2

kn
+ τ

∞∑
j=αn

j−2

)
−−−→
n→∞

0.

For the term II, as µε(Un) ∼ τ/n and since dµε/dLeb is bounded below and above by
positive constants, there exists some positive constant C∗ > 0 so that

n

bn/knc∑
j=1

P
(
{(x, ω) : x ∈ Un, Rω(Un) ≤ αn}

)
≤ n2

kn
µε(Un)CgεLeb(Un)

η

η − 1
ηαn

≤ C∗
ηαn

kn
−−−→
n→∞

0 by (4.3). (4.6)

�

Proof of Corollary F. The only extra step we need to do is to check that D3(un) also holds.
To do that we just have to change slightly the definition of ψ that we used to prove D2(un)
by using (4.1). Let A ∈ R. We set:

ψ(x) =

∫
1⋂

i∈A∩N{f iω̃(x)≤un} dθNε (ω̃).

The rest of the proof follows exactly as in the proof ofD2(un) in the proof of Theorem D. �

4.2. Laws of rare events for specific randomly perturbed systems.
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4.2.1. Expanding and piecewise expanding maps on the circle with a finite number of dis-
continuities. We give a general definition from [Via97] of piecewise expanding maps on the
circle which also includes the particular case of the continuous expanding maps:

(1) there exist ` ∈ N0 and 0 = a0 < a1 < · · · < a` = 1 = 0 = a0 for which the
restriction of f to each Ξi = (ai−1, ai) is of class C1, with |Df(x)| > 0 for all x ∈ Ξi

and i = 1, . . . , `. In addition, for all i = 1, . . . , `, gΞi = 1/|Df |Ξi | has bounded
variation for i = 1, . . . , `.

We assume that (f |Ξi) and gΞi admit continuous extensions to Ξi = [ai−1, ai], for each
i = 1, . . . , `. Since modifying the values of a map over a finite set of points does not
change its statistical properties, we may assume that f is either left-continuous or right-
continuous (or both) at ai, for each i = 1, . . . , ` (possibly for all i’s at the same time).
Then let P(1) be some partition of S1 into intervals Ξ such that Ξ ⊂ Ξi for some i and
(f |Ξ) is continuous. Furthermore, for n ≥ 1, let P(n) be the partition of S1 such that
P(n)(x) = P(n)(y) if and only if P(1)(f j(x)) = P(1)(f j(y)) for all 0 ≤ j < n. Given

Ξ ∈ P(n), denote g
(n)
Ξ = 1/|Dfn|Ξ|;

(2) there exist constants C1 > 0, λ1 < 1 such that sup g
(n)
Ξ ≤ C1λ

n
1 for all Ξ ∈ P(n) and

all n ≥ 1;
(3) for every subinterval J of S1, there exists some n ≥ 1 such that fn(J) = S1.

According to [Via97, Proposition 3.15], one has exponential decay of correlations for ran-
domly perturbed systems derived from maps satisfying conditions (1) − (3) above, tak-
ing C as the space of functions with bounded variation (BV ), i.e., given ϕ in BV and
ψ ∈ L1(Leb), ∣∣∣∣∫ (Uεψ)ϕ dLeb−

∫
ψ dµε

∫
ϕ dLeb

∣∣∣∣ ≤ Cλn‖ϕ‖BV ‖ψ‖L1(Leb), (4.7)

where 0 < λ < 1 and C > 0 is a constant independent of both ϕ, ψ.

Hence, in the particular case of f being a continuous expanding map of the circle, (4.7),
Theorem D, Corollaries E and F allow us to obtain

Corollary 4.1. Let f : S1 → S1 be a continuous expanding map satisfying (1)− (3) above,
which is randomly perturbed as in (2.2) with noise distribution given by (2.1). For any point
ζ ∈M, consider that X0, X1, . . . is defined as in (2.7) and let un be such that (2.10) holds.
Then the stochastic process X0, X1, . . . satisfies D2(un), D3(un) and D′(un), which implies
that we have an EVL for Mn such that H̄(τ) = e−τ and we have exponential HTS/RTS

for balls around ζ. Moreover, the REPP Nn defined in (2.20) is such that Nn
d−→ N , as

n→∞, where N denotes a Poisson Process with intensity 1.

In the proof of Theorem D, we used the continuity of the map, in particular, in (4.4).
However, we can adapt the argument in order to allow a finite number of discontinuities
for expanding maps of the circle.
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Proposition 4.2. Let f : S1 → S1 be a map satisfying conditions (1) − (3) above, which
is randomly perturbed as in (2.2) with noise distribution given by (2.1). For any point
ζ ∈M, consider that X0, X1, . . . is defined as in (2.7) and let un be such that (2.10) holds.
Then the stochastic process X0, X1, . . . satisfies D2(un), D3(un) and D′(un), which implies
that we have an EVL for Mn such that H̄(τ) = e−τ and we have exponential HTS/RTS

for balls around ζ. Moreover, the REPP Nn defined in (2.20) is such that Nn
d−→ N , as

n→∞, where N denotes a Poisson Process with intensity 1.

Proof. The proof of D2(un) follows from (4.7) as in the continuous case. Regarding the
proof of D′(un), in order to use the same arguments as in the continuous case, we want to
avoid coming close to the discontinuity points along the random orbit of ζ (up to time αn).
Since there are finitely many discontinuity points, say ξi’s for i = 1, . . . , `, we can control
this by asking for some ”safety regions” around each of them. By doing so, we ensure that
the random orbit of ζ is sufficiently far away from ξi’s so that the iterates of Un consist of
only one connected component. We can formulate these “safety regions” as

dist(f jω(ζ), ξi) > 2ηj|Un| for all i = 1, . . . , `. (4.8)

Now, we make an estimate on the ω’s that take the orbit of ζ too close to the discontinuity
points as well as close to ζ itself and our aim is to show that the θNε measure of this set
is small. Let us set ξ0 = ζ to simplify the notation. Then,

{
ω : Rω(Un) ≤ αn

}
⊂⋃αn

j=1

⋃`
i=0

{
ω : f jω(ζ) ∈ B2ηj |Un|(ξi)

}
. Thus, we have

θNε
({
ω : Rω(Un) ≤ αn

})
≤
∑̀
i=0

αn∑
j=1

∫
θε

({
ωj : f

(
f j−1
ω (ζ)

)
+ ωj ∈ B2ηj |Un|(ξi)

})
dθNε

≤
∑̀
i=0

αn∑
j=1

gε
∣∣B2ηj |Un|(ξi)

∣∣ =
∑̀
i=0

αn∑
j=1

gε4η
j|Un| ≤ 4(`+ 1)gε|Un|

η

η − 1
ηαn .

