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Abstract

Telecommunication equipments, such as Network Elements, are becoming in-
creasingly complex systems since they have to simultaneously support mul-
tiple communication interfaces and several end-user/ management services.
Moreover, Network Elements are required to be available (in service) for long
periods of time, with service failure to service usage rates in the order of 107,
to survive overload conditions and to provide services with guaranteed delays
for 95% of the usages. These aspects imply that significant project effort has
to be placed on the validation of this type of systems.

Traditional Network Element validation practices consist in applying to
the equipment two type of tests: conformance and load tests. The former are
used to verify the compliance of each communications interface with standard
specifications whereas the latter are used to find whether the system can
survive for long periods of time and to get simple system measures, such
as delays and number of calls or packets. Over the last years, considerable
advances were achieved with the application of formal methods to protocol
conformance testing. When a protocol is formally specified, it is possible
to find a set of tests which can be used to prove a relation between the
implementation under test and the specification.

Although these important results are already applicable to real protocols,
they are still insufficient to validate complex Network Elements for two main
reasons: 1) unlike protocols, these systems are specified using multiple tech-
niques, which are selected by their modeling power and expressiveness rather
than by their mathematical basis; 2) these specifications are scattered over
tens of documents which, at test time, reveal themselves full of inconsisten-
cies. In addition, the pressure to market a product is usually incompatible
with the time required to derive and validate the number of tests which would
be required to test these large systems. Thus, there is a gap between formal
testing methods and current testing needs.

This thesis attempts to reduce this gap by proposing a testing methodo-
logy which improves the current Network Element testing practices by taking
advantage of protocol formal testing solutions.

According to the methodology proposed, a Network Element must be first
modeled by two sets of components which represent complementary views of



the system: the communications view and the services view.

The communications view concentrates in the communications interfaces
of the Network Element, that is, its protocol stacks. A typical communica-
tions view component is a protocol state machine. Most of the times these
state machines are well known and documented in standards - SDL specifica-
tions are often available in ITU and ETSI recommendations. For this reason,
the methodology recommends that the communications components should
be tested by using directly the most advanced protocol formal testing results.

The service view concentrates on the end-user and management services
of the Network Element. A service is usually composed by a set of build-
ing blocks (communications components included) possibly shared by other
services. A service may also need to use databases, to manipulate complex
information and to manage its individual blocks. For these reasons, service
specifiers sometimes prefer object oriented modelling techniques. In order to
adapt the testing process to this reality, but also to continue taking advantage
of formal testing world, the methodology proposes that the services could be
modeled by a new set of abstract components - the service view components.
These components are specified in an incomplete style, that is, by describing
only their user-interfaces interactions. This simplification has, however, two
drawbacks: 1) by avoiding the specification of every service building block,
that is, the service intra-interfaces behaviour description, numerous invalid
behaviours are assumed as valid in the incomplete service specification; 2)
simple faults in basic building blocks (e.g. device drivers) may be random
in the service abstraction selected and be observable only after long service
working times.

The first drawback is overcome by using behaviour tests which are de-
veloped based on expected service use cases that are assumed to describe
correctly and completly the service utilizations. To overcome the second
drawback, the service behaviour tests are made cyclic and allowed to be run
for long periods of time so that random faults may be observed. Since very
long traces (sequences of events) are available as the result of the execution
of cyclic tests, the traditional protocol verdict function is replaced by more
general trace evaluation functions which, by incorporating the time dimen-
sion, become capable of expressing time-probabilistic-behaviour properties
and, by doing that, of providing the means required to express and evaluate
the quality of the services.

The described methodology is furthermore enhanced by the proposal of
some architectures for service testing. In particular, it is shown how SDL
can be used to support them.

The methodology proposed in this thesis is a generalisation of the test
method used by the author during the validation of the NEC FA1201 Access
Network, which was carried out in INESC Porto during 1995-1999. The main



results and contributions of this thesis are, to the best of our knowledge, (1)
the testing methodology itself, (2) the service testing method, (3) the method
used to describe QoS properties and (4) the service testing architectures.






Resumo

A necessidade crescente dos equipamentos de telecomunicagoes, entre os quais
os Elementos de Rede, suportarem simultaneamente multiplas interfaces de
comunicagoes e servigos de utilizador/gestao tem feito aumentar significati-
vamente a sua complexidade. Adicionalmente, estes sistemas devem oferecer
elevada disponibilidade, taxas de falha de utilizacao dos servicos na ordem
dos 1075, sobreviver em condicoes de sobrecarga e fornecer servicos com atra-
sos maximos garantidos para 95% das utilizagoes. Como consequéncia destes
requisitos, uma parte significativa dos custos de desenvolvimento destes equi-
pamentos resulta do trabalho de validacao.

As praticas tradicionais de validacao de Elementos de Rede consistem na
aplicacao de testes de conformidade e de carga. Os primeiros sao usados
para verificar a conformidade de cada interface de comunicagdes com a sua
especificacao normalizada. Os segundos sao usados para avaliar se o siste-
ma sobrevive a longos periodos de utilizacao, em condicoes de carga real, e
para obtencao de indicadores simples de desempenho, tais como atrasos e
nimero de chamadas ou pacotes. No entanto, durante os tltimos anos foram
realizados avancos consideraveis na aplicacao de métodos formais ao teste de
conformidade de protocolos. Quando um protocolo é especificado formalmen-
te é possivel obter automaticamente um conjunto de testes que demonstrem
uma relacao entre a implementacao sob teste e a sua especificacao.

Apesar destes resultados poderem ser ja aplicaveis a protocolos de comple-
xidade real, sao ainda insuficientes para validar Elementos de Rede complexos
pelas seguintes razoes: 1) ao contrdrio dos protocolos, estes sistemas sao es-
pecificados através de multiplas técnicas que sao seleccionadas mais pelo seu
poder de modelacao e expressividade do que pela suas caracteristicas ma-
tematicas; 2) estas especificagoes estao dispersas por dezenas de documentos
e, durante o perfodo de testes, revelam normalmente muitas inconsisténcias.
Adicionalmente, a necessidade de se colocar o equipamento no mercado du-
rante a sua janela de oportunidade é normalmente incompativel com o tempo
necessario para derivar e validar os testes. Pode-se, por este motivo, afirmar
que existe um vazio entre os métodos de teste formais e as reais necessidades
de teste dos Elementos de Rede.

Esta tese tenta diminuir este vazio propondo uma metodologia de teste de



Elementos de Rede que melhore as préticas de teste actuais tirando partido
das solucoes de teste formal de protocolos.

Para isso, o Elemento de Rede é representado como dois conjuntos de
componentes que traduzem vistas complementares do sistema: a vista das
comunicacoes e a vista dos servicos.

A vista das comunicacoes representa as interfaces de comunicacoes do Ele-
mento de Rede, isto é, as suas pilhas protocolares. Um componente tipico
da vista de comunicagoes ¢ uma maquina de estados de um protocolo. Nor-
malmente estas maquinas de estados sao conhecidas e estao documentadas
em normas - existem frequentemente especificacoes SDL nas recomendacoes
da ITU e da ETSI. Por esta razao, a metodologia proposta recomenda que
os componentes de comunicacoes sejam testados usando os resultados mais
avancados do teste formal de protocolos.

A vista dos servigos representa os servigos de utilizador e de gestao for-
necidos pelo Elemento de Rede. Um servigo é normalmente composto por
um conjunto de blocos constituintes (incluindo os componentes de comu-
nicagoes), possivelmente partilhados com outros servigos. Um servigo pode
ainda aceder a bases de dados, manipular informacao complexa e gerir os seus
blocos constituintes. Por estes motivos, os especificadores dos servicos usam
frequentemente técnicas de modelacao orientadas aos objectos. De forma a
adaptar o processo de teste a esta realidade, mas também a tirar partido
das vantagens dos métodos de teste formal, a metodologia propoe que os ser-
vigos sejam modelados por um novo conjunto de componentes abstractos —
os componentes da vista de servicos. Estes componentes sao descritos de for-
ma incompleta, isto é, através das interaccoes dos utilizadores com as suas
interfaces. Esta simplificacdo, no entanto, origina dois problemas: 1) nao
considerando a especificacao de todos os blocos constituintes do servico, isto
é, a descricao dos funcionamentos intra-interfaces, numerosos funcionamentos
invalidos sao assumidos como validos na especificacao incompleta do servico;
2) as falhas simples nos blocos constituintes (device drivers, por exemplo)
podem aparecer de forma aleatoria na abstraccao de servico seleccionada e
observaveis apenas ao fim de longos tempos de execucao do servigo.

Na metodologia proposta o primeiro problema é resolvido através de tes-
tes de funcionamento que se baseiam em casos tipo de utilizacao correcta e
completa do servico. O segundo problema é resolvido transformando os testes
de funcionamento em testes ciclicos que devem ser executados durante longos
intervalos de tempo de modo a que as falhas aleatérias possam ser observa-
das. Como resultado destes testes sao obtidos tracos (sequéncias de eventos)
longos. A funcao verdicto tradicional usada nos testes de conformidade é,
por isso, substituida por funcoes de avaliacao de tracos mais genéricas que,
incorporando a descricao de tempos, possibilitam a especificacao de proprie-
dades de funcionamento probabilistico-temporal e, fazendo-o, fornecem os



mecanismos necessarios a descricao e avaliacao de propriedades de qualidade
de servigo.

A metodologia descrita é ainda melhorada com a proposta de algumas
arquitecturas para teste de servicos. Em particular, é demonstrada a utili-
zaccao de SDL como linguagem de suporte destas arquitecturas.

A metodologia de teste proposta resultou da generalizacdo do método
de teste usado pelo autor durante a validacao da Rede de Accesso FA1201
da NEC, que decorreu entre 1995 e 1999 no INESC Porto. Os principais
resultados e contribuicoes da tese sao (1) a metodologia de teste em si, (2) o
método de teste de servigos, (3) o método de especificacao de propriedades
de qualidade de servigo e (4) a arquitectura de teste de servigos.






Résumé

Les systemes de télécommunications, parmis lequels les Eléments de Réseau,
deviennent systemes de plus en plus complexes puisqu’ils doivent simul-
tanément supporter multiples interfaces de transmission complexes et services
d’usager/ gestion. D’ailleurs, les Eléments de Réseau doivent étre disponible
(en service) pendant longues périodes de temps, avec un taux de failles de
service de 1075, soufrir surcharges et fournir service avec des délais garantis
pour 95% des utilisations. Ces aspects impliquent qu’une part significative
des cotts de développement sont mis sur la validation de ce type de systemes.

Les pratiques traditionnelles de validation d’Eléments Réseau consistent
dans ’application de deux type de tests: tests de conformité et de charge.
Les premiers sont employés pour vérifier la conformité de chaque interface de
communications avec les normes et le deuxieme type est employé pour trouver
si le systeme peut résister pendant de longues périodes de temps et obtenir
des measures simples sur le systeme, tels que delais et nombre d’appels ou
de trames. Au cours de dernieres années, des avances considérables ont été
obtenues dans l'application des méthodes formelles aux test de conformité
des protocoles. Quand un protocole est décrit dans un langage qui peut étre
traduit en un certain modele mathématique, il est possible de développer un
ensemble de tests qui peuvent étre employés pour montrer une relation entre
la réalisation et la spécification.

Bien que ces résultats soient déja applicables a des protocoles de dimen-
sion réel, ils sont insuffisants pour valider les Eléments de Réseau complexes
par deux raisons principales: 1) ces systeémes sont habituellement décrits
en utilisant multiples techniques de spécification, qui sont choisies plus par
leur expressivité que par leur base mathématique; 2) ces spécifications sont
dispersées par des dizaines de documents qui, au temps de test, se revelent
pleins d’incohérences. En outre, la pression par rapport au temps de lancer
un produit sur le marché est habituellement incompatible avec le temps re-
quis pour dériver et valider le nombre de tests qui seraient exigés pour ces
systemes complexes. Il y a, par ces raisons, une grande distance entre les
méthodes de test formelles et les besoins de test actuels.

Cette these essaye de contourner ce probleme en proposant une méthodologie
de test qui améliore les pratiques de test d’Eléments de Reseau actuelles en



profitant des solutions de test formel des protocoles.

Selon la méthodologie proposée, un Elément de Réseau doit étre d’abord
modelé par deux ensembles de composants qui représentent des vues com-
plémentaires du systeme: la vue de communications et la vue de services.

La vue de communications représente les interfaces de comunications de
’Eléments de Réseau, c’est a dire, ses piles de protocoles. Un composant
typique de la vue de communications est une machine d’états de protoco-
le. Ces machines sont bien connues et documentées dans les normes - les
caractéristiques de SDL sont souvent disponibles dans des recommandations
d’ITU et d’ETSI. Par cette raison, la méthodologie recommande que les com-
posants de communications doivent étre testés en utilisant directement les
résultats du test formel des protocoles.

La vue de services se concentre sur les services d’utilisateur et de ges-
tion des Eléments de Réseau. Un service est composé habituellement par
un ensemble de modules (composants de communications inclus) probable-
ment partagés avec d’autres services. Un service peut également utiliser des
bases de données, manipuler I'information complexe et controler ses blocs.
Pour ces raisons, les spécificateurs de service préferent parfois des techniques
orientés aux objects. Afin d’adapter le processus de test a cette réalité, mais
de continuer également de profiter du test formel, la méthodologie propose
que les services soyent modelés par un nouvel ensemble de composants abs-
traits - les composants de la vue de service. Ces composants sont indiqués
dans un modele inachevé, c’est a dire, en décrivant seulement les interactions
utilisateur-interfaces. Cette simplification a, cependant, deux inconvénients:
1) en évitant la specification de chaque module de service (la description
de comportement au dela des interfaces de service), de nombreux compor-
tements incorrects sont assumés comme valides; 2) les défauts simples dans
les blocs fonctionnels du composant (par exemple modules de device drivers)
peuvent étre aléatoires dans 1’abstraction de service choisie et étre observa-
bles seulement apres de longs temps de service.

Le premier inconvénient est surmonté en utilisant les tests de comporte-
ment qui sont développés sur les cas prévus d’utilisation de service qui, on
assume, décrivent correctement les utilisations de service. Pour surmonter le
deuxieme inconvénient, les tests de comportement de service sont rendus cy-
cliques et sont exécutés pendant de longues périodes de sorte qu’on puisse ob-
server des fauts aléatoires. Puisque une trés longue trace (séquence d’events)
résulte de I’exécution cyclique du test, la fonction verdict doit étre remplacé
par une fonction plus générale d’évaluation de traces qui, en incorporant des
temps, devient capable d’exprimer des propriétés de comportement depen-
dent du temps et des probabilitées et ainsi, fournir les moyens necessaires
pour exprimer et évaluer le qualité du services.

La méthodologie décrite propose aussi quelques architectures pour le test



de services. En particulier, on montre comment SDL peut étre employé pour
les supporter.

La méthodologie de test proposée est une généralisation de la méthode de
test employée par 'auteur pendant la validation du Réseau d’Acces FA1201,
fabriqué par NEC, qui a été effectué a INESC Porto pendant 1996-1999. Les
résultats et les contributions principaux de ce these sont, au meilleur de notre
connaissance, (1) la méthodologie de test elle-méme, (2) la méthode de test
de services, (3) la méthode employée pour exprimer des propriétés de QoS et
(4) larchitecture de test de service.
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Chapter 1

Introduction

Public telecommunications networks have changed dramatically during the
last twenty years. First, digital electronics opened the way to new transmis-
sion and switching techniques which, gradually with the progress in digital
signal prrocessing techniques, led also to the digitalisation of the subscriber
access and terminal equipments. During the same period, public data net-
works started to expand using the concept of packet switching in opposition
to circuit switching in the telephony networks. In the last years, digital mo-
bile communications have also exploded. Nowadays, public digital telecom-
munications networks such as PSTN, ISDN and ATM coexist and interop-
erate with mobile GSM and packet oriented networks, which are supported,
among others, by leased lines, ATM and Frame Relay. At the same time, the
logical structuring of these networks also became a reality. Intelligent Net-
works, for instance, have provided the global telecommunications network
with abstraction levels which enable the easy development, deployment and
maintenance of new telecommunications services. Global network manage-
ment techniques, such as those described in the TMN standards, have also
achieved some progresses although their success is far from proved.

Meanwhile, IP, which is as old as the first packet networks but not directly
controlled by the public operators, is growing at an astonishing rate due to
two main factors. First, its unifying concept which enables the integration
of multiple subnetwork technologies under the same umbrella. Second, the
success of the HTTP/HTML based applications which unlocked the fifteen
years old guessing of what would general network services look like. By using
TCP/IP, these services are forcing IP to go into small company premises and
end customer homes, in parallel with what has happened to the traditional
voice service. This fact opens space for a new set of services with real time
requirements over IP, such as voice and video, giving to IP the place which ten
years ago was thought to be reserved for ATM. The new IP role is supporting
the second revolution of the last twenty years in public networks, giving place
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to the new concept of public telecommunications network.

The high scale deployment of IP, however, brings some problems. First,
vital IP services (e.g. Domain Name System) which traditionally run on the
hosts will have to migrate to the networks controlled by the operator. On
the other hand, new management services will have to be introduced. Global
service abstractions similar to those existing in Intelligent Networks will, for
that reason, be adopted. Second, some mechanisms to support the contract
of services per session, similar to the signalling stacks used to allocate re-
sources in circuit networks, will also be required (e.g MultiProtocol Label
Switching for Service Level Agreements). Third, mechanisms for guarantee-
ing the quality of the services contracted (e.g. delays, packet loss and Bit
Error Rate) will also have to be implemented in IP equipment. At last, the
high reliability required in typical telecommunications equipment will also
be required for IP equipment.

Whatever the type of technology and communications concept used, there
are common issues. First, in all cases a network can by described as a set of
nodes which are interconnected by links (cables/ optical fibres or wireless).
Second, Network Elements are complex systems since they have to simul-
taneously support multiple complex communications interfaces and several
end-user/management services. Moreover, Network Elements are required to
be available for long periods of time, to provide services correctly and with
guaranteed quality. These factors, helped by the liberalisation of public tele-
communications markets, are creating very high demands on the validation
of the Network Element prototypes, which is usually achieved by means of
testing practices.

1.1 Network Element

1.1.1 Characterisation

This thesis main objective is to propose a methodology for testing a class of
telecommunication systems known as Network Elements (NE) [1], which are
characterised by:

1. being part of the global public telecommunication infrastructure;

2. having some communication interfaces described in recommendations
published by the ITU-T or ETSI,

3. being mainly digital.

Therefore, significant parts of them are either implemented in traditional lan-
guages (e.g. C or assembly) used to program microcontrollers/microprocessors
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or in some hardware language (e.g. VHDL) used to control programmable
hardware components. Examples of NEs are digital telephones, digital access
networks, digital local exchanges and routers.

The development and validation of a Network Element is a complex issue
for which manufacturers may have defined internal rules. The characteristics
2 and 3 mentioned above imply that (1) SDL [2] specifications are available
for some NE communication interfaces, since SDL is mandatory for ETSI
and ITU-T protocol standards (2) management services can be described
as object models [3]. These facts are pushing manufacturers to look for
SDL toolsets [4], [5], to use object oriented techniques [6], [7], and to adopt
generic software engineering methods and practices. By using SDL toolsets,
the SDL specifications can be captured easily from the standards and the
number of interpretation problems is reduced. The object oriented methods,
when used in SDL or as complement of it, can ease the implementation of
the management and end user services. By using recent software engineering
techniques [8], [9], [10], concepts such as components, reutilization and model
verification can be employed which are known to reduce the development
times and improve the final product quality.

The development of a Network Element may be described in terms of the
following tasks [11]: 1) Requirements identification and analysis; 2) Specific-
ation; 3) Design; 4) Implementation; 5) Testing.

In the Requirements identification and analysis task, which is known to
be the first task, the services, interfaces and physical NE configurations are
identified. When a SDL toolset is used, typical use cases are drawn as Mes-
sage Sequence Charts (MSC) [12]. This exercise helps to understand the
functions required for the NE and provides the project with a set of valuable
behaviour requirements.

In Specification, the phase that comes next, the NE interfaces (signalling),
management and end-user service are jointly considered. The system archi-
tecture begins to emerge as a set of predefined interface and management
components which are interconnected by new components so that the NE
services can be provided. When a SDL toolset is used, a system or a set
of systems must be defined in terms of blocks, main processes and signals
exchanged among them.

In Design, the NE components are characterised in terms of functions
and interfaces. In SDL, for instance, the processes must be known along
with their signals and lifetimes.

During Implementation, every component is finalised. Signalling com-
ponents, for instance, can be implemented as SDL state machines that, af-
terwards, can be translated into some programming language. Firmware,
device drivers, management and other services must also be implemented in
some adequate language.
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1.1.2 Testing

Validation is a working principle which can be applied to every project out-
come, independently of the development phase, and consists in verifying if it
satisfies a set of expectations. A specification document can be read by some
external reviewer which checks for completeness, clearness and consistency.
An SDL reachability graph can be explored by some program which verifies
if the model is free of dead/ livelocks and executes correctly under certain
use cases. A final NE prototype can be tested by final end users who, with
the help of tools, will verify if the system carries out its functions correctly.

Testing is a particular type of validation which addresses the final project
results - the implemented NE components and the NE itself. Two types of
testing activities are usually carried out over a NE: development tests and
final prototype tests.

Development testing

Development tests, which are a common practice among programmers, are
of two types: component and integration [13].

Component testing consists of evaluating individual components in their
development environment with respect to their correctness. Depending on
the abstraction model used, a set of use cases are defined so that the good
(positive testing) as well as bad (negative testing) behaviour characteristics
can be evaluated. Tests are usually short.

Integration testing consists in verifying if a set of components, forming a
larger component, still work as expected. These tests are similar to compon-
ent testing, i.e., a number of short tests will be applied to the new resulting
component. The internal component interfaces are usually monitored so
that a faulty component can be identified. These tests become very import-
ant since they can be used to validate the work of a person, a team or a
company.

Component and integration tests are carried out by the engineers involved
in the development. Since various types of integration can exist (e.g. hard-
ware/ hardware, hardware/ drivers, drivers/ signalling, signalling/ services,
graphical interfaces/ services) a multitude of methods can also be used.

Final prototype testing

Before reaching the market, NEs are required to succeed in some of the fol-
lowing issues: 1) conformance evaluation process, which is used to verify if
the NE interfaces are compliant with the standards; 2) operator defined ac-
ceptance process, which consists in passing a set of tests defined by operators
for a variety of situations, which may include quality of service evaluation;
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3) interoperability tests which are carried against other vendor equipments,
usually in laboratory environment; 4) pilot field trials, in which they have to
show good results, i.e., to have no visible faults and present good perform-
ance.

These aspects imply that a significant amount of effort has to be placed
on final prototype testing, so that existing problems can be detected and
eliminated at home. Two types of tests are usually applied to prototypes at
this stage: 1) conformance tests; 2) load tests.

Conformance tests are applied to the NE interfaces in order to evalu-
ate their compliance with the standards. Test suites are available from the
standardisation bodies, described in Tree and Tabular Combined Notation
(TTCN) [14], and can run on commercially available protocol analysers.

Load tests are used to evaluate the system performance under simulated
load conditions. These tests are becoming increasingly important since mar-
ket is demanding this type of information which is used to compare equipment
from different vendors.

1.2 Testing research

1.2.1 History and state of the art

Research on testing of protocols in telecommunication systems is carried
out by a small but active community which has obtained interesting results
during the last years. Advances in the area can be followed through two
IFIP sponsored conferences: the IWTCS (International Workshop on Test-
ing of Communicating Systems) and the FORTE/PSTV (Formal Description
Techniques/ Protocol Specification Testing and Verification), which aggreg-
ate contributions on the field from universities, operators and telecom com-
panies from all over the world. The Computer Networks and ISDN systems
journal can also be a good source of information for newcomers since, regu-
larly, it provides interesting tutorials on the theme. Articles on the testing
aspects of telecommunication systems appear rarely in more general confer-
ences or journals, despite the fact that testing represents typically 30% of a
project effort.

The main problem addressed by this research community is protocol con-
formance testing, i.e., which tests to apply to a protocol implementation so
that it can be proved equivalent to its specification. The main concerns are
automatic test generation (derivation) from the specification and the quan-
tification of the test value (fault coverage or relation existing between the
implementation and the specification). The reasons behind the high success
of protocol conformance testing in detriment of other types, perhaps more
important for manufacturers, are twofold: 1) the necessity that standardisa-
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tion bodies have to guarantee that protocol implementations comply with
specifications - it is well known that small deviations from specification can
disturb seriously the equipments interoperability; 2) the fact that protocol
specifications are described by state machines for which some testing theory
was already available from the hardware field.

This research area is often described as having started with work by
Moore, in 1956 [15]. There, as well as in [16], the basic Input/Output finite
State Machines (IOSM) were defined. The methods for test derivation from
these machines have their origin in the checking experiments from automata
theory, whose objective was to determine experimentally whether a given
state table could describe the behaviour of a finite state machine implement-
ation. Tests for IOSM are usually expressed in the form of input/output
sequences obtained from the state machine. The best known methods are
the Transition Tours [17], the Distinguishing Sequences [18], the W method,
the Unique Input/Output sequences [19] and their recent improvements (e.g.
UIOv and Wp). Most of these methods, under certain assumptions, guaran-
tee full fault coverage with respect to certain types of faults.

During the last years, however, formal description techniques, i.e., lan-
guages with a supporting mathematical model, became recognised as valuable
to describe protocol behaviours. Two main types have emerged: 1)languages
which are based on process algebras models, such as CCS [20], CSP [21] and
LOTOS, whose natural semantic model is the Labelled Transition System
(LTS); 2) languages based on Extended Finite State Machines, i.e., IOSM
extended with data, such as SDL [2] and Estelle, whose natural model is the
IOSM.

Labelled Transition Systems are in general partially specified and non-
deterministic where unspecified interactions produce deadlocks. Taking ad-
vantage of this characteristic, some testing methods were obtained and con-
cepts such as canonical tester and implementation relation were introduced
[22], [23]. Several attempts to transform LTS into IOSM, and vice-versa, [24]
were successful and, nowadays, the models start to be used interchangeably.

Due to its success, SDL has emerged as the formalism towards which the
most practical research is oriented and which consists in deriving tests from
a SDL system and representing them in TTCN. The main SDL tool vendors
provide already these facilities in their products.

1.2.2 New areas of research

The following issues are starting to be addressed by the protocol testing
community:

1. automatic derivation of distributed tests from concurrent systems de-
scribed in SDL [25]. A concurrent version of TTCN is already available



1.3. THESIS WORK 7

[14] and will be improved in the coming years [26];

2. derivation of testing architectures from the architectures of the systems
under test, usually described in SDL [27], [28];

3. service testing which is known to have its own characteristics such as
object orientation and distributed platforms [29];

4. passive testing, which consists in gathering information from the system
under test just by observing it in its natural working environment [29];

5. embedded testing, which consists in testing a components working in-
side a system.

Two important issues addressed in this thesis are related to recent ad-
vances in computer science. The mathematical models described above (FSM
and LTS) are being improved with time and probabilities. It means that the
language models have also potential to be used as performance models in-
stead of the well-known queue networks or Petri-Nets. Unlike these models,
which are used to model system resources, language models have potential to
describe, in simple terms, the user observable system aspects. This aspects
are promoting two new research areas:

1. derivation of timed tests from timed models [30];

2. derivation of performance, QoS or load tests [10], i.e., time, probabil-
istic and time-probabilistic tests, from the time-probabilistic behaviour
models.

1.3 Thesis work

1.3.1 Motivation

The first research project in which the author participated was the European
project RACE BCPN, aimed at developing an ATM network for a business
customer environment. By that time, in 1989, the research team was in
charge of characterising the traffic that could be expected in the network. For
that, a set of teleservices were identified and traffic sources were modeled by
semi-Markov chains. Service mix scenarios were identified and, using discrete
event techniques, simulations were carried out and results gathered [31].
After that the author was involved in the ESPRIT DAMS project aimed
at developing a FDDI-IT based network supporting also a variety of connec-
tion and connectionless bearer services. In this project, the author parti-
cipated in the developement of a load test system [32], [33], [34] that could
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emulate realistic traffic loads so that the network could be evaluated under
these conditions. Knowledge from the first project was reused and the load
system could let the user define services by configurating load parameters
(e.g. call duration, packet rate and packet length) as well as mixed scenarios.
The packets generated by a node were time stamped and measurements such
as end-to-end delay, delay jitter, packet loss rate and packet insertion rate
could be characterised. Results were presented in a statistical style by means
of histograms.

In the middle of the project, there was a request to improve the load
equipment so that some DAMS signalling procedures could also be tested.
Contrary to load testing, in which a small number of protocol data units con-
taining random data are exchanged with the network, in signalling (behaviour
testing), a diversity of protocol data units and parameters are required to be
interpreted. Moreover, the execution process and results were found quite
different - while load tests run for a user defined amount of time and provide
probabilistic estimators as results, behaviour tests stop when a verdict is
obtained (pass, fail or inconclusive). Based on these complementary testing
approaches, a set of questions, not yet addressed by the testing research com-
munity but very requested by equipment manufacturers, emerged: What is
the real value of each type of test? What type of faults can we detect with
which of them? How to improve these type of tests so that effectiveness (fault
coverage and execution time) could be improved?

The next project was the RACE project SCORE - Service Creation in
an Object Oriented Environment - aimed at defining a methodology and
developing a set of tools for the creation of telecom and IN services. Services
had to be first described in OMT. Components had next to be identified from
the object description and specified in SDL which was translated to C++ for
distributed platforms. Components with potential for being reused in other
services would have to be classified and made available at several abstraction
levels (SDL, C++) and each component would have to be accompanied by a
set of tests. The job of the author was to validate the project development
process. For that purpose, with the help of the Ashmolean Museum, Oxford,
his team developed what was known as the Multimedia Art Directory [35],
[36] which consisted in reusing the X.500 stack from ISO-DE package and
to develop a new set of multimedia components. The interesting point was
that the methodology evaluated was adopted by the two main SDL tool
vendors which were also members of the consortium, Verilog (Geode) and
Telelogic (Tau) and, nowadays, reminiscences of the SCORE method can still
be found in these vendors manuals. This project refreshed an old problem:
how to test component QoS using behaviour descriptions techniques? Besides
that, SCORE has shown the author a revolutionary form for developing
telecommunication software, in which formal methods and object oriented
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practices were nicely integrated.

In 1995 INESC established a contract with NEC to develop the firmware
for a V5 Access Network and to validate it and the author was responsible
for the validation part. A test approach was then proposed which was based
on the past experience on testing networks, developing object oriented SDL
services and on some new ideas. The method consisted in applying (1) ser-
vice tests, which were used to validate the services provided by the Access
Network under realistic load conditions, and (2) interface conformance tests
available from ETSI.

Given the author experience and interests, it was decided to focus this
thesis on the generalisation of the method used to validate the V5 Access
Network and place it in the context of existing testing theories.

1.3.2 Objectives

This thesis proposes a testing methodology which satisfies the following
requirements:

R1. Shall be applicable to complex telecommunication Network Elements.
Complex NEs are the class of real size systems defined in [1].

R2. Shall satisfy the common testing demands, which are assumed to be the
following:
R2.1. NEs shall be tested in short times;
R2.2. NEs shall pass the interface conformance tests;
R2.3. NEs shall pass interoperability tests;
R2.4. NEs shall pass operator service acceptances tests;
R2.5. NEs shall be free of user visible faults;
R2.6. NEs shall have their quality evaluated and quantified.
R3. Shall be based on existing testing practices, so that telecom test engin-

eers can use them easily. Conformance and load tests are assumed to
be, for that reason, the starting test types.

RA4. Shall consider and adapt recent advances in protocol conformance test-
ing. Although the thesis follows an engineering view point, the models
used in protocol conformance testing for describing problems and solu-
tions shall be followed, whenever available and adequate.
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1.3.3 Contribution

The new contributions of the work are the following:

C1. Testing methodology. In simple terms, it consists in combining the
behaviour testing of some NE interface components with the behaviour
testing of some service components under real load conditions. Among
other attributes the methodology claims (1) to enable the simple mod-
elling of the components under test and (2) to be capable of detecting
a large spectrum of faults which lead to the satisfaction of the common
testing demands described above.