The proof now follows the same lines as the proof of Theorem D and Corollary F. �

4.2.2. Expanding and piecewise expanding maps in higher dimensions. Let us now consider
the multidimensional piecewise expanding systems defined in Section 3.2.2 but only with
a finite number, K, of domains of local injectivity; moreover let us restrict ourselves to a
mixing component which, for simplicity, we will take as the whole space Z; we will take µ
as the unique absolutely continuous invariant measure with density h. In addition, we ask
each ∂Zi to be included in piecewise C1 codimension-1 embedded compact submanifolds
and for Z(f) = sup

x

∑K
i=1 #{ smooth pieces intersecting ∂Zi containing x}

sα +
4s

1− s
Z(f)

γN−1

γN
< 1, (4.9)
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where γN is the N-volume of the N-dimensional unit ball of RN . Then, we know that by
Lemma 2.1. in [Sau00], item (4) in Definition 3.5 is satisfied 3. Notice that formula (4.9)
gives exponential decay of correlations for the adapted pair: L1 functions against functions
in the quasi-Hölder space Vα.
We perturb again this kind of maps with additive noise by asking that the image of Z
is strictly included in Z. We will also require that the density h is bounded from below
by the positive constant hm. We will now prove the exponential decay of correlations for
the random evolution operator Uε, by using the perturbation theory in [KL09], which we
will also quote and use later on in Section 5.2. This theory ensures us that the perturbed
Perron-Frobenius operator Pε is mixing on the adapted pair (L1, Vα) whenever we have:
(i) a uniform Lasota-Yorke inequality for Pε, i.e., all the constants in that inequality are
independent of the noise ε,
(ii) the closeness property (see also hypothesis H4 in Section 5.2 below): there exists a
monotone upper semi-continuous function p : Ω → [0,∞) such that limε→0 pε = 0 and
∀ϕ ∈ Vα , ∀ε ∈ Ω : ||Pϕ− Pεϕ||1 ≤ pε||ϕ||α.

Condition (i) follows easily by observing that the derivative of the original and of the
perturbed maps are the same, and this does not change the contraction factor s, and the
multiplicity of the boundaries’ intersection, Z(f), is invariant too. Finally we invoke the
observation written in the preceding footnote. Therefore the Perron-Frobenius operators
Pω associated to the perturbed maps fω verify the same Lasota-Yorke inequality and
therefore the same is true for Pε.
Our next step is to prove condition (ii), in particular we have

Proposition 4.3. There exists a constant C such that for any ϕ ∈ Vα we have

‖Pϕ− Pεϕ‖1 ≤ Cεα||ϕ||α.

Proof. We have

‖Pϕ− Pεϕ‖1 ≤
∫
Z

∫
Ω

|Pωϕ(x)− Pϕ(x)|dθε(ω)dx.

3The inequality (4.9) ensures that for the unperturbed map the quantity η(ε1) < 1; see the definition
of this quantity after the formula (3.3). The value of η(ε1) is one of the constants in the Lasota-Yorke
inequality, see item (i) below, and we will require that it will be independent of the noise. This will be the
case for the additive noise since the determinant of the perturbed maps will not change and this is what
is used in (3.3) to control the Lebesgue measure of f−1

i Bε(∂fZi). The other factor in the Lasota-Yorke
inequality is also given in terms of the quantity (3.3).
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Putting G(x) = 1
|detDf(x)| , we can write

|Pωϕ(x)− Pϕ(x)| ≤
∑

Zi,i=1,...,K

|ϕ(f−1
i x)G(f−1

i x)1fZi(x)− ϕ(f−1
ω,ix)G(f−1

i x)1fωZi(x)|

+
∑

Zi,i=1,...,K

|ϕ(f−1
ω,ix)||G(f−1

i x)−G(f−1
ω,ix)|1fωZi(x)

:= I + II
(4.10)

where fω(x) = f(x) +ω and ω is a vector in RN with each component being less than ε in
modulus. Moreover f−1

ω,i denotes the inverse of the restriction of fω to Zi, which is denoted
by fω,i itself. We now bound the first sum, I, in (4.10) by considering two cases:
(i) Let us suppose first that x ∈ fZi ∩ fω,iZi. Then since both f and fω,i are injective,
there will be two points, yi and yω,i in Zi such that x = f(yi) = fω,i(yω,i) = f(yω,i) + ω.

This immediately implies that dist(yi, yω,i) ≤ s
√
Nε, if dist is the Euclidean distance. For

such an x we continue to bound the first summand, I, in (4.10) as:

I ≤
∑

Zi,i=1,...,K

G(f−1
i x)osc(ϕ,Bs

√
Nε(f

−1
i (x)))1fZi(x)

By integrating over Z we get∫
Z

( ∑
Zi,i=1,...,K

G(f−1
i x)osc(ϕ,Bs

√
Nε(f

−1
i (x)))1fZi(x)

)
dx =

∫
Z

P(osc(ϕ,Bs
√
Nε(x)))dx

=

∫
Z

osc(ϕ,Bs
√
Nε(x))dx ≤ (s

√
Nε)α|ϕ|α.

(ii) We now consider the case when x ∈ fZi∆fω,iZi; the Lebesgue measure of this last set
is bounded by ε times the codimension-1 volume of ∂fZi: let r denote the maximum of
those volumes for i = 1, · · · , k. Thus we get∫

Z

|Pωϕ(x)− Pϕ(x)|dx ≤ rε‖ϕ‖∞‖P1‖∞. (4.11)

We notice that the inclusion Vα ↪→ L∞m is bounded, namely there exists cv such that
‖ϕ‖∞ ≤ cv‖ϕ‖α. We therefore continue (4.11) as

(4.11) ≤ rεcv‖ϕ‖α‖P
h

h
‖∞ ≤ rεcv‖ϕ‖α

‖h‖∞
hm

We now come to the second summand, II, in (4.10); we begin by observing that

|G(f−1
i x)−G(f−1

ω,ix)| =

∣∣∣∣∣ 1

| detDf(f−1
i x)|

− 1

| detDf(f−1
ω,ix)|

∣∣∣∣∣
=
∣∣∣| detDf−1

i (x)| − | detDf−1
i (z)|

∣∣∣ ≤ | detDf−1
i (x)− detDf−1

i (z)|
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where z = f(yω,i) and dist(x, z) ≤
√
Nε. By using the Hölder assumption (2) in Defini-

tion 3.5, we have

II ≤ c(
√
Nε)α

∑
Zi,i=1,...,K

|ϕ(f−1
ω,ix)|| detDf−1

i (z)|1fωZi(x)

≤ c(
√
Nε)α

∑
Zi,i=1,...,K

|ϕ(f−1
ω,ix)| 1

| detDf(f−1
ω,i (x))|

1fωZi(x).

By integrating over Z we get the contribution

c(
√
Nε)α

∫
Z

Pω(|ϕ|)dx ≤ c(
√
Nε)α

∫
Z

|ϕ|dx ≤ c(
√
Nε)α||ϕ||L1(Leb).

In conclusion we get ‖Pϕ− Pεϕ‖1 ≤ Cεα‖ϕ‖α, where the constant C collects the various
constants introduced above. �

As a consequence of Proposition 4.3 we obtain exponential decay of correlations of quasi-
Hölder functions (in Vα), against L1 functions, in particular, for uniformly expanding maps
on the torus Td. Since, 1Un ∈ Vα, ‖1Un‖α is uniformly bounded by above, then it follows
by Theorem D and Corollary E that

Corollary 4.4. Let f : Td → Td be a C2 uniformly expanding map on Td, which is
randomly perturbed as in (2.2) with noise distribution given by (2.1). For any point ζ ∈M,
consider that X0, X1, . . . is defined as in (2.7) and let un be such that (2.10) holds. Then
the stochastic process X0, X1, . . . satisfies D2(un), D3(un) and D′(un), which implies that
we have an EVL for Mn such that H̄(τ) = e−τ and we have exponential HTS/RTS for balls

around ζ. Moreover, the REPP Nn defined in (2.20) is such that Nn
d−→ N , as n → ∞,

where N denotes a Poisson Process with intensity 1.

As in the previous case of maps on the circle, we may adapt the argument used in the
continuous case to consider more general piecewise expanding maps of Definition 3.5, as
long as there is a finite number of domains of local injectivity.

Proposition 4.5. Suppose that (Z, f, µ) is a topologically mixing multidimensional piece-
wise expanding system as in Definition 3.5, µ is the a.c.i.p. with a Radon-Nikodym density
bounded away from 0. We assume that there are K ∈ N domains of injectivity of the
map and there exists η > 1 such that for all i = 1, . . . , K and all x, y ∈ Zi we have
dist(f(x), f(y)) ≤ η dist(x, y). Consider that such a map is randomly perturbed with ad-
ditive noise as in (2.2) with noise distribution given by (2.1) and such that the image of
Z is strictly included in Z. For any point ζ ∈ M, consider that X0, X1, . . . is defined
as in (2.7) and let un be such that (2.10) holds. Then the stochastic process X0, X1, . . .
satisfies D2(un), D3(un) and D′(un), which implies that we have an EVL for Mn such that
H̄(τ) = e−τ and we have exponential HTS/RTS for balls around ζ. Moreover, the REPP

Nn defined in (2.20) is such that Nn
d−→ N , as n→∞, where N denotes a Poisson Process

with intensity 1.
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Proof. Previously, for maps on the circle, by putting some “safety regions” around the
discontinuity points we guaranteed that the iterates of f jω(Un), j = 0, 1, . . . , αn had one
connected component. Since in this case the border of the domains of injectivity are
codimension-1 submanifolds instead of single points (as in the 1-dimensional case), we
must proceed to a more thorough analysis. To that end, for each ω, for j = 1 let 1 ≤
l1 ≤ K be the number of intersections with non-empty interior between fω(Un) and Zi,
with i = 1, . . . , K. For each ` = 1, . . . , l1, let i` denote the index of the partition element

Zi` for which such intersection has non-empty interior, define U
(1,`)
n := fω(Un) ∩ Zi` and

let ζ1,` be a point in the interior of U
(1,`)
n . For any j = 2, . . . , αn, given the sets U

(j−1,k)
n ,

with k = 1, . . . , lj−1, let lj be the total number of intersections of non-empty interior

between fσj−1(ω)

(
U

(j−1,k)
n

)
and Zi, with i = 1, . . . , K. For each ` = 1, . . . , lj, let i` denote

the index of the partition element Zi` and k` the super index of the sets U
(j−1,k)
n for

which the intersection between fσj−1(ω)

(
U

(j−1,k`)
n

)
and Zi` has non-empty interior, define

U
(j,`)
n = fσj−1(ω)

(
U

(j−1,k`)
n

)
∩ Zi` and let ζj,` be a point in the interior of U

(j,`)
n .

In order to avoid the first return time to Un occurring before αn in a similar way to the
previous proofs, we require that:

dist(fσj−1(ω)(ζj−1,`), ζ) > 2ηj|Un| for all j = 2, . . . , αn, ` = 1, . . . , lj−1. (4.12)

Note that, as in the proof of Theorem D, for any ω ∈ Ω, we have |U (j,`)
n | ≤ ηj|Un|. This

implies that

if dist(fσj−1(ω)(ζj−1,`), ζ) > 2ηj|Un| > |Un|+ ηj|Un| then U
(j,`)
n ∩ Un = ∅. (4.13)

Note that, by equation (4.13), if (4.12) holds then clearly Rω(Un) > αn. Hence, letting
l0 = 1 and ζ0,1 = ζ, we may write that

{
ω : Rω(Un) ≤ αn

}
⊂

αn⋃
j=1

lj−1⋃
`=1

{
ω : fσj−1(ω)(ζj−1,`) ∈ B2ηj |Un|(ζ)

}
.

Recalling that lj ≤ Kj, for all j = 1, . . . , αn, it follows that, there exists some C > 0 such
that

θNε
({
ω : Rω(Un) ≤ αn

})
≤

αn∑
j=1

lj−1∑
`=1

∫
θε

({
ωj : f (ζj−1,`) + ωj ∈ B2ηj |Un|(ζ)

})
dθNε

≤
αn∑
j=1

lj−1∑
`=1

gεLeb
(
B2ηj |Un|(ζ)

)
≤

αn∑
j=1

KjgεCη
jLeb(Un) ≤ CgεLeb(Un)

ηK

ηK − 1
(ηK)αn

Now, the proof follows exactly in the same way as the proof of Theorem D and Corollary F,
except that in the final estimate (4.6), η should be replaced by ηK, which will not make
any difference by the choice of αn defined in (4.3). �
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5. Extremes for random dynamics from a spectral approach

In this section, we want to prove our results for the random case using another approach
introduced by Keller in [Kel12]. His technique is based on an eigenvalue perturbation for-
mula which was given in [KL09] under a certain number of assumptions that we recall in the
first subsection and adapt to our situation. We check those assumptions in Section 5.3 for
a large class of maps of the interval whose properties are listed in the conditions (H1-H5).
Possible generalisations deserve to be investigated and we point out here a major difficulty
in higher dimensions. In this case one should control (any kind of) variation/oscillation
on the boundaries of the preimages of the complement of balls (the set U c

m in the proof of
Proposition 5.2 below; it is important that such variation/oscillation grows at most sub-
exponentially). To sum up, the direct technique introduced in Section 4 and the spectral
one in this section are complementary. The direct technique is easily adapted to higher
dimensions but it requires assumptions on the noise in order to control the short returns
(see the quantity Rω(Un) in Proposition 4.5), which follows easily for additive noise. The
spectral technique is an alternative method and for the moment particularly adapted to
the 1-D case and, as we will see in a moment, the noise could be chosen in a quite general
way to prove the existence of the EI, formula (5.7). Instead, if we want to characterise
such an EI and show that it is always equal to 1, we need to consider special classes of
uniformly expanding maps and particularly the noise should be chosen as additive and
with a continuous distribution (Proposition 5.3). The fact that the existence of EI follows
for general classes of noises is clear by looking at the proof of Proposition 5.2. Indeed
what is really necessary is that the derivatives of the randomly chosen maps are close
enough to each other in order to guarantee the uniformity of the Lasota-Yorke inequality
for the perturbed Perron-Frobenius operator. This could be achieved quite widely and
with discrete distributions as well. Nevertheless, in order to make the exposition simpler
and coherent with the previous sections, we will consider additive noise, together with any
kind of distribution to prove Proposition 5.2 and with absolutely continuous distributions
to prove Proposition 5.3.

5.1. The setting. Given a Banach space (V, ‖ · ‖), and a set of parameters E which is
equipped with some topology, let us suppose there are λε ∈ C, ϕε ∈ V , νε ∈ V ′ (V ′ denotes
the dual of V) and linear operators Pε, Qε : V → V such that

λ−1
ε Pε = ϕε ⊗ νε +Qε (assume λ0 = 1) , (5.1)

Pε(ϕε) = λεϕε, νεPε = λενε, Qε(ϕε) = 0, νεQε = 0, (5.2)
∞∑
n=0

sup
ε∈E
‖Qn

ε‖ =: C1 <∞, (5.3)

∃C2 > 0,∀ε ∈ E : ν0(ϕε) = 1 and ‖ϕε‖ ≤ C2 <∞, (5.4)

lim
ε→0
‖ν0(P0 − Pε)‖ = 0, (5.5)

‖ν0(P0 − Pε)‖ · ‖(P0 − Pε)ϕ0‖ ≤ const · |∆ε| (5.6)
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where
∆ε := ν0((P0 − Pε)(ϕ0)).