C2. Service testing method. Service testing under real load conditions is
one of the two type of tests serving the testing methodology. Based on
the modelling of the NE services, on the rigorous definition of each ser-
vice interface and on the time-probabilistic-behavioural service prop-
erties, the service testing method enables the detection of the most
complex faults which include those faults randomly visible. It became,
by the curiosity it has generated in V5 test engineers and in the protocol
test community, one of the main contributions of this thesis.

C3. Specification of QoS properties. Quality of Service requirements are
traditionally described as statistical parameters which are loosely as-
sociated to the NE interface events. In this thesis, the statistical QoS
parameters are incorporated into behaviour descriptions so that the
QoS requirements, such as delays and failure probabilities, can be un-
ambiguously interpreted and evaluated.

C4. Service testing architecture. An architecture for carrying out ser-
vice tests under real service utilization conditions is also proposed. This
architecture is a generalisation of the architecture used in the V5 Ac-
cess Network project which has been worked and validated up to the
smallest detail.

1.4 Structure

This thesis consists of seven chapters.

This chapter places the thesis in the context of telecommunications and
testing, explains our motivations for this work, introduces the thesis object-
ives and the results obtained.

The second chapter describes the state of the art in protocol conformance
testing that is the field in which testing theories have been developed and
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put into practice. The current testing practices, the formal testing methods
and the basic testing theories are addressed.

The third chapter introduces some techniques used to model the perform-
ance and the quality of service required for Network Elements. The common
performance models, the mechanisms used by ITU-T for specifying perform-
ance and quality and some new models which can represent simultaneously
time, probabilities and behaviours are presented.

The fourth chapter presents the methodology proposed for testing tele-
communication Network Elements, which is based on current testing prac-
tices but improves them by taking advantage from formal testing methods.
Test derivation methods and simple test architectures are proposed.

The fifth chapter introduces the ETSI V5 Access Network. As referred
above, the NEC FA102 implementation of this network has been used as the
testebed for the methodology proposed.

The sixth chapter gives examples on the application of the testing meth-
odology and architectures proposed to the V5 Access Network case study, so
that the abstraction models selected to described the methodology can be
mapped into real cases.

The last chapter resumes the main results and contributions of this thesis
and provides directions for future work.
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Chapter 2

Protocol Testing

2.1 Introduction

This chapter describes the state of the art in protocol conformance testing
which is the field in which testing theories have been developed and attempts
made to put them into practice.

In the second section some basic theory and notations of discrete math-
ematics are presented, such as sets, logic, relations, functions, input/output
state machine and automaton. Notions of automaton traces and automaton
accepted traces are also introduced for their relevance in this thesis.

In the third section, the current practices for protocol conformance test-
ing are presented. It consists of a summary of the protocol conformance
recommendations that are described from the point of view of the test de-
velopment process. Test specification, test execution and test result analysis
are identified as the main phases. Each of them is then further presented so
that the testing process can be made understandable. Testing architectures
and test verdicts are also addressed. Relevant in this section are the concepts
of test requirement, test purpose, test case and test suite.

In the fourth section, the main test concepts are described mathematic-
ally by using the set and relation concepts. Although this approach is not
innovative, the concepts introduced in the third section will become clear.
The section basically summarises the new recommendation on formal meth-
ods for conformance testing, but is oriented towards the work described in
this thesis.

The fifth section introduces the basics of testing theories for input/output
state machines, which are used directly in conformance testing or as the
basis for more efficient methods. Particularly relevant in this section is the
understanding of the basic test derivation method.

The last section addresses test derivation from SDL. Firstly, the SDL
reachability graph, i.e. the large automaton that can model the SDL overall

13
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behaviour is introduced. Then, test derivation is presented by describing a
method which reuses the input/output state machine techniques and another
method, closer to the approach based on requirement testing. Relevant for
this section are the methods used for simulating and representing a system,
their understanding in terms of system traces and the derivation of tests by
using both concepts.

2.2 Mathematical concepts and notations

The mathematical concepts and notations that will be used in this chapter
are introduced in the following paragraphs. [37], among others, provides the
background required to fully understand them.

2.2.1 Sets and logic
Sets

Any set is denoted with an upper case character (A, B, C) or a series of
upper case characters (SPECS, IMPS, TESTS). Elements of a set are
represented with lower case characters (a, b, ¢).

The usual operations on sets will be used:

{a,b,c,...} The set containing elements a, b, ¢, . ... The order
in which elements appear in a set is not important.

0 The empty set, i.e., a set with no elements.

a€ A a is an element of the set A.

{a € A| P(a)} The set containing all elements of A for which P(a)
is true. Sometimes {a | P(a)} can be used if A can
be deduced from the context.

#A The number of elements of the set A.

ACB A is a subset of B, all elements of A are also ele-
ments of B.

A=B The set A is equal to set B, A is a subset of B and
B is a subset of A.

ACB A is a proper subset of B, A is a subset of B and
A is not equal to B.

ANB The intersection of A and B, the set of all elements

that are both in 4 and B.
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AUB The union of A and B, the set of all elements that
are in A, in B or in both.

AxB The Cartesian product of A and B, denoting the
set of all ordered pairs (a,b) such that a € A and
be B.

A—B The set difference between A and B, that is, the

set containing all elements of A that are not in B.
Powerset(A) The powerset of A, that is, the set containing all

the subsets of A.

Logic

The following logic notations will be used:
-p Not p, the negation of p.
pAq p and ¢, the conjunction of p and q.
pVyq p or q, the disjunction of p and q.
p=-q pimplies ¢, also read —p V q.
p<q  pisequivalent to ¢, (p = ¢) A (¢ = p).
Ya € A For all elements of set A.
Ja € A There exists an element a in set A.

2.2.2 Relations and functions

Relations

15

Relations will be represented as lower case abbreviations (rel). Let A and
B be sets, then a binary relation rel between A and B is a subset of their

Cartesian product
rel C A x B.

The element a € A is related to b € B if (a,b) € rel. The a rel b notation
can be used in alternative. The domain of the relation rel is defined as the
set containing all the elements a € A which are related to some b € B by

rel. That is {a € A|3b € B : (a,b) € rel}

A binary relation rel on A is a subset of A x A and can have the following

properties:
reflexive (a,a) € rel for alla € A
antireflezive  (a,a) ¢ rel for all a € A
symmetric (a,b) € rel => (b,a) € rel for all a,b € A
antisymmetric (a,b) € rel and (b,a) € rel = a =10
transitive (a,b) € rel and (b,c) € rel = (a,c) € rel

A relation that is anti-reflexive, antisymmetric and transitive is called
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partial order. A partial order relation containing every pair (a,b) such that
a,b € A is called a total order (every pair of elements can be compared). A
relation which is reflexive and transitive is called pre-order.

Functions

Functions are denoted by lower case abbreviation (func). A partial function
func is a relation between two sets A and B with the property that for each
a € A there exists at most one b € B such that (a,b) € func, that is

Va € A:Vby,by € B: ((a,b1) € funcA (a,by) € func) = by = by

The signature of a function, will be provided as func: A — B. A total

function func: A — B is a partial function such that the domain of func is
A.

2.2.3 Input/output state machine

A state machine is a mathematical model of a system with discrete inputs
and outputs. The system can be in any of a finite number of internal con-
figurations or states. The state of the system summarizes the information
concerning past inputs that is needed to determine the behaviour of the
system on subsequent inputs.

An Input/ Output State Machine, in particular, is a machine that (1)
explicitly distinguishes input events from output events and (2) its transitions
can have 2 events associated - one input and one output. This machine is
also referred to as Mealy machine.

An Input/Output State Machine, IOSM, can be defined as a 5-tuple,

IOSM = (S,1,0,T, s0)

where

S is the set of all possible states;

I is the set of input events, including the non-controllable input &;

O is the set of output events, including the non-observable output ¢;

T CS xIxO0O xS is the set of transitions;

sp € S is the TOSM initial state.

An IOSM is said to be:
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e finite, if both the number of elements of the sets S and T are finite;

e deterministic, if for every state and every input there is at most one
transition defined;

e complete, if a transition exists for every combination of states and in-
puts.

1OSMs are often used to describe parts of protocols. The first test the-
ories were derived for this model.

2.2.4 Automaton

Sometimes there is no need to distinguish input from output events. In this
case, a system can be represented by an automaton containing single event
transitions and defined as

A= (S, E,T,sq, F)
where
e S is the set of all states;
e [ is the set of observable events;

T C Sx(EU{T})xS is the set of single event transitions (the transition
relation), which describe the possible machine transitions, whether 7
represents a generic unobservable event. It implies that the machine
can change state with no event being observed;

e 59 € S is the machine initial state;

e F C S is the set of acceptance states, whether an acceptance (or fi-
nal) state is an automaton state where the system is supposed to have
reached some objective.

When represented graphically, an automaton is shown by means of circles
and uni-directed arcs. A state is represented by a circle whereas a final state
is represented by a double circle and the automaton initial state is depicted
as a circle pointed out by a dashed arrow. A transition is represented by an
uni-directed arc connecting the transition initial state to the transition final
state. The arc is labelled with the transition event.

A trace is a finite sequence of observable events. The set of all traces
over FE is denoted by E*, with € denoting the empty sequence. If 01,09 € E*,
then ;.04 is the concatenation of o; and oy. The length of a trace, denoted
by | o |, gives the number of visible events in o.
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Let # and o be traces. 0 is said to be a prefiz of o if there is some o # €
so that .« = 0. For instance, the trace 0 = a.b.c has the following prefixes:
€, a and a.b.

Let s,s'€ S, uy; € EU{r}, a; € E and o € E*. Then

N
s — s =g (s,m,8)eT
1o fb H1 H2 [
s ="' =gy dsiysj...spi5=8—s —...—5, =5
s W1 hn :def HSI g M1 8/
s=3s =gy s=sorsHg
a € a €
s=5 =g 3si,s;:5=5— 5 =5
aij...Qn - 3 . o a1 a2 an _
5§ = =dgef TSiySjy... Sp S =8 =>85 = ... => 5, =5
a a
s — =gy I8’ :s5s=+¢

safter o0 =g {5|s= 5}
Based on the above definitions, the following can be also defined:

e the traces of an automaton are all the sequences o of observable events
(0 =aj.ay...a,, a,ay...a, € F) which can lead the automaton from
its initial state sy up to any valid automaton state s € S.

Traces(A) =45 {0 € E*| s9 ==}

e the automaton is said to have finite behaviour if every trace has a finite
length. In this case the number of traces becomes also finite;

e the automaton is said to be finite-state if the number of reachable states
is finite, that is, the number of states of the set

{s'|do € E* : 59 == &'}
is finite;

e a trace is said to be accepted by the automaton if, at least, one of the
states reached by the automaton after executing the trace is also an
acceptance state

Accept(A) =4ef {0 € E* | (s after o) N F # 0}

A is deterministic if, for all o € E* |, s after o has at most one element

This automaton is equivalent to the automaton presented in [37] used to
describe regular expressions. The set of events E represents, in this case, an



2.3. CONFORMANCE TESTING METHODOLOGY 19

input alphabet and an accepted trace, that is a sequence of events leading
the state machine from its initial to an acceptance state, represents a word.

In Labelled Transition Systems [38], E represents a set of labels of system
interactions. In this case, F' can be interpreted as F' = S and Traces(A) =
Accept(A).

2.3 Conformance testing methodology

This section introduces the Open Systems Interconnection (OSI) view on
conformance testing, as described in the standard documents [39], [40], [14],
[41], [42], [43] and [44]. These documents define the methodology, provide
a framework for specifying tests and describe the procedures to be followed
during testing. Tutorials are presented on [45] and [46].

The primary objective of conformance testing is to demonstrate by means
of testing practices that an implementation of a protocol conforms to its
specification. Conformance, in this context, means that the implementation
shall not have behaviours which are not allowed by the protocol specification.
Only the functional aspects of the protocol specifications are evaluated by
conformance tests. The conformance to standardised performance, robust-
ness and reliability aspects are explicitly out of the scope of this standard
methodology.

Although testing of the complete implementation observable behaviour
may be theoretically possible, in practice a large number of tests, some of
which very long, would be required. For that reason, the OSI conformance
methodology directs the conformance tests towards the detection of imple-
mentation faults.

A simplified picture of the OSI conformance methodology is presented
in Fig. 2.1. It consists of three phases: test suite specification, test suite
application and test result analysis.

2.3.1 Test suite specification

As shown in Fig. 2.1, the test suite specification activity is aimed at the
production of a set of test cases, named 7Test Suite, that will be used in the
next phases to evaluate the Implementation Under Test (IUT) compliance
to the standard protocol.

Test purpose development

The first step of this phase consists in the definition of a set of test purposes.
A test purpose is a textual description of a protocol conformance require-
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Test suite specification

| Test purpose devel opment|

Test purposes

i

| Test suite development

Abstract test suite

.

Test siteapplication  y
| Selection and compilati on|

Executable test suite

| Test execution |

Conformance log

@

Test result analysis

| Test report production |

Conformance statement

Figure 2.1: OSI conformance testing methodology and framework

ment such as a capability or a behaviour that must be implemented by the
implementation under test.

The development of test purposes is done in three steps: 1) the testable
conformance requirements are identified based on the protocol specifications
and on the Protocol Implementation Conformance Statements (PICS). Con-
formance requirements can be described positively (stating what is required
to be done) or negatively (stating what is required not to be done); 2) a set
of test groups with clear objectives are identified, so that an adequate cov-
erage of the conformance requirements is obtained; 3) the test purposes are
specified so that they reflect the test group objectives and cover conveniently
the set of conformance requirements. Each test purpose can cover one or
more conformance requirements.

Assuming that protocols are usually specified as state machines, the test
purposes are directed towards the evaluation of the implementation beha-
viour with respect to the following aspects:

e valid behaviour. A test purpose will be defined for each relevant
state/input event combination with the purpose of verifying if the
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transition is correctly implemented;

e PDUs sent and received by the implementation. There are
test purposes concerned with the verification of individual parameter
values and combinations of parameters values. In the first case, for each
PDU and for each parameter, a set of test purposes will be defined. If
the parameter is an integer, for instance, the test purposes will verify
the boundary values and one randomly selected mid-range value. For
combination of parameters values, a test purpose for each important
combination will be defined;

e timers. One test purpose, at least, will be defined for the expiration
of each protocol timer;

e invalid events. These are expected events but containing syntactic-
ally or semantically invalid parameter values. A set of test purposes is
recommended for each parameter. For integer parameters, for instance,
two test purposes will be defined for the invalid parameter values adja-
cent to the allowed boundary values defined in the base specification,
plus another randomly selected invalid value;

e inopportune events. These are correct events but received in states
where they were not expected. One test purpose is also generally re-
quired for each of these events.

Test suite development

The test suite is developed from the protocol specification and the test pur-
poses. The protocol specification describes the behaviour allowed for the
implementation. The test purpose describes the part of the implementation
that will be tested.

The test suite consists of test cases, where each test case is aimed at
verifying one test purpose. The development of a test suite is done in two
steps: 1) a testing architecture is selected; 2) one test case is specified for
each test purpose, taking into account the test architecture selected.

A test case consists of three parts: the preamble, the body and the
postamble. The preamble describes the sequence of events that lead the
IUT from a stable testing state of the specification into the initial testing
state. The test body describes all the sequences of observable events re-
quired to evaluate the test purpose and that lead the implementation from
the initial testing state to a final testing state. The postamble is the sequence
of events that lead the IUT from the final state of the test body back to a
stable testing state.
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Each test case is representable in a tree like form where, after a service
primitive is sent by the tester, a set of alternative primitives can be received
from the implementation under test. Every sequence of input/output events
of the test case will have a verdict associated, which can be of three types:
fail, inconclusive and pass. A fail verdict means that the sequence of events
observed is forbidden by the protocol specification. An inconclusive verdict
means that, although not forbidden by the specification, the sequence of
events observed is not sufficient to draw a conclusion with respect to the test
purpose. A pass verdict is associated with the event sequence(s) which are
not forbidden by the specification and enable the test purpose verification.

ITU-T and ETSI test suites are described in a standard test language, the
Tree and Tabular Combined Notation (TTCN) [14]. TTCN is the language
used by ETSI and ITU-T to describe protocol conformance tests. Similarly to
SDL, it has a graphical and a textual format. The graphical format consists of
a set of tables which are used to define Protocol Data Units (PDUs), Abstract
Service Primitives (ASPs), new data types as well as to declare variables and
behaviours. Test behaviour tables are organised in a tree like format and a
test output event is tipically followed by a set of alternative test input events.
The behaviour tables describe also the verdicts of a test. Although very used
in protocol testing, the language is often considered very far from modern
programming languages. Efforts to overcome this gap are, at the moment,
underway in standard bodies.

2.3.2 Test suite application

The test suite application can be decomposed in two parts: 1) the test case
selection and compilation; 2) the test case execution.

Selection and compilation

In this phase both a test system and information about the system under
test are required.

First, the relevant test cases are selected from the test suite based on the
manufacturer declaration of the capabilities implemented. Some of the pro-
tocol facilities can be optional or depend on optional facilities (conditional).

Then, the selected test suite is parameterised according to some protocol
values selected by the manufacturer.

Finally, the parameterised selected test suite, still described in TTCN;, is
compiled for a protocol analyser which will be used as the test system.
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Execution

Before the implementation is physically tested, a static conformance review
must be carried out to check if the implementation really meets all the op-
tional and conditional capabilities which were claimed to be implemented by
the manufacturer.

After this review, the compiled test cases are applied to the implement-
ation. The sequence of test events (signals) which are observed during the
execution of a test case is called the test outcome. It comprises time stamps,
data and parameter values for each event. The test outcome, that is stored in
a conformance log, leads to a verdict if it matches one of the event sequences
defined in the test case.

A test campaign is the execution of a set of test cases.

2.3.3 Test result analysis

Since the methodology addresses mainly the detection of errors, the test
result analysis is restricted to a test report which lists the test verdicts and
provides a description of the errors.

The results of conformance testing are documented in one or more con-
formance test reports.

2.3.4 Testing architectures

The conformance test architectures, named by OSI as abstract test methods,
are defined by means of two test components - the Lower Tester (LT) and the
Upper Tester (UT). The lower tester controls and observes the lower bound-
ary of the implementation under test, usually via the underlying service pro-
vider. The upper tester controls and observes the upper service boundary of
the implementation. Coordination of the upper and lower testers is achieved,
when necessary, by means of Test Coordination Procedures (TCP). Fig. 2.2
provides an overview of the four main methods, which are briefly described
in the following paragraphs.

Local test method

In the local test method there are two Points of Control and Observation
(PCO): one between the lower tester and the underlying service provider
and the other between the upper tester and the implementation under test.
The implementation upper service boundary is required to be a standard
interface.
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Figure 2.2: Overview of abstract test methods

The lower tester sends and receives Abstract Service Primitives to the
service provider and, as usual in the OSI model, communicates with the
implementation under test via Protocol Data Units.

The upper tester, which is located within the test system, exchanges
service primitives of the service provided with the implementation under
test.

Distributed test method

In the distributed test method there is one point of control and observation
between the lower tester and the underlying service provider, and another
point of control and observation between the upper tester and the imple-
mentation.

The upper tester is located in the System Under Test (SUT). Hence, this
test method requires the upper service boundary of the implementation to
be either a human user interface or a standard programming interface.
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Coordinated test method

The coordinated test method requires only one point of control and observa-
tion located beneath the lower tester. The test coordination procedures are
specified by means of a test management protocol. The upper tester, located
above the upper service boundary of the implementation, implements the
test management protocol.

Remote test method

The remote test method uses only one point of control and observation loc-
ated beneath the lower tester and no access to the upper service boundary of
the implementation is required. Test coordination procedures are expressed
informally in the test suite, but no assumption is made regarding their feas-
ibility or their realization.

Although there is no upper tester, some of its typical functions may be
executed by the system under test.

Multi-party methods

A generalisation of the testing methods is also defined in the standards. It
allows for multiple lower testers, each representing one of the real systems
with which the implementation needs to communicate. In addition, there
may be zero or multiple upper testers and a lower tester control function
which coordinates the lower testers and the verdict assignment.

2.4 Formal methods in conformance testing

This section presents part of the results of the joint ISO/ITU-T working
group of Formal Methods for Conformance Testing (FMCT), which are com-
plementary to the concepts presented in the last section. These results are
being made available as a new standard [47].

The main objectives of this standard are: 1) to demonstrate that the
formal testing theory developed during the last years can be applied to the
conformance evaluation practices; 2) to evaluate the possibilities of improv-
ing the test development process through computer aided generation of test
cases from the formal specifications that ITU-T, ISO and ETSI are using to
describe protocols.

[48] and [49] provide tutorials on this subject.
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2.4.1 The meaning of conformance

A precise description of the concept of conformance implies that implement-
ations must be modeled. In this way, conformance can be defined as relations
between models of the specifications and models of implementations or, in
alternative, by satisfaction of requirements by the models of the implement-
ations.

Specifications and implementations

Let s be a specification that prescribes the behaviour of a protocol in a
formal description technique and SPEC'S denote the set of all the possible
specifications. One example of SPEC'S is the SDL language and, in this
case, s is a particular description in SDL.

An implementation iut consists, in the telecom environments, of a com-
bination of hardware and software having physical connectors or program-
ming interfaces for communication with its environment or end users. Let
IMPS denote the set of all possible implementations.

The first main difference between a specification and an implementation
is that the former is a mathematical model, whereas the latter is a physical
object. In order to describe the concept of conformance, these objects must
be related. Implementations, however, cannot be compared with models
since they are not models. Therefore it is not possible to define a direct
relation between an implementation sut and a specification s.

For that reason, it is assumed that an implementation szt must be modeled.
Let us assume that m;,; is a model of iut and that M OD.S represents the set
of all possible models, that is, the intermediate formalism used to model the
implementation. Examples of such formalisms are automata, input/output
state machines or sets of traces. This assumption is known as the Test As-
sumption. The model m;,; of the implementation is, a priori, unknown.
Testing will be used to learn about this model and decide about the con-
formance to the specification model s.

Conformance of an implementation to a specification

The conformance between an implementation iut and a specification s is
characterized by a relation between the model of the implementation my,,
and the specification s. This relation is called an implementation relation
and will be denoted as imp with the following signature:

imp C MODS x SPECS

An implementation iut (Fig. 2.3) is said to conform to a specification s
with respect to a relation imp if (myu,s) € imp or, using the alternative
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notation, m;,; tmp s. In this case, m;, is a conforming model of s with
respect to imp.

A specification can have several conforming implementations. For s €
SPECS and an implementation relation ¢mp, the set M, denotes the set of
all conforming models in MODS, and is given by:

Mg ={m € MODS | m imp s}

Fig. 2.3 illustrates how a specification s € SPECS determines a set of
conforming implementations I whether I denotes the set of implementations
which can be described by models in M. Therefore the set I, is the set of
implementations that implement the specification s correctly.

SPECS MODS

IMPS

Figure 2.3: Relations between IMPS, MODS and SPECS

Examples of implementation relations (imp) which can be used if both
MODS and SPECS are selected to be the SDL language are, for instance,
trace equivalence or trace preorder. In trace equivalence, the set of traces of
the implementation should be equal to the set of traces of the specification,
that is, Traces(mg) = Traces(s). It means that a conforming implement-
ation must be able to show all the sequences of events previewed by the
specification and cannot show any sequences which are not prescribed by the
specification. In trace preorder, the first set must be included in the second
— Traces(myy) C Traces(s). This means that only part of the behaviour
specified by s has to be implemented and, on the other hand, the implement-
ation is not allowed to show any sequence of events which is not previewed in
the specification s. An implementation which does nothing is, in this case, a
conforming implementation.
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There is another way of defining conformance that is based on the concept
of satisfaction of requirements. A conformance requirement describes usually
a simple behaviour which must, or must not, be observable in implement-
ations. It is a property which has to be satisfied by the model m;,; of the
implementation so that the implementation can conform to that particular
requirement.

Let REQS denote the set of all requirements that can be expressed in a
particular requirements language. In the requirements approach, a specific-
ation can be alternatively expressed as a set of requirements Ry C REQS.
where an element r € R, represents a single conformance requirement.

The conformance between an implementation and a specification, in the
requirement approach, is characterised by a relation between the model of the
implementation m;,; and the requirement r. This relation, called satisfaction
relation, is denoted as sat and has the signature:

sat C MODS x REQS
An implementation IUT conforms to specification R, if the model my,,;

can satisfy all the conformance requirements r in R,. The set Mp, of models
of conforming implementations, in the requirements approach, is given by:

Mgy ={m € MODS | ¥r € Ry, : m sat r}
The two forms of specifications, (s,imp) and (R, sat), can be combined
as described in Fig 2.4. The resulting set of conforming implementations is

described by:

M = M, N Mg,

MODS

Figure 2.4: Combining the two forms of specifications
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2.4.2 Testing execution

Let T represent a test suite consisting of a set of test cases ¢, such that t € T'.

The execution of the test case ¢ consists in executing the tester which
implements ¢ in combination with the IUT. During this combined execu-
tion an observation o € OBS is obtained, where OBS is the set of all the
observations.

The observation o (a trace) is then evaluated by a function. The result
of such evaluation, in the case of conformance testing, can be pass, fail or
inconclusive. The evaluation of the verdict evaluation function depends on
the test case t executed:

verd; : OBS — {pass, inconclusive, fail}
An implementation under test IUT passes a test case t if the execution

of the IUT with ¢ leads to an observation o for which the verdict pass is
assigned.

IUT passes t < wverdy(o) = pass

The subset of MODS for which verd,(c) = pass is called the test purpose
P

P,={m € MODS | verd,(c) = pass}
Thus, the objective of testing an IUT with a test case ¢ is to conclude

whether the model m;,; of the IUT is a member of its test purpose P, €
MODS, i.e.,

IUT passest <= my, € P,

An IUT passes a test suite T if and only if it passes all the test cases in
the test suite:

1UT passesT < Y teT: IUT passes t

If an IUT passes a test suite it follows that the model of IUT is a member
of all the test purposes of the test suite:

IUT passes T < myr € Pr,

where Pr = Myer P
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2.4.3 Conformance testing

An IUT conforms to a specification if and only if m;,, € M, or, equivalently,
IUT passes T if m;,; € Pr. The ideal test generation method would be one
which could derive a test suite 1" such as M, = Pr.

Depending on the relation between Pr and M,, a test suite T can be
characterised as follows:

e Exhaustive. A test suite is exhaustive if the set Pp of all the models
passing the test suite 7" is a subset of the set of conforming models M,:
Pr C M. This means that all passing implementations are compliant.

e Sound. A test suite 7T is sound if the set of conforming models M,
is a subset of the set Pr of models that pass implementation TUT:
M, C Pyp. This means that all implementations that do not pass are
not compliant.

e Complete. A test suite T is complete if it is both sound and exhaust-
ive, that is, the set of conforming models equals the set of models that
pass the implementation: Pr = M;.

Test Generation

Test generation is the process of deriving a test suite from a formal specific-
ation. It may be described as the function gen that generates a test suite T’
from a specification s and an implementation relation imp:

€Ny : SPECS — Powerset(TESTS)

The test suites are required to be sound so that no conforming imple-
mentation is rejected.

2.5 TOSM test derivation

Telecom software in general and protocols in particular are by nature re-
active, where reactive is defined as a computer program whose role is to
maintain an ongoing interaction with its environment rather than to execute
some task and terminate [50]. This family of programs includes most of the
program classes whose correct and reliable construction is considered to be
particularly important. Concurrent and real time programs, embedded and
process control programs as well as operating systems are other examples of
reactive programs.

Some families of models representing this type of programs were de-
veloped during the last decades. In this section, the more often used model
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in protocol theory and, thus, in protocol testing, is presented - the finite state
machine.

A finite state machine represents a reactive system whose behaviour can
be represented by a finite and discrete number of states and in which trans-
itions between states mainly reflect the interactions of the machine with its
environment.

A number of interesting operations can be carried out over finite state
machines, such as minimization of a machine and combination of two ma-
chines [37]. As demonstrated in [51] in the context of protocol specification,
verification and testing, finite state machines can also be extended with finite
range variables that, in turn, are also modeled as finite state machines which
can be combined with other machines.

A particular type of these machines is used in protocol modelisation - the
1OSM.

In the following sections, the basic methods for test derivation of protocols
modeled as IOSM are introduced. Tutorials on this subject can be found in
[51] and [52].

2.5.1 Basic conformance testing method

This method is based on the principle that, to be conform, an implementation
must have the same control structure as its specification, modeled as an
TOSM. Implementation and specification are said to have the same structure
if (1) they model equivalent sets of states and (2) they allow the same state
transitions.

The basic method assumes that the specification is modeled as a minimal
finite JOSM where a state machine is minimal when it does not have equi-
valent states. States are said to be equivalent if, for each input, the same
output is obtained and the final state is the same or an equivalent state.

In this test derivation method an implementation is assumed to be also
an TOSM with the following limiting characteristics:

e maximum number of states. The IUT model is a deterministic
finite state machine, IOS My, with a known maximum number of
states, £Syr, where £S;pr > §Ss. The sets of inputs (1) and outputs
(O) must also be known;

e finite response time. The IUT produces a response to an input signal
within a known and finite amount of time;

e strongly connected state machine. The states and transitions of
the IUT form a strongly connected machine in which each state is
reachable from all other states;
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e complete state machine. The IUT is modeled by a complete finite
state machine, i.e., the IUT can react in every state to every input.

The conformance test derivation process can be simplified if, in addition
to the properties described above, another set of characteristics are part of
the IUT:

e status message. When a status message is received, the IUT responds
with an output message that uniquely identifies its current state. The
current [UT state does not change;

e reset message. When the IUT receives a reset message, it responds by
making a transition to the initial state sy, independently of its current
state. The ITUT does not need to produce an output;

e set message. When the set message is received by the IUT in the
initial state of the machine, the IUT responds by making a transition
to the state that is specified in the parameter of the message. The IUT
does not need to produce an output.

With these three messages, set, reset and status, the internal structure of
the IUT and the specification can be easily compared. A conformance test
used to decide about this equivalence can be obtained as follows:

for all possible combination of states s € Sg and inputs ¢ € Ig execute
the following steps:

1. use the reset message to bring the IUT to the initial state s, and then
use the set message to transfer the IUT to state s;

2. apply input signal 7. Verify that any output received, including the null
output £, matches the output o required by the specification 10OS Mg;

3. use the status message to interrogate the IUT about its final state.
Verify that the final state matches the state described in TOS M.

A test suite generated according to this algorithm verifies that the IUT
is capable of correctly implementing all the transitions of the protocol spe-
cification. The inputs tested will include the set, reset and status messages.
If the TUT passes these tests, it is capable of reproducing the behavior of
10S Mg, but it remains unknown whether the IUT is capable of any other
behaviour.

In order to remove the set, reset and status messages from the specific-
ation and to reduce the length of the test suite, some techniques were de-
veloped. The set message is removed by a transition tour, the reset message
is removed by homing sequences and the status messages are removed by
unique tnput output sequence.
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2.5.2 Transition tour

A transition tour [53] avoids the use of set messages. A tour through the
IOSMg is planned in which each transition is visited at least once. At
best, a transition tour starts with a single reset message and exercises every
transition once followed by a status message that verifies the transition final
state.

The problem of finding a transition tour is a standard problem of graph
theory. The states and the transitions of the state machine form a directed
graph. An Fuler tour in a directed graph is a sequence of transitions that
starts and ends at the same state and contains every transition exactly once.

A sufficient condition for the existence of an Euler tour is that the graph
is both strongly connected and symmetric, that is, every state must be the
destination and the origin of the same number of transitions. An algorithm
for deriving a transition tour from a strongly connected and symmetric state
machine can be found in [51].

If the state machine is not symmetric, a transition tour can yet be derived.
This can be done be augmenting the state machine by duplicating some
transitions that, for this reason, will be visited more than once. The problem
of finding a transition tour over a non-symmetric graph, in which a transition
is exercised at least once and possibly more than once, is known as the
Chinese Postman Problem.

2.5.3 Homing sequences

The reset message can be replaced by a sequence of messages called homing
sequence [51], [18]. A homing sequence brings a system back to its initial
state whatever the current state. In general, a homing sequence is defined as
an adaptative procedure, in which the responses generated by the machine
can be used to determine the next input message. It can be shown that all
strongly connected finite state machines have a homing sequence and that it
can be derived algorithmically.