Under these assumptions, Keller and Liverani got the following formula as the main result
in [KL09]:

1− λε = ∆εϑ(1 + o(1)) in the limit as ε→ 0 (5.7)

where ϑ is said to be a constant to take care of short time correlations, which is later
identified as the extremal index in extreme value theory context as mentioned in [Kel12,
Section 1.2]. Actually ϑ is given by an explicit and, in some cases, computable formula, and,
in fact, we will be able to compute it for our random systems. This formula is the content
of Theorem 2.1 in [KL09] and states that under the above assumptions, in particular when
∆ε 6= 0, for ε small enough, and whenever the following limit exists

qk := lim
ε→0

qk,ε := lim
ε→∞

ν0((P0 − Pε)P k
ε (P0 − Pε)(ϕ0))

∆ε

, (5.8)

we have

lim
ε→0

1− λε
∆ε

= ϑ := 1−
∞∑
k=0

qk. (5.9)

We now state equivalent ways to verify assumptions (5.1)-(5.6), we refer to [Kel12] for the
details.

(A1) There are constants A > 0, B > 0, D > 0 and a second norm | · |ω ≤ ‖ · ‖ on V (it
is enough to be a seminorm) such that:

∀ε ∈ E,∀ψ ∈ V, ∀n ∈ N : |P n
ε ψ|ω ≤ D|ψ|ω (5.10)

∃α ∈ (0, 1), ∀ε ∈ E,∀ψ ∈ V, ∀n ∈ N : ‖P n
ε ψ‖ ≤ Aαn‖ψ‖+B|ψ|ω (5.11)

Moreover the closed unit ball of (V, ‖·‖), is | · |ω-compact.
(A2) The unperturbed operator verifies the mixing condition

P = ϕ⊗ ν +Q0 (assume λ0 = 1)

(A3) ∃C > 0 such that

ηε := sup
‖ψ‖≤1

∣∣∣∣∫ (P0 − Pε)ψ dν0

∣∣∣∣→ 0, as ε→ 0 (5.12)

(A4) and
ηε ‖(P0 − Pε)ϕ0‖ ≤ C ∆ε (5.13)

Keller called this framework Rare events Perron-Frobenius operators, REPFO. We will
construct a perturbed Perron-Frobenius operator which satisfies the previous assumptions
and which will give us information on extreme value distributions and statistics of first
returns to small sets.

Before continuing, we should come back to our extreme distributions, namely to the quan-
tity {Mm ≤ um} = {r{φ>um} > m} where Um := {φ > um} is a topological ball shrinking
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to the point ζ (see (2.12): we changed Un into Um here). Now we consider the first
time rωUm(x) the point x enters Um under the realization ω, namely under the composition
· · ·◦fωk ◦fωk−1

◦· · ·◦fω1(x). For simplicity we indicate it by rωm(x) and consider its annealed
distribution:

(µε x θNε )((x, ω) : rωm(x) > m) = (µε x θNε )(Mm ≤ um) (5.14)

Let us write the measure on the left-hand side of (5.14) in terms of integrals: it is given by∫∫
{rωm>m}

d(µε x θNε ) =

∫∫
hε1Ucm(x)1Ucm(fω1x) · · ·1Ucm(fωm−1 ◦ · · · ◦ fω1x) dLeb dθNε (5.15)

which is in turn equal to ∫
M

P̃mε,mhε(x) dLeb (5.16)

where we have now defined

P̃ε,mψ(x) := Pε(1Ucmψ)(x). (5.17)

Let us note that the operator P̃ε,m depends on m via the set Um, and not on ε which is

kept fixed and that P̃ε,m “reduces” to Pε as m→∞. It is therefore tempting to consider

P̃ε,m as a small perturbation of Pε when m is large and to check if it shares the spectral
properties of a REPFO operator. We will show in a moment that it will be the case; let
us now see what that implies for our theory.

5.2. Limiting distributions. We now indicate the correspondences between the general
notations of Keller’s results and our own quantities:

P0 ⇒ Pε
Pε ⇒ P̃ε,m; Qε ⇒ Qε,m

ϕε ⇒ ϕε,m; ϕ0 ⇒ hε

λε ⇒ λε,m

νε ⇒ νε,m; ν0 ⇒ Leb

∆ε ⇒ ∆ε,m = µε(Um) = Leb((Pε − P̃ε,m)hε)

The framework for which we will prove the assumptions (A1)-(A4) for our REPFO P̃ε,m
are those behind the system and its perturbations which we introduced in the previous
sections and which we summarize here:

Hypotheses on the system and its perturbations
We consider piecewise expanding maps f of the circle or of the interval I which verify:
H1 The map f admits a (unique) a.c.i.p. which is mixing.
H2 We will require that

inf
x∈I
|Df(x)| ≥ β > 1. (5.18)
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and

sup
x∈I

∣∣∣∣D2f(x)

Df(x)

∣∣∣∣ ≤ C1 <∞, (5.19)

whenever the first and the second derivatives are defined.
H3 The couple of adapted spaces upon which the REPFO operators will act are: the space
of functions of bounded variation (as in Definition 3.1, we will indicate with Var the total
variation), and L1(Leb), with norm ‖·‖1; this time, we will write ‖·‖BV = Var(·) + ‖·‖1 for
the associated Banach norm.
H4 There exists a monotone upper semi-continuous function p : Ω → [0,∞) such that
limε→0 pε = 0 and ∀f ∈ BV, ∀ε ∈ Ω : ||Pf − Pεf ||1 ≤ pε||f ||BV 4.
H5 The density hε of the stationary measure is bounded from below Leb-a.e. and we call
this bound hε.

Extreme values
Let us therefore write P̃ε,mϕε,m = λε,mϕε,m, νε,mP̃ε,m = λε,mνε,m, and λ−1

ε,mP̃ε,m = ϕε,m ⊗
νε,m +Qε,m.

Then formula (5.7) implies that 1− λε,m = ∆ε,mϑε(1 + o(1)). We can therefore write:

(µε × θNε )(Mm ≤ um) =

∫
M

P̃mε,mhε(x) dLeb = λmε,m

∫
hε dνε,m + λmε,m

∫
Qε,mhε dLeb

= e−(ϑεmµε(Um)+mo(µε(Um)))

∫
hε dνε,m +O(λmε,m ‖Qε,m‖BV )

Remember that we are under the assumption that m (µε × θNε )(φ > um) = mµε(φ >
um) = mµε(Um) → τ , when m → ∞; moreover it follows from the theory of [KL09] that∫
hε dνε,m →

∫
hε dLeb = 1, as m goes to infinity. In conclusion we get

(µε × θNε )(Mm ≤ um) = e−τϑε(1 + o(1))

in the limit m → ∞ and where ϑε will be the extremal index and this will be explicitly
computed later on for some particular maps thanks to formula (5.9) and shown to be equal
to 1 for any point ζ, see Proposition 5.3 below.

Random hitting times
Let us denote again with rωUm(x) the first entrance into the ball Um. A direct application of
[Kel12, Proposition 2] and which is true for REPFO operators, allows to get the following
result, which we adapted to our situation and which provides an explicit formula for the

4This condition can be checked in several cases. We did it, for instance, in the previous section 4.2.2. A
general theorem is presented in Lemma 16 in [Kel82] for piecewise expanding maps of the interval endowed
with our pair of adapted spaces and with the noise given by a convolution kernel. This means that θε is
absolutely continuous with respect to Lebesgue on the space Ω with density sε, and our two operators are
related by the convolution formula Pεg(x) =

∫
Ω

(Pg)(x−ω)sε(ω)dω, where g ∈ BV . In the case of additive

noise, it is straightforward to check that the previous formula is equivalent to Pεg(x) =
∫

Ω
(Pωg)(x)sε(ω)dω,

where Pω is the Perron-Frobenius operator of the transformation fω.



LAWS OF RARE EVENTS FOR DETERMINISTIC AND RANDOM DYNAMICAL SYSTEMS 43

statistics of the first hitting times in the annealed case. Notice that this result strengthens
our Corollary E since it provides the error in the convergence to the exponential law.

Proposition 5.1. For the REPFO P̃ε,m which verifies the hypotheses H1-H5, and using
the notations introduced above, there exists a constant C > 0 such that for all m big enough
there exists ξm > 0 s.t. for all t > 0∣∣∣∣(µε × θNε )

{
rωUm >

t

ξm µε(Um)

}
− e−t

∣∣∣∣ ≤ Cδm(t ∨ 1)e−t

where δm = O(ηm log ηm),

ηm := sup

{∣∣∣ ∫
Um

ψ dLeb
∣∣∣; ‖ψ‖BV ≤ 1

}
= Leb(Um)

and ξm goes to ϑε as m→∞.

5.3. Cheking assumptions (A1)-(A4).

Proposition 5.2. For the REPFO P̃ε,m which verifies the hypotheses H1-H5, the assump-
tions (A1)-(A4) hold.

Proof. Condition (A1) means to prove the Lasota-Yorke inequality for the operator P̃ε,m.
We recall that the constantsA andB there must independent of the perturbation parameter
which in our case is m. We begin with the total variation.

The structure of P̃ε,m’s iterates is

(P̃nε,mψ) =

∫
· · ·
∫
Pωn(1UcmPωn−1(1Ucm · · · Pω1(ψ 1Ucm))) dθε(ω1) · · · dθε(ωn). (5.20)

Let us call Al,ωj the l-domain of injectivity of the map fωj and call f−1
l,ωj

the inverse of fωj
restricted to Al,ωj . We have:

Υω1,...,ωn := Pωn(1UcmPωn−1(1Ucm · · · Pω1(ψ 1Ucm)))(x)

=
∑

kn,...,k1

(ψ · 1Ucm · 1Ucm ◦ fω1 · · ·1Ucm ◦ fωn−1 ◦ · · · ◦ fω1)((f
−1
k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))

|D(fωn ◦ · · · ◦ fω1)((f
−1
k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))|

× 1fωn◦···◦fω1Ωk1,...,kn
ω1,...,ωn

(x)

The sets

Ωk1,...,kn
ω1,...,ωn

:= f−1
k1,ω1
◦ · · · ◦ f−1

kn−1,ωn−1
Akn,ωn ∩ f−1

k1,ω1
◦ · · · ◦ f−1

kn−2,ωn−2
Akn−1,ωn−1 ∩ · · ·

· · · ∩ f−1
k1,ω1

Ak2,ω2 ∩ Ak1,ω1

are intervals and they give a mod-0 partition of I = [0, 1]; moreover the image Hk1,...,kn
ω1,...,ωn

:=

fωn ◦ · · · ◦ fω1Ω
k1,...,kn
ω1,...,ωn

for a given n-tuple {kn, . . . , k1} is a connected interval. We also note
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for future purposes that we could equivalently write:

gn := 1Ucm · 1Ucm ◦ fω1 · . . . · 1Ucmfωn−1 ◦ · · · ◦ fω1 = 1Ucm∩f−1
ω1
Ucm∩···∩f

−1
ω1
◦···◦f−1

ωn−1
Ucm

Now we observe that the set

U c
m(n) := U c

m ∩ f−1
ω1
U c
m ∩ f−1

ω1
◦ f−1

ω2
U c
m ∩ · · · ∩ f−1

ω1
◦ · · · ◦ f−1

ωn−1
U c
m ∩ Ωk1,...,kn

ω1,...,ωn

is actually given by:

U c
m(n) := U c

m ∩ f−1
k1,ω1

U c
m ∩ f−1

k1,ω1
◦ f−1

k2,ω2
U c
m ∩ · · · ∩ f−1

k1,ω1
◦ · · · ◦ f−1

kn−1,ωn−1
U c
m ∩ Ωk1,...,kn

ω1,...,ωn

Since U c
m is the disjoint union of two connected intervals, the number of connected intervals

in U c
m(n) is bounded from above by n + 1 and it is important that it grows linearly with

n. We now take the total variation Var(Υω1,...,ωn). We begin to remark that, by standard
techniques:

Var

(
(ψgn)((f−1

k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))

|D(fωn ◦ · · · ◦ fω1)((f
−1
k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))|

1fωn◦···◦fω1Ωk1,...,kn
ω1,...,ωn

(x)

)

≤ 2Var
H
k1,...,kn
ω1,...,ωn

(
(ψgn)((f−1

k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))

|D(fωn ◦ · · · ◦ fω1)((f
−1
k1,ω1
◦ · · · ◦ f−1

kn,ωn
)(x))|

)

+
2

βn
1

Leb(Ωk1,...,kn
ω1,...,ωn)

∫
Ω
k1,...,kn
ω1,...,ωn

|ψgn| dLeb

where β is given by (5.18) in H2.
The variation above can be further estimated by standard techniques:

≤ 2

βn
Var

Ω
k1,...,kn
ω1,...,ωn

(ψgn) +
2

βn
1

Leb(Ωk1,...,kn
ω1,...,ωn)

∫
Ω
k1,...,kn
ω1,...,ωn

|ψgn| dLeb

+ 2 sup
ζ,ω1,...,ωn

|D2(fωn ◦ · · · ◦ fω1)(ζ)|
[D(fωn ◦ · · · ◦ fω1)(ζ)]2

∫
Ω
k1,...,kn
ω1,...,ωn

|ψgn| dLeb (5.21)

We now have:

|D2(fωn ◦ · · · ◦ fω1)(ζ)|
[D(fωn ◦ · · · ◦ fω1)(ζ)]2

=
n−1∑
k=0

D2fωn−k

(
n−1−k∏
l=1

Tωn−l(ζ)

)
[
Dfωn−k

(
n−1−k∏
l=1

fωn−l(ζ)

)]2 k∏
j=0

Dfωn−j+1

(
n−j∏
l=1

fωn−l(ζ)

)
By (5.19) in H2 and using again (5.18), the previous sum will be bounded by C1 times
the sum of a geometric series of reason β−1: we call C the upper bound thus found. Our
variation above is therefore bounded by:

(5.21) ≤ 2

βn
Var

Ω
k1,...,kn
ω1,...,ωn

(ψgn)+
2

βn
1

Leb(Ωk1,...,kn
ω1,...,ωn)

∫
Ω
k1,...,kn
ω1,...,ωn

|ψgn|dLeb+2C

∫
Ω
k1,...,kn
ω1,...,ωn

|ψgn|dLeb

(5.22)
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Now:

Var
Ω
k1,...,kn
ω1,...,ωn

(ψgn) ≤ Var
Ω
k1,...,kn
ω1,...,ωn

(ψ) + 2(n+ 1) sup
Ω
k1,...,kn
ω1,...,ωn

|ψ|

≤ [2(n+ 1) + 1]Var
Ω
k1,...,kn
ω1,...,ωn

(ψ) +
1

Leb(Ωk1,...,kn
ω1,...,ωn)