2.5.4 Unique input output sequences

The status message can be replaced by a sequence of transitions called state
signature or Unique Input/Output sequence (UIO) [19].

A UIO sequence is the minimum-cost sequence of input events found for
a state which generates a sequence of outputs that is unique for that state.
Thus, a UIO sequence uniquely determines the state in which the IUT is
when the UIO sequence began and has a meaning that is opposite to the
homing sequence: it is used to identify the first instead of the last state in
the sequence.
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Neither all states have a UIO sequence nor all UIO sequences are neces-
sarily different. In some cases, a single sequence of inputs can be found that
identifies all the states in a finite state machine. Such sequence is called
a distinguishing sequence. The simplest method of finding UIO sequences
is to enumerate all input output/sequences and to check them for the UIO
property. An algorithm computing these sequences is presented in [51].

A UIO sequence leaves the IUT in a state which is different from the state
that it verifies. After performing the transition and its corresponding UIO
sequence, the transition tour has to be continued from another state than it
was planned. Therefore, the transition tour has to be changed. This is done
by deriving a pseudo-state machine in which pseudo-transitions are defined
that consist of the initial transition itself plus the UIO sequence. A tour over
this pseudo-state machine is known as the Rural Chinese Postman Problem.

2.5.5 Other derivation methods

For IOSM that do not have UIO or distinguishing sequences, the characteriz-
ing sequences method defines partial distinguishing sequences each of which
distinguishes a state s; from a subset of the remaining states, instead of dis-
tinguishing s; from every state in the /JOSM. The complete set of such input
sequences is called the characterising set W of the TOSM.

Other methods that improve the basic methods introduced above have
been developed recently, such as the T' method, the U method, the D method,
and the W, methods.

2.5.6 Implementation relations

The simplest method of comparing an implementation with a specification
I0OSMs is to think of the implementation as a probably faulty finite state
machine IOSM]UT.

One relation often used to compare finite state machines is the equivalence
relation [37]. In this relation, an IUT IOS My implements IOS Mg if the
IUT produces the same outputs as IOS Mg for all possible sequences of inputs
applied. Equivalence does not mean equality. If /OSMg is minimal, many
equivalent implementations exist, having more states than OS5 Mjg.

Another implementation relation, the quasi-equivalence [37], is often used
when IOSMg is partially defined. In this relation, an IUT modeled by
IOSM;yr implements IOS Mg if two conditions are satisfied: 1) for each
input sequence of TOSMg the IUT produces the same output sequence as
defined by TOSMsg; 2) for all other input sequences any output sequence
generated by the IUT is acceptable.
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The selection of the appropriate implementation relation is important
for testing since it determines the boundary between conforming and faulty
implementations.

2.6 SDL test derivation

The IOSM described above has been for several years the main formalism
used to describe protocol behaviour. Most of the existing protocols have
TIOSM descriptions that are usually complemented with textual parts, in
natural language, which describe the formats of the messages and their fields.
This is true both for the Internet community protocols such as PPP, TCP
or F'TP, as well as for the public network protocols such as GSM and ISDN.

In the last decade, however, much progress has been achieved in what con-
cerns the description of protocol behaviour. The system interfaces described
in standards became more complex and support multiple protocols that, in
the traditional approach, would have to be described by one or two IOSM for
each protocol. The coordination between the several state machines would
be, as well as their data parts, described in natural languages. On the other
hand, languages for behavioural specification have been also standardised
and robust graphical toolsets supporting them became available.

In order to avoid descriptions that could have multiple possible interpret-
ations and take advantage of the formal description techniques, standards
bodies, such as ITU and ETSI, started to complement their system inter-
faces, the IOSM based descriptions, with SDL specifications [54], [55].

In this section the state of the art in conformance test derivation from
SDL specifications is introduced.

2.6.1 Operational model

SDL [2] is a powerful language with complex concepts. In order not to deviate
this thesis from its objectives only a simple model of the SDL operation mode
is presented. The complete SDL operational model may be found in [56].

A system, in SDL, is modeled as a set of state machines that are named
processes. Processes communicate with other processes by exchanging sig-
nals. For that purpose, each process has an associated queue (mailbox) that
is used to store the signals sent by other processes. This communication
mechanism of temporarily storing the signals classifies the SDL interprocess
communication mode as asynchronous, that is, the output and the input of
a signal by the processes involved are not executed at the same instant. A
process in SDL can be extended with data, i.e., each process may have its
own variables of given types.
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A process may be selected for running if it has some transition enabled.
Let us assume, for simplicity, that a process has a transition enabled only
if it has some signal in its queue. Once selected for running, the transition
cannot be neither stopped nor interrupted by any other process. During a
transition, a signal is consumed from the process queue, new values can be
given to the process data variables and other signals can be sent to the other
process queues. The order by which the enabled transitions are executed is,
a priort, unknown.

There is in SDL one mechanism to tackle time - the timer. A timer
belongs to a process and each process can have more that one timer. During
a transition, a process can set one of its timers to send a signal some time
units later. This signal, as all the others, is placed in the queue of the process
that owns the timer. Since only one transition can be executed at a time
and there are no time bounds defined for its execution, there is no guarantee
regarding the instant that the process will receive the timer signal.

2.6.2 Intermediate models

Automatic derivation of conformance tests from SDL specifications use inter-
mediate models that capture only the relevant characteristics of the system.

These models, and the associated theory, come from the field of concur-
rent programs verification [57] and they are used to detect program problems
such as deadlocks, livelocks and prove system invariances [50]. Some of the
verification methods are based on the exploitation of the states of a system
and try to prove that none of the system states (nor sequences of states)
present ”bad characteristics”.

In testing, namely in black-box or conformance testing, proofs cannot be
made based on the states of the system. Instead, sequences of observable
events must, be used.

Reachability graph

An intuitive form of representing the behaviour of a SDL specification is the
graphical representation of its states graph.

In Fig. 2.5 a simple SDL system is presented. The system is composed of
two processes and is closed, that is, no signals from or to the system environ-
ment are expected. In general, some assumptions about the environment are
required for the automated simulation (graph generation) of SDL systems.
The hardest assumptions consider that the environment has maximum be-
haviour and can output any signal to the system at any time. The easiest
ones assume that the environment is cooperative in the sense that the en-
vironment will output only expected signals and only when all the internal
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queues are empty, i.e., the system handles one excitation at a time.

[ab] [c]
r

Figure 2.5: Simple SDL System

The behaviour of the two processes composing this system is presented
in Fig. 2.6.
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Figure 2.6: Processes P1 and P2 in SDL

From these two processes and assuming the SDL operational model de-
scribed above, the graph presented in Fig. 2.7, known also as reachability
graph, can be built. A state in this graph is represented by the internal
values of all its variables and internal queues. Transitions between states
represent the relevant actions. In Fig. 2.7 the state of the system is represen-
ted by four variables for process P and three variables for process (). P.state
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and ().state represent the control states of the two processes. P.sender and
(Q.sender contain the identification of the process which has output the last
signal received, respectively, by process P and (). P.queue and @).queue con-
tain the ordered sequence of signals in the queue of processes P and ). P.n
represents the variable n of process P.

Although only reachable states are required to be represented, for real
dimension systems millions of states can exist. In order to visit all the states
of this graph some methods are required to limit the simulation time spent
visiting all the states, as well as the amount of memory used to store the
information about the states already visited.

state= (P.state, P.sender, P.queue, P.n, Q.state, Q.sender, Q.queue)

(1) (PsLPsd= Po=<>Pn= Qs1Q= Qg=<>)

(2) (Ps=2Psi= P.g=<>P.n=0Qs1Qsd= Qg=<c>)
Q2

(P.s=2,P.sender= ,P.g=<>,P.n=0,Q.52,Q.50=P,Q.q=<>)
Q'b
Qla
(P.s=2,P.sender= ,P.g=<a>,P.n=0,Q.5=1,Q.sd=P,Q.0=<>
P?a P’;b\ Tl

Plc T~

9]
(P.s=2,P.sender=Q,P.g=<>,P.n=0,Q.5=2,Q.sd=P,Q.g=<>) P?b

Qla Q'b
(P.s=2,P.sender=Q,P.g=<a>,P.n=0,Q.5=1,Q.sd=P,Q.0=<> ”

(P.=2,P.sender=Q,P.q=<b>,P.n=0,0.5=2,Q.50=P,Q.q=<>) <- - - -
(P.s=2,P.sender=Q,P.0=<>,P.n=1,0.5=1,Q.50=P,Q.0=<>) < - - - - = i
(P.s=2,P.sender= ,P.g=<b>,P.n=0,Q.5=1,Q.sd=P,Q.0=<>) <----- -1

Figure 2.7: SDL system state graph
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Simulating an SDL system

The reachability graph can be obtained by exhaustively simulating a SDL
system. The exhaustive exploration of a SDL system is usually performed in
one of two modes: 1) breadth first; i7) depth first.

Breadth first. Each node of the graph of the example is numbered. The
increasing numbering shows the order in which the states are visited. When
explored in this mode all the transitions at a given level are explored before
passing to the level below.

Depth first. In this mode, the leftmost part of the graph is explored first.
Taking into consideration the number of the states of Fig. 2.7 the following
sequence of states is explored in the depth mode: 1,2,3,4,6,8,9,10,11,....

Labelled Transition System

The SDL reachability graph can be formally described as a Labelled Trans-
ition System (LTS), which is similar to a large automaton. Initially presented
in [58] for SDL and further refined in [59] and [60], this model captures the
basic concepts of the state of the system and the elementary events which
modify the state in the course of a computation.

In order to model a SDL system as a single automaton, each of its com-
ponents must be modeled first. As said before, in SDL a system is composed
of processes and each process has one queue and some variables.

A variable is modeled by a set of states representing their values, where
the variable initial state represents its initial value. The state space of all
the variables owned by process i, P;, is the cross product of the state space
of each variable. Tt is defined as the data space of P; and is denoted by SP.

A signal queue is also modeled as a set of states representing the queue
ordered signal containments. The set of states of the queue associated to
process 4 is defined as the signal space of P; and is denoted by S?.

A process, defined in SDL as a state machine, has also a set of states that
represent the SDL control states. This set is defined as the control space of
P; and is denoted by Sf.

Based on that, each SDL process P; can be modeled as an automaton
defined as P; = (S;, E;, T;, So;), where

e S; C 5S¢ x SP x 87 is the set of states of P;

e Fj;istheset of events of P;. The events belonging to E; are the reception
of a signal from its queue (?a), the output of a signal (la) and the
assignement of a value to a variable (n := 0);
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o T, CS; x (E;U{r}) x S; is the transition relation of P;;
e s5g; € .5; is the initial state of P,;.

The model of a SDL system, Aspr, = (S, E, T, sg), can now be construc-
ted by combining the process automata according to the SDL operational
semantics.

The state space S of a system Agpy is defined as

SCS xSy x...x8,

The system initial state sq is the state in which all the processes are in
their initial state

S = (3017 502y - -+ SOn)

For simplicity, and without losing any modeling power, events are as-
sumed to be disjoint, i.e., two events cannot occur at the same time

E={(e,e2,...,e,) | i€ €E; N Vjp:e;=1}

The transitions which model the valid behaviour of the system can be de-
scribed as follows. Let s and s' be states of Agpy, i.e., s = (s1,52,...,8,), S €

S and s = (s),8},...,s)), s € S, where s;,s, € S;. Events e are also re-

’<n
quired to be events of Aspr, e = (eq,¢e2,...,€,), € € E. The set of transitions

T of the system can then be described as
T ={(s,e,8) | Fi: (si,ei,8;) €Ty N Vjgi:((s5,7,8;) €T; V s;=5;)}

It means that a system can progress only when one of its processes computes
an allowed event — (s;,e;,5) € T;. As a consequence of that, the other
processes can change their state — (s;,7,s}) € T; — (one more signal in the
queue, for instance), or remain in the same state — s; = 59.

2.6.3 Testing equivalence

A common method for derivating conformance tests from SDL descriptions
is to reuse the JOSM test theories [61] [62].

An automaton can be formed from a SDL description by using the tech-
niques presented. However, in order to limit the number of transitions and
states some steps are required.

The first one is the transformation of the SDL specification. The SDL
constructors adding more states to the automaton, such as the dynamic
process creation mechanism or the save construct, are usually eliminated or
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substituted by simpler ones. Parameters of signals from the environment are
limited in range and only selected sets of values are allowed. The environment
can be made to have maximum behaviour or be cooperative, as described
above. When with maximum behaviour, the environment is simulated by
processes having only one control state. In that state, the environment can
always send and receive all the signals expected by the system. A cooperative
environment, in alternative, is assumed to output a new signal only when all
the signal queues of the system are empty. In this case the system reacts to
one external signal at time.

The second one is the limitation of the length of the signals queues, during
system simulation. Queues are assumed to support a small number of signals
(one or two). In this case, the process transitions in which a signal has to be
output to a full queue are not considered in the states graph.

The third one is the reduction of the graph. In this phase, transitions
describe the SDL relevant actions. For testing, only the externally visible
actions, such as the exchange of signals between the system and its environ-
ment are relevant. Thus, unobservable events must be renamed as internal
and the graph must be reduced in order to decrease the number of states. In
this step, the state machine obtained must also be minimised.

A set of tests can now be derived from the reduced and minimised state
machine by using, for instance, the UIO method.

2.6.4 Testing requirements

Derivation of conformance tests from SDL specifications can also be achieved
based on test requirements or test purposes, as suggested by the ISO meth-
odology. In this approach, a requirement is understood as a property that
has to be satisfied by the implementation under test [60], [63], [64]. The
specification, naturally, must also satisfy the requirement.

A test purpose, in the SDL world, is very often described in a MSC as a
sequence of events which must be observed during system execution. Unlike
the automated test methods associated with the JOSM which give a pass
or fail verdict, the ITU test methodology defines three type of verdicts. Pass
means that the combined execution of the test case and the implementation
gives a trace (a log) which meets the requirement and does not violate the
specification. Inconclusive means that the trace does not violate the spe-
cification but does not provide information required to evaluate the purpose.
Fail means that the trace violates the specification.

The correct description of this problem requires that the test purpose/
requirement, the specification and the implementation can be related.
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Temporal properties

A temporal property can be expressed as a set of traces and is usually classi-
fied in two types [50]: (1) safety and (2) progress. A safety property says that
a good thing always occurs. A progress property says that a good thing will
eventually occur. If the good thing is required to occur at least once, then
the progress property is refined as a guarantee property. Other refinements of
progress properties are response, persistence, reactivity and obligation. Only
safety and guarantee properties will be considered.

Let ® be the set of traces defining a temporal property of a system, where
a trace is a sequence of observable events. @ is said to be in E* (& C E*)
where E is the set representing the system visible events and E* contains
all the possible sequences of events. Let us denote a safety property by ®,,¢
and a guarantee property by ®g,,.

An implementation can also be represented by the set of traces Traces(Aryr),
i.e., the traces of the unknown automaton A;;7 which models the implement-
ation.

Several relations can be established between the two sets of traces (® and
Traces(Arur)):

e & =Traces(Ayr);
e & C Traces(Arur);
e Traces(Aryr) C ®;
o dNTraces(Awr) ={ }-

The verification of these relations by means of testing is difficult to achieve
since it may require the knowledge of Traces(A;yr) which may be infinite.
Since the execution of one test gives only one implementation trace, o €
Traces(Arpr) - the log, it would be preferrable to verify a relation based on
the single trace obtained.

Let us, for that reason, give weak interpretations of safety and guarantee
properties by using only one trace instead of a set of traces to decide about
property satisfaction.

A safety property is said to be not satisfied if, during a test, the implement-
ation presents a trace o which is not defined by the property, i.e., o ¢ ®y,f.
In this case, Traces(A;yr) € @ is proved to be FALSE. Otherwise, the
property is assumed to be satisfied.

A guarantee property is said to be satisfied if, during a test, the imple-
mentation shows a trace o which belongs to the property, i.e., 0 € ®y,. In
this case ® N Traces(Ajpr) = { } is proved to be FALSE. Otherwise, the
property is assumed to be not satisfied.
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Properties as automata

Since a property is represented by a set of event sequences, non-enumerative
methods for describing this set are required. Two mathematical models are
typically used for that: temporal logic and automata.

Temporal logic is a language used to express formulas over states or
events. In testing only sequences of events are of interest. Besides the usual
logical operators, such as A and V , temporal logic has also temporal oper-
ators, such as always and eventually.

Automaton is a well-known method for representing words from a known
alphabet. Using this method, the sequence of events defining the property
® is represented by the traces accepted by the automaton, i.e., the traces
which lead the automaton Ag from its initial state sy until an acceptance
state s € F. A property is thus defined by

O = Accept(Ag)

Specifications and use cases as properties

An SDL specification can be thought as a system property which must be
satisfied by the implementation. In this case, a safety property, ®s,, in the
sense that the implementation will not be allowed to present a trace which
violates the SDL specification.

One way of representing the SDL specification as a safety property is to
use the SDL Labelled Transition System (automaton) and assume that all
the reachable states are also acceptance states,

Accept(Aspr) = Traces(Aspr)

An use case (test purpose) defined based on visible events, so often avail-
able in the form of a MSC [12], can also be described as a property which
must be satisfied by the implementation. In this case, a guarantee property,
® 4, since at least one implementation trace is required to be the sequence
of events represented in the MSC.

E! ¥! !
O O O

E={ Ela E?, Elc}

(]
O

Figure 2.8: A MSC and its equivalent guarantee automaton
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Fig. 2.8 shows an example of an automaton representing the guarantee
property expressed by a MSC. Let A;sc denote the automaton representing
the test purpose, that is, the guarantee property.

Trace evaluation

Let us assume the existence of a test case t. The trace evaluation function,
verdy(), i.e., the function which evaluates the trace o that has been obtained
as a result of the joint execution of ¢ and the IUT, can take one of three
values pass, inconclusive or fail:

e pass, if 0 € Accept(Aspr) Ao € Accept(Ansc)
e inconclusive, if o € Accept(Aspr) N o ¢ Accept(Anrsc)
e fail, if o ¢ Accept(Aspr)

Test case derivation

The question arising when testing by requirements is: What test shall be
applied to the implementation in order to decide if it satisfies the requirement?
The generation of a test case based on a MSC describing the test purposes
and on a SDL specification has been addressed in [63], [64], [60].

First, the MSC is transformed into a guarantee automaton. The SDL,
modeled as an LTS, is explored in the breadth first mode. Contrary to the
graph exploration method presented above, in which states are never visited
twice, this method, which is extended to work on traces, can visit a state more
than once. Additional criteria for stopping the LTS exploration are, for that
reason, required. The objective of the search is to find sequences of observable
events that can simultaneously satisfy two conditions: c¢I) start and stop at
the automaton initial state sp; c2) can lead the guarantee automaton into
the final success state.

The search of sequences of events satisfying these conditions is carried
out by increasing levels of tree exploration. A configurable parameter defines
the depth to which the tree must be explored. The traces satisfying c1 and
c2 are classified as possible pass observables.

Possible pass observables are then evaluated for uniqueness. Starting
from the shortest possible pass observable, the tree is explored again in order
to evaluate if there is no other trace having the same sequence of observable
events. If this is the case, the test can be formed. As usual, the test is
described in the form of an (observable) events tree, in which the terminal
events have the pass or inconclusive verdicts associated as described above.
Sequences of events not previewed by the SDL specifications are marked as

faul.
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2.7 Conclusions

Protocol conformance testing is, surely, the testing field for which more ad-
vances were obtained. Although the target of this thesis is the test of systems,
much can be gained from existing protocol testing theories.

The first conclusion of the chapter is that a system can be modeled with
respect to its behaviour. Independently of its complexity it can be described
as an automaton with, perhaps, millions of states and transitions.

The second conclusion is that such models can be obtained by simulation
techniques. For that purpose, a system has first to be closed with some
environment and, after that, the closed system can be explored taking into
account the operational semantics of the specification language, so that all
the states and transitions can be found. Some methods exist for that end.

The third and last conclusion is that, although representable in terms of
states and transitions, testing concepts such as equivalences, requirements
and tests are better understood in terms of traces and set of traces, where a
trace is a sequence of observable events from the system initial state to some
other state. It is the log that test engineers are used to. Traces, however,
can be very large and the complete sets are a priori unknown.
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Chapter 3

NE Performance Specification

3.1 Introduction

This chapter presents some techniques used to model and describe the per-
formance requirements for Network Elements.

In the next section, some fundaments and notations for probabilities and
statistics are reviewed, such as random variables, confidence intervals and
Poisson and Markov processes.

In the third section, the models commonly used in the characterisation of
the performance of Network Elements are introduced. First, the concept of
traffic, the associated models and its measurement are presented. Then, the
well known queueing models are revisited. Finally, the traditional loss and
delay systems are also reviewed, from the telecommunications point of view.
Relevant in this section are the concepts of probabilistic traffic sources and
of performance state machine.

In the fourth section, the mechanisms used by I'TU to specify performance
and quality of service are introduced. Unlike behaviour, whose specifications
are operational, performance recommendations are described by means of
requirements. Parameters characterising the network element delays, failures
and availability are defined along with some boundary values. Two examples
are given - ISDN and digital exchanges. These examples are relevant for the
case study addressed in this thesis.

In the fifth section, a new concept for specifying performance is intro-
duced. Time and probabilities are associated with existing behaviour mod-
els. The concept, coming from computer science, is new and far from being
proved. Yet, these specification methods seem very promising since they at-
tempt to fill the gap between the two worlds. SDL improved with time as
well as the promising timed automaton are, for that reason, presented. Prob-
abilistic and time probabilistic automata extensions are also addressed.

47
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3.2 Mathematical concepts and notations

In this section some notations and definitions from basic probability theory
are reviewed. For a more through treatment refer to [65], [66], [67].

3.2.1 Probabilities and statistics
Random variables

An experiment is defined as a process whose outcome is not known with
certainty. The set of all possible outcomes of an experiment is called a
sample space and it is denoted by S. The outcomes themselves are called the
sample points of the sample space.

A random wvariable is a function which assigns a real number to each
sample point of S. Random variables will be denoted by capital characteres
(X, Y) and their values by lower case ones (a, b). The following notations
will be used:

P(X = x;) The probability that the discrete random variable
takes on the value z;.

p(x;) p() is the probability mass function, defined for dis-
crete random variables. For a particular value z;,
p(z;)) = P(X =x;) and 2 p(x;) = 1.

f(z) f() is the probability density function for continu-
ous random variables. P(X € B) = [ f(z)dx
where [ f(z)dz = 1.

P(X <z) Probability associated to the event {X < x}.

F(z) The probability distribution function of the random
variable X. For discrete variables it is defined as
F(z) = P(X <) = ¥,,<,p(x;). For continuous
variables, F(z) = P(X € [~oo,2]) = [*, f(y)dy.

E[X] Mean or expected value of the random variable
X. For discrete random variables it is defined
by E[X] = ¥ _ x;p(z;). For continuous ran-
dom variables E[X]| = [%_ zf(x)dz. Sometimes
E[X] is also represented by uy. For the constant
¢, E[cX] = cF[X].

Var[X] Denotes the variance of the random variable X and
is defined as Var[X] = E[(X — pux)?] = E[X?] —
p%. It is also referred as 0%, where ox is the
standard deviation defined by ox = /Var[X].
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Estimators and confidence interval

Suppose that O1,0,,...,0, are n independent observations of a physical
process which can be characterised by the random variable X. For simpli-
city, the observations O; can also be considered independent and identically
distributed random variables with unknown mean g and variance o2.

The estimation of the mean value of the observations, that is the sample
mean represented by X (n), is given by

X (n) is also referred as an estimator of py such that E[X(n)] = px. In-
tuitively this means that, if a very large number of independent experiments
is carried out and each one results in a X (n), the average of X(n) will be
ix- Similarly, the sample variance can be defined by

iz1[0i = X(n)]?

n—1

S%(n) =

where S?(n) is an estimator of 0%, since E[S?*(n)] = 0%.

The difficulty of using X (n) as an estimator of yx without any additional
information is that there is no way to assess how close X (n) and py are.
X (n), however, can be considered a random variable with variance

e n 0. 2 52
Var[X(n)] = Var lizl ’] A )
n n n
where o is approximated by S?(n). If, additionally, X (n) is assumed to have
a normal distribution with mean puyx and variance o?/n it can be demon-
strated that the 100(1 — «) percent confidence interval for puy is given by

_ S2(n
X(n) £tn-11-a/2 (n)

n

where t, 11 /2, for 0 < o < 1, is the upper 1 — a/2 critical point for the
t Student distribution with n — 1 degrees of freedom if n < 50 or

X(n) + 21_a)2 52(n)

n

where z,_,/2, for 0 < a < 1, is the upper 1 — a/2 critical point for the
standard normal distribution if n > 50.
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3.2.2 DPoisson and Markov processes
Poisson process

A Poisson process is a renewal process in which renewal periods (e.g., packet
or call interarrival times) are independent and distributed according to the
exponential probability density function:

fr)=Ae 5 7>0

where the mean of the interarrival time, 7, is given by
* Y 1
EM:/)Aw dt = ~
0 A

It can be demonstrated that the probability p,(k) of k arrivals occurring
within a time interval of length ¢, is given by

(A)F
B

and the average number of arrivals during the same time interval ¢ is given

by

P(ARR, = k) = pi(k) =

k=0,1,...

EIARR) =3k pi(k) = M

Hence, the arrival rate A can also be interpreted as the average number of
arrivals per time unit. Poisson processes have, among others, two properties
deserving reference:

e superposition property. If A;, Ay, ..., A, are independent Poisson
processes (or traffic sources) with rates Aj, Ag, ..., A\, respectively, then
their superposition is also a Poisson process, with rate Ay = A + Ay +
...+ A,. This property, together with the limit central theorem, implies
that the Poisson distribution approaches the normal distribution when
the parameter At increases. More precisely, if the random variable
K has a Poisson distribution with mean A, then the distribution of
(K — At)/v/At approaches the standard normal distribution N(0, 1)
when A\t — oo. In practice, this approach is used for A\t > 20;

e decomposition property. If a Poisson process A, with rate A, is
decomposed into processes By, Bs,...,B,, by assigning each arrival
in A to B; with a probability ¢; such that ¢4 + ¢ + ... +¢, = 1,
and independently of all previous assignments, then By, Bs, ..., B, are
Poisson processes with rates ¢; A, ¢\, ..., g, A\, respectively and are
independent of each other.
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Markov process

Let us consider a stochastic process X = {X; | t > 0}, where X; are random
variables whose space state S is discrete and finite and whose time parameter
is assumed to take arbitrary non-negative real values.

The process X is called a Markov process if it has the Markov property,
that is, the path followed by X after a given moment ¢ depends only on the
state at that moment, X;, and not on its past history:

P(Xt+s:j|Xu;u§t) = P(Xt+s:j|Xt)§ J=0,1,...5 5t>0

A Markov process has state transition probabilities that depend only on
s, that is, the time interval between the instants when the process enters
state 7 and state j, respectively

PXyys=71Xe=1) = ¢j(s); 1,j=0,1,...; s>0

The evolution of a Markov process can be described as follows: the pro-
cess enters a state ¢ (¢ = 0,1,...) and remains there for a random period
of time exponentially distributed with parameter ;. At the end of that
period, the process moves to another state, say j (j =0,1,...; j # i), with
some constant probability g;;. Then it remains in state j for a period of
time distributed exponentially with parameter ;; and moves to state k with
probability g;p.

A more usual form of representing this probabilistic behaviour is to use
the instantaneous transition rates of the Markov process, characterised by
the products:

aij = Wigij; 47 =0,1,...; 1 #]

The instantaneous transition rate a;; can be interpreted as the average
number of transitions from state ¢ to state j, per unit of time spent in state
1. This view leads to another interpretation of the Markov process operation
which is more in line with telecommunications: the process enters a state
7; at that moment, a competition between the state ¢ outgoing transitions
starts; based on the transition rate a;;, every state ¢ outgoing transition
evaluates a time from its exponential distribution; the smallest time wins
the competition; after this time, the system changes state using the winner
transition.

The last concept to review are the Process Markov balance equations:

> ayp; = > api; 7=0,1,...

i€S; i£] i€S; i#]



52 CHAPTER 3. NE PERFORMANCE SPECIFICATION

where p; is the fraction of time or the probability of the process being in
state 7. Hence, p;a;; is the average number of transitions that the process
makes from state i to state 7, per unit of time and in the steady state. It is
also known as the flow from state ¢ to state 7. The equation states that, for
all the states, the flow entering state j equals the flow exiting state j.

3.3 Traditional performance models

From the performance point of view, a Network Element can be modelled
by a state machine, composed of states and transitions. Its interpretation,
however, differs from the automaton introduced in the last chapter, which
was used to represent the system observable behaviours. A state, in the
performance context, describes the number of calls or packets in the system.
A transition between two states is characterised in terms of (1) the probability
of the transition taking place and (2) the waiting time before the transition
occurs. A particular class of these machines, the Markov Process, is often
used to describe the performance of Network Elements performance, given
its exceptional mathematical properties.

Network Elements are usually classified in two types from the engineering
point of view [68], [69], [70]: loss systems and delay systems. The classific-
ation of a particular system depends on the network treatment of overload
traffic. In a loss system, the overload traffic is rejected without being served.
In a delay system, overload traffic is held in queues until the required fa-
cilities become available to serve it. Conventional circuit switched Network
Elements operate as loss systems, since the excess traffic is usually blocked
and not served without a retry on the part of the user. Packet oriented net-
works have the characteristics of a delay system since packets transversing
a network are usually placed in queues waiting for their time to be served.
The two worlds, however, touch each other. Traditional loss systems, such as
telephony systems, are providing mechanisms for making incoming calls wait.
Moreover, with the digitalisation and packetisation of information streams,
such as ATM cells or IP packets, for the transport of voice, traditional loss
systems may become delay systems during certain phases. Delay systems,
on the other hand, become lossy when buffers are full.

3.3.1 Traffic

An arrival from a Network Element user is generally assumed to be purely
random and be independent of the arrivals of other users. In general, the
traffic offered to a network is fundamentally dependent on both the frequency
of the arrivals and the average holding time for each arrival.
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Arrivals

Arrivals to a network can be (1) calls, where the best example is a phone
call, and (2) packets, as for instance an IP packet or an ATM cell. Both
types of arrivals may need to be combined so that any traffic source may be
characterised.

The call concept is strongly associated with telecommunication Network
Elements. Firstly, because first telecommunication Network Elements were
modelled based on that concept - the phone call - and, secondly, because even
for the most recent telecommunication services the call or session concept still
continues to make sense from the user and management point of view. In the
simplest approach, the call is decomposed into three phases - establishment,
data transmission and termination. During establishment, network resources
such as timeslots and bandwidth or quality, are negotiated for the duration
of the call. During data transmission, the resources allocated are used. In
the termination phase, the resources allocated for the call are released. Tra-
ditional performance models, however, simplify the call by considering that
establishment and termination phases have durations which are irrelevant
when compared with the duration of the data transmission phase.

Interestingly, and from the testing point of view, call establishment and
termination are the phases which provide more information on the faults
of complex systems. During these phases, a number of Network Element
components, such as signalling, services and management, are required to
inter-work in order to allocate and deallocate the system resources.

The packet model is being increasingly used in performance models. First,
they were used to study data networks, such as LANs, X.25 or IP. Then, for
modelling ATM traffic sources. More recently, to describe continuous data
stream traffic sources over IP, such as voice over IP. Their main application
is the description of traffic sources during the data transmission phase of
calls. Although resources may have been reserved for these calls during the
establishment phase, they may have been allocated based on some probabil-
istic allocation scheme. Some residual probability of packet data being lost
or excessively delayed may need to be characterised.

Measurement

One measure of the traffic generated by a source is the volume of traffic
generated over a period of time. Traffic volume, that is a concept comming
from circuit oriented networks, is essentially the sum of all holding times
during a measurement time interval. A call holding time represents the
duration of the call. A packet holding time is the time required by a source
to transmit a packet of a given length which, naturally, depends on the packet
length and on the transmission bit rate on the medium.
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A more useful measure of traffic is the traffic intensity, A, which expresses
the ratio between the volume of traffic and the period of time used for the
measurement. It can be said that

A= ?:1 di
T
where d; is the holding time of call/packet i and T is the period used for
measurements. Although traffic intensity is dimensionless (time divided by
time) it is usually expressed in erlang.