∫
Ω
k1,...,kn
ω1,...,ωn

|ψ| dLeb (5.23)

where 2(n+1) is an estimate from above of the number of jumps of gn. We now observe that
for a finite realization of length n, ω1, . . . , ωn, the quantity Ψn,ω1,...,ωn = inf

k1,...,kn
Leb(Ωk1,...,kn

ω1,...,ωn
),

where each kj runs over the finite branches of fωj , is surely strictly positive and this will

also implies that Ψ−1
n :=

∫
Ψ−1
n,ω1,...,ωn

dθNε > 0. We now replace (5.23) into (5.22), we sum

over the k1, . . . , kn and we integrate w.r.t. θNε ; finally we get

Var(P̃nε,mψ) ≤ 2

βn
(2n+ 3)Var(ψ) + [

4

βn
1

Ψn

+ 2C]

∫
I

|ψ| dLeb

In order to get the Lasota-Yorke inequality one should get a certain n0 and a number
β > κ > 1 and such that

2

βn0
(2n0 + 3) < κ−n0 ; (5.24)

the Lasota-Yorke inequality (5.10) will then follow with standard arguments. 5

We now compute the L1-norm of our operator. We have to compute ‖P̃nε,mψ‖1; by splitting
ψ into the sum of its positive and negative parts and by using the linearity of the transfer
operator, we may suppose that ψ is non-negative. This allows us to interchange the
integrals w.r.t. the Lebesgue measure and θNε and to use duality for each of the Pω. In
conclusion we get

‖P̃nε,mψ‖1 ≤
∫
|ψ|hε1Ucm(x)1Ucm(fω1x) · · ·1Ucm(fωn−1 ◦ · · · ◦ fω1x) dLeb ≤ ‖ψ‖1.

This concludes the proof of the Lasota-Yorke inequality, (A1). We have now to show that

the operator Pε, which is the unperturbed operator w.r.t. P̃ε,m, verifies the mixing condition
(A2). Now the Perron-Frobenius operator P for the original map f , which is in turn the
unperturbed operator w.r.t. Pε, is mixing (1 is the only eigenvalue of finite multiplicity
on the unit circle), since our original map f was chosen to be mixing (hypothesis H1),
and therefore, by the perturbation theory in [KL09] and the closeness of the two operators
expressed by assumption H4, also Pε is a mixing operator. Let us discuss the assumption
(A3).

5 By defining A = 2(2n0 + 3) and B =
[

4
Ψn0

+ 2C
]

2
1−κ−n0

, we have

Var(P̃nε,mψ) ≤ Aκ−nVar(ψ) +B

∫
I

|ψ|dLeb.
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Let us bound the following quantity, for any ψ of bounded variation and of total variation
less than or equal to 1:∣∣∣∣∫

I

(P̃ε,mψ(x)− Pεψ(x)) dLeb(x)

∣∣∣∣ =

∣∣∣∣∫
I

Pε(1Umψ)(x) dLeb(x)

∣∣∣∣
≤
∣∣∣∣∫ (∫

I

Pω(1Umψ) dLeb

)
dθε(ω)

∣∣∣∣ ≤ ‖ψ‖∞ Leb(Um)

where ‖ψ‖∞ ≤ ‖ψ‖BV and Leb(Um) goes to zero when m goes to infinity.

We now check assumption (A4) under the hypothesis H5.
We have:

‖(P̃ε,m − Pε)hε‖BV = ‖Pε(1Umhε)‖BV ≤ Aκ−1‖1Umhε‖BV +B‖1Umhε‖1

The right hand side is bounded by a constant C∗ which is independent of m. We recall
that in our case ∆ε,m = µε(Um) and that

ηε,m := sup
‖ψ‖BV ≤1

∣∣∣∣∫
I

(P̃ε,mψ(x)− Pεψ(x)) dLeb(x)

∣∣∣∣ ≤ Leb(Um)

(see computation above). Then

‖(P̃ε,m − Pε)hε‖BV ≤ C∗
µε(Um)

hεLeb(Um)
≤ C∗

∆ε,m

ηε,m

�

5.4. Extremal index. In this part, we investigate the quantity, see (5.8) and (5.9):

qk,m =
Leb((Pε − P̃ε,m)P̃kε,m(Pε − P̃ε,m)(hε))

µε(Um)

We recall that Um := Um(ζ) represents a ball around the point ζ. Our result is the
following.

Proposition 5.3. Let us suppose that f is either a C2 expanding map of the circle or a
piecewise expanding map of the circle with finite branches and verifying hypotheses H1-H4.
Then for each k,

lim
m→∞

qk,m ≡ 0,

i.e., the limit in the definition of qk in (5.8) exists and equals zero. Also the extremal index
verifies ϑ = 1 −

∑∞
k=0 qk = 1 and this is independent of the point ζ, the center of the ball

Um.

Proof. Let us define Gk,m ≡
∫

(Pε − P̃ε,m)P̃kε,m(Pε − P̃ε,m)hε dLeb.
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As (Pε − P̃ε,m)ψ = Pε(1Umψ), we may write Gk,m =
∫

1Um(x)P̃kε,m(Pε − P̃ε,m)hε dLeb.
By using (5.20) we get

Gk,m =

∫∫
1Um(fωk+1

◦fωk◦· · ·◦fω1x)1Ucm(fωk◦· · ·◦fω1x) . . .1Ucm(fω1x)1Um(x)hε(x) dLeb dθNε .

In order to simplify the notation let us put

ψk,Um,ω(x) = 1Um(fωk+1
◦ fωk ◦ · · · ◦ fω1x)1Ucm(fωk ◦ · · · ◦ fω1x) . . .1Ucm(fω1x)1Um(x).

Now let us prove that qk,m converges to 0. Our approach is very similar to what we did to
prove D′(um) and we now split the proof according to the regularity of the map.

(i) Suppose that f : S1 → S1 is a C2, expanding map, i.e., there exists |Df(x)| > λ > 1,
for all x ∈ S1. First, note that since S1 is compact and f is C2, there exists σ > 1 such
that |Df(x)| ≤ σ. Hence the set Um grows at most at a rate given by σ, so, for any ω ∈ ΩN

we have |f jω(Um)| ≤ σj|Um|. This implies that

if dist(f jω(ζ), ζ) > 2σj|Um| > |Um|+ σj|Um| then f jω(Um) ∩ Um = ∅. (5.25)

Note that, by inequality (5.25), if for all j = 1, . . . , k+ 1 we have dist(f jω(ζ), ζ) > 2σj|Um|,
then clearly ψk,Bm,ω(x) = 0, for all x. We define

Wk,m =
k+1⋂
j=1

{
ω ∈ (−ε, ε)N : dist(f jω(ζ), ζ) > 2σj|Um|

}
. (5.26)

Note that on Wk,m we have ψk,Um,ω = 0. We want to compute the measure of W c
k,m.

Observe that W c
k,m ⊂

⋃k+1
j=1

{
ω : f jω(ζ) ∈ B2σj |Um|(ζ)

}
. Hence, we have

θNε (W c
k,m) ≤

k+1∑
j=1

∫
θε

({
ωj : f

(
f j−1
ω (ζ)

)
+ ωj ∈ B2σj |Um|(ζ)

})
dθNε

≤
k+1∑
j=1

gε
∣∣B2σj |Um|(ζ)

∣∣ =
k+1∑
j=1

gε4σ
j|Um| ≤ 4gε|Um|

σ

σ − 1
σk+1.

Using this estimate we obtain:

Gk,m =

∫
Wk,m

∫
ψk,Um,ω(x)hε(x) dLeb dθNε +

∫
W c
k,m

∫
ψk,Um,ω(x)hε(x) dLeb dθNε

= 0 +

∫
W c
k,m

∫
ψk,Um,ω(x)hε(x) dLeb dθNε and because ψk,Um,ω(x) ≤ 1Um(x), we have:

≤
∫
W c
k,m

∫
1Um(x)hε(x) dLeb dθNε ≤ µε(Um) θNε (W c

k,m)

≤ µε(Um)4gε|Um|
σ

σ − 1
σk+1
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Now recall that qk,m =
Gk,m
µε(Um)

. It follows that

qk,m ≤
µε(Um)4gε|Um| σ

σ−1
σk+1

µε(Um)
≤ 4gε|Um|

σ

σ − 1
σk+1 −−−→

m→∞
0.