The maximum traffic intensity produced by a source generating one call
or packet at time is 1 erlang. In the same way, it can be said that the
maximum capacity of a server (or channel) is also 1 erlang.

If the call/ packet average arrival rate is denoted by A and the mean
holding time is denoted by d,,, then

A=\,

Traffic intensity is a measure of the average traffic generation during a
time period and does not reflect the relationship between arrivals and holding
times. Many short calls/ packets can generate the same traffic as few long
ones.

3.3.2 Waiting queues

The well-known waiting queue is the framework more often used to study
the performance of Network Elements. Under certain conditions, algebraic
solutions may be found.

In what concerns this thesis, a queuing system is equivalent to a specific-
ation language in the sense that it provides a mathematical framework that
can be used to describe the performance of networks and verify if they satisfy
certain properties, such as maximum mean delays or packet loss probabilities.

A waiting queue is a system where arrivals from a number of sources
wait in one queue for a service that will be provided by a number of servers.
The arrival and service processes are characterised statistically. The generic
notation to describe a queue system is

1/2/3/4/5

The nature of the arrival process is defined in 1. Usually, interarrival
times can be constant (C), exponentially distributed (M) or generic (G). The
service time is specified in 2 and can have the same distributions. 3 gives
the number of servers of the system. The population of potential customers
is given by 4. The last parameter, 5, indicates the capacity of the queue.
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For simplicity, this last characteristic is assumed not to contain the jobs in
service. The maximum number of jobs present in queue system is, in this
case, the maximum number of jobs supported by the queue plus the number
of servers. A queue system of type M/M/1/oo/c0, for instance, indicates
that arrival and service times will be exponentially distributed, only one
server will be used and both the number of potential clients and the queue
capacity will be infinite. This system is often represented as M/M/1.

In the same way as a behavioural specification language can be described
by a Labelled Transition System, a queue system can also be represented by
a performance state machine.

3.3.3 Loss systems

Traditional loss systems are used to model circuit switched networks, such
as telephone networks. As said above, usually in this kind of system new
arrivals are served only if there are servers available at that time. If this
is not the case, the new arrival abandons the system without being served.
Loss systems usually process calls. The call model introduced above is, for
that reason, appropriate.

From the performance point of view, the events which are considered
relevant are (1) eg, (ts,), which models the set up of call i at time ¢, and (2)
er, (tr;) which models the release of call i at time t,,.

Intercall arrivals are usually modeled as Poisson processes. It means that
the random variable 7,,,. describing the time interval between the arrival of
two consecutive calls j — 1 and j, (74, = ts; — Ly, ,), is considered expo-
nentially distributed according to forr(Tarr) = Ae™*@" where A describes
the call arrival rate (call/hour). The adoption of Poisson arrivals, although
claimed to model traffic sources realistically, is convenient mainly by its su-
perposition and decomposition properties which makes the combination of
two Poisson traffic sources yet a Poisson source.

Call holding times of individual sources, Thotd; = tr; — Us; are assumed
to be exponentially distributed or constant. In the first case, frow(Thoa) =
pe Hrold - where 1/p models the mean call duration. In the second case,
Photd(Thota) = 1, that is, all the calls have the same constant duration T},q.

The aim of the study of a loss system is to characterise its blocking
probability, that is, the probability of a new call arrival being rejected by the
network. To some extent, an waiting queue system of length 0 (no waiting
places), M/M/N/S/0, can be used to describe a loss system. In this case, the
system has S call sources generating call set up events e;. These events are
characterised by interarrival times 7,,, which are distributed exponentially
with mean A\. The N servers are used to model the call duration, 75,4, also
assumed to be exponentially distributed with mean ().
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Call sources - the telephones - are assumed to generate one call at time. As
an example and assuming that the number of sources (S) equals the number
of servers (), then the (instantaneous) generation rate at the moment where
all the servers are busy serving a call will be 0, instead of SA described by
the model. In order to consider this issue, the model is altered so that each
source refrains itself from generating new calls when it is already engaged
in a call. In order to maintain the generation rate A\ as specified, the source
uses an higher generation rate ;4. during idle periods. The new generation
rate A;ge is used to describe statistically the time between the end of a
call and the beginning of the next call, that is, ;g4 = ¢ — tr;, where
fidie(Tidie) = Nigie€ it 7idle and

Sj+1

In other terms,

1

)\idle

= ETigte) = E[Tarr] — E[Thota)

This model, which is very common in telecommunications, will also be
used in the case study of this thesis. It can be represented by the performance
state machine of Fig. 3.1, which depicts a Markov process. States describe
the number of calls in the system. Transitions are labelled with a rate which
implicitly describes the probability of a transition being undertaken and the
time the system will remain in a state before it passes to a neighbour state.
Both the generation and termination rates depend on the number of active
sources.

m 2u 3u NUL
ofoRoJoliic
Shige (SD Aige (2 Aige  (SN+1) Ajge

Figure 3.1: Markov process representing a loss system

3.3.4 Delay systems

Delay systems are known to have some capacity to delay service requests
until they can be served. Most of the data networks work based on this
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concept. Depending on the part of the network being modelled, an arrival
may represent the request for a packet transmission and the service can, for
instance, include the time to process the request and transmit the packet.

Simple delay systems can be modelled by one waiting queue. In this case,
three events are relevant: (1) e, (t,,), which models the arrival of the service
request 7 to the queue tail at time ¢,,; (2) ey, (s,), which models the start of
service of the arrival ¢ at time ¢;;, and represents the transfer of an arrival
from the first position of the queue to a server; (3) e, (t,), which represents
the end of service for arrival 7, at time ... In this case, arrival ¢ is said to

leave the system.

Let us assume a generic queue M /M/N/S/L where each source generates
Poisson arrivals with rate A, and each server provides service whose duration
is exponential and characterised by p. There are S sources, N servers and
the queue has length L.

The state machine representing this simple performance model is shown
in Fig. 3.2. Again, the states represent the number of arrivals in the system
(queue plus servers) and the transitions represent the flow rates of the system
moves between states.

u 2 3u 4 Nu Nu NUL Nu
ofcfofo %
\
Sh i s. Sk @ s 2 Sk

Figure 3.2: Markov process representing a single queue delay system

More complex delay systems can be modelled by queues networks, in
which a service request (arrival) after being served is placed (with some
probability) at the end of another queue. Complex systems usually loose the
mathematical characteristics of simple Poisson processes and their study can
only be achieved by discrete event simulation techniques. Delay systems are
aimed at characterising the delay and losses of each type of arrivals.
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3.4 Performance requirements

3.4.1 ITU-T approach
General characterisation

The ITU-T specification of quality is restricted to the boundary of Network
Elements and describes the quality, or performance, required for the commu-
nications functions that they provide. Quality aspects are addressed from
(1) the users point of view, referred to as Quality of Service (QoS) and (2)
the network providers point of view, named as Network Performance (NP).

The Quality of Service provided by a network and felt by its users is de-
tailed in [71] as being influenced by the following aspects: 1) service support
performance; 2) service operability performance; 3) serveability; 4) service
security performance. The serveability aspect, which is the main concern of
this thesis, is defined as the ability of a service to be obtained within specified
tolerances when requested by the user and continue to be provided without
excessive impairment for the request duration. QoS is expressed by means
of parameters that, in turn, are defined based on events observable at the
service access points [72].

Network performance, as felt by the network provider, is defined in [71]
as the ability of a network or network portion to provide the functions related
to communications between users. The performance of a network and its
components contributes, among other things, to the serveability aspects of
the services and is characterised in [72] by a set of measurable and calcul-
able parameters which provide information for system development, network
planning, operation and maintenance. The definition of network performance
parameters is also defined based on events observable at connection element
boundaries such as protocol signals.

The service access points and the connection element boundaries are the
points used for measurement. A measurement point is defined in [73] as a
point that is located at an interface that separates either customer equip-
ment/customer network or a switching/signalling node from an attached
transmission system at which ITU recommended protocols can be observed.

At these measurement points reference events are introduced and used to
define the parameters. A reference event is described in [73] as the transfer
of a discrete unit of control or user information encoded in accordance with
recommended protocols across a measurement point.

Reference events are classified as entry events if they entry the Network
Element under characterisation or exit events on the other case. The time of
occurrence of an exit event is specified as the instant at which the first bit
of the unit is observed at the measurement point. In case of event retrans-
missions, only the first occurrence counts. The occurrence time of an entry
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event is the time when the last bit of the unit enters the network. In case of

retransmissions, only the last transmission event must be taken into account.

A QoS/NP parameter is classified, according to its type, as primary or
availability.

Function Speed Accuracy Dependability
access access delay incorrect access prob | access denial prob
information transfer delay error prob loss prob
transfer transfer rate extra delivery prob
misdelivery prob
disengagement | disengagement delay incorr diseng prob

Table 3.1: Primary parameters for quality of service

A primary parameter describes a quality factor during the normal opera-
tion of the system. A primary parameter can also be classified according to
the service usage phase and performance criterion. Service usage phases are
access, user information transfer and disengagement. Performance criteria
are speed, accuracy and dependability. Speed describes the time interval
required to perform the function or the rate at which the function is per-
formed. Accuracy describes the degree of correctness with which the func-
tion is performed. Dependability describes the degree of certainty (or surety)
with which the function is performed regardless the speed or the accuracy.
Primary parameters are presented in Table 3.1.

restoral rate

service availability
mean time

service

available not availablg

service restoral
mean time

Figure 3.3: Availability parameters

An availability parameter describes the frequency and the duration of
service interruptions. Availability parameters are presented in Fig. 3.3.
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Delays

Quality and performance primary parameters usually express statistically
maximum time intervals between reference events or the maximum number
of bad situations.

For delays, two maximum values are usually specified: the maximum
mean value (maxmean) and the maximum value for the 95 percentile (maz95)
[74], [75], [76], [77].

Being D a random variable referring to the time interval between two
reference events, the first requirement on delay says that the average delay
between these reference events shall be less than maxmean

E[D] < maxmean

The second requirement on delay says that for 95% of the cases, at least, the
delay D shall be less than max95:

Prob(D < max95) > 0.95

The maxzmean and the max95 values tend to be defined as a function of the
traffic offered to the network. Traffic intensity (A) or packet rate (\) are
used to characterise this traffic.

Failures

For bad situations, such as connection set-up failure, primary parameters are
specified as the limiting occurrence probability of some unwanted behaviour
[75], [78], [79], [77]:

Prob(bad_situation) < maxprob

where bad_situation is a free textual description of the failure.

Availability

Based on the primary parameters defined for failures, certain outage criteria
can also be defined. For instance, for an ISDN 64 kbit/s circuit switched
connection type, if the connection set-up error plus the connection set-up
failure are occurring for more the 90% of the call attempts, the network
element is considered to be out-of-service.

A Network Element outage may be modelled by a Markov process (as
shown in Fig. 3.3) where the following parameters are considered: 1) the
average outage duration; 2) the failure rate \; 3) the restoral rate .
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3.4.2 N-ISDN

Narrowband ISDN has ten QoS/NP performance parameters defined in in-
ternational recommendations. Four of them (connection set-up delay, discon-
nect delay, call set-up error probability and call set-up failure probability)
are presented below.

e connection set-up delay. This parameter is based on the observa-
tions at two measurement points, M P; and MP; (see Fig. 3.4) which
corresponds to two ISDN S/T terminal interfaces.

It is defined in [74] as the length of time that starts when a SETUP
message message creates a performance-significant reference event at
the measurement point M P; (transference of the last bit of the I(SET)
message) and ends when the corresponding CONN ECT message re-
turns and creates its performance significant event at the same meas-
urement point (reception of the first bit of the I(CON) message. Called
user response times, as d; observed in M P;, are excluded, so connection
set-up delay is defined as dy — d;.

NTW DLL  MPi MPj  DLL NTW
] I . I . | |
SETUP
I(SET) NTW - Network layer
P > DLL - Data Link Layer
//' UI(SET)
d2 / 7 SETUP
! d1{
\ \
\ \
\‘\‘ ‘\‘
\| CONNECT
[(CON)
- [(CON)
CONNECT
| | I . I . ]

Figure 3.4: Connection set-up delay

For a national network Tab. 3.2 presents the maximum values recom-
mended:

e disconnect delay. It is defined [74] as the length of time that starts
when a DISC message creates a performance significant reference event
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Connection setup delay

maxrmean 2900 ms
maxr99 3600 ms

Table 3.2: Connection set-up delay for a national network

at the measurement point M P, and ends when that DISC message
creates a performance significant event at measurement point M P;,
farther from the clearing part, as presented in Fig. 3.5.

NTW DLL MPi MPj  DLL NTW
[ ——— T
DISC
I(DISQ)
dy | T— I(DISC)
DISC
B . .. - -

Figure 3.5: Disconnect delay

For a national network, Tab. 3.3 presents the maximum values recom-
mended.

Disconnect delay
maxrmean 1250 ms
max95 1750 ms

Table 3.3: Disconnect delay for a national network

e call set-up error probability. It is defined in [76] as the ratio of total
call attempts that result in call set-up error to the total number of call
attempts. With reference to Fig. 3.6, a call set-up error is defined to
occur in any call attempt in which event b occurs, but event ¢ does
not occur within a 200 s period. The call set-up error probability is
essentially a wrong number.

e call set-up failure probability. It is defined in [76] as the ratio of
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I —
Cc
-
d
| |

Figure 3.6: Generic reference events for a successful cal set-up

total call attempts that result in call set-up failure to the total number
of call attempts. With reference to Fig. 3.6, call set-up failure is defined
to occur in any call attempt in which either one of the following is
observed within a 200 s timeout time interval: 7) both events b and d
do not occur; i) events b and ¢ occur, but event d does not.

A connection portion is said [78] to be out of service if the measured

call setup error probability + call setup faillure probability > 0.9

3.4.3 Digital exchange

Performance parameters in digital exchanges are defined as functions of ref-
erence loads, that is, the traffic mix expected for the Network Element.

Reference loads

Three types of accesses are defined for a digital exchange [77]: 1) basic
analogue line; 2) ISDN, Basic Rate Interface; &) interexchange 64 kbit/s
circuits.

The traffic offered by each access to the local exchange, also named ori-
ginating traffic, is modelled by means of two parameters: traffic intensity - A
(erlang) - and the average Busy Hour Call Attempts - BHC'A (call/hour).

They are related by

A

where C'HT' is the average Call Holding Time, in hours.

Two reference loads are typically considered in the definition of the per-
formance parameters: the Upper level and the Increased level. The Upper
level represents the normal maximum busy hour traffic for which the switch-
ing resources and interexchange circuits are generally provisioned, typically
the mean for the 30 highest busy hours of the year, excluding exceptional
days such as Christmas. Tab. 3.4 shows the typical values for the traffic
originated by the exchange accesses in the Upper level reference load.
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Access type A BHCA | A, D chan
(erlang) | (call/h) (pac/s)
Analogue line 0.17 6.8 -
ISDN-BRI (2B1D) | 2x01 | 2x4 0.05
Interexchange circuit 0.7 0.7/CHT -

Table 3.4: Upper level originating traffic parameters

The Increased level reference load represents the reasonably frequent oc-
curring overload conditions, for which the network is expected to provide an
acceptable level of degraded performance, typically the mean of the 5 highest
busy hours of the year. The values for the traffic originated by the exchange
accesses in the Increased level reference load are presented in Tab. 3.5.

Access type A BHCA A, D chan
(Erlang) (call/h) (pac/s)
Analogue line 1.25 x 0.17 1.35 x 6.8 -
ISDN-BRI (2B+D) 1.25 x 2% 0.1 1.35 x 2 x4 > 0.05
Interexchange circuit 0.8 1.2x0.7/CHT -

Table 3.5: Increased level originating traffic parameters

Another relevant aspect when defining the traffic offered to a network
element is the consideration of its mixing. For digital exchanges providing
both analogue and ISDN services, some mixes are presented in Tab. 3.6.

Access type Originating | Terminating

(%) (%)

Basic analogue line 28 26
Analogue line with suppl. services 32 30
ISDN line, circuit switched 5) 5)
ISDN line, packet switched 2 2
Interexchange circuit 33 37

Total 100 100

Table 3.6: Digital exchange typical traffic mix
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Performance parameters

About 40 performance parameters are defined for digital exchanges [77]. Five
of them were selected (local exchange call request delay, incomming call
indication sending delay, exchange call release delay, release failure and tone
failure) and are presented below.

e local exchange call request delay. For analogue subscriber lines,
call request delay is defined as the interval from when the off-hook
condition is recognised at the subscriber line interface of the exchange
until the exchange begins to apply the dial tone to the line. For di-
gital subscriber lines call request delay is defined as the interval from
the instant at which the SETU P message has been received from the
subscriber signalling system until the SETUP ACKNOW LEDGE
message is passed back to the subscriber signalling system. The values
recommended are in Table 3.7.

Call request delay
Statistic | Upper level | Increased level
mazrmean 400 ms 800 ms
max9d 600 ms 800 ms

Table 3.7: Call request delay for subscriber lines

e incoming call indication sending delay. For calls terminating on
analogue subscriber lines, this delay is defined as the interval from the
instant when the last digit of the called number is available for pro-
cessing in the exchange until the instant that the ringing signal is ap-
plied by the exchange to the called subscriber line. For calls terminating
in digital subscriber lines, the delay is the interval from the instant the
necessary signalling information is received form the signalling system
to the instant when the SETUP message is passed to the signalling
system of the called digital subscriber line. The values recommended
are in Tab. 3.8;

e exchange call release delay. This delay is the interval from the
instant at which the last information required for releasing a connec-
tion is available for processing in the exchange to the instant when
the switching network through-connection in the exchange is no longer
available for carrying traffic. The values recommended are in Tab. 3.9.
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Incoming call indication sending delay

Analogue line Digital line
Statistic | Upper | Increased | Upper | Increased

maxmean | 650 ms | 1000 ms | 400 ms | 600 ms
max9d 900 ms | 1600 ms | 600 ms | 1000 ms

Table 3.8: Incoming call indication sending delay

Call release delay
Statistic | Upper level | Increased level
mazrmean 250 ms 400 ms
max95 300 ms 700 ms

Table 3.9: Exchange call release delay

e release failure. The probability that an exchange malfunction pre-
vents the required release of a connection shall be

P(release_failure) < 2 x 10°°

e no tone. The probability of a call attempt encountering no tone fol-
lowing the receipt of a valid address by the exchange shall be

P(no_tone) < 10~*

3.5 Behaviour performance models

As shown above, the performance of Network Elements can be described and
studied in terms of performance models such as waiting queues or queues
networks. For some classes of these systems algebraic solutions can be found.
However, for more complex systems, discrete event simulation techniques are
needed. The main objectives of performance models are the study of system
delays and losses.

The mechanisms used by international bodies to describe quality were
also presented. Contrary to behaviour specifications, which describe in detail
the operations of some system components, the performance specifications
are provided in a requirement style. Random variables for delays, failures
and availability are defined and limiting values are ascribed to them. These
parameters, however, use information from behaviour descriptions. The two
worlds seem, for that reason, to be related.
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The results which will be presented in the next section come from com-
puter science and they are recent. Although much work can be found on
the subject, only the contributions considered relevant for this thesis will be
presented.

Examples come mainly from process algebra [80], [81], event structures

[82] and automata. For a matter of consistency, only the basic automata will
be addressed.

3.5.1 Timed behaviours

The behaviour automaton does not have mechanisms to express time, time
constraints or delays. For instance, the time that an automaton spends in a
state or the time consumed in executing a transition cannot be defined.

Protocol specification languages, such as SDL, partially overcome this
problem, vital for the specification of timeouts, by defining special processes
named timers. A timer, which serves only one process, is a concurrent process
that can be set to some time in the future and warns its owner about the
occurrence of the timeout. The process receiving the timer signal would, in
this way, be able to evaluate if the timer signal was received before or after
some other signal. This mechanism, however, cannot be used to describe
sequences of precise time events.

Recently some proposals for overcoming this problem have been presen-
ted. Two of them will be described next.

SDL timing mechanisms

SDL processes specify amounts of time by means of timers. There are two
problems associated with this mechanism:

e execution times. Neither a task execution time in a transition nor
the transition execution time can be explicitly described;

e signal queues. The time at which the process will receive the timer
signal cannot be explicitly specified, since it depends on the amount
and type of signals existing in the process queue.

In order to overcome these limitations and let SDL be used for the defin-
ition of real time systems, some solutions have been proposed. The Queuing
SDL [83], proposes three solutions: general zero time executions, time request
actions and timed states. The first assumes that, unless explicitly stated by
the other two solutions, SDL actions are instantaneous, that is, they take
no time to execute. Time request actions are special timed actions that are
invoked during an SDL transition and will block the process in that action
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for the amount of time requested. Since in SDL transitions are atomic, no
other transition from other process can be executed during this blocking
time. Timed states are states that awake the process § time units after it has
entered the state. This mechanism enables spontaneous transitions to occur
at a pre-determined time.

Similar constructs are proposed in [84]. Actions can be specified with
respect to time, that is, the process can block after the execution of an action
for a specified time interval. On the other hand, the timer is required to have
its value available for the owner process. In this way, a SDL continuous signal
using a timer value may be used to enable a transition. This second solution
solves the timer queue problem, because the synchronous signal will no more
depend on the process signal queue.

Timed automata

Alur-Dill [85], [86] developed a simple model for time which addresses be-
haviours as trace semantics, with the purpose of studying the correctness of
real time systems.

In (untimed) trace semantics, the behaviour of an automaton A can be
given by the set of its traces, where a trace is a sequence of observable
events from the initial state to some other state. If time is introduced, the
automaton traces become also timed in the sense that a time value must now
be associated with each observable trace event.

A timed trace oy is then defined as a sequence of pairs (e, t), where e repres-
ents an event and ¢ its ocurrence time (e.g. oy = (a,1).(b, 2).(a,4).(b,5) . ..).
timTraces(A) is the set of timed traces defined by the automaton A.

Alur-Dill, in [85], augment the definition of the automaton so that they
can produced timed traces. In traditional automata, the transition selection
depends on the event. In the case of a timed automaton the objective is that
this choice depends also upon the time of the event relative to the times of
previous events. For that, a set of clocks are associated with the automaton.
A clock can be set to zero simultaneously with any transition. At any instant,
the reading of the clock equals the time elapsed since the last time it was
reset. With each transition there is also associated a clock constraint and it
is required that the transition may take place only if the current values of
the clocks satisfy this constraint.

Let us consider the automaton of Fig. 3.7, which uses two clocks, x and
y. The clock x gets set to 0 each time the automaton moves from sy to sy
on event a. The check (z < 1)7 associated with the c-transition from s,
to s3 ensures that ¢ happens within time 1 of the preceding a. A similar
mechanism of resetting another independent clock y on event b and checking
its value on event d ensures that the delay between the following d is always
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Figure 3.7: Timed automaton with 2 clocks

greater than 2. The trace oy, = (a,2).(b,2.7).(c, 2.8), for instance, is a timed
trace of the automata represented in Fig. 3.7, where events a, b and ¢ have
been observed in sequence at, respectively, the times 2, 2.7 and 2.8. With
this sequence, the automaton has been able to move from state sy to state
S1.

A timed automaton is defined by the tuple A = (S, E,TT), sy, C') where

e S, F and s are defined as usual;
e (' is a finite set of clocks;

e 1T gives the set of timed transitions represented by the generic trans-

ition s <23~ s', from s to s’ on event a, where ¢ is a clock restriction
(e.g. (r < 1)7) and A C C gives the clocks to be reset with this
transition (e.g. {y}).

Automata composition can also be defined easily. Let
A= (SlaElaTTlaSOUCl)a Ay = (SQ,EQ,TTz,Soz,CQ)

be two timed automata. Assuming that the clock sets C; and Cs are disjoint,
then the composition of the two automata, denoted a A; x A, is given by
the timed automata

A= (51 X SQ, E1 U EQ,TT, (801, 802), Cl U 02)
with TT defined as:

e fora € F1 N Es,
.. <01,a,A1> . <02,a,A2> .
for every transition s; ~ =5 ] in A; and s, =5 sh in Ay,

. .. <(01A02),a,(A1UN2)>
A contains a transition (s, S2) Lo (sh,s5);

[ ] foraEEl—Eg,
<01,a,A1>

for every transition s; ~ =25 s in A; and every s; € Sy,

. .. <01,a,A1>
A contains the transition (sq,s;) ~ ==~ (8], s8);

® fOI'ClEEQ—El,
<d2,a,N2>

for every transition sy ~ =257 s, in Ay and every s € S,

. .- <d02,a,A2>
A contains the transition (sy, s2) 223" (s, 5h)-
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Composition is as simple as for untimed automata. Just the union of the
reset of the clocks and the interception of the transition constraints must be
taken into account.

3.5.2 Probabilistic behaviours

Probabilistic behaviours have been used to characterise aspects of a system
when they are better described using probabilities. Most of the work on
modelling probabilistic concurrent behaviours comes from process algebra.
The results, however, will be presented from an automaton point of view.

A widely accepted classification of models of probabilistic processes is
given in [87]. Three types of models are introduced: 1) reactive; 2) generat-
ive; 8) stratified.

In the reactive model, the automaton consists of states and labeled trans-
itions associated with probabilities, where labeled means that the transition
has an event associated. The restriction imposed by this model is that, for
each state, the sum of the probabilities associated with the transitions labeled
with the same event is one. It means that, after an event is observed, the
next state is determined probabilistically.

In the generative model, the automaton consists of states and labeled
transitions associated with probabilities. The restriction imposed is that,
for each state, either there are no outgoing transitions or the sum of all the
outgoing transitions probabilities is one. This is equivalent to saying that
both the event and the next state are to be selected probabilistically.

In the stratified model, an automaton consists of states, unlabelled trans-
itions associated with probabilities and labeled transitions. The restriction
imposed on a stratified process is that, for each state, either there is exactly
one outgoing labeled transition, or all the outgoing transitions are unlabelled
and the sum of their probabilities is one. Examples of the three models can
be observed in Fig. 3.8

a b a N\
1a D\ 1/2 31162/ D\ 2/16
34/ 172 o/16y 2/16

Figure 3.8: Reactive, generative and stratified models
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In the remaining of this section some variations of the three models are
presented, with respect to the automata specification and composition as-
pects.

Probabilistic reactive automata

The work of several researchers, such as [87], [88] and [89], has led to a
common probabilistic reactive automata definition. A reactive probabilistic
automata A is defined as A = (S, E, RT, s¢) where:

e S, F, and sq are defined as usual;

e RT C Sx(EUT)x P(S), represented by s <a’—P>>, is a set, of transitions
where P is defined as P = {(s;,p;) | >; pi = 1} and represents the set
of next states annotated with the probabilities.

Once the automaton has engaged in a transition, the final state is selected
probabilistically from a given set.

The model does not distinguish input from output events so, for simplicity,
all of them can be interpreted as read (input) events.

The composition of two reactive automata can also be defined. Let
Ay = (S, E1, RTh, s0,) and Ay = (Sy, E, RT5, s,) be two automata. The
composition of these two automata, denoted by A; x As, is the reactive prob-
abilistic automaton A, given by A = (S; X Sy, Ey U Ey, RT, (so,, So,)) being
RT defined by

<a,P>

(s1,82) — € RT iff P = P; x P, where:
1. if a € E, then s; kit by RT; else Py = (s1,1);
2. if a € FE5 then so i Ty RT, else Py = (s9,1).
The product of the two sets P, and P, is defined as
P x Py ={((s),,55,),Pis X Pin) | (81, Dir) € Pr A (84, pi) € Pa}

and represents the combination of all end states having their probabilities
multiplied. The sum of all the probabilities for the same event still continues
to be 1, for all the states and events. An example of a composition of two
probablistic automata is presented in Fig. 3.9.

Probabilistic generative automata

In [88] a process algebra is defined in which the probabilistic generative model
is used. In what concerns the probabilistic view of that theory, events are
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Figure 3.9: Parallel composition of probablistic reactive automata

classified as internal (7) and external. External events can be passive (input)
or active (output).

A passive event, such as the reception of a message, is one that requires
external driving, i.e., the probability of the transition containing this event
being executed depends only on the automaton environment. An active
event, such as the transmission of a message, is an event controlled by the
automaton and to which some statistical attributes can be associated.

Transposing the problem to the automata framework, the generative
probabilistic automata A = (S, E, GT, sp) is used such that

e S and sy are defined as usual;

e atransition can be denoted as passive or active and is defined as follows:

— active. s; <wlig> s; , where a € ACTIVE U {7} is an event and
f € N* denotes its frequency. f;; is a positive integer and means
that, for state s;, this transition will be executed f;; out of the
total number of active transitions leaving state s;;

— passive. s; — s;, where a € PASSIVE U {7} and denotes the
traditional automata transition. Its frequency is undefined and
therefore depends on the automaton environment and, for that
reason, is not referenced.

e ECACTIVEUPASSIVE U{r};

If a state has active transitions leaving it, all of them must have frequen-
cies associated. The probability of an active transition ¢; leaving the state s;
is given by W A state machine of this type can be thought of as a
discrete time Markov Chain, in which each state is a state of the chain and
the probabilities of the arcs of the chain are proportional to the frequencies
of the automata transitions.

The composition of two generative probabilistic automata is straight for-
ward. Almost everything is done as usual and the following applies for trans-

itions:
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e composition PASSIVE x PASSIVE.

S1; L) 81]. X S92, L) ng = (Sli; Sgi) L) (Slj, ng)

e composition ACTIVE x PASSIVE.

<a,f>

a . <a,f>
S1;, — 81]. X 89, — ng = (Sli,SQi)

— (Slj; 82].)

An example of the parallel composition of two generative probablistic
automata is presented in Fig. 3.10.

1 Al 1 A2 11 AXA2
a c a d
30 b 10 b 60 2 o9
80 3080 1060
2 3 4 2 3 4 2,2 33 4,1 1,4
active={a,c} active={b,d} .
passive={b} passive={a} active={a,b,c,d}

Figure 3.10: Parallel composition of probablistic generative automata

Probable stratified automata

This mode of representing probabilistic behaviours does not allow the exist-
ence of transitions expressing simultaneously events and probabilities, there-
fore the behaviour alternates between probabilistic and deterministic choices.
An example of automata composition using this method is shown in Fig. 3.11.

Al A2 AlxA2
1 1a 11~
a 3/ N23 3/ 23
3
2,4 N 2 1,2 1,3
1/2 7N 1/2 a a a a
3 4 4' : 5 24
N 26 7B 26N 16

5 6 6 ! 36 37 46 47
b c b c b c
8 9 58 39 68 49

Figure 3.11: Parallel composition of probablistic stratified automata
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3.5.3 Time probabilistic behaviours

The development of performance models based on functional models requires
that they can describe behaviour, time and probabilities simultaneously.
Stochastic Petri-Nets, firstly, and then stochastic process algebra [80], in the
last decade, have made important advances with respect to this aspect. The
latter has improved the processes description by labelling events with rates
A, thus enabling the transformation of composite processes into Continuous
Time Markov Chains.

The transformation of these theories into automata, as addressed in [90],
seems however particularly appropriate to our test purposes. A particular
type of automaton, the time probablistic automaton, which classifies events
as inputs or outputs, and possesses asynchronous or non-blocking behaviour,
in the sense that every input event will be accepted in every state, is rather
interesting.

The usual way of starting the definition of a mixed behaviour/performance
description is by associating discrete probabilities distributions to transitions
from a state. If, however, instead of only one probability distribution for all
transitions from state s, several probability distributions are introduced —
one over all the output transitions from state s, and separate distributions
for each input event a — a kind of hybrid automata between the reactive and
generative models described above is obtained.

The introduction of multiple probability distributions still does not solve
all the problems. To this end, the concept of delay parameter §(s) associated
to each state s is required. The idea is as follows: when an automaton,
in a composite system, arrives at state s, it draws a random delay time
from an exponential distribution with parameter d(s). This time ascribes
the length of time the automaton will remain in state s before executing its
next locally controlled event (output or internal). The competition between
several automata trying to gain the control of the next transition is won by
the automaton having the least amount of delay left. If independent delay
distributions of the competing automata are assumed, a probability can be
assigned to the event that will win the competition in any system state.
On the other hand, the memoryless property of the exponential distribution
makes it irrelevant whether the automata draw the delay times. This last
feature makes it possible to give a simple definition of composition for time
probabilistic automata.

A time probabilistic automaton can then be described by

A= (57E7T7 So, M, 6)
where

e [ is a set of events, partitioned into disjoint sets of input, output and
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internal events, where £ = E""UE° U E™ . The set F"¢ = Eo*yU E™
is called the set of locally controlled events and the set F¢* = F"myEo%
is called the set of external events;

eI C S x FE xS is the transition relation, such that, for any state
s € S and input event e € E™, there exists a state r € S such that
(s,e,7) €T. (s =)

e i1: (S x E xS)—0,1] is the transition probability function which is
required to satisfy the following conditions:

L. u(s,e,r) > 0iff (s,e,r) € T;

2. Y,egm(s,e,r) =1, for all s € S and all e € E™. This expres-
sion says that for each state s and input event e, the function p
determines a probability distribution such that s % r. For each
input event there will be one distribution associated, as in the
reactive model;

3. for all s € S, if there exist e € E" and r € S such that (s,e,r) €
T, then > ,cq Y ccpioc pi(s,€e,7) = 1. This means that if there is
some locally controlled event enabled in state s, then ;1 determines
the probability distribution on the sets of all pairs (e, r) such that
e is controlled locally and s = r;

e §: 5 — [0,00] is the state delay function, which is required to satisfy
the following condition: for all s € S, d(s) > 0 if and only if there exist
e € E'andr € S, such that (s,e,r) € T. It means that the state delay
§ assigns to each state s a non negative real number §(s), which is to be
interpreted as the parameter of an exponential distribution describing
the length of a random delay period measured from the time state s
is entered by the automata until the time it executes its next locally
controlled event.

This automaton is particularly suited for composition. Let
A= (Sl,El,Tl,Sol,M1,51), Ay = (SQ,EQ,T2,502,M2,52)

be two time probabilistic automata such that E{*NES“ = 0 and E{"NEM =
0. The composite automata A = Ay X Ay = (S, E, T, s¢, i1,0) is defined as
follows:

e £ = E, U E,, where E°“ = Fout y Egut. Eint = Eint y E2 and
Ein — (E{n U E%n) _ Eout.
In this model the combination of an input event with an output event

gives an output event which can be used for other compositions (only
the input event vanishes);
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e T is the set of all ((sy, s2),e, (r1,72)) such that:

— if e € Ey, then s; — r; € T}, otherwise r; = sy;

— if e € E,, then sy — ry € T}, otherwise ry = so;
e §((s1,82)) =0(s1) + d(s2);
e 4 is defined as follows:
— if e € E™, then
1((s1,82), €, (r1,12)) = pa(s1,€,71) X po(s2,€,12)
— if e € El°°, then

61(81)
1(51) + 02(s2

M((S1,S2),€, (7”1,7“2)) = 5 ) X M1(51,€,7”1) X M2(52,€,7”2)

— if e € EY°, then

(52(82)
81) + (52(82

M((S1,S2),€, (7”1,7“2)) = 61( ) X M1(S1,€,7”1) X M2(52,€,7”2)

An example of the composition of two time probabilistic automata can
be observed in Fig. 3.12.

2/5* (U3*1)= 2/15 2/6* (1* 1)= 2/6
2/5* (23*1)= 4/15 4/6* (3/4* 1)= 3/6
3/5* (1*1)=9/15  4/6* (U4* 1)= 16

Figure 3.12: Composition of time probabilistic automata

The corresponding continuous time Markov chain, useful for performance
evaluation, can be obtained as shown in Fig. 3.13.
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Figure 3.13: The automata as a Markov process

3.6 Conclusions

Performance requirements are, from the testing point of view, very interesting
since they raise a new set of requirements which the system has to satisfy.
Moreover, they focus on those aspects which are essential both for users
and network operators. Although these requirements can be proved satisfied
only in the long term operation of the network by means of management
techniques, they can be used as a basis for a class of test purposes which, as
proved by experience, lead to the detection of complex faults.

The first conclusion of the chapter is that there are, for the class of net-
works addressed in this thesis, a set of performance and quality requirements
available which can give guidance for the development of system test pur-
poses. These requirements are based on parameters for delays, failures and
availability and have maximum values defined. The Network Element, in the
end, has to satisfy them.

The second conclusion is that the specification of quality does not fol-
low the style of behaviour specifications. While the former are requirement
specifications, the latter are operational specifications.

The third conclusion is that behaviour and performance state machine
models can be available and represent the same comunication system. Each
model, however, concentrates only on the relevant parts.

This leads to the fourth conclusion. There is room, and computer scient-
ists are showing it, to describe and reason simultaneously about behaviour
and performance. These models, if available, could be used to generate timed
tests which would also evaluate system probabilistic properties.
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Chapter 4

NE Testing Methodology

4.1 Introduction

The aim of this chapter is to present a new methodology for testing complex
telecommunications Network Elements. As referred in Chap. 1, the method-
ology is based on existing testing practices but it profits from recent advances
in protocol testing theories described in Chap. 2.

The two worlds of practical and formal testing methods are separated
by an enormous gap which, from our point of view, is caused by two main
reasons:

e telecommunications test engineers, which usually do not have back-
ground in computer science, find the formal testing approaches ex-
traordinary complex so they are reluctant to apply them;

e unlike protocols, the Network Elements are specified using multiple
techniques, which are selected by their modeling power and express-
iveness rather than by their mathematical basis. The formal testing
techniques are, for this reason, not directly applicable.

We believe that we are well positioned to contribute to the shortening of
this gap since we had the opportunity to test some real networks/ Network
Elements and, on the other hand, we have been given the time required to
study the formal testing methods and to reflect about their usability in the
context of large telecommunication systems.

The approach selected to reach our goal was the most direct. We tried to
understand each practical test step from a formal testing point of view. By
doing that, we expected to identify opportunities for improving the testing
practices by applying formal nearly solutions. This led to a problem: at which
level should the test solutions be described: English? Programming like
languages? Process algebra/ temporal logic? We would like to be rigorous
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but, on the other hand, we would like to be readable by test engineers. The
decision was to describe our test methodology using the simplest framework
which could cope with the essential testing problems and solutions and, at
the same time, would be familiar to test engineers — an automata based
framework.

In the second section of this chapter the problem of testing telecom-
munication Network Elements is characterised. Their inherent complexity,
specification diversity and management expectations are presented and jus-
tified. A comparative study between formal testing methods and current
testing practices is also carried out. Following the approach that the testing
methodology proposed should depart from current testing practices, the two
main methodology assumptions are also introduced: tests should be oriented
towards components and should follow the use case approach. This section,
which is original, was developed based on our practical experience of testing
networks and on the study of the formal testing methods.

The third section introduces the framework used to describe the method-
ology by detailing and making clear some of the aspects presented in Chap. 2.
The description of a specification by a safety automaton, where the latter
is obtained by simulating the former, and the representation of use cases as
guarantee automata are discussed. The derivation of test and verdict func-
tions based on these automata is also presented. It must be recalled that
this form of representing specifications and use cases is often used in formal
testing. The description given in this chapter, however, is oriented towards
the characteristics of the methodology proposed. In particular, the clear di-
vision between tests and verdict functions and the assumption of complete
use cases is, to the best of our knowledge, presented in an original form.

The fourth section characterises the test derivation method for compon-
ents which are not completely specified. Two types of incomplete compon-
ents are addressed: those for which only use cases are known (requirement
components) and those which can have also their communication interfaces
known (interface components). The main innovation of the section consists
basically on the identification of a problem - tests should be provided for
incomplete components. The solution presented, which is also new, is an
extension of the testing method proposed in section 2.

The fifth section presents the concept of cyclic testing. Our practice shows
that most of the faults become visible only after long components working
times and, very often, they are random. The basic test derivation method
is then improved in order to detect these faults. The description of the
components specifications and implementations as a set of random variables
and the meaning of faults in this context is also given. This section, which is
original, constitutes one of the most important contributions of this thesis.

The sixth section addresses time, which is vital in practical testing. The
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test method will, for that reason, incorporate the time aspects. The problem,
which from the formal point of view is complex, is solved with a hybrid but
workable solution: the component specification is described as an untimed
automaton while use cases are represented by timed guarantee automata.
The basic and cyclic test algorithms are also reviewed to incorporate time.
The originality of this section consists mainly on the combination of untimed
specifications and timed used cases to derive timed tests. Its strongest point
consists in addressing exactly the problems which test engineers have to solve
when testing a Network Element with respect to its timings.

The seventh section presents our methodology as a recipe by combin-
ing the concepts presented in the previous sections and showing their com-
plementary value. The Network Element is modeled as two sets of non-
interacting components: the communication set and the service set. Com-
munication components are tested individually using short tests. Service
components are tested both individually and jointly. This section, which is
original, is one of the most important of the thesis since it shows to formal
testing methods a direction for solving their main problem, i.e. the system
size problem. By creating two complementary views of the systems (commu-
nication and service), the complex Network Elements are reduced to simple
testable components.

The last section presents reference test architectures for the three types of
tests (individual communication components, individual service components
and joint service components). It is also original since it points out some ser-
vice based testing architectures which are unusual in traditional load testing.

Partial presentations of the methodology can also be found in [91], [92],
[93].

4.2 NE testing problem

4.2.1 Testing complexity
NE subsystems

The Network Elements addressed in this thesis can be complex systems since
they may have, simultaneously:

e to support several communication interfaces;
e to provide end-user services;
e to provide management services.

The main purpose of communication interfaces is to ease the interworking
of communicating equipment. Standard or de facto interfaces, in addition,
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are targeted at multivendor equipment. For this reason, these interfaces are
defined independently of the functions provided by each equipment. NEs,
being traditional public voice/data telecommunication equipment, need to
implement one or more communication interfaces.

In addition to the interfaces, the NE has to provide a set of functions
or services to its users, which can be other equipments or humans. From
the implementation point of view, these services have to be harmoniously
integrated with the communication interfaces since, at the end, the services
are provided through the system interfaces.

An NE has also to implement management services which provide in-
formation mainly on accounting and alarm detection. In spite of the efforts
carried out by the standard bodies to develop global management systems,
in practice NE management subsystems still continue to be proprietary. In-
dependently of that, and from the testing point of view, management can be
thought as another set of services, which are usually provided to humans or
to some programs.

Specification diversity

The NE testing complexity, however, does not come only from the diversity
of the subsystems implemented, which is characteristic of most of the react-
ive systems, but from their specification characteristics. The success of the
testing activities strongly depends on the quality of the specifications avail-
able, since complete and efficient test suites cannot be developed without
complete and rigorous system specifications. A system is said to be in these
test-optimal conditions when, for instance, it is described in SDL. Reality,
however, is different from this ideal scenario.

The first problem faced by testers is the multitude of techniques used in
the description of NE subsystems. An interface, for instance, can be physical
or protocol oriented. In the first case, characteristics such as voltage, current,
time, frequency, impedance and baud-rate will be presented. In the second
case a variety of approachs can also be found. With low probability, an
interface can be completely described in SDL and have the message and data
types described in ASN.1. The normal situation in ETSI and ITU is to
find English descriptions complemented with tables and, in annexes, a rough
SDL description. IETF interfaces are described in text and complemented by
some illustrating state machine. Proprietary interfaces are, most of the times,
described as requirements such as a set message sequence charts describing
the main use cases. The requirement style is also found in the American
standards recommendations. The management subsystem, if standardised,
can be described by an object model where the relations between the objects
as well as their main methods are presented. ASN.1 descriptions may in
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some cases be also available. End-user services, which may be specified as
internal documents, can also be described in a variety of techniques. The
most frequently found are textual descriptions complemented with figures
and some message sequence diagrams. Besides the subsystems descriptions,
there are also performance and quality specifications which have to be taken
into account and are described as shown in Chap. 3.

The second problem is the number of documents available. NEs are com-
plex mainly because they are large. Large systems are usually split into
smaller subsystems whose requirement identification and specification are
worked on by multiple persons/ teams. Very easily, tens of documents may
be available describing the behaviour of a NE, among requirement/ specific-
ation documents and international recommendations. As a consequence of
that, a number of inconsistencies are usually found.

The third problem is specification updating. In environments where the
time to market drives the project, the time left for updating specifications
during the project is usually short. Very often, the specification document
considered as the basis for the test derivation no longer describes the latest
specification view and, in this situation, the test becomes useless.

Project management requirements

Besides the problems described above, there are also a set of expectations
from the project management which, at the end, have to be satisfied. Moreover,
the degree of satisfaction of these expectations are, in fact, the final measure
of the tests value. They can be stated as follows:

e The NE shall be tested in short times. Even when realistic testing
policies are adopted, test activities start after the other specification
activities. On the other hand, the NE delivery/ production, at the
end, should not be delayed by the testing activities. It means that the
test related tasks start after the NE specification tasks and end at the
same time as the development tasks. In cases where the company leads
the business, the situation becomes even more complicated. Some test
equipment may have to be developed and tested during the testing
activities because commercial test equipment may not be available.

e The NE shall pass interface conformance tests. The telecommunica-
tion operators are increasingly demanding that the conformance tests
made available for the standard interfaces are passed by the imple-
mentations and they may pose serious problems. The ETSI or ITU
conformance tests are nowadays developed by hand. For that reason,
first test releases are faulty and delayed with respect to the specifica-
tion documents. Passing the conformance tests may require, for these
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reasons, that the test suites are themselves evaluated and that some
effort is placed on their correction and reporting.

e The NFE shall pass interoperability tests. In order to test complex com-
munication interfaces, wise and skilled project managers try to define
small interoperability sessions as soon as possible. These trials may
involve peer equipment from the same or multiple companies. Anyway,
the kind of interface functions which are tested are usually known and
agreed in advance. For strategic reasons, the equipment should not
exhibit failures during these small experiences. Bad news propagate
very fast.

e The NE shall have its performance and QoS requirements character-
ised. In an increasingly competitive world, selling network equipment
is becoming similar to, for instance, selling cars. At the end, all the
equipments provide similar functions which must be free of problems.
The performance characterisation of the equipment becomes very im-
portant since, more and more, equipments tend to be compared based
on performance issues. This implies that relevant parameters must be
known in advance so that the project management may decide about
improvements. For this reason tests and test equipment should be
available in time.

e The NE shall pass the operators acceptance tests. Before acquiring
equipment, telecom operators usually require them for internal evalu-
ation. A variety of interface and conformance tests are usually applied
to the equipment. Naturally, the equipment should be able to pass all
these tests.

o The NE shall be free of end-user visible faults. A good working equip-
ment will be the best argument for selling its next generation substitute.
For that reason, the system is supposed to be free of faults which affect
the final user activity, that is, the operators customers. Faults must be
found in advance.

4.2.2 Formal versus practice
Practical methods

A Network Element is seen by development and test engineers as a set of
components, such as boards, drivers, libraries, classes or processes. In this
context, a component implementation fault is usually known as a bug which
can be caused by (1) an incorrect specification interpretation or (2) bad
coding of a correctly interpreted specification. When detected, the bug can
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be located at the component under test or at the resources used by the
component.

Bugs are generally detected by tests which can be of three types: (1) com-
ponent tests, (2) integration tests and (3) load tests. Component tests excite
the component implementation with short tests and detect problems such as
incorrect IOSM transitions implementation and incorrect PDU (de)coding.
Integration tests are used to evaluate new composite components which are
built based on previously tested components. These tests are also short and
problems such as components erroneous assumptions on neighbour compon-
ents or bad resource sharing can be identified. Load tests consist of using
the NE with real loads. These tests are usually long and problems such as
wrong behaviours caused by performance degradation or long term visible
faults (variable/ queue underdimensioning, dynamic memory (de)allocation)
can be detected.

Formal methods

In formal testing methods, specifications are described by languages having
formal operational semantics. Thus, a NE can be mathematically described
by, for instance, a directed graph representing the system reachable states
which are interconnected by transitions annotated with observable events.
When the specification graph SPEC is known, the NE implementation can
be also assumed to be modeled by another (unknown) graph IAMP. The
concept, of fault is, then, described at the model level and depends on the
relation required between the implementation and the specification models.

If, for instance, instead of graphs the set of traces they can generate are
used - Traces(SPEC) and Traces(IMP), two type of equivalences, among
many others, can be defined: (a) trace equivalence and (b) trace pre-order.

Trace equivalence requires that Traces(SPEC) = Traces(IMP). In this
case a fault is said to exist when a trace o is found that

(o € Traces(IMP) N o ¢ Traces(SPECS) )
V
(o ¢ Traces(IMP) A o € Traces(SPECS) )

In the first case the implementation is said to contain a behaviour which was
not specified. In the second case, the implementation is said to have not
implemented part of the specification.

Trace pre-order, on the other hand, requires that Traces(SPEC) C
Traces(IMP). This relation requires that all the behaviours specified are
implemented but the implementation is not forbidden to have other beha-
viours. In this case, a fault is said to exist when there is a trace o which is
unimplemented.
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o ¢ Traces(IMP) AN o € Traces(SPECS)

A fault is detected by the observation of a faulty trace. The characterisation
of the fault depends on the underlying models. When automata are used,
a fault can be a transition not implemented or incorrectly implemented.
When the automaton distinguishes input from output events and accepts
input events in all the states, i.e. like the JOSM described in Chap. 2, the
faults are further classified as output or transition faults.

Formal methods tend to generate tests which depend on the relation ex-
pected between the specification and the implementation, such as the meth-
ods presented in Chap. 2 for IJOS M, which can prove trace equivalence.

Concepts such a load tests are difficult to explain in this context. To find
a fault under load condition means, in the mathematical view, to place the
system in a state where queues are almost full and variables close to their
limit values. The test would consist then in verifying transitions departing
from these potentially dangerous states.

Comparison

Tab. 4.1 compares current NE testing practices with formal testing ap-
proaches with respect to a number of issues. It summarises and compares
the results of the previous discussion.

‘ [ssues ‘ Formal Methods ‘ Current Practices ‘
Specification formal semantics not always available
multiple techniques
Faults deterministic random
from specs from interfaces

Functional tests equivalence proof use case oriented

system oriented component oriented
Load test functional problem important
QoS evaluation property evaluation simple accounting
Fault coverage characterisable uncharacterisable
Test architecture | specification oriented | implementation oriented

Table 4.1: Comparison between formal and practical testing methods

A specification, in formal testing methods, is supposed to be available in
a language capable of representing the system relevant aspects and having
rigorous semantics. Languages supporting concurrent systems and data are
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the preferred. In practice, as mentioned above, specifications are not perfect.
They are not always complete nor expressed in rigorous languages. In fact,
a specification language is selected more by its modeling power and less by
its operational characteristics.

In formal methods, the faults are assumed to be deterministic and the
tests are executed only once. Reality shows the opposite. Complex faults,
i.e. those requiring the help of a testing team, manifest themselves randomly
at the model level. Their detection requires that tests are executed many
times or that long tests are used. When clear specifications are available,
the deterministic faults are mostly identified by the development engineer
during components tests since a good implementor usually interprets them
correctly.

Tests, in formal testing methods, are derived from the specifications so
that some equivalence between the specification and the implementation can
be proved. The system, described in some formal behaviour description lan-
guage, in which a set of components can also exist (perhaps not the real ones),
is simulated so that a minimal observable specification can be obtained. In
practical methods, the tests are oriented towards components and they are
based on partial specifications, such as component interfaces.

Load tests can, at the model level, be reduced to simple and long func-
tional tests. In practice, load tests are recognised as very important because
they address the complete system and are understood as the simplest form
of placing the system near its limits in a laboratory environment.

The NE performance evaluation is, in practical testing methods, evaluated
under controllable load conditions by monitoring simple system parameters,
such as CPU load or delays. In formal testing methods a performance char-
acteristic is foressen as a system property which can be verified by means
of a functional like test. Research on these problems is starting since the
behaviour models may require also the description of time and propabilistic
aspects.

In formal methods the number of faults which can be found by a set of
tests out of a maximum number of faults can be determined. Test coverage
can then be characterised. There are, however, no means to assess how close
the faults modeled are from the real faults. In practice, test coverage cannot
be rigorously evaluated and the decision to stop testing is usually taken based
on human experience.

In practical methods, the definition of a test architecture is NE dependent
and the tests are used in place of the real NE/ components communicating
partners. Formal methods researchers are starting to address the problem,
trying to infer test architectures from the implicit specification architectures.

The question is then how to improve existing practical methods so that

e the advantages of formal testing methods can be gained;
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e the method still applies to real systems;

e the common testing demands are satisfied.

4.2.3 Components

The methodology proposed in this thesis follows the practical approach of
considering a NE as a set of components. For this reason, testing is oriented
towards components, since it seems to be the human preferred process of
testing - it provides compositionally secure components.

A component is defined as an entity capable of participating with its
environment in a set of common events, such as message reception/ sending
or function invocation/ return. NE components are considered reactive in the
sense that they are usually non-terminating entities which produce work only
when explicitly requested. From the engineering point of view, a component
is an object capable of providing to its environment a set of services or
functions. Some programming languages have means to explicitly describe
component types. C++ has the Class construct and SDL has, for instance,
the Block Type and the Process Type.

From the testing point of view, components have to be further character-
ised. Testing practices show that, according to the way they are described,
components can be classified into three categories:

e requirement;
e interface;

e complete.

Requirement components

A component is classified as requirement when its description consists only
of a set of requirements. It does not imply that the component knowledge
is unavailable, but only that it has not been described in any specification
document. Examples of requirement components are computer programs for
which initial specifications are vague and the implementer is free to code the
program at his will within some usability limits, such as simple descriptions of
the main program functions. Let us assume that requirements are expressed
in user observable terms.

A requirement is a characteristic that a component implementation has
to incorporate. Requirements can be described positively (the component
must do this) or negatively (the component must not do this). Component
use cases are requirements described positively since they specify one or more
sequence of events which must be executed by the component.
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Negatively stated requirements are impossible to evaluate. To prove, by
testing, that an implementation does not possess a given trace is almost
impossible since the implementation model is, a priori, unknown. While
widely used in the verification of known finite models, negatively expressed
requirements are incompatible with short test times.

The requirements considered in this section will, for these reasons, be
component uses cases.

Interface components

Besides a set of use cases, these components have also their user interfaces
defined precisely. This is the specification technique most often used for
network components. Instead of specifying the complete component internal
behaviour, the specifier describes only the component interactions through
each one of its interfaces. This method is implicitly used in object oriented
description techniques where a class along with its methods is first identified
and then each method is characterised by its signature which is defined in
terms of parameter data types and return values. Programs interfacing with
humans often follow this approach - the specification is a fast developed
prototype application containing no internal functionality but presenting only

the windows, the commands and the responses that the component user will
be able to find.

Complete components

Additionally to a set of use cases, these components have complete and pre-
cise specifications available. This is case when, for instance, a protocol or
parts of a system are completely specified in SDL. In this case, the use cases
are usually available as Message Sequence Charts and current SDL commer-
cial tools are able to support the automatic generation of behaviour tests.

These components are the preferred in terms of testing but, unfortunately,
not always available.

4.2.4 Tests

Based on the current testing practices, the proposed methodology assumes
the requirement testing approach, that is, implementations will be tested
against known use cases. This test method, due to the human ability to
guess about faults and their location, seems to be the most efficient.
Besides that, tests will consider that certain faults become evident only
after long working times while other faults manifest themselves randomly.
For this reason, load tests will be considered very important since they can
excite NEs with realistic environments and, at the same time, provide the
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framework required for carrying out performance/quality of service related
measurements.

4.3 Complete component behaviour testing

This section describes how complete components can be tested with respect
to some properties, such as component use cases.

4.3.1 Component safety automaton

A NE component can be represented as a simple reactive system composed of
one or more concurrent processes exchanging information among themselves
and also their environment. As widely accepted and shown in Chap. 2 for
the SDL case, a complete component can be represented by an automaton
which results from the simulation of the component processes along with its
environment. This automaton is called the safety automaton Ag, and was
also introduced in Chap. 2.

Each component process is a program containing some internal flow con-
trol mechanisms and data variables. From time to time, each process reads/
writes information from/ to other processes or from/ to the component envir-
onment. Let us assume that a process is described by an automaton where
each state represents a particular combination of internal variable values.
The directed transitions between states are labelled with events which cor-
respond to the writing (!) or reading (?) of some combination of values. The
process events which are externally invisible, such as a variable update, are
considered internal to the process and generically represented by the event 7.
Fig. 4.1 presents a simple component containing two concurrent processes.

Component

Figure 4.1: Component with concurrent processes A and B

Let Process A be represented by the automaton A:
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A= (SA7EA7TA7 SOAaFA)
SA - {80781782}
E, = {A%a, Alb, Alc}
A?q T Alb, Ale
TA — {SU — 81,81 —> S2,81 —> Sp, S92 — 80}
SOA = Sp
Fa = {s0,51,52}

Process A has three states (s, s1, $2) whose meaning is not relevant for the
testing problem. One of the states (sy) is the automaton initial state. All
states are considered final states (F4 = S4), in the sense that the process
can stop in every state. Process A communicates with its environment by
means of information elements (a, b and ¢). For simplicity, these information
elements are called messages. The receiving/ reading of message a from the
component environment is represented by event A7a. Process A can also send
message b to the component environment, represented by event A!b, and send
message ¢, represented by Alc, to process B. Process B is represented by

B = (SBaEBaTBas()aFB)
Sp = {80751}
Ep = {B%c, B\d}
B?c Bld
TB — {80 — 51,81 — SU}

Sop — So
F = {so,s1}

Process B can be interpreted similarly to Process A. In this case, the sending
of message d to the component environment is represented by the event Bld
while the reception of message ¢ from process A is represented by event B7c.

For simplicity, processes A and B are supposed to be introduced to each
other at compilation time (no dynamic address resolution) and the commu-
nication is supposed to be one to one (no multicast facilities). Although
some interprocess communication types exist, which are combinations of the
sender/ receiver blocking policies and the existence of mailboxes, only two of
them will be discussed: synchronous and asynchronous communication. Let
us first represent the component containing the concurrent processes A and
B by

Al B

Synchronous communication

This type of communication is usually known by rendez-vous. It means that
a process can send a message only if the other process is able to receive it,
that is, it is in a state containing an outgoing transition which is labelled with
the corresponding receiving event. If this is not the case, the sending process
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Figure 4.2: Maximum environment for A || B

is prevented from sending the message. Since the two automata representing
the processes are assumed to have disjoint event sets,

{A%a, Alb, Alc} N {B?¢,Bld} =0

a message communication will be graphically represented by two immediate
transitions, which correspond to the sending and the receiving of the message.
A similar approach was used in Chap. 2 for building the SDL reachability
graph.

The component reachability graph or safety automaton is obtained by
simulating the component. In order to close the component A || B, some
assumptions have to be made on its environment. A maximum behaviour
environment is one which is always able to receive all the messages and send
any message. The behaviour of such an environment could be modeled as
described in Fig. 4.2 and represented by the following automaton

T = (STa ET7 TT7 S0, FT)
ST = {80}
Er = {Tla, 7, T?d}
T'a T7h T?d
TT — {80 — Sp, S0 — S0, S0 — SU}
Sor = So

FT = {So}

T was selected to represent the environment in order to show its similarity
with a test program. The simulation of the closed component (A || B) ||
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T can now be carried out according to the communication rules described
above. The reachability graph obtained is presented in Fig. 4.3. States are
represented as (sa, s, S7) where s4, sp and sr are the individual process
states. The transitions are labelled with one event. Since an event never
belongs to more that one automaton, only one process changes state at a
time. However, in order to model the rendez-vous mechanism, the reception
of a message is always required to follow the sending of the same message.

Figure 4.3: A || B || T reachability graph

From the testing point of view, in black-box testing only the events o0b-
served or controlled by the environment are of interest, that is, the event
set

Ep = {Tla, T?, T?d}

For this reason, all the other events, (A7a, Alb, Alc) and (B?c, B!d) will be
relabelled as internal events 7. The new graph is presented in Fig. 4.4.
This graph is called the safety automaton Ag of the component A || B. It
represents all the possible sequences of events of A || B which, for short, are
represented by Traces(Ag). Since all the safety automaton states are also
final states, Traces(As) = Accept(Ag).



94 CHAPTER 4. NE TESTING METHODOLOGY

Figure 4.4: A || B safety automaton, Ag

Asynchronous communication

Let us now assume that, instead of synchronous communication, the pro-
cesses use another communication paradigm. It is assumed in the first place
that each process has a mailbox associated which, for simplicity, can contain
only one message at a time.

In the synchronous case, both the sending and receiving processes were
assumed to be blocking. Now, both the sending and the receiving will be
non-blocking. It means that if a process has to send a message, it sends it
independently of the receiver process mailbox being full or not. If a receiver
process is expecting a message but its mailbox contains another message, it
retrieves the message from the mailbox and stays in the same state. This
transition is often named an implicit transition.

Let us take the component of Fig. 4.5, where the component is represented
by Process C' and its environment by Process T

The reachability graph of T' || C' as well as its equivalent safety automaton
Ag, which is obtained by eliminating the non observable/ controllable events,
are presented if Fig. 4.6, where the states are represented by the message
contained by each process mailbox. For instance, < b >< > in Fig. 4.6
indicates that the process 7" has the message b in its mailbox and the mailbox
of process C' is empty. Processes C' and T are always in the control state sq.
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Figure 4.6: Asynchronous component safety automaton

4.3.2 Use case guarantee automaton

Besides the component specification, represented by the safety automaton,
another concept is also required - the use case. A use case describes one
possible component usage and consists of a sequence of messages (send/
receive or read/ write) that a component implementation has to support.
Use cases are usually described from the component user point of view.

In this thesis, a use case will be represented by an automaton, denomin-
ated the guarantee automaton Ag, with the following characteristics:

e [ = Es. The event set recognised by the guarantee automaton Eg
will be equal to Eg, the event set of the corresponding safety auto-
maton. It means that a guarantee automaton reacts to all the compon-
ent environment observable/ controllable events;

e complete. The traces accepted by Aq, Accept(Ag), are traces of Ag
and capable of driving Ag from its initial state so, back to its initial



96 CHAPTER 4. NE TESTING METHODOLOGY

state sg, that is, they describe one or more complete loops of the safety
automaton. Mathematically it can be defined as:
Accept(Ag) C Accept(Ag)
A
Vo € Accept(Aq), (sos afterag o) = {soq}

‘ Tla D T?b .

Figure 4.7: Use case defined as a guarantee automaton Ag

Fig. 4.7 shows a use case defined for component A || B, whose safety
automaton is shown in Fig. 4.4. From the test point of view, the use case
defined in Fig. 4.7 says that a tester program, after sending message a to an
implementation of A || B, should receive message b.

The guarantee automaton A describes the automaton of Fig. 4.7:

Ag = (Sq, Ea,T¢, s0, Fe)
Sa = {50,51752}

Eo = {Ta, T, T7d}

TG = {SU ﬂ} S1, 51 T—?b> 82}
Sog = So

Fg = {s2}

Accept(Ag) = {T'a.T?b}

4.3.3 Test derivation

The question now is how to obtain a test which is capable of evaluating
whether an implementation can execute or not a given use case. Accord-
ing to Sec. 2.6.4 (Testing requirements, Behaviour properties) this test can
be derived based on the component safety automaton and on an use case
guarantee automaton. The former can be obtained from the component spe-
cification (e.g. SDL). The latter can obtained from an use case described as
a Message Sequence Chart or described directly by the person in charge of
specifying the test purposes.

The main objective of a test is to force the implementation to react. Based
on the sequence of events observed (the log obtained after the test execution),
which consists both on the signals sent and received by the test system, a
conclusion about the satisfaction of the safety and guarantee properties can
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be drawn. Based on that, the test verdict (pass, fail or inconclusive) can be
obtained.

During the test of an implementation, this test will be used in substitution
of the maximum behaviour component environment (7') assumed during the
development of the reachability graph/ safety automaton.

The specification of a test implies the characterisation of two aspects
which are closely related but are presented here separately:

e a trace evaluation function verd( ), which can associate a verdict to
every trace obtained as the result of the joint execution of the test and
the implementation, that is, T' || IM P;

e the test 71", which will be able to drive the implementation, that is, to
send messages as a function of the messages received from the imple-
mentation, so that the implementation can be evaluated with respect
to the use case in short time (small trace).

Trace evaluation function

The aim of the trace evaluation function verd() is to classify every trace as
pass, fail or inconclusive. A trace is classified as pass when it does not viol-
ate the component specification and enables the observation of the use case.
A trace is classified as fail when it violates the component specification. A
trace is classified as inconclusive when it does not violate the component spe-
cification but does not enable the use case observation. The verd() function
depends on the safety and guarantee automata.