(ii) Using the same ideas as in the previous section, we can extend this result to the
piecewise expanding maps with finite branches. Recall that we need to define some ’safety
boxes’ in order to use the same arguments as in the continuous case. So, if for all j =
1, . . . , k + 1 and i = 1, . . . , `, where ` stands for the number of discontinuity points, we
have

dist(f jω(ζ), ξi) > 2σj|Um|, (5.27)

then the set Um consists of one connected component at each iteration, and also we have
f jω(Um) ∩ Um = ∅ which means ψk,Um,ω(x) = 0, for all x. Now let us define

Wk,m =
k+1⋂
j=1

⋂̀
i=0

{
ω ∈ (−ε, ε)N : dist(f jω(ζ), ξi) > 2σj|Um|

}
. (5.28)

Observe that in this case W c
k,m ⊂

⋃k+1
j=1

⋃`
i=0

{
ω : f jω(ζ) ∈ B2σj |Um|(ξi)

}
. Hence, we have

θNε (W c
k,m) ≤

∑̀
i=0

k+1∑
j=1

∫
θε

({
ωj : f

(
f j−1
ω (ζ)

)
+ ωj ∈ B2σj |Um|(ξi)

})
dθNε

≤
∑̀
i=0

k+1∑
j=1

gε
∣∣B2σj |Um|(ξi)

∣∣ =
∑̀
i=0

k+1∑
j=1

gε4σ
j|Um| ≤ 4(`+ 1)gε|Um|

σ

σ − 1
σk+1

Using this estimate we obtain:

Gk,m =

∫
Wk,m

∫
ψk,Um,ω(x)hε(x) dLeb dθNε +

∫
W c
k,m

∫
ψk,Um,ω(x)hε(x) dLeb dθNε

= 0 +

∫
W c
k,m

∫
ψk,Um,ω(x)hε(x) dLeb dθNε and because ψk,Um,ω(x) ≤ 1Um(x), we have:

≤
∫
W c
k,m

∫
1Um(x)hε(x) dLeb dθNε ≤ µε(Um)θNε (W c

k,m) ≤ µε(Um)4(`+ 1)gε|Um|
σ

σ − 1
σk+1

Since qk,m =
Gk,m
µε(Um)

, we get

qk,m ≤
µε(Um)4(`+ 1)gε|Um| σ

σ−1
σk+1

µε(Um)
≤ 4(`+ 1)gε|Um|

σ

σ − 1
σk+1 −−−→

m→∞
0.

�

Remark 5.1. Let us note that D′(um) implies that all qk’s are well defined and equal to

0. Assume that there exists k ∈ N and a subsequence (mi)i∈N such that limj→∞
Gk,mj
µε(Umj )

=
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α > 0. Let us prove that D′(um) does not hold in this situation. Recall that if D′(um)
holds then

lim
m→∞

m

bm/kmc∑
j=1

µε × θNε (X0 > um, Xj > um) = 0,

where km (which should not be confused with k, here) is a sequence diverging to ∞ but
slower than m, which implies that bm/kmc → ∞, as m→∞. Hence, let M0 be sufficiently
large so that for all m > M0 we have bm/kmc > k. Hence, for i sufficiently large so that
mi > M0, we may write

mi

bmi/kmic∑
j=1

µε × θNε (X0 > umi , Xj > umi) ≥ mi µε × θNε (X0 > umi , Xk+1 > umi)

≥ miGk,mi ∼
τ Gk,mi

µε(Umi)
→ τα > 0, as i→∞,

since Bm is such that mµε(Um)→ τ , as m→∞. This implies that D′(um) does not hold.
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Appendix A. Clustering and periodicity

Condition D′(un) prevents the existence of clusters of exceedances, which implies that
the EVL is standard exponential H̄(τ) = e−τ . However, when D′(un) fails, clustering of
exceedances is responsible for the appearance of a parameter 0 < ϑ < 1 in the EVL, called
the EI, which implies that, in this case, H̄(τ) = e−ϑτ . In [FFT12], the authors established
a connection between the existence of an EI less than 1 and periodic behaviour. This was
later generalised for REPP in [FFT13]. Namely, this phenomenon of clustering appeared
when ζ is a repelling periodic point. We assume that the invariant measure P and the
observable ϕ are sufficiently regular so that besides (R1), we also have that

(R2) If ζ ∈ X is a repelling periodic point, of prime period6 p ∈ N, then we have that
the periodicity of ζ implies that for all large u, {X0 > u} ∩ f−p({X0 > u}) 6=
∅ and the fact that the prime period is p implies that {X0 > u} ∩ f−j({X0 >
u}) = ∅ for all j = 1, . . . , p − 1. Moreover, the fact that ζ is repelling means that
we have backward contraction which means that there exists 0 < ϑ < 1 so that

6i.e., the smallest n ∈ N such that fn(ζ) = ζ. Clearly f ip(ζ) = ζ for any i ∈ N.
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j=0 f

−jp(X0 > u) corresponds to another ball of smaller radius around ζ with

P
(⋂i

j=0 f
−jp(X0 > u)

)
∼ (1− ϑ)iP(X0 > u), for all u sufficiently close to uF .

The main obstacle when dealing with periodic points is that they create plenty of depen-
dence in the short range. In particular, using (R2) we have that for all u sufficiently large
P({X0 > u} ∩ {Xp > u}) ∼ (1 − ϑ)P(X0 > u) which implies that D′(un) is not satisfied,

since for the levels un as in (2.10) it follows that n
∑[n/kn]

j=1 P(X0 > un, Xj > un) ≥ nP(X0 >

un, Xp > un) −−−→
n→∞

(1− ϑ)τ. To overcome this difficulty around periodic points we make a

key observation that roughly speaking tells us that around periodic points one just needs
to replace the topological ball {X0 > un} by the topological annulus

Qp(u) := {X0 > u, Xp ≤ u}. (A.1)

Then much of the analysis works out as in the absence of clustering. Note that Qp(u)
is obtained by removing from U(u) the points that were doomed to return after p steps,
which form the smaller ball U(u) ∩ f−p(U(u)). Then, the crucial observation is that the
limit law corresponding to no entrances up to time n into the ball U(un) is equal to the
limit law corresponding to no entrances into the annulus Qp(un) up to time n.

In what follows for every A ∈ B, we denote the complement of A as Ac := X \ A. For
s ≤ ` ∈ N0, we define

Qp,s,`(u) =
s+`−1⋂
i=s

f−i(Qp(u))c, (A.2)

which corresponds to no entrances in the annulus from time s to s+ `− 1. Sometimes to
abbreviate we also write: Q`(u) := Qp,0,`(u).

Theorem G ([FFT12, Proposition 1]). Let X0, X1, , . . . be a stochastic process defined by
(2.6) where ϕ achieves a global maximum at a repelling periodic point ζ ∈ X , of prime
period p ∈ N, so that conditions (R1) and (R2) above hold. Let (un)n be a sequence of
levels such that (2.10) holds. Then, limn→∞ P(Mn ≤ un) = limn→∞ P(Qn(un)).

Hence, the idea to cope with clustering caused by periodic points is to adapt conditions
D2(un) and D′(un), letting annuli replace balls.