More formally, the trace evaluation function verd() associates the value
pass, inc or fail to every possible trace o' € EY, i.e. any combination of
events e € Fg. Note that EY is used instead of Accept(Ag) because a faulty
implementation modeled by A; can generate a different set of traces. For
simplicity, however, they are assumed to recognise the same events, that is,
E] - ES-

The commonly accepted definition for this function is

pass, if o’ € Accept(Ag) Ao’ € Accept(Ag)
verd(o') = | inc, if o’ € Accept(As) Ao’ & Accept(Ag)
fail, if o' ¢ Accept(As)
The function wverd( ) can be described as an automaton V, with the
following characteristics:

e acceptance condition. Since the traces that will be observed are a priori
unknown, every o € E§ must be accepted by V, that is,

Accept(V') = Ej
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e determinism. Since each trace is required to be uniquely evaluated, only
one final state should be reached by the automaton when interpreting
o, that is

Vo € Eg, (so, aftery o) =1

where § is represents the number of elements in the set.

e final states. Every final state of V must be classified as pass, inc or
fail, that is,

Fy =PASSUINCUFAIL

where PASS, INC and FAIL are pairwise disjoint sets.

A trace evaluation function has two problems associated with it. The first
concerns the evaluation of very large traces. To verify if a long trace is part
or not of (accepted by) the safety automaton would require an evaluation
function as complex as the specification. However, even for very long traces,
it is possible to evaluate the trace based on a prefix. In fact, as soon as a trace
event makes it possible to evaluate that the trace will not be accepted by the
guarantee automaton, it can be said that the verdict will not be pass. For
simplification, the trace will be classified as fail or inc based on this deviating
event. The verdict will be inc if the prefix terminating with the deviating
event is accepted by the specification, i.e. valid from the specification point
of view (Ag), or fail if not. The second problem is the decision about the
end of the trace. Since the verdict evaluation function may be required to
run on real time, it has to decide if it should wait for a new event or, on the
contrary, take the decision based on the information already available. In
order to overcome this problem a special event ¢, representing the last event
of a trace, will be added to the end of each trace by the test (T - introduced
next), so that the verdict function can interpret the end of the traces and
give the verdict.

The automaton V' describing the verd() function can be derived from Ag
and Ag. It means that the (initially unknown) states, events and transitions
associated with V' will be created based on the states, events and transitions
of Ag and Ag. Below, the steps required for this derivation are presented
as an algorithm working over sets of states, events and transitions. See also
Fig. 4.8.

1. build an automaton V' which is structurally equivalent to Ag, that is,
it has the same states and transitions as Ag
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Figure 4.8: verd( ) for A || B

V - (SVaEV7TV7SOV7FV)
AG - (SGaEG7TG780(;7FG)
SV — SG

Ey +— FEg

TV — TG

S0y <~ Sog

PASS <+ Fg

INC «+ 0

FAIL «+ 0

Fy = PASSUINCUFAIL

The < symbol is used to represent attribution. For instance,
SV — SG

shall be read as: the set of states of V', Sy, becomes equal to the set of
states of G, Sg.

2. add two new states s; and sy to V' and consider them final states.
Classify s; as inc and sy as fail, that is,
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SV — Svu{Si,Sf}
INC  « INCU{s;}
FAIL + FAILU{s;}

3. for each non-final state s € Sy — Fy- do

(a) define the set M which contains all the events labelling the state
s outgoing transitions, that is,

M={b|s-25}

(b) for each e € Ey do

i.if (e ¢ M AN o0.e € Accept(Ag)), where o is a trace of the
automaton V from its initial state so, to state s, so, == s,
then add a new transition s — s; to Ty,

TveTvu{SéSi}

ii. if (e ¢ M A o0.e ¢ Accept(Ag)) then add a new transition
s -5 s to Ty,

Ty + Ty U{s - s;}

4. for each non-final state s € Sy — I} add a new transition s i> s; to
TV)
Ey « By U{o}, Ty « Ty U {s % s}

5. for each final state of s € Fy,
for each event e € Ey add a self transition to s so that

Ty + Ty U {s - s}.

The verd() function, where o € E% (¢ ¢ Eg), can now be defined as
follows:

pass, if (so, aftery 0.¢) C PASS
verd(o.¢) = | inc, if (so, aftery 0.¢) CINC
fail, if (so, aftery o.9) C FAIL

Fig. 4.8 exemplifies the construction of the verdict function for the guar-
antee automaton represented in Fig. 4.7 and the component A || B whose
safety automaton is presented in Fig. 4.4. Fig. 4.9 provides a more complete
example.
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Figure 4.9: Verdict evaluation function

Test

In order to let the verd() function, which is represented by the automaton
V', decide about the satisfaction of a guarantee (and safety) property by an
implementation, a test should be defined so that it can drive the implement-
ation conveniently. While the passive verd() function is used to analyse the
resulting log, the test, which will be represented by an automaton 7T, is ex-
pected to actively communicate with the implementation. Furthermore, the
test is also expected to inform the verdict and other trace evaluation func-
tions about the end of a test execution. For that, a new event ¢ (end of test
event) will be introduced which will be generated by the test 7" and inter-
preted by the trace evaluation functions, so that they can finish the trace
(log) evaluation and decide about a verdict for the trace.

Assuming that the environment represented by 7' can send and receive
messages, the test should, in every moment, send the appropriate message
and, after that, wait for the implementation reaction. A test 7" can be
represented by a tree, being a tree an automaton where:

e cach state can have at most one incoming transition;

e all the outgoing transitions are labelled either with test controlled or
test observed events. In the first case, the tree branching (number of
transitions outgoing from a state) has to be exactly one, that is, the
test is always deterministic with respect to the events it controls.

In order to make the test short, it must stop as soon as a verdict can be
evaluated by verd() from the resulting trace. A test 7' can be derived from
Ag according to the following rules (see also Fig. 4.10):
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Figure 4.10: Test derivation for A || B

1. transform the automaton Ag into a tree, T, capable of defining the
same traces,

Traces(T) = Traces(Ag) N Accept(T) = Accept(Ag)

This transformation is usually simple and possible since normal use
cases do not contain loops. Let us assume, as described above, that
the branching for test controlled events is at most one.

T = (ST, ET, TT, S0 FT)
Er=FEqU{r}=E,UELU{7}

E}. contains the tester controlled events
FEY contains the tester observed events
ErNEL =1

T is an unobservable event

2. define an auxiliary set A containing all the non-final states of 7', that
iS, A= ST - FT-
For each state s € A do

(a) define the set M which contains all the events labeling the state
s outgoing transitions, that is,

M={b|s -2}
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(b) if M N E} =0 (no test controlled transitions) then
for each e € EL. U {7}, where 7 is an internal and unobservable
event which occurs when the implementation does not answer, do

if e ¢ M then

i. add a new final state s to T
Sr <+ SrU{s"}, Fr« Fru{s"}
ii. add a new transition s — s” to T
Tr < TrU{s - 5"}

3. define the auxiliary set B which is equal to F, that is, B < Fr.
For each final state s € B do

(a) add a new final state s’ to Fr,
St + St U {S,}, Fr« Fru {SI}

(b) add a new transition s %5 ¢ to Tp, where ¢ is a test controlled

event representing the end of the trace
Ey+ ELU{}, Tr + Tru{s - &'}
(c) remove the state s from the final state set Fr
Fr + Fr — {s}.

Fig. 4.10 exemplifies the test derivation process for the guarantee auto-
maton represented in Fig. 4.7 and the component A || B whose safety auto-
maton is presented in Fig. 4.4. Fig. 4.11 provides a more complete example,
which is based on the safety and guarantee automata of Fig. 4.9.

Common representation

Common representations of tests do not usually use two separate models, V'
and T, as described above. Instead, the test tree and the trace evaluation
function are represented in only one tree whose final states are labelled with
verdicts. TC' =T x V, that is, the composition of the two models, is defined
as
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Figure 4.11: Test derivation example

TC = (STC’, ETC’, TTC7 80T07 FTC)
T = (ST, ET; TT7 SOT7 FT)
V = (SV; EV7 TV7 SUv7 FV)

STC = ST X SV

Erc = Ep , where Er = Ey U {7}

e € By : sh—5 sl x st — st = (sh, st,) — (s, s%)
e=T1: sh—>sp = (sh,st,) — (s, s})

Sorc = (Sors Soy)

FTC’ = FT X FV

Examples of common test representation are given in Fig. 4.12 (from
Fig. 4.8 and Fig. 4.10) and Fig. 4.13 (from Fig. 4.9 and Fig. 4.11), where the
test T final states are now labelled with a verdict.

4.4 Incomplete component behaviour testing

In this section, the test derivation method presented is analysed for the other
two type of components - the interface and requirement components.

4.4.1 Interface component

Interface components are components for which, by structural reasons, the
interface concept is important, being an interface a communication/ inter-
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Figure 4.12: Common test representation (I)

action point between the component and its environment. Besides that,
interface components are assumed to have specifications which:

1. describe the user-component interactions through every communication
interface;

2. provide no clear mappings between the events observed at different
interfaces.

If those mappings were known, the component would be said to be com-
pletely specified (complete component), since all the behaviours could be
foreseen. Similarly, if the component has only one interface, the component
is also a complete component.

A large number of network components can be classified as interface com-
ponents. When describing them, the specifier (1) identifies the interfaces, (2)
characterises the user-component interactions for each interface using, for in-
stance, state machines, (3) provides a textual description of the component
functions and (4) illustrates the textual description with some component
use cases. Similarly to complete components, a test T'C' is assumed to be
generated for a use case, where each use case can be represented by a guaran-
tee automaton, Ag. Then, how is it possible to derive a test for the interface
component in these weak specifications?

Safety automaton
Let us assume that:
e an interface component has more than one interface;

e cach interface can be described by a process represented by an auto-
maton;
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Figure 4.13: Common test representation (II)

e the interface processes do not describe communications between inter-
faces.

Component

Figure 4.14: Interface component

Fig 4.14 shows a component in this situation. A component safety auto-
maton A% can be obtained when the following steps are executed:

1. assume a maximum behaviour environment (a process T;) for each com-
ponent interface i;

2. obtain a safety automaton Aéi for each interface ¢, by combining T;
with the process representing the interface i, A;, that is, T; || A;, and
by relabelling all the events e € E, with 7;
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3. obtain the final interface safety automaton, AL, by composing all the
interface safety automaton Aéi,

Af =T 4%,

Fig 4.15 exemplifies the process described above. Synchronous commu-
nication was assumed between T; and A; and some transitions labelled with
7 were removed from A{gi. If the complete component specification AY was
known, it could be compared with the interface safety automaton AL by

Traces(AS) C Traces(A%)

that is, the interface safety automaton obtained, AL, describes more beha-
viours than those possibly allowed by the unknown complete component AS.

| Component :
3 f[:[o;;gg}; 77‘: (Pirc;c%Al 77777 | (I;’r;)céA 77777 | (F;raci&sis}zi : 3
1 ma b al | Ab L |y ! d' T
! | | |
» ™ lw | | | |
! @) ; L L | | } '
i \77;' 777777 | Lo ! b e - - ! o I :

''''''''''''''''''''''''''''''''''''''''' 3T,)b

T’>d ; i

X o‘ = | (m Q™

! A, Al ‘ 5 ! |

St S i i As i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.15: Interface component safety automaton

Test derivation

The safety automaton AL is known. Let us also assume that each use case is
specified by a guarantee automata Ag, which satisfies also the two conditions
presented for the complete specifications:

1. Eg = ES. The event set recognised by the guarantee automaton Eg
is equal to FY, which is also assumed to be equal to EL. It means
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that the guarantee automaton reacts to all the component environment
observable/ controllable events;

2. complete. The traces accepted by Ag, Accept(Ag), are also traces of
AS and capable of driving A§ from its initial state sy, back to its
initial state sg, that is, they describe one or more complete loops in
the unknown safety automaton.

Vo € Accept(Ag), sog after§ o = Sog

A use case is an interface automaton which, in fact, describes one or more
traces whose events may be visible at different component interfaces.

If the test derivation method presented for complete components is used
in this case, the test case T'C obtained from AL and A would have verdicts
which had to be reinterpreted as follows:

e pass. In this case, the trace o observed by the joint execution of the
test and the component is said to be accepted by Ag, that is,

o € Accept(Ag)
Since Ag was assumed to be complete, that is,
Accept(Ag) C Traces(AS)

o is a valid specification trace. A pass for an interface component has,
for this reason, the same meaning as for complete components.

e fail. In this case, the trace observed o is not accepted by AL, that is,
o ¢ Accept(AL)
Since Accept(AS) C Accept(AL), it implies that
o ¢ Accept(AS)

A fail obtained for interface components has the same meaning as for
complete components.

e inc. In this case, the trace observed o is not accepted by Ag,
o ¢ Accept(Ag)

and the first event deviating from the guarantee automaton accepted
traces is said not to violate AL. Let assume that

o € Accept(AL)

Two situations should be considered:
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1. 0 is a prefix of some o' € Accept(Ag). In this case, since o
belongs also to A§, the prefix o belongs also to AS, that is

o € Accept(AS)

The inc verdict has the same meaning as for complete components.

2. 0 is not a prefiz of some o' € Accept(Ag). Since Accept(AS) C
Accept(A%) there is no means of deciding if o is also accepted by
AS. An inc verdict could be, in fact, an inc or fail verdict if the
complete component was known.

4.4.2 Requirement component

Requirement components are those for which only a set of use cases are
known. Test implementations of these components consist in verifying only
if they can execute all the use cases, which is the traditional way of test-
ing programs. Let us analyse the test derivation method for this type of
component. A test T'C' is assumed to be derived for each use case.

Safety automaton

A safety automaton for a requirement component has to be an automaton
which describes all possible behaviours. Let us denote this automaton A%
and assume that FE = EY | that is, at least their events are known. In this
case

Accept(AR) = ES”
so every event combination is assumed to be a valid trace and

Accept(AS) C Accept(AF)

Test derivation

When each use case is defined by a guarantee automaton Ag, which satisfies
also the Eg = EY and the complete conditions described above, the test case
TC obtained from A% and Ag would give verdicts which would had to be
interpreted as follows:

e pass. The trace o observed by the joint execution of the test and the
component is accepted by Ag, that is

o € Accept(Acg)
Since all the traces accepted by Ag are also traces of A, i.e.,

Accept(Ag) C Tmces(Ag)
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o is said to be also a valid specification trace. A pass verdict in a
requirement component has, for this reason, the same meaning as for
complete components.

e fail. In this case the trace observed o is not accepted by AZ. However,
since Accept(AR) = ES”, all the traces o are said to be accepted by the
component safety automaton. A fail verdict will never be obtained.

e inc. In this case the trace observed o is not accepted by Ag,
o & Accept(Ag) N o € Accept(AF)
Again, two situations have to be considered:

1. oisa prefix of some o' € Accept(Ag). In this case, since o’ belongs
also to AY, its prefix o is said to belong also to AY, that is

o € Accept(AS)

Therefore, the inc verdict has the same meaning as for complete
components.

2. o is not a prefix of some o’ € Accept(Ag). Since Accept(A§) C
Accept(AE) there is no means of deciding if o is also accepted by
AS. An inc verdict can be, if the complete component specifica-
tion was known, an inc or a fail verdict.

4.5 Component cyclic testing

Component cyclic testing aims at the identification of faults which typically
appear when the system is used for a long period of time. These faults can
be located at the component level or at the (shared) resources it uses.

In the first case, faults can be caused by some internal saturation mech-
anism, such as the use of a variable whose type defines a range smaller than
the specified. For instance, the implementation of a short int variable in-
stead of the long variable specified can cause component observable faulty
behaviours. The detection of the problem, in traditional black box testing,
may imply that the component is used for a long time.

In the second case, the faults can be of any type. Being located in a com-
ponent resource which can be also used by other components, these faults can
induce faulty behaviours at the component under test; they can be random
and their first appearance can take some time.

Although the correct testing procedure would be to test the resources first,
(1) theory shows that it is impossible to prove that a resource/ component
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is free of faults and (2) practice shows that there is neither time nor money
to test all the NE components.

A simple solution for detecting this type of faults would be to repeatedly
execute a test for a long period of time. Let us assume that a test has the
same meaning as described before - a test case TC' = T x V which was
obtained from a use case specified by Ag and a specification described by
Ag. The usual process of identifying a fault during a test campaign is (1)
to run a test until it stops and (2) to inspect the verdict obtained. If the
verdict is inc or fail, then the trace (log) o is inspected so that the causes
originating the deviating trace can be characterised.

Typical behaviour tests (7'C') can last from some seconds to a few minutes.
On the other hand, cyclic tests are usually executed overnight, when both
development and test resources become available and this implies that hun-
dreds or thousands of test results (verdicts and traces) can be obtained.
Since, during the first prototype tests, inconclusive/faulty traces can be as
high as 30 % of the total traces obtained, a large number of problematic
traces are available for analysis. Two problems can then be identified:

e How to repeat the tests without human intervention?

e How to analyse the information obtained from an overnight behaviour
test, so that faults can be eliminated, taking into account the project
management requirements (most visible faults eliminated first)?

4.5.1 Test repetition

According to the test derivation algorithm presented, a test T is derived
from the use case specification Ag. In this case, Fg = Es and the guarantee
automaton is required to define complete loops over the safety automaton,
starting and terminating at the component initial state.

When, after a test execution, the verdict obtained is pass, the implement-
ation (according to the component specification) is supposed to be again in
its initial state sy, and this implies that the same or another test can be run.

However, if the joint execution of the test with the implementation leads
to another verdict, the problem becomes more complex. In the case of an inc
verdict, the implementation is left in a state which may not be sy.. In case of
fail, the implementation is left in a state not previewed in the specification,
that is:

verdr(o) = pass = (so, afteras o) = {soq}
verdr(o) =inc = (so, afterag o) C Sg
verdr(o) = fail = (so, afterag o) N Sg =10
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Figure 4.16: Cyclic test (I)

In order to let the test to be repeated, some sequence of events should
be added at the end of each trace o ¢ Accept(Ag) to force the component
back to its initial state. Let us call this sequence a reset sequence which, for
simplicity, will be represented by one event controlled by the test

T'p € ES

Then
T'p
Vs € Ss, s — Sog

Faulty implementations are assumed to correctly implement the reliable reset.

The test derivation algorithm presented should be reformulated as follows
(see also Fig. 4.16):

1. transform the automaton Ag into a tree 1" capable of defining the same
traces,

Traces(T) = Traces(Ag) N Accept(T) = Accept(Ag)

This transformation is usually possible since normal use cases do not
contain loops. Let us assume, as described above, that the branching
for test controlled events is at most one.

T = (ST7 ET7 TT7 Sor FT)
Er=FEqU{r}=FE,UELU{7}

E!. contains the tester controlled events
EL contains the tester observed events
ErNEL =1

7 is an unobservable event
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2. define an auxiliary set A containing all the tree 7" non-final states, that
iS, A= ST - FT-
For each state s € A do

(a) define the set M which contains all the events labelling the state
s outgoing transitions, that is,

M={b|s "}

(b) if ExN'M = () then
for each e € EL U {7} do

i. if e ¢ M then
A. add a new state s’ to T

ST — ST U {SI}
B. add a new transition s — s’ to T
TT%TTU{S L>SI}
C. add a new final state s” to Fr,
ST < ST U {8”}, FT < FT U {S”}
D. add a new transition s' —% s to Tr
1 Tlp
Ty« Tr U {8 — S }

3. define the auxiliary set B which is equal to F, that is, B < Fr.
For each final state s € B do

(a) add a new transition s N So. to Tr so that
By By U{o}, Tr + Tr U {s -2 so,}
(b) remove the state s from the final state set Fr
Fr «+ Fr — {s}
4. add the initial state sy, to the final state set

FT — FT U {SOT}

Fig. 4.16 shows the refinement of the test presented in Fig. 4.10 so that

the test can be executed cyclicly. Fig. 4.17 shows the same refinement for
the test of Fig. 4.11.
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Figure 4.17: Cyclic test (II)

4.5.2 Trace evaluation functions

Assume that the cyclic test T is left executing with a component implement-
ation overnight. When, in the morning, the test is stopped, the person in
charge of identifying the faults is provided with, perhaps, some thousands of
traces which can have verdicts associated. How to proceed then?

The obvious procedure would be to inspect the log obtained, find the first
inconclusive or fail trace, which could have been obtained after some working
hours, and characterise the fault so that it could be eliminated. Project
management, however, demands that the component most visible faults are
eliminated first, so that interoperability and, sometimes, operator acceptance
tests can proceed. In order to support these requirements a classification and
quantification of the faults seems appropriated.

Since the test T is known and has control over the component imple-
mentation, the set of traces which can be obtained can be known in advance,
that is, Accept(T). For the test of Fig. 4.16, that is a refinement of the test
presented in Fig. 4.10 which was derived based on the guarantee automaton
of Fig. 4.7 and the safety automaton of Fig. 4.4, the following traces can be
obtained:

pass — { T'la.T?b.¢}
inc — {T\aT?dT'p.¢, T'a.T!p.¢ }
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The test of Fig. 4.17, that is a refinement of the test presented in Fig. 4.11
which was derived based on the guarantee and the safety automata of Fig. 4.9,
can generate the following traces:

pass — { Tla.T?d.¢, T'a.T?0.T'c.T?d.¢ }
inc — {TWaT?Tp.¢, TaT'p.¢, Ta.T?.Tc.T!p.¢ }
fail — {T\aT?2.T'cT?.T'p.¢, T'a.T?0.Tc.T?e.T'p.¢ }

where the standard verdr() function was used to classify the traces and the
verdicts have the usual meaning.

The results of the overnight test could, in this way, be classified by the
probability of each verdict being obtained or, in alternative, the probability of
each type of trace being observed. The first method would be very poor since
all the faults observed would be classified in two groups - fail and inc. The
second method, although much more useful, would be, in certain conditions,
in the opposite situation since, if both §Fs and §Ss are large, many types
of traces could be available. The (faulty) traces of an overnight test could
then be distributed in such a way that it would be difficult to select the most
representative faults. Experience shows that in first cyclic test campaigns a
large number of different faulty traces can be found.

An intermediate classification method would be to evaluate the imple-
mentation traces obtained according to the relevance the faults have for users.
Suppose a telephony system modeled as a component. A complete use case
would consist in (1) establishing a call, (2) transmitting voice tones and (3)
terminating the call. Independently of the success of the establishment and
the voice transmission phases, the call should always be correctly terminated.
A trace function which can evaluate the probability of a phone call being in-
correctly terminated seems very important for users, since an error in this
phase can bring about serious bad effects. Another trace function could, for
instance, evaluate how often a dial tone is observed after an offhook action,
independently of the order in which it has been observed (e.g. before or after
a number being dialed).

At the end, we are talking about a simple event sequence filter which
will be called the evaluation function evalr(). Like the function verdr(), the
function evalr() can be described by an automaton P, with the following
characteristics:

1. Ep C EqgU{¢}, that is, it can be blind for some trace events but must
observe the end of trace event ¢ generated by the test T

2. all the sequences o of visible events terminating with the end of trace
event ¢ (0 =ej.es...€,.0, ¢, € Ep — {¢}) should be accepted by the
automaton P, i.e., 0 € Accept(P);
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3. it is deterministic, that is, whatever the trace o = ej.es...¢e,.¢, only
one final state of P must be reached.

Since multiple samples of the component implementation will be analysed
(the overnight traces), the automaton P can be represented by a random
variable for which the probability P(P = s;) of its final state being reached
and the correspondant probability mass function p(s;) can be estimated and
depend on particular component implementations.

Figure 4.18: Trace evaluation function

Fig. 4.18 shows a possible evaluation function for the test of Fig. 4.17.
The automaton of Fig. 4.18 only recognises events, T'la, T7d and ¢, that
is,

Ep={Tla, T?d, ¢}

Non-visible events are deleted from traces.

T'a.T?d.¢ — pass — Tla.T?d.¢ — 5
Ta.T?0. T c.T?eT?d.¢ — pass — Tla.—.—.—T%.¢p — s
T'a.T?e.T!p.¢ — inc — Tla.—.—.¢ — Sy
Ta.T'p.¢ — inc  — Tla.—.¢ — Sy
Ta.T70.T'c.Tp.¢d — inc — Tla.—.—.—.¢ — S
TaT?20.TcT?hTp.g — fail — Tla.—.—.—.—.0p — &
Ta T T\ cT?eTp¢ — fail — Tla.—.—.—.—.p — &

According to Fig. 4.18, the traces of Fig. 4.17 would be classified as
follows:

s — {T'a.T17?d.¢, T'a.T?0.Tc.T?.T7d.¢ }
sy —> { Tla.T?eT'p.¢, Ta.Tp.¢p, T'a.T?0.Tc.T'p.0,
Ta.T?0.Tc.T?. T p.¢p, T'a.T?0.T'c.T?e.Tlp.¢p }
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Let us assume that the overnight test gives as a result the trace €

€ =01.02.01.03.01.02.03.01.01.01

where
or = TWa.T?T'c.T?.T?d.¢, is accepted by s;
oy = T'aT!p.¢, is accepted by s
o3 = Tla.T?.T'cT?h.T!p.¢, is accepted by so

The discrete random variable P characterises the implementation beha-
viour of the faulty component with respect to the trace evaluation function
evalr(). In this case, its probability mass function could be defined as follows

| 0.6, s=s;
p(S) = | 0.4, s=s
| 0, s=s;3

The component implementation is then specified by a behaviour random
variable. The ideal component, one for which all the traces would get a pass
verdict, would be represented by the probability mass function p'()

| 1, s=s
p(s) = |0, s=s
| 0, s=s3

The indication that p(sg) # 0 (or p(s1) # 1) gives a quantified indication of
the type of problems associated with the implementation tested.

4.6 Timed testing

Testing telecommunication equipments with respect to time properties is
usually required since there are timeouts which have to be evaluated and,
on the other hand, many of the QoS requirements are related to time (e.g.
delays). Currently, specifications refer to time vaguely. Neither the formal
languages used in telecommunications actually support the precise definition
of time nor the state machines used, for instance, by IETF use it. The time
characteristics are almost always expressed informally by means of textual
descriptions. However, real conformance test suites or operator acceptance
tests depend heavily on system time characteristics.

This thesis proposes a hybrid approach for reasoning about timed tests
which assumes that:

o NE specifications are untimed. It means that the normal safety auto-
maton Ag continues to be developed as presented before;
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e use cases can be timed. That is, certain use cases may assume the exist-

ence of time constraints. The safety automaton A, is then represented
by the Alur-Dill timed automaton introduced in Chap. 3, where clocks,
clock reset and clock constraints are added to the untimed guarantee
automaton.

4.6.1 Timed guarantee automaton

Like the untimed version, the timed guarantee automaton A, contains the
following characteristics:

1. Eg, = Eg. The event set recognised by the guarantee automaton, Eg,,

is equal to Eg, the event set of the corresponding safety automaton. It
means that a guarantee automaton will react to all the events observ-
able/ controllable by the component environment;

complete. The traces accepted by Ag,, timAccept(Ag,), are also traces
of Ag and should be capable of driving Ag from its initial state soq
back to its initial state sy, that is, they describe one or more complete
loops over the safety automaton. Note that Ag, by not specifying
time aspects, does not impose constraints on the timed observation and
control of the events. Only the concepts of after and before concern the
untimed model. Let us introduce the function

o = Untime(oy)
which transforms the timed trace
O = (el,tl).(eg,tz) e (€n,tn)

into the untimed trace
0 = €1.€2...€y

Let us assume, for simplicity, that Untime() works also for sets of
traces, transforming a set of timed traces into a set of equivalent un-
timed traces. Two timed traces can be transformed into a single un-
timed trace. An untimed trace can be mapped into an infinite number
of timed traces. Mathematically, the completeness assumption intro-
duced above can be described as

Untime(timAccept(Ag,)) C Accept(Ag)
A
Vo € Untime(timAccept(Ag,)), (sos afterag o) = {sos}
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‘ Tla c=0 . (c<10) T @

Figure 4.19: Timed guarantee automaton

The timed guarantee automaton can be defined as
AGt = (SGt7 EG” TTGta SOGta FGta CGt)

where Cy, defines a set of clocks and T'T¢;, a set of timed transitions. Fig 4.19

introduces graphically a timed version of the guarantee automaton of Fig. 4.7,
where

AGt - (SGt7 EGta TTGta SOGt ) FGta OGt)
Sa, = {50, 81, 52}
Eg, = {Ta, T2, T?d}

SOGt = Sp
Fg, = {s2}
CGt = {C}

TTea, = {so <Oy @ > 51, S1 < (<10, T, ) > S2}
Untime( timAccept(Ag,) ) = {T'a.T7b}

For instance, the trace oy, = (T'a,5).(T7b, 8) is time-accepted by the Ag,
defined in Fig. 4.19, that is, oy, € timAccept(Ag,) since the time interval
between T'!a and T7b is 3 time units, which is smaller than the 10 time units
specified. On the contrary, the trace o, = (Ta,5).(T"?b, 18), for instance,
is not time-accepted by Ag, since, in this case, the time interval is 13 time

units.
4.6.2 Timed verdict function

The timed trace evaluation function verd;() should now be able to associate
the value pass, inc or fail to every possible timed trace o} so that

Untime(o;) € E§
The verd,() can be defined be refining the function verd(), as follows:
pass, if Untime(o;) € Accept(Ag) A o) € timeAccept(Ag)
verdy(o}) = | inc, if Untime(o;) € Accept(Ag) A o, ¢ timAccept(Acg)
fail, if Untime(o}) ¢ Accept(Ag)

The function verd;( ) can be described as the timed automaton V;, with
the following characteristics:
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e acceptance condition. All the timed traces oy, for which Untime(oy) €
E%, must be accepted by V.

e determinism. Since each timed trace is required to be uniquely eval-
uated, only one final state should be reached by V; when interpreting
O¢.

e final states. Every final state of V; must be classified as pass, inc or
fail, that is,
Fy, = PASSUINCUFAIL

where PASS, INC and FAIL are pairwise disjoint sets.

T?b

,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,

Figure 4.20: Timed verdict automaton

Following the same policy used for obtaining V', the verdict timed auto-
maton V; can be derivate from Ag, and Ag according to the following steps
(see also Fig. 4.20):

1. build an automaton V; which is structurally equivalent to Ag,, that is,
has the same states, clocks and timed transitions as Ag,
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VZ = (SVt7EVt7TTVt7SOVt7FVNCW)
Ag, = (Se, Ea,, TTq,, s0¢,, Fa,, Ca,)
SVt <— SGt

EVt <— EGt

TTVt <— TTGt

SOVt <— SOGt

CVt — CGt

PASS + FGt

INC + 0

FAIL <+

Fy, = PASSUINCUFAIL

In this step each state is required to have only one incoming timed
transition, i.e., the automaton V; should be a tree.

2. add two new states s; and sy to V; and consider them final states.
Classify s; as inc and sy as fail, that is,

SVt < SVtU{Si,Sf}
INC  + INCU{s;}
FAIL <+ FAILU{s}

3. for each non-final state s € Sy, — Fy, do

(a) define the set M which contains all the events labelling the state
s outgoing transitions, that is,

M= {b|s 2>y

(b) for each e € Ey; do
i.if (e ¢ M A Untime(o;).e € Accept(Ag) ), where oy is a

timed-trace of V; from its initial state Soy, o state s, soy, SN

s, then add a new transition s <0ef> s; to Ty,

TTy, « TTy, U {s <220~ 51

ii. if (e ¢ M A Untime(oy).e ¢ Accept(Ag) ), then add a new
transition s <22V~ sp to Ty,

TTy, + TTy, U {s "2 )
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cee L. —d),e,
iii. if e € M then add a new transition s <(20)50> s; to TTy;,,

TTy, < TTy, U {s <2507 5y

where —¢ is the negation of the constraint ¢ associated with
all the state s outgoing transitions labelled with event e. For
instance,

(5201<10/\2<62<5—>_|(5261210\/(62§2\/0225)
4. for each non-final state s of V;, s € Sy, — Fy,, add a new transition
5 <(M)> s; to TTy,,

By, « By, U{¢}, TTy, < TTy, U {s “220” 1.