Condition (Dp(un)). We say that Dp(un) holds for the sequence X0, X1, X2, . . . if for any
integers `, t and n |P (Qp,0(un) ∩Qp,t,`(un))− P(Qp,0(un))P(Qp,0,`(un))| ≤ γ(n, t), where
γ(n, t) is non increasing in t for each n and nγ(n, tn) → 0 as n → ∞ for some sequence
tn = o(n).

As with D2(un), the main advantage of this condition when compared to Leadbetter’s
D(un) (or others of the same sort) is that it follows directly from sufficiently fast decay of
correlations as observed in [Fre13, Section 5.1], on the contrary to D(un).

Assuming Dp(un) holds let (kn)n∈N be a sequence of integers such that (2.13) holds.
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Condition (D′p(un)). We say thatD′p(un) holds forX0, X1, X2, . . . if there exists a sequence

(kn)n∈N satisfying (2.13) and such that limn→∞ n
∑[n/kn]

j=1 P(Qp,0(un) ∩Qp,j(un)) = 0.

One of the main results in [FFT12] is:

Theorem H ([FFT12, Theorem 1]). Let (un)n∈N be such that (2.10) holds. Consider a
stationary stochastic process X0, X1, . . . be a stochastic process defined by (2.6) where ϕ
achieves a global maximum at a repelling periodic point ζ ∈ X , of prime period p ∈ N,
so that conditions (R1) and (R2) above hold. Assume further that conditions Dp(un) and
D′p(un) hold. Then limn→∞ P(Mn ≤ un) = limn→∞ P(Qp,0,n(un)) = e−ϑτ .

Regarding the convergence of the REPP, when there is clustering, one cannot use the
aforementioned criterion of Kallenberg because the point processes are not simple anymore
and possess multiple events. This means that a much deeper analysis must be done in order
to obtain convergence of the REPP. We carried this out in [FFT13] and we describe below
the main results and conditions needed. First, we define the sequence

(
U (κ)(u)

)
κ≥0

of

nested balls centred at ζ given by:

U (0)(u) = U(u) and U (κ)(u) = f−p(U (κ−1)(u)) ∩ U(u), for all κ ∈ N. (A.3)

For i, κ, `, s ∈ N ∪ {0}, we define the following events:

Qκ
p,i(u) := f−i

(
U (κ)(u)− U (κ+1)(u)

)
. (A.4)

Observe that for each κ, the set Qκ
p,0(u) corresponds to an annulus centred at ζ. Besides,

U(u) =
⋃∞
κ=0Q

κ
p,0(u), which means that the ball centred at ζ which corresponds to U(u) can

be decomposed into a sequence of disjoint annuli whereQ0
p,0(u) is the most outward ring and

the inner ring Qκ+1
p,0 (u) is sent outward by fp to the ring Qκ

p,0(u), i.e., fp(Qκ+1
p,0 (u)) = Qκ

p,0(u).

We are now ready to state:

Condition (Dp(un)∗). We say that Dp(un)∗ holds for the sequence X0, X1, X2, . . . if for
any integers t, κ1, . . . , κς , n and any J = ∪ςi=2Ij ∈ R with inf{x : x ∈ J} ≥ t,∣∣P (Qκ1

p,0(un) ∩
(
∩ςj=2Nun(Ij) = κj

))
− P

(
Qκ1
p,0(un)

)
P
(
∩ςj=2Nun(Ij) = κj

)∣∣ ≤ γ(n, t),

where for each n we have that γ(n, t) is nonincreasing in t and nγ(n, tn) → 0 as n → ∞,
for some sequence tn = o(n).

This mixing condition is stronger than Dp(un) because it requires a uniform bound for
all possible integer values of κ1, nonetheless, it still is much weaker than the original
D(un) from Leadbetter [Lea74] or any of the kind. As all the other preceding conditions
(D2, D3, D

p) it can be easily verified for systems with sufficiently fast decay of correlations
(see [Fre13, Section 5.1]).

In [FFT13], for technical reasons only, we also introduced a slight modification to D′p(un).
The new condition was denoted by D′p(un)∗ and the difference is that we require that

limn→∞ n
∑[n/kn]

j=1 P(Qp,0(un) ∩ {Xj > un}) = 0 holds.
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We can now state the main theorem in [FFT13].

Theorem I ( [FFT13, Theorem 1]). Let X0, X1, . . . be given by (2.6), where ϕ achieves a
global maximum at the repelling periodic point ζ, of prime period p, and conditions (R1) and
(R2) hold. Let (un)n∈N be a sequence satisfying (2.10). Assume that conditions Dp(un)∗,
D′p(un)∗ hold. Then the REPP Nn converges in distribution to a compound Poisson process
N with intensity ϑ and multiplicity d.f. π given by π(κ) = ϑ(1 − ϑ)κ, for every κ ∈ N0,
where the extremal index ϑ is given by the expansion rate at ζ stated in (R2).

Appendix B. Computing the EI and the multiplicity distribution

In order to prove the existence of an EI around a repelling periodic point, we may use
Theorem H and, basically, observe that, once conditions Dp(un) and D′p(un) are verified,
by (R2) the EI may be computed from the formula:

ϑ = lim
n→∞

P(Qp,0(un))

P(Un)
. (B.1)

In order to compute the multiplicity distribution of the limiting compound Poisson process
for the REPP, when ζ is a repelling periodic point, we can use the following estimate :

Lemma B.1 ([FFT13, Corollary 2.4]). Assuming that ϕ achieves a global maximum at
the repelling periodic point ζ, of prime period p, and conditions (R1) and (R2) hold, there
exists C > 0 depending only on ϑ given by property (R2) such that for any s, κ ∈ N and u
sufficiently close to uF = ϕ(ζ) we have for κ > 0∣∣P(N s+1

u,0 = κ
)
− s

(
P(Qκ−1

p,0 (u))− P(Qκ
p,0(u))

)∣∣
≤ 4s

s∑
j=p+1

P(Q0
p,0(u) ∩ {Xj > u}) + 2C P(X0 > un),

and in the case κ = 0∣∣P(N s+1
u,0 = 0

)
−
(
1− sP(Q0

p,0(u))
)∣∣ ≤ 2s

s∑
j=p+1

P(Q0
p,0(u) ∩ {Xj > u}) + C P(X0 > u).

The idea then is to realise that in the proof of Theorem I one splits the first n r.v.
X0, . . . , Xn−1 into blocks of size bn/knc with a time gap of size tn between them. Then using
the asymptotic “independence” obtained from Dp(un)∗ and D′p(un)∗ we get the compound
Poisson limit with multiplicity distribution determined by the distributional limit of the
number of exceedances in each block of size bn/knc, given that at least one exceedance oc-

curs. Hence, we need to compute, for all κ ∈ N: limn→∞ P
(
N bn/knc+1
un,0 = κ|N bn/knc+1

un,0 > 0
)

.

Since, by D′p(un)∗, we have that bn/knc
∑bn/knc

j=p+1 P(Q0
p,0(un) ∩ {Xj > un}) = o(1/kn), then
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by Lemma B.1 we have that, for every κ ∈ N,

π(κ) = lim
n→∞

P
(
N bn/knc+1
un,0 = κ|N bn/knc+1

un,0 > 0
)

= lim
n→∞

(
P(Qκ−1

p,0 (un))− P(Qκ
p,0(un))

)
P(Q0

p,0(un))
.

(B.2)
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Hale Aytaç, Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687,
4169-007 Porto, Portugal

E-mail address: aytach@fc.up.pt
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