5. for each final state of s € Fy, do
for each event e € Fy, add a self transition to s so that

TTy, « TTy U {s <220~ g},

The verd,() function, where Untime(o;) € E%, can now be defined as
follows:

pass, if (so,, aftery, o;.¢) C PASS
verdy(oy.¢) = | inc,  if (so,, aftery, o,.9) C INC
fail, i (so,, aftery, 0,.¢) C FAIL

Fig. 4.20 exemplifies the construction of the verd;() for the guarantee
automaton represented in Fig. 4.19 and the safety automaton of Fig. 4.4.

4.6.3 Timed test

Like the untimed version, the timed test 7T; will be represented by a timed
tree automaton where:

e cach state will have at most one incoming timed transition;

e every transition is labelled with a test controlled event, test observed
event, ¢ or 7. The tester is required to be time-deterministic with
respect to its controlled actions.

The test T; can be derived from Ag, according to the following rules (see
also Fig. 4.21):
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Figure 4.21: Timed test

1. transform the automaton Ag, into a tree, T}, capable of defining the
same timed traces

timTraces(Ty) = timTraces(Ag,) N timAccept(T;) = timAccept(Ag,)

T, = (STt7 ETt7 TTTt7 Sor, s FTt7 CTt)

ETt :EGtU{T}:E%tUE;tU{T}

Ej, contains the tester controlled events
EY. contains the tester observed events
Ej, NE} =0

7 is an unobservable event

2. define an auxiliary set A containing all non-final states of the tree Tj,
that iS, A= STt - FTt-
For each state s € A do

(a) define the set M which contains all the events labelling the state
s outgoing transitions, that is,

M= {p]s 227

(b) for each e € B}, U {7} do
i. if e € M then
A. add a new final state s” to T}
STt < STt U {S”}, FTt < FTt U {S”}

. —8),e5(A
B. add a new transition s < 24N> g ¢4 TTr,

TTy, « TTy, U {s T2 gy

where ¢ is the constraint associated with the all the state
s outgoing transitions which are labelled with event e.
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ii. if e ¢ M then
A. add a new final state s” to T}

STt — STt U {8”}, FTt — FTt U {S”}
B. add a new transition s ~ 28~ ¢ to TTr,

TTy, + TTr, U {s <220~ 1

3. define the auxiliary set B which is equal to Fr,, that is, B < Fr,. For
each final state s € B do

(a) add a new final state s’ to Fr,,

STt — STt U {8’}, FTt — FTt U {SI}

(b) add a new transition s 020> ot Tr,, where ¢ is the test con-
trolled event representing the end of the trace

Eéﬂt A E;ﬂt U {¢}, TTt 4 TTt U {S <(L¢7:(>)>

s'}
(c) remove the state s from the final state set Fr,
FTt — FTt — {S}

Fig. 4.21 exemplifies the test derivation process for the guarantee auto-
maton of Fig. 4.19 and the safety automaton of Fig. 4.4. The main differences
to the untimed version are: 1) the timed test input actions have now to be
complemented with respect to the time constraints since a message output
by the implementation out of the interval defined by the time constraints will
lead to an inconclusive verdict and, for that reason, the test will be stopped;
2) the test controlled events may not occur immediately. In this situation
the tester, while waiting for the time to send its next message, may receive
an implementation message and, in this case, the test must also be stopped.

The common test case representation 7T'C; = T; x V; is the composition
(intersection) of the two timed automata, as defined in Chap. 3. Fig. 4.22
represents the test case for the test T; of Fig. 4.21 and the verdict function
of Fig. 4.20. Note that two clocks were supposed to be represented in T'C;.
However, since they were reset and constrain the same transitions, only one
of them is represented.
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Figure 4.22: Timed test case

4.6.4 Timed test repetition

The algorithm for deriving a cyclic test can also be improved to include
time. Assuming the same conditions as for the untimed versions (existence
of a reset sequence even for faulty implementations), the following procedure
can be used:

1. transform the automaton A, into a tree T capable of defining the
same timed traces,

timTraces(Ty) = timTraces(Ag,) N timAccept(T;) = timAccept(Ag,)

T, = (STH ETH TTTtv S0, » FTt’ CTt)

ETt :EGtU{T}:E%tUE;tU{T}

EY. contains the tester controlled events
E%t contains the tester observed events
Ey, NEL =0

7 is an unobservable event

2. define an auxiliary set A containing all the tree 7, non-final states, that
iS, A= STt - FTt-
For each state s € A do

(a) define the set M which contains all the events labelling the state
s outgoing transitions, that is,

M= {b|s 2>y

(b) for each e € E}, U{r} do
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i. if e € M then
A. add a new state s’ to T;

STt — STt U {SI}

o . -0 5€, A
B. add a new transition s < 294Y7 o ¢ TTr,

TTy, < TTr, U {s <2 i
C. add a new final state s” to Fr,,
STt — STt U {S”}, FTt — FTt U {S”}

!
D. add a new transition s' ~VZ%07 g7 ¢4 TTr,

TTy, « TTy, U {s' “VT807 gny

ii. if e ¢ M then
A. add a new state s’ to T}

St, + St, U{s'}
B. add a new transition s ~2Y” &' to TTr,
TTy, « TTy, U {s <LV~ 51
C. add a new final state s” to Fr,,
St, < S, U{s"}, Fr, « Fr, U{s"}

!
D. add a new transition &' ~*%07 g7 ¢4 TTr,

TTy, < TTr, U {s' “V2507 gy

3. define the auxiliary set B which is equal to F,, that is, B < Fr,.
For each final state s € B do

(a) add a new transition s <0.00> Sop, to T,
Ey, By, U{6}, Tr,  Tr, U {s "2 5}
(b) remove the state s from the final state set Fr,
Fr, + Fr, — {s}
4. add the initial state so,, to the final state set.
Fr, < Fr, U {so,, }.

Fig. 4.23 shows the timed version of the test presented in Fig. 4.16, con-
sidering the timed guarantee automaton of Fig. 4.19.
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Figure 4.23: Timed cyclic test (I)

4.6.5 Timed trace evaluation functions

Trace evaluation functions can also incorporate time. The function evalr,()
can be described as a timed automaton P, with the following characteristics:

1. Ep, C Eg, U{¢}, that is, it can be blind for some trace events;

2. all the sequences of visible timed events should be accepted by the
automaton P;;

3. it is deterministic, that is, whatever the trace o;, only one final state
will be reached.

Since now the traces are timed, there is place to characterise statistically
not only the behaviours but also timed behaviours and delays. Let us assume
that the timed automaton P, which may have clocks, is also equipped with
a set of variables D;, which will be used to store clock values during an auto-
maton transition. Since multiple samples of the component implementation
behaviour will be analised (the overnight traces), each variable D; can be
thought as a random variable for which the probability density function f( ),
the mean value E[D;] or the variance Var[D;] can be estimated. Fig. 4.24
shows a possible timed evaluation function described as a timed automaton
which contains the variable DELAY .

Let us assume that the overnight test gives as result the trace ¢
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Figure 4.24: Time trace evaluation function

€ = 0y,.04,.04,.01,, Where
o, = (Ta,3).(T7b,7).(T7c,11).(¢,11) DELAY =8 P, =5
o, = (Ta,23).(T7b,30).(T7c,35).(¢,35) DELAY = — P, =s3
o, = (Ta,40).(T7b,43).(T7¢,50).(¢,50) DELAY =10 P, = s
o1, = (T'a,61).(4,91) DELAY = — P, = s

The random variable P, characterises the implementation with respect to
a time-behaviour property, since the final state reached is time constrained.
In state 6 of Fig. 4.24, a behaviour decision is taken based on the time
associated to the T7b event.

On the other hand, DELAY is a random variable which characterises the
delay between T'7c and T'!a under the constraint that 7'7b has to be observed
between the two events and in less than 5 time units after 7T'a has been
observed. In this case, the sample mean of DELAY would be

_8+10

9
2

DELAY (2)

and its sample variance

8-9°+(10-9°
: _

52(2) — (

It could also be said that the estimated 90% confidence interval for the
DELAY would be given by

1
9+ t21,10.05\/; = 9+4.7

The timed trace evaluation function, evalr,(), is said to model the im-
plementation with two random variables - P, and DELAY . Since the ideal
component, that is, the specification component which always presents pass
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traces, can also be modeled by these variables, their comparison (specific-
ation and implementation) can give a quantified indication of the type of
unwanted behaviours presented in the implementation. The timed trace eval-
uation function is particularly adequate for describing QoS requirements. As
presented in Chap. 3, these requirements are also expressed by means of ran-
dom variables on delays and failures. For delays, the D; random variables
can be used. For failures P, random variables can be used.

4.7 Component oriented testing

Network elements are composed of a set of subsystems, such as (1) com-
munications interfaces, (2) end user services and (3) management services,
which have specifications that are usually large, sometimes inconsistent and
typically described with multiple techniques. How to prove that such a sys-
tem, containing maybe tens of boards, tens of microprocessors and being
developed by tens of engineers is correct, reliable and performant? How to
achieve this in short times, so that the system is always observationally clean
and demonstrable?

In the next sections, a new method will be presented. It is strongly based
on our practical experience of testing Network Elements and on the test
concepts introduced in the previous sections.

4.7.1 Interface and service models

The first step of the method consists in creating a NE behaviour model, for
test purposes, which reuses the available specifications as much as possible. In
traditional approaches, modelisation consists in selecting a formal concurrent
behaviour language, identify the system main blocks, signals and processes,
and in defining each process behaviour. This approach, however, would be
time and effort consuming since basically it would duplicate the NE specific-
ation activities. It could also reveal itself problematic since the traditional
concurrent behaviour languages, such as SDL, are known to have difficulties
in representing management and other data processing subsystems.

A more pragmatic approach is used - the NE is modeled from two com-
plementary points of view:

e the communications view,
e the service view.

Each view consists of a set of simple components.
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Communications view

The NE communications view consists of a number of simple components.
These components are those which are considered relevant for the NE inter-
operability with external equipments. Examples are the processes of the NE
communications stacks.

These component specifications can usually be found in standard docu-
ments where each component is modeled by one or two SDL process/TIOSM.
Since each component is small and well-known, it can be described as a com-
plete component. At the end, the NE communications view will consist of a
number of simple components which are described in a complete component
like style.

Service view

The NE service view consists of a small number of complex components.
These components are those found relevant for the NE good service pro-
visioning. Although they become immediately evident when looking at a
system, a good advice for identifying them would be to study the NE man-
agement specification, usually described using an object oriented approach,
where these components are the key system components. Service components
do not usually have a direct physical realization. Instead, they are based on
several communications and other unmodelled components. Independently
of that, they provide a view of the NE which is very close to the view that
users have of the system.

Because the service components are complex, they cannot usually be
modeled as complete components (see Sec. 4.2.3 - Components). However,
their user interfaces as well as their use cases can be easily identified, and
therefore the interface style of describing components can be used (see Sec. 4.4.1
- Interface component).

4.7.2 Testing communications components

Each communications component should be tested independently. Since each
component is small and completely defined, it can be tested using the state
machine equivalence testing methods presented in Chap. 2, or the test case
approach, presented in detail in this chapter. The first approach provides,
obviously, better results. The second, however, is more (time) efficient, hence
it seems more appropriate to satisfy the management expectations.

A large number of test cases should then be identified and used to test
each communications component. These tests should be small, they need not
to be applied repeatedly and no load conditions are required. Test results
will be the traditional pass, fail or inconclusive verdict. In this way, each
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communications component gains a set of tests which should be used every
time a new release of the component is introduced in the NE.

With these tests, simple state machine faults will be found, which may
have a strong impact on the NE interoperability and service provisioning. A
system communicating incorrectly with its environment will never be able to
demonstrate its value externally. This is even more true for systems aimed
at providing communications facilities.

4.7.3 Testing service components

A service component, as referred above, may be composed of a number of
communications and other unmodelled/ untested components. Most of the
time, service components include not only real NE components but also some
components existing in the test equipments, such as the communications
stack emulation components. Multiple instances of each service component
exist usually in traditional NEs. Service components should be tested both
individually and jointly.

The test of an individual service component is similar to the test of a
communications component - a significant number of use cases should first
be identified and one test should be derived for each use case. Similarly to
the communications components, these tests should be short, not repetitive,
applied under no load conditions and give pass, inc or fail verdicts. They
should also be reapplied from time to time. Individual service component
tests evaluate a variety of service usage conditions.

Joint service component tests are used to evaluate the service components
under typical load conditions. They should be applied for a long period of
time and use the cyclic and timed test techniques presented in this chapter.
Joint service component tests will be referred to as NE tests. One NFE test
should be derived for each standard NE load or NE service mix scenario.

A NE test must specify the following aspects:

1. service mizing. It consists in deciding the number of instances for each
service component. A method to decide this number is to think in
terms of the number of expected users for each service, assuming that
each user will be served by only one service instance and one service
instance serves only one user.

2. sample of service components instances. Since a large number of in-
stances can exist for some services (tens, hundreds or even thousands),
it is not required to evaluate all of them with respect to their beha-
viour. For this reason, some service instances must be selected for
testing. The criteria for selecting the tested service components must
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take into account not only statistical criteria but also the ability to
observe potential problems in shared resources.

. service components tests. A test must then be defined for each sample

service component instance. For that purpose, a relevant (timed) use
case will be selected for each sample instance, which must be trans-
formed into a cyclic timed test.

As already justified, tests should be deterministic, that is, there should
be no alternative choices for test controlled events. The same should
be considered for the time aspects - if a test controlled event is time
conditioned, this constraint should be kept for every test cycle. If this
deterministic condition is not observed, the probabilistic trace evalu-
ation function will characterise not only the component implementation
probabilistic behaviours but also the tester influence on these probabil-
istic behaviours. This condition is particularly important for the results
analysis.

Another important characteristic of service tests is the specification
of the time interval between the end of one cycle and the beginning
of the next. The guarantee automaton which specifies the use case
represents usually one loop and, for that reason, does not express these
time intervals. If the tests (of a component instance) are required to
be separated by some time interval, these (deterministic) inter arrival
characteristics must now be added to the test. This can be easily
achieved by adding a new clock to the test. Fig. 4.25 gives an example
of this improvement for the cyclic test of Fig. 4.23.

The same test type can, naturally, be applied to more than one com-
ponent instance of the service.

trace evaluation functions. For each test, one or more trace evaluation
functions should be specified, so that the service component instance
under test can be evaluated with respect to its most important un-
wanted/ deviating behaviours. These evaluation functions should also
include the parameters required to characterise the service component

quality (QoS).

non-sample service components instances. The service component in-
stances not tested will be loaded with the expected service usage/ traffic
profiles. The standard loads referred in Chap. 3 will now be considered.
The following technique can be used to define the load for the non
sampled service components:

(a) select a number of relevant use cases from those already known
from the individual service components tests;
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Figure 4.25: Inter test time definition

(b) transform each of these use cases into a cyclic test;

(c) improve each cyclic test with random timed variables, so that
the cyclic test is able to describe random aspects, such as call
durations and call interarrivals;

(d) represent the cyclic tests in a unique test and let the former cyclic
tests be selected randomly.

Randomness is opposed to determinism; to introduce randomness means
that the test would be able to select among a set of test controlled events
or time intervals associated with test controlled events. Fig. 4.29 (at the
end of the chapter) exemplifies the process of defining a random test
from a set of two deterministic tests. Random tests will not be used
to reason about components faults but only to load the NE with real-
istic service usages. Another interesting aspect is to relate this load
test specifications with the delay and loss system events introduced in
Chap. 3. Setup, release, arrival and service events can now be precisely
associated with the existing test events.

Several NE tests should be specified. Like the component tests, the NE
tests should be associated to the NE system - prior to the release of a new
NE version, all the NE tests should be re-applied for a long period of time.

NE tests are the most useful tests. They enable the detection of those
complex faults which appear only after long working times and which can
be random. These faults have direct impact on the service provisioning and,
sometimes, also on the NE interoperability. They enable also the precise
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characterisation of the QoS requirements since trace evaluation functions
can capture this type of information.

4.8 Test architectures

4.8.1 Communications component testing

As shown in Chap. 2 (Fig. 2.2), protocol conformance testing proposes several
test architectures (local, distributed, coordinated, remote and multiparty).

The communications components are basically the same components ad-
dressed by conformance testing. Although in prototype testing the com-
ponents and the tests could be executed in the same system - the Network
Element - their execution in different systems (NE and test system) using a
distributed service provider makes the test closer to the real working envir-
onment. For that reason, the reference conformance test architectures are
preferable for communications component testing.

The Local test architecture, in particular, seems to be the architecture
more suitable for prototype testing since it makes use of multiple component
interfaces and does not require the distribution of the test.

4.8.2 Individual service components testing

Unlike communications components, a service component is a virtual com-
ponent which is based on a number of real components. Moreover, some of
these real components belong to the NE peer communications equipment,
such as the peer communications stack components. A possible service test
architecture is shown in Fig. 4.26. The Test block implements TC =T x V.

Component

Figure 4.26: Service view component test architecture
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Similarly to the communications components, service tests are executed on
a system which is different from the NE which, implicitly, forces the NE to
interoperate with a different equipment during service tests.

Sometimes the service tests cannot be executed in a single test system.
The reasons for that can be performance problems, the impossibility of im-
plementing multiple communications interfaces in a single test system or the
physical distance between the NE service interfaces.

The traditional solution for this problem consists in distributing the test
by several test equipments. A distributed test architecture brings however
some problems, such as:

e the distribution of the test T7;
e the location of the verdict function;

e the provisioning of the distributed system with global time.

b e e e - - . Service
e Test System 3 | Component

Figure 4.27: Distributed service testing

A possible solution for these problems is shown in Fig. 4.27, where three
test systems and the NE under test interoperate.

The test T is split into three parallel testers ( Test) which are coordinated
by a Test Manager. The main function of each parallel tester is to send
and receive the messages corresponding to its interface. The test manager is
in charge of informing each parallel tester about the occurrence of relevant
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events at other interfaces. Instead of a single tree 7', a more complex and
distributed tree exists now. The distribution should minimise the number of
communications between the Test Manager and (some) parallel testers.

In order to measure service delays and calculate distributed timeouts, a
global time mechanism is required. A simple, general and cheap solution for
this problem is to take advantage of the timing facilities provided be the GPS
system. The available time resolution and precision is sufficient for telecom-
munications and cheap boards/ device drivers providing digital counters are
available. The solution, not new, is more and more being adopted by the
manufacturers of protocol testers.

The test distribution becomes simpler if the verdict/ trace evaluation
functions are decoupled from the test. A possible solution, as shown in
Fig. 4.27, consists in implementing the trace evaluation function(s) in a single
block. For this reason, each parallel tester sends its partial timed event
sequences to the evaluation block which, after reordering them based on the
time information available, evaluates the complete timed traces.

4.8.3 NE testing

Joint service component testing is, from the architectural point of view, an
extension of individual service component testing where all the service in-
stances are used simultaneously. Fig. 4.28 exemplifies the concept. Only
some service instances are evaluated and the remaining are loaded randomly.

NE testing, in addition, demands (1) probabilistic distribution functions,
which may be invoked by multiple service users, and (2) histograms which
are used to store evaluation function information, such as final states reached
and time intervals.

4.9 Conclusions

In this chapter our methodology for testing telecommunications Network
Elements was presented. In order to describe it, a rich framework based
on simple (timed) automata was defined. The usage of this framework for
reasoning about tests has, in fact, proved very useful. While the essential
aspects related to the test of equipments could be reasonably represented,
the simplicity of the framework has allowed us to determine the real value
of the practical test procedures and, by doing that and abstracting from the
real NE complexity, to cover existing gaps and to generalise the method.
The methodology proposed is new by a set of reasons. The first is that it
does not rely on complete NE specifications which are unavailable for most
of the NEs. Instead, the method relies on the (partial) specifications of some
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Figure 4.28: NE service testing architecture

components considered relevant for the NE good behaviour. Communications
components are typically simple state machines whose description is available
in standard documents. Service specifications have usually to be developed
but it is assumed that they are described in an interface component style, so
they are easy to obtain.

The second innovative aspect is the combination of timed use cases with
with untimed specifications which has enabled to derive timed tests and
understand them precisely. This approach seems to be the opposite of that
generally followed in testing theories where timed tests are derived from timed
specifications (safety automata).

The third aspect, and perhaps the most important, is the concept of
cyclic tests, which improve the traditional load tests with behaviour inform-
ation. By doing that, much information about faulty behaviours is gained.
The traces obtained during cyclic tests are evaluated by functions different
from the traditional verdict function which model the implementation as a
set of random variables. By comparing these variables with the correspond-
ing variables from the specification model, the faults become statistically
characterised.

The fourth aspect is that probabilistic properties can now be rigorously
specified by means of evaluation functions which can be related to the com-
ponent specifications. By combining behaviour and time, both the failure
and delay QoS properties can be rigorously described and evaluated.

The fifth aspect is the service test architecture proposed for NE tests.
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By decoupling evaluation functions from tests, a simple architecture was
presented, which can capture the diversity of faults provided by this type of
tests.
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Chapter 5

ETSI V5 Access Network

5.1 Introduction

The Access Network (AN) is the telecommunications infrastructure located
between the switching infrastructure and the customer premises equipment.
Basically, it consists of transmission equipment terminated by a set of ports
to which customers attach their terminal equipment. Its main function is
to distribute the telecommunication services and facilities to the customers
premises.

With respect to this network, the European Telecommunication Stand-
ards Institute (ETSI) has promoted a set of standards aimed at the nor-
malisation of the interface between the Access Network and the switching
infrastructure - the V5.1 and V5.2 interfaces.

In the next section, the V5.1 Access Network will be introduced. Firstly,
by presenting an overview of the services provided, then by describing its
basic architecture and, finally, by describing the architecture of the V5.1
signalling stack.

In the third section, the operation of a PSTN port is described from an
operational point of view. A PSTN port can be blocked, unblocked, put in
or out of service, have paths (communication channels) associated and be
used in telephone calls.

In the fourth section another type of port supported by the V5 access
network is introduced - the ISDN Port, and it is also described from an
operational point of view. Besides the services provided by the PSTN Port,
the access activation and deactivation services are also offered.

The fifth section introduces V5.2 by comparing it with V5.1. Whilst V5.1
works based on a static multiplexer principle, V5.2 is based on a dynamic
concentrator principle. This means that V5.2 can have attached terminals re-
quiring more resources than those available at the local exchange side. Some
mechanisms for negotiating these resources are, for that reason, required in
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the access network.

The last section provides an overview on the V5 conformance tests de-
veloped by ETSI. The method used to derive the tests, test types and their
number are characterised and the testing architecture is also presented.

5.2 Overview

5.2.1 Services

The Access Network shown in Fig. 5.1, and defined in the V5.1 [94] and V5.2
[95] standards, consists of a possibly distributed set of user ports to which
conventional terminal equipment, such as the old telephone or a basic rate
ISDN terminal, can be connected. Each user port can be controlled by the
local Access Network management system and by the the Local Exchange,
and each port can be: 1) put in or out of service; 2) temporarily blocked, so
that no traffic/ calls are accepted by the network.

7 Access Network Local Exchanges
TE | PSTN User Port | | @
TE | PSTNUser Port | |5 |03 | s
-
TE/NT [+ ISDN User Port | | 2|5
TE/NT J+——=| ISDN User Port | |©

U

Figure 5.1: V5 Access Network architecture

The PSTN call handling procedures are also converted to digital ones
by the V5 Access Network. The current signalling used in the subscriber
loop interface for Offhook, Onhook and Digits is sampled by the V5 Access
Network and transformed into a three layer protocol interface, similar to the
ISDN signalling stack. In this way, V5 Local Exchanges will not receive call
signalling by means of current flows but as a set of layer 3 PDUs associated
with the V5 PSTN protocol.

For ISDN signalling, the V5 Access Network provides the following fa-
cilities: a) full layer 2 frame relaying and concentration, so that the peer
ISDN signalling stacks can continue to be implemented in the ISDN ter-
minal equipment and in the Local Exchanges; b) activation and deactivation
of the digital access, which can now be operated by the Local Exchange.

The V5 transmission capabilities, 2.048 Mbit/s links with G.706 framing
[96], also enable the digital transmission of 64 kbit/s channels, known as B
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or bearer channels, which are used for telephone speech transmission and for
supporting the B1 and B2 BRI-ISDN data channels.

5.2.2 Functional architecture

The FA1201 is the NEC equipment which implements the V5 Access Net-
work functions. Since the testing methodology proposed in this thesis was
developed based on the experience of testing this equipment, a simplified
version of its functional block diagram, shown in Fig. 5.2, will be presented.
It represents only the main Access Network functionalities and does not in-
clude, for instance, management, alarms, protection or E1 link management
aspects. It does not also represent the commercial versions of the FA1201
equipment, which split the Access Network into Central Office and Remote
equipment and also supports high transmission hierarchies requiring optical
fibres instead of the electrical cables used in the 2.048 Mbit/s hierarchy.

Time-Space
480 PSTN B Exchange 6
Ports X
VA
o
current) s g B0
= ctl S
3 iy
120 ISDN _
Ports Sgnalling
U
(2B+D, Packet
activation,
deactivation) Management

Figure 5.2: AN simple functional architecture

The Access Network presented can support up to 480 PSTN ports provid-
ing the standard analogue Z interface and up to 120 ISDN Ports interface at
the U reference point [97]. Connections to the Local Exchange are achieved
by means of up to 16 E1 links at 2.048 Mbit /s [98].

When a subscriber using a telephone attempts to establish a call the
first two actions (events) are to offhook the telephone and wait for the dial
tone so that a sequence of digits can be dialed after that. The telephone, in
turn, conveys this information to a PSTN port using loop current signalling
as exemplified in Fig. 5.3. The PSTN Ports block, in Fig. 5.2, detects the
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Dial tone Calling tone

Loop current —m ﬂ

Off hook Digit 3 Digit 2

Figure 5.3: Z interface loop current signalling

offhook event and sends a message to the Signalling block through the Control
channel. The Signalling block, which implements the V5 stack, creates a
HDLC frame referring to the offhook event. This frame is then sent octet
by octet to the Time-Space Exchange through the Frame channel, which
forwards it to the Local Exchange through an E1 C channel, as shown in
Fig. 5.4. The Local Exchange, after interpreting the offhook event, starts
sending, octet by octet, the dial tone digitised according to the law A, through
one of the E1 B channels. This channel, in the Access Network, must be
routed by the Time-Space Exchange to the PSTN Ports using the internal B
channel. The PSTN ports block transforms the digital tone into an analogue
signal that is output to the telephone through the Z interface.

‘lesl 1 l 2‘ 3l 4‘ 5l 6‘ 7| 8‘ 9 l 10l 11l 12‘ 13‘ 14l 15| éjl l7| 18‘ 19‘ 20l 21‘ 22l 23‘ 24l 25‘ 26‘ 27l 28‘ 29l 30| 31r‘

D C channel (8 bits) I:] B channel (8 bits)

Figure 5.4: E1 interface frame structure

A similar example can be given for ISDN. Assuming that a digital access
was already activated and that regular SL signals [97] were exchanged at the
U interface, the digital telephone starts to establish a call by sending HDLC
frames to the Local Exchange, where the peer signalling stack resides. A
frame sent by the ISDN telephone through the 16 kbit/s D channel, Fig. 5.5,
is transferred by ISDN Ports block to the Signalling block through the Packet
channel. The Signalling block, without changing the frame contents, relays it
to the Local Exchange through a C' channel. When receiving a HDLC frame
from the Local Exchange through the Cchannel, the Signalling block must be
able to detect that the frame is an ISDN one and route it to the corresponding
user port at the ISDN Ports block, through the Packet channel.

Each block of the simplified model introduced in Fig. 5.2 is responsible
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Figure 5.5: U interface frame structure

for the following functions:

e PSTIN Ports. Represents the set of user ports provisioned which,
in this model, can be up to 480. For each telephone, the block per-
forms the following functions: a) converts loop current signalling into
semantically equivalent digital messages that are exchanged with the
Signalling block in both directions; b) converts, in both directions, ana-
logue voice speech signals into an octet stream coded according to the
law A, which are exchanged with the Time-Space Exchange;

e ISDN Ports. Represents the set of ISDN user ports provisioned which
can be up to 120. For each digital access, the block can: a) start
activation of the digital access which can be requested by the external
NT through the U interface or by the Signalling block through the
Control channel; b) deactivate the digital access following a request sent
through the Control channel by the V5 Signalling block; ¢) transfer the
D channel bits from the U interface to the Signalling block, through
the Packet channel, in both directions; d) transfer in both directions,
through the internal B channel, the B1 and B2 channel octets between
the U interface and the Time-Space Exchange;

e Time-Space Exchange. Represents a 480 x 480 time-spatial slot
exchange and performs the following functions: a) exchange with the
Local Exchange digital information that can be distributed among the
16 x 2.048 Mbit/s E1 links, using a 32 time slot frame structure, HDB3
coded, and (un)frame them appropriately; b) provide the Access Net-
work clock, that must be recovered from one of the links driven by the
Local Exchange; ¢) route the E'; C' channels, which in V5.1 can be up to
3 (time slots 16, 15 and 31), to the Signalling block in both directions,
through the internal Frame channel; d) route the bearer channels to
the corresponding user ports, according to a routing table received by
the Signalling block through the Ctl channel which, for V5.1, is static.
Routing is carried out in both directions;
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e Signalling. Represents the block in which the V5 signalling is handled
and provides the following functions: a) receive and transmit HDLC
frames from/to the internal Frame channel, interpret them and execute
the corresponding orders that, in this model, can be a user port order
or an answer to the Local Exchange; b) route in both directions the
HDLC frames between the Packet and the Frame channels so that ISDN
related messages can be relayed; ¢) program the Time-Space Exchange;
d) execute management commands through the Management channel.

5.2.3 V5.1 signalling architecture

The V5.1 interface is used to control one E1 link and the user ports associated
with it. From one to three channels of the link (timeslots 16, 15 and 31)
can be used to control the interface. The remaining timeslots, up to 30
(see Fig. 5.4), may be used as bearer channels. Since concentration is not
supported in V5.1, the number of PSTN ports provisioned must be smaller
than the number of bearer channels available. For a network with 16 E1
links, 16 simultaneous V5.1 interfaces are required.

The remote control of the Access Network user ports can be achieved
by a set of tasks which, as usual, are represented as a set of layered state
machines. Fig. 5.6 shows them for the Access Network side.

P

ISDN PSTN PSTN ISON

Port Port Port Satus Port Satus
Port Common
PSTN Control Control
Frame LAPVSDL| | LAPVBDL
Relay
EF<8175 EF=8176 EF=8177
] LAPVSEF ‘ [ vLayer1 |
Ts=1,..31 TS=15,16,31

l Linelnterface ‘

El

Figure 5.6: V5.1 protocol stack



5.2. OVERVIEW 147

Each state machine can be shortly characterised as follows:

e Linelnterface. Terminates FE; links, that is, decodes the line code,
recovers line clock, switches timeslots and provides alarm information;
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Figure 5.7: V5 message structure

e LAPVS5EF. All the information exchanged between the Access Net-
work and the Local Exchange is conveyed in Envelope Function frames,
shown in Fig. 5.7. The LAPV5EF main functions are: a) when receiv-
ing the messages from the layer 2 state machines (LAPV5DL and Frame
Relay, in Fig. 5.6), create correct LAPV5EF frames by inserting valid
EF addresses and send them to the respective C channel controller
(HDLC controller); b) when receiving frames from a C channel, verify
if they are valid, extract the EF address and route the frames to the ad-
dressed layer 2 state machine. The number of LAPVEF state machines
must be equal, for each V5.1 interface, to the number of C channels in
use (1-3);

e LAPVS5DL. The LAPV5DL main task is to convey information between
layer 3 state machines in the AN and the corresponding peer entities
in the LE. LAPV5DL is a simplified version of LAPD where dynamic
layer 2 address assignment and layer 2 disconnection was eliminated,
since data links are required to be operational for the interface life-
time. The transmission of information frames is possible only after
LAPV5 state machines at AN and LE are synchronised. LAPV5DL
implements a Go Back n [99] protocol (no selective retransmission)
where up to 7 messages can be transmitted without acknowledgment
(window 7) and multiple acknowledgement is possible. Two LAPV5
state machines exist for each V5.1 interface - one for the PSTN state
machines and another for the control state machines. The address of
each LAPV5 state machine, the V5DL address in Fig. 5.7, is the same
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as the EF address, that is, 8176 for PSTN and 8177 the for control
state machines;

Frame Relay. Packet data, arriving as HDLC frames from the ISDN
D channels, are concentrated into C channels and sent to the Local
Exchange. Each ISDN port has an EF address associated, which is
equal to the layer 3 port address. The Frame Relay main function is
to manage the routing between ISDN port internal addresses and EF
addresses, which should be less than 8175;

PSTN. PSTN is a stimulus protocol and does not control the call pro-
cedures in the AN. It rather transfers, digitally and reliably, information
about the analogue line state over the V5.1 interface. Besides that, it
controls the path (bearer channel) between the PSTN subscriber port
and the Local Exchange virtual port. This path, which is required for
call signalling (e.g., transport of tones), will be established before call
handling procedures can take place and terminated after the termina-
tion of a call. The number of PSTN state machines should be equal to
the number of PSTN user ports provisioned and their address, the V5
L3 port address, can be in the range 0 to 32767;

Port Control. The Port Control state machine is used to convey
information between the Port Status in the AN and the virtual Port
Status in the LE. It conveys one information element at a time whose
reception has to be acknowledge by the peer. It uses a symmetrical
protocol and the number of state machines required for the Access
Network must be equal to the number of ports provisioned (PSTN plus
ISDN). The addressing is based on the layer 3 port addresses;

PSTN Port Status. This state machine, in cooperation with its peer
at the Local Exchange, provides the coordinated administration of the
PSTN ports for the AN and the LE management. Each PSTN port can
be blocked or unblocked. When blocked, no calls are accepted. Each
PSTN Port Status state machine is associated with a Port Control state
machine;

ISDN Port Status. In addition to the blocked and unblocked pro-
cedures, the ISDN Port Status state machine is also responsible for
maintaining the AN and LE managements synchronised on the activ-
ation and deactivation of the ISDN port accesses. Each ISDN Port
Status state machine is also served by a Port Control state machine;

Common Control. The Common Control state machine is used to
convey information between the management of the AN (not represen-
ted in Fig. 5.6) and the LE. It handles one management information
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element at a time whose reception has to be acknowledged by its peer.
It is a symmetrical protocol and only one state machine exists.

5.3 PSTN port operation

In V5.1, the operation of a PSTN port is determined by two main state
machines: the PSTN and the PSTN Port Status, as presented in Fig. 5.8.

FE V5PSTN FE
Pl PSTN PSTN |
Z ort
MDU MDU
MGMT MGMT
MPH MPH
PSTN V5FE PSTN
Port Status Port Satus
Access Network Local Exchange

Figure 5.8: PSTN port functional model

In the following sections all those state machines are described by listing
and commenting the relevant protocol and service data units and by detailing
their main procedures.

5.3.1 PSTN Port Status

Three main functions are provided by the PSTN Port Status state machines:
a) blocking; b) blocking request; ¢) coordinated unblocking.

Blocking a PSTN Port can be initiated by both sides (AN and LE).
However, since the Access Network management has no knowledge about the
port call state, it will only invoke this procedure under abnormal conditions,
such as failures, which affect the service provided by the port.

A blocking request can be invoked by the Access Network to request a non
urgent port blocking (e.g., deferrable for maintenance). The Local Exchange,
knowing the current state of the call, can block the port or defer the blocking
until the end of the current call.

The unblocking of a blocked port requires coordination. The port can be
unblocked only when both parts (AN and LE) agree.
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V5FE | AN & LE Description

FE201 — LE requests/accepts coordinated unblocking
FE202 — AN accepts/requests coordinated unblocking
FE203 — LE requests blocking

FE204 — AN requests blocking

FE205 — AN requests non-urgent blocking

Table 5.1: PSTN Port Status protocol data units

MPH MGMT <« Status Description
MPH-UBR — LE requests/accepts coordinated unblocking
MPH-UBR — MGMT accepts/requests coordinated unblocking
MPH-UBI — Coordinated unblocking completed
MPH-BI — LE requests blocking
MPH-BI — MGMT requests blocking
MPH-BR — MGMT requests non-urgent blocking

Table 5.2: PSTN Port Status management service data units (AN)

Tab. 5.1 lists the protocol data units exchanged by the PSTN Port Status
state machines at the AN and LE (V5FFE), along with their meaning. Tab. 5.2
presents the service data units (primitives) exchanged by the PSTN Port
Status state machine at the AN with the AN management (MPH). UBR,
UBI, BR and BI stand, respectively, for UnBlock Request, UnBlock Indica-
tion, Block Request and Block Indication.

The PSTN Port Status state machine is described as an IOSM having 4
states and 16 transitions [94].

5.3.2 PSTN

PSTN provides a set of procedures that are mainly related to the establish-
ment and termination of a communication channel and are used to trans-
fer the line signals between the analogue access port and the corresponding
virtual port, at the Local Exchange. Particular out of band call handling
aspects, such as a digit, are dealt with the primitive FE-line signal which is
transported transparently to the local exchange which interprets it.

Tab. 5.3 lists the protocol data units exchanged by the PSTN state ma-
chines at the AN and the LE (V5PSTN), along with their meanings. Tab. 5.4
presents the service data units exchanged by the PSTN state machine with
the PSTN port (FE), at the AN. Tab. 5.5 presents the service data units
exchanged by the PSTN state machine with the AN management (MDU).

The PSTN state machine at the AN is described as an IOSM having 8
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V5PSTN AN & LE Description
ESTABLISH > Initiation of a PSTN path
ESTABLISH ACK > Positive response to PSTN path initiation
SIGNAL ~ An electrical condition described in a message
SIGNAL_ACK R Acknowledgment of signal message
DISC ~ Initiation of clearing the path
DISC. COMPLETE ~ Positive response to path clearing

Table 5.3: PSTN protocol data units

FE Port «» PSTN Description

FE-subscriber_seizure — Subscriber wishes to originate a
PSTN path

FE-subscriber_release — Subscriber indicates release dur-
ing the initiation of the PSTN
path

FE-line_signal “ Detection or activation of one
electrical condition on the sub-
scriber line circuit

Table 5.4: PSTN port service data units (AN)

states and 91 transitions [94].

5.4 ISDN port operation

In V5.1, the operation of an ISDN port is determined by two main blocks:
the ISDN Port Status and the Frame Relay, as presented in Fig. 5.9. In
the following sections, the state machines used to control the ISDN port are
introduced.

5.4.1 ISDN Port Status

Five main mechanisms are supported by the ISDN Port Status state ma-
chines: a) blocking; b) blocking request; ¢) coordinated unblocking; d) ac-
tivation; e) deactivation. The blocking/unblocking procedures are similar to
the PSTN user port.

In order to reduce power consumption, a basic rate ISDN line not involved
in calls is kept deactivated, in a low power state. In this state, there is no
signal transmission in both directions of the interface (U) and the clocks are
off or running unsynchronised. Before a call is initiated, special patterns are
exchanged to wake up the transceivers at both sides of the interface. At the
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MDU MGMT « PSTN Description
MDU-CONTROL(block) - AN management indica-
tion to block the sub-
scriber port
MDU-CONTROL(unblock) - AN management indica-
tion to unblock the sub-
scriber port

Table 5.5: PSTN management service data units (AN)

ISDN FE ISDN VSFE ISDN FE
U Port Port Status Port Satus
g MPH MPH MPH/PH
§ MGMT MGMT
8
<
[S]
[a)
Frame LAPV5EF Frame
Relay Relay
Access Network Local Exchange

Figure 5.9: ISDN port functional model

U interface a set of SL frames are exchanged so that the port and the NT
equipment can again become synchronised. The activation and deactivation
of the user digital access will be controlled by the Local Exchange when the
port is in an operational state. If the port is non-operational, the control is
given to the AN, for maintenance. Activation can be initiated either by the
user side or the Local Exchange. The deactivation of the access will always
be initiated by the Local Exchange.

In Tab. 5.6 the messages used to carry out the control and activation at
the V5 interface (V5FE) are listed. Tab. 5.7 shows some primitives used by
the management of the Access Network to control and be informed about the
ISDN port status (MPH). Tab. 5.8 introduces the main primitives exchanged
between the ISDN port and the ISDN Port Status (FE) at the Access Network
side.

The ISDN Port Status state machine at the AN can be described as an
IOSM that has 8 states and 87 transitions [94].
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V5FE | AN & LE Description

FE101 — LE requests access activation

FE102 — Activation initiated by the user

FE104 — Access activated

FE105 — LE requests access deactivation

FE106 — Access deactivated

FE201 — LE requests/accepts coordinated unblocking
FE202 — AN accepts/requests coordinated unblocking
FE203 — LE requests blocking

FE204 — AN requests blocking

FE205 — AN requests non-urgent blocking

Table 5.6: ISDN Port Status protocol data units

MPH MGMT ¢« Status Description
MPH-UBR — LE requests/accepts coordinated unblocking
MPH-UBR — MGMT accepts/requests coordinated unblocking
MPH-BI — LE requests blocking
MPH-BI — MGMT requests blocking
MPH-BR — MGMT requests non-urgent blocking
MPH-I1 — LE requests access activation
MPH-I2 — User requests access activation
MPH-AR — MGMT requests access activation
MPH-AI +— Access activated under control of LE
MPH-I5 — LE requests access deactivation
MPH-DR — MGMT requests access deactivation
MPH-DI — Access deactivated

Table 5.7: ISDN Port Status management service data units (AN)

5.4.2 Frame Relay

The Frame Relay main function is to correctly transfer valid HDLC frames
between the ISDN Ports and the Local Exchange.

Each D channel, at the Access Network, is terminated by an HDLC con-
troller that strips off the CRC and the flags of the LAP-D frames and makes
the remaining fields available for relaying (layer 2 address, control and in-
formation fields). Frame relay adds to the remaining frame the EF address,
that is, the ISDN layer 3 port address, and sends it to another HDLC con-
troller connected to the 64 kbit/s C channel, which will add new CRC and
flag fields.

When the frame comes from the Local Exchange, the C channel HDLC
controller makes the frame available to the LAPV5EF which, based on the
EF address, sends the frame to the Frame Relay block. This unit analyses
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FE | ISDN port < Status Description

FE1 — Activate access

FE2 — Access activation initiated by user
FE4 — Access activated

FE5 — Deactivate access

FE6 — Access deactivated

Table 5.8: ISDN status port service data units (AN)

the EF address, removes it and sends the frame to the port HDLC controller
which recalculates new CRC and introduces HDLC flags.
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Figure 5.10: V5.2 protocol stack

5.5 V5.2 signalling

While V5.1 works based on a static multiplexer principle, V5.2 is based on a
dynamic concentrator principle. The differences of V5.2 with respect to V5.1
are the following:

e number of links. A V5.2 interface can have up to 16 x 2.048 Mbit/s
E1 links, while a V5.1 interface supports only one link;
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e concentration. V5.2 was inherently designed to support concentra-
tion of bearer channels, so that the number of channels required by
the terminal equipments attached to the Access Network can be larger
than the number of bearer channels available at the E1 links. The al-
location of bearer channels to user ports is made on a call basis using a
new protocol, the Bearer Channel Connection. V5.1 does not support
concentration and therefore the allocation of bearer channels to ports
is static;

e protection. When a V5.2 interface is used with more than one El
link, a particular function exists which protects the control of the in-
terface. This control which, at the startup of the interface, is carried
out over timeslot 16 of the primary link and includes messages from
the Port Control and Common Control protocols, is switched to the
timeslot 16 of the secondary link in case of failure of the primary link.
The protection function is achieved by means of a new protocol - the
Protection protocol;

e control. A new protocol, the Link Control protocol, is introduced in
V5.2, which is used to the let the V5.2 interface manage the status of
multiple links.

The V5.2 signalling interface block diagram is presented in Fig. 5.10. It
reuses the V5.1 protocols and addressing formats and introduces four new
types of state machines whose main functions may be described as follows:

e Bearer Channel Connection (BCC). This protocol provides the
means for the Local Exchange to request the Access Network to es-
tablish and release connections between specified AN user ports and
specified V5.2 interface time slots. The interface bearer channels must
be allocated or deallocated on a call basis for both PSTN and ISDN
calls under the control of, respectively, the PSTN and the ISDN call
control state machines, at the Local Exchange;

e Link Control. The Link Control state machine is used to convey
information between the Link Status at the AN and the Link Status at
the LE. It conveys one information element at a time whose reception
has to be acknowledge by the peer. It is a symmetrical protocol and
the number of state machines required for the Access Network must
equal the number of links provisioned. The addressing is based on 8
bit layer 3 link addresses;

e Link Status. This state machine, in cooperation with its peer at the
Local Exchange, provides the coordinated administration of links for
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the AN and the LE management with respect to blocking, unblocking
and identification of the links.

The blocking of a single link can be initiated from both sides, although
the process is completed under the control of the Local Exchange. In
this process, the Local Exchange will disable all non assigned bearer
channels in the link from future assignment and, if possible, wait until
all bearer channels become unassigned. After that, the LE protects the
logical C channels of the link by transferring them to another link.

Unblocking of a single link needs to be co-ordinated at both sides. A
link unblock request requires confirmation from the other side before
the link is put into operation.

Link identification may be required in some situations, such as after a
link failure recovery. In this process, both parts (AN and LE) have to
exchange messages in order to verify if they have the same identification
for the link;

e Protection. The failure of a single C channel or link may affect a
large number of subscriber lines or render an interface unoperational.
To increase the interface reliability, the Protection protocol reassigns
C channels from the failed link to operational ones.

The Port Control, Common Control, BCC, Link Control and Protec-
tion protocols messages are carried on the time slot 16 of the interface
primary link. A backup channel is created on the timeslot 16 of another
link, which is called secondary link. This pair of C channels constitutes
the protection Group 1. When the C channel in the primary link fails,
Group 1 ensures the protection of the protocols mentioned above.

Since the Protection protocol also relies on C channels it cannot protect
itself. To overcome single link failures both the primary and second-
ary channels on timeslot 16 are used simultaneously - the transmitter
broadcasts frames into the two C channels and the receiver eliminates
the duplicates by analyzing a field of the Protection messages.

Although the switchover procedure can be requested by both parts, the
Local Exchange is in charge of controlling the process.

5.6 ETSI V5 conformance tests

The ETSI V5 recommendations provide a set of conformance test suites
whose main objective, as usual, is to verify the correctness of the V5 state
machine implementations with respect to their specifications.
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5.6.1 Type of tests

The ETSI V5 conformance tests were specified according to the general ISO
framework for conformance testing presented in Chap. 2. Tests are, for that
reason, oriented towards the state machine transitions.

The protocol state machines are assumed to be input complete. When
an input event is received by the state machine and is not expected, the
state machine must remain in the same state. This characteristic leads to
two types of testable transitions: a) opportune (input) event transitions; b)
inopportune (input) event transitions.

Opportune event transitions are in turn classified in three types: 1) valid
transitions; 2) invalid transitions; 3) timer transitions. Valid are the trans-
itions specified by the standard. Invalid are the transitions for which the
input events are expected but have syntactically incorrect contents (message
fields). Timer transitions are the valid transitions triggered by the expira-
tion of timers which, in this untimed model, are represented as state machine
input events.

According to this framework, V5 conformance tests were classified into
the following types:

e Basic interconnection (IT). Tests aimed at verifying if there is a
minimum conformance for the interconnection between the AN and
the LE;

e Capability (CA). Tests used to verify the capabilities described as
supported by the implementation;

e Valid behaviour (BV). Tests used to verify if the valid transitions
were implemented as specified. Message sequences and message con-
tents are taken into consideration;

e Invalid behaviour (BI). Tests used to verify if the IUT is able to
react properly when receiving an invalid protocol data unit, where an
invalid data unit is defined as a syntactically incorrect message;

e Timers (TI). Tests intended to verify if after a timer expiration the
IUT behaves as specified;

e Inopportune behaviour (BO). Tests used to verify if the IUT reacts
properly when an inopportune protocol event occurs. Such event is
syntactically correct but it occurs when it is not expected.

In order to test a transition, ETSI also follows the methodology presented
in Chap. 2 where each test case is decomposed into 4 parts: a) preamble, used
to drive the implementation from its initial state to the transition initial state;
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b) state transition, where the implementation is excited and the correctness of
their answer(s) is evaluated; c¢) state verification, where the transition final
state correctness is evaluated; d) postamble, that leads the state machine
back to its initial state.

Verifying the state machines equivalence by testing all the transitions
may, however, be very demanding in terms of number of tests required. In
order to overcome this problem two general policies were used by ETSI when
defining the V5 conformance test purposes:

e inopportune event transitions. Only the inopportune input events
visible from the interface point of view, such as protocol data units
and timers, are tested. As a consequence, the test of the state machine
transitions which are triggered by inopportune internal events is not
addressed;

e procedure oriented testing. Procedures (normal and exceptional)
can be tested in alternative to transitions. Although not rigourously
defined, a procedure can be described as a set of transitions which are
executed in sequence, so that the state machine can provide a service.
Examples of procedures are blocking a port and establishing a path.
In this case, the above (in)opportune/invalid event transitions should
be read as (in)opportune/invalid procedure invocation. These types of
test purposes is more in line with the testing by requirements, although
there exists a clear relation with the state machine states.

No automatic or formal methods are known to be used during the test
purposes definition or test case specifications [100] [101] [102] [103].

V5 Test System
T
L— — T~ - I
I
; Lower
Network PDUs Tester
IUT
Network
layer
Data link layer

Figure 5.11: Testing method applied to the V5 network layer
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5.6.2 V5 test suite

V5 conformance tests are classified as network or data link layer, both for
V5.1 and V5.2. Data link layer tests cover the LAPV5DL and LAPV5EF
blocks. Network layer tests cover the remaining signalling blocks.

Network layer

The abstract testing method selected by ETSI to test the V5 network layer
is the remote test method shown in Fig. 5.11. The Upper Tester of the figure
does not, in fact, explicitly exists. However, for some tests, the system under
test has to be externally excited and, as a consequence, some interactions at
the network service layer may exist.

State Machine Number of Tests
IT |CA|BV BO BI | TI || Total

PSTN 1 2 79 41 13|11 145
Common Control 1 2 15 3 12| 2 35
Port Control 1 2 3 1 10| 2 19
PSTN Status 0 0 7 1 010 8
ISDN Status 0 0 11 3 010 14
BCC 1 4 | 21 4 11| 2 43
Protection 1 2 23 1 8 | 5 40
Link Control 1 1 3 1 8 | 2 16
Link Status 0 0 | 41 12 010 53
IT - Interconnection CA - Capability BV - Valid Behav
BO - Inopportune Behav BI - Invalid Behav TI - Timers

Table 5.9: V5 network layer conformance tests

Tab. 5.9 shows the number of tests for each network layer state machine
[100], [104], [102], [105].

Data link layer

The testing method used for V5 data link layer is the remote test method as
well, as shown in Fig. 5.12. Tab. 5.10 presents the number of tests for each
data link layer state machine [101], [106], [103], [107].
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Figure 5.12: Testing method applied to the V5 data link layer

State Machine Number of Tests

IT CA | BV BO BI | TI || Total
LAPV5DL 1 2 | 82 12 36 | 8 141
LAPV5EF 1 0 2 0 6 | 0 9
IT - Interconnection CA - Capability BV - Valid Behav
BO - Inopportune Behav BI - Invalid Behav TI - Timers

Table 5.10: V5 data link layer conformance tests

5.7 Conclusions

The ETSI V5 Access Network presented in this chapter constitutes the case
study of this thesis. The prototype implementation tested, the NEC FA1201,
was targeted at 480 PSTN user ports and 120 ISDN user ports. It was found,
in our perspective, a very complex equipment.

From the hardware point of view, the NEC system consisted of a rack with
about 70 boards. More than 60 boards had at least one microcontroller incor-
porated whereas the most complex could use up to four microprocessors. A
large number of buses and cables were required to interconnect these boards.

From the software point of view, it consisted of the firmware for each
board and, for the controlling boards, kernels, device drivers, signalling and
applications.

For the reasons above, this is a good example for understanding the real
testing issues claimed to be solved by the methodology proposed in Chap. 4.



Chapter 6

Test of Access Network
Services

6.1 Introduction

This chapter describes the application of the testing methodology presented
in Chap. 4 to the validation of the NEC FA1201 Access Network.

The communications components, which were validated by applying the
V5 conformance tests presented in Chap. 5, are the V5 signalling components
presented in Chap. 5 as well. Since neither the V5 conformance tests nor the
V5 protocol analyser required to execute these tests were developed by the
author, the results of this activity are not included in this chapter.

In the second section, a method for identifying and modeling the main
Access Network services is introduced. These services are identified in the V5
management documents and represented as a hierarchy of objects. A main
object - the Access Network - was identified that aggregates three other types
of objects: Interface, PSTN Port and ISDN Port. Some of these objects are
then further refined so that the Access Network services can be represented
with a level of detail adequate for testing.

In the third section, two of these components are specified - the PSTN
Port and the Path, which is a component aggregated by the PSTN Port.
They are described in terms of basic communications components, some of
which reside in the test equipment, and of service-user interactions through
the component interfaces.

The fourth section engineers the method. SDL was selected as the test
language and its characteristics are described from the test methodology
point of view. Two problems associated with the SDL operational model
(queues and timed actions) are, in particular, studied and solved.

In the fifth section three tests are introduced and described by their guar-
antee automata. Using the rules of Chap. 4, tests and trace evaluation func-
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tions can be derived and, using the results of the previous section, described
as SDL processes.

The sixth section gives two examples of cyclic timed tests for the Path
service component. Their refinement from simple service tests, the deriva-
tion of reset sequences and the derivation of clock and clock constraints from
available traffic models are presented. For each test, a set of trace evalu-
ation functions capable of measuring the quality of the Path component is
presented as well.

The seventh section describes the process of testing the NEC FA1201 and
gives an overview of the service test equipment.

The eighth section qualitatively evaluates the relevance of the testing
method for the validation of the NEC FA1201 Access Network. Some types
of faults are presented and pointers to the results of hundreds of tests carried
out and to the service test equipment developed are provided.

6.2 Service model

According to the methodology proposed in Chap. 4, NE service components
can be identified by studying the NE management models (Sec. 4.7.1, Service
view). For the V5 Access Network presented in the last chapter a simple
service model was developed which captures the most significant services.
This model, presented in Fig. 6.1 using OMT, describes the Access Network

l Access Network ‘
| e | i | | e |
Pj:‘ | | AiEess |

l*jll |<f I Tll

Figure 6.1: V5 AN object oriented view

as a single object which aggregates three types of objects: 1) Interface; 2)
PSTN Port; 3) ISDN Port.



6.2. SERVICE MODEL 163

6.2.1 Interface

The Interface component (or class, in an object oriented view) models a V5
interface. As shown in Chap. 5, a 16 E1 link Access Network can contain
up to 16 simultaneous V5 interfaces. Independently of the number of ports
served and links used, each Interface is said to be, as shown in Fig. 6.2, in
one of three states: 1) idle; 2) out of service; 3) in service.

Figure 6.2: V5 Interface dynamic model

Unlike general programs, embedded and real time systems, such as Net-
work Elements, frequently avoid the dynamic creation of objects. For that
reason, the components and their resources (e.g. memory space) are created
at the system startup. A system user, however, can assume that a compon-
ent is created only when he orders it. In this case, the idle state describes
an undefined state in which an existing component waits for a user creation
request.

After it is created, the Interface is said to be out of service. In this state,
some layer two and layer three communications components become available
and are allocated to the interface, although the V5 paths between the Local
Exchange and the Access Network are not yet available for communication.

After successfully started, the Interface comes into service. The V5 Access
Network can now communicate with the Local Exchange and the normal
operations, such as those involving user ports, can take place.

6.2.2 PSTN Port

The Access Network supports up to 480 PSTN user ports, where an user port
represents the port to which an analogue telephone is connected, as well as
its resources. Two user port views are required: the management view and
the end user view. The PSTN Port object of Fig. 6.1 can be in one of three
states: 1) out of service; 2) blocked; 3) unblocked, as shown in Fig. 6.3.
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Figure 6.3: PSTN Port dynamic model

A PSTN Port is said to be out of service when, although physically in-
stalled and recognised by the Access Network, it has not yet been associated
to any V5 interface. When created, which from the V5 point of view means
to associate the V5 port resources, such as a PSTN protocol instance, to a
V5 interface, the port is said to be in a blocked state. After successfully
unblocked, which implies the coordination between the Access Network and
the Local Exchange, the PSTN Port moves to the unblocked state, where
PSTN paths can be established and terminated by end users.

For this reason, the Path service component is said to have its life condi-
tioned by the permanence of the PSTN Port in the unblocked state. In other
words, the Path service component is implicitly created when the PSTN
Port enters the unblocked state and deleted when the PSTN Port ezits the
unblocked state, independently of the Path state.

A Path is said to be unavailable or available, being available after it
has been successfully established. When available, the path can be used to
transmit tones and other type of information, such as digits.

6.2.3 ISDN Port

The Access Network under study supports up to 120 ISDN user ports, where
an ISDN Port represents the port to which the basic rate interface equipment
is connected as well as the resources used. Similarly to the PSTN Port, the
management and the end user views will be modeled for testing. The ISDN
Port object of Fig. 6.1 can be in three states: 1) out of service; 2) blocked,;
3) unblocked, as shown in Fig. 6.4.

The out of service and blocked states have the same meaning as for the
PSTN port. After successfully unblocked, the ISDN Port moves to the un-
blocked state where its digital access becomes available and can be operated.
The digital access is modeled by the Access service component.

The Access can then be deactivated or activated. When activated, three
independent communications channels become available, which are represen-
ted by three other objects, B1, B2 and D, which represent the independent
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Figure 6.4: ISDN Port dynamic model

bearer channels associated to the ISDN 2B + D basic rate interface. Each
of them is modeled by a state machine through which general octet streams
(B1 and B2) or HDLC frames can be transmitted.

6.3 PSTN service components

In order to be usable for service testing, the service components have to be
further specified. In the next sections, the PSTN Port and the Path ser-
vice components are described in detail. The procedures required to further
specify the other components (Interface, ISDN Port, Access, B1, B2 and D)
would be similar.

6.3.1 PSTN Port

Composing components

In order to model the distributed procedures associated with the PSTN Port
(creation, deletion, blocking and unblocking), some resources in the V5 Local
Exchange have to be considered. In communications in general, and in the
V5 case in particular, the components available at both sides of the interface
must know each other before they start to interoperate. For instance, a PSTN
Port, created at the Access Network side, needs an equivalent virtual port at
the Local Exchange side, which represents the local exchange view of the real
PSTN Port status. The blocking/ unblocking procedures are coordinated by
the communication components at both the Local Exchange and the Access
Network.
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Figure 6.5: PSTN Port service component

A testable PSTN Port service component must, for that reason, include
some emulation components at the Local Exchange side, as shown in Fig. 6.5.
In this case, not only the emulation communications components at the Local
Exchange are included in the PSTN Port service component, but also some
components which support the proprietary management protocols.

The advantage of defining a service component which includes the com-
munications components at both interface sides is that, when used, the most
probable interoperation scenarios are exercised. As a disadvantage, faults can
be detected not only at the Access Network but also at the Local Exchange
and at the Management emulators. This disadvantage can, in some cases, be
not real since sometimes, the emulation communications components have
to be developed at home, during the project lifetime thus, by applying the
service tests to these large service components, the emulation communica-
tions components are also validated. When a service component passes its
test set, we are confident that: 1) the Access Network basic components
can interoperate internally to provide the service; 2) the Access Network
can interoperate with a peer equipment when providing this service; 3) the
emulation tasks are, to some extent, also validated.

Specification

The PSTN Port service component shown in Fig. 6.5 is accessible through
two Management interfaces: 1) ANMGMT; 2) LEMGMT. Since a number
of basic components are involved, a fast specification can be developed if
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AN?del eteport LE?del eteport

AN?unblock | Icreatefail LE?unblock

AN?createport  AN!portcreated LE?createport LE!portcreated

AN!portblocked
LA!portblocked

AN?block LE?block

ANMGMT LEMGMT

Figure 6.6: ANMGMT and LEMGMT interfaces

the service component is described as an interface component (Sec. 4.2.3).
Assuming synchronous interactions between the PSTN Port service compon-
ent and its environment, the two PSTN Port component interfaces can be
described by the automata of Fig. 6.6, as it was done in Sec. 4.4.1.

The PSTN port creation, deletion, blocking and unblocking are required
to take place both at the Access Network and at the Local Exchange. Fig. 6.7
shows the messages exchanged by the basic PSTN Port service components
during the procedure of unblocking of a port, as described in Chap. 5.

PSTN PSTN
MGMT  Port Satus  PSTN F(’ST)N Port Satus MGMT
(AN) AN (AN) LE] (LE) (LE)
] “ — — — —
Unblockport
Unblockport MPH-UBR
FE201
MPH-UBR
MPH-UBR
FE202
MPH-UBI MPH-UBI
MDU-CTL (unblk) MDU-CTL (unblk)
|| . I ] | . |

Figure 6.7: Coordinated port unblocking
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6.3.2 Path

Composing components

The test of path establishment, termination and information transfer service
procedures drives the Path service component to include also some emula-
tion components. The Path service component presented in Fig. 6.8 not
only includes communications components which are common to the PSTN
Port service component but also some emulation components at the Local
Exchange and Terminal Equipment. In fact, Z being an electrical interface,
some emulation components which transform electrical signals into software
"testable”signals seem to be appropriated.

r ! C !
[ i i i i i L pome
i Teleoh | FE V5PSIN FE | Telephone
Lo Telephore L PP R PSING feefem T PSIN e (SRR
TEPATH | | | Pz | i i ; Vo | Emulator {1 | | EPATH
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I
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BCC le-f--mrj-sl  BCC | i
[ [
Access Network | Local Exchange Emulator
Path T

Figure 6.8: Path service component

Specification

Similarly to the PSTN Port, the Path service component can be specified as
an interface component whose automata describe the possible user-component
interactions through each interface of the component.

The TEPATH interface of Fig. 6.8, at the terminal emulator side, was
defined to emulate as closely as possible the interface used by real end-users,
that is, the standard telephone user interface. Relevant to this interface,
which is shown in Fig. 6.9, are: 1) the Callaborted signal, which is output
by the Telephone Emulator when something goes wrong, such as a dial tone
not arriving for 20 s; 2) Callcleared, which indicates to the user (tester)
that the local exchange has decided to terminate the path during the call
establishment.

The LEPATH is a hybrid interface which mixes the simple user-telephone
interface with facilities usually provided by exchanges, such as the recognition
of a valid number. Remoteof fhook and Remoteonhook, in Fig. 6.10, are
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TE!Callcleared

TE?Startvoice
TE?Dialnumber

i /TE!Callaborted

"TE!

TE!Callaborted - Tt

. LE!Voicereceived . .
Normal transitions LE?Sartvoice Exception transitions

Figure 6.10: LEPATH interface

the Local Exchange view of, respectively, the O f fhook and Onhook signals
at the terminal side. Incomingcall indicates that a correct number has
been received. Calls at the Local Exchange can be accepted or refused by,
respectively, the Acceptcall and the Refusecall events. Fig. 6.10 also shows
the abnormal transitions which indicate the existence of internal problems
and are signalled by Callaborted.

Fig. 6.11, Fig. 6.12 and Fig. 6.13 provide, respectively, an overview of (1)
the signals exchanged by the Path components during the establishment of a
call initiated by the Local Exchange, (2) the signals exchanged by the Path
communication components during the establishment of a call initiated by the
Terminal Equipment side and (3) the signals exchanged by the Path service
components during the termination of a call by the Terminal Equipment.
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Figure 6.11: Call establishment from TE

6.4 Service testing framework

The implementation of a test system, in which the test components (tests,
test managers, trace evaluation functions) and the basic components (emula-
tion components) can coexist concurrently and interoperate, requires a mul-
titasking infrastructure in which the process concept can be easily implemen-
ted.

For the case of the FA1201 system a multitasking environment was used
which is part of a software creation method developed in the project - the
combined method [10]. In this method, a system is described in SDL and
combined with C++ classes which are used to implement the parts of the
system which are difficult to describe in SDL, such as device drivers, message
coding/ decoding procedures and data intensive processing tasks. The SDL
part of the system, in turn, is translated into a set of C++ classes which are
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Figure 6.12: Call establishment from LE

compiled and linked with the pure C++4 classes. The SDL Process plays here
a relevant role: it is translated into a particular C++ class whose instances
are selected by a small kernel to run one transition at a time, according to
the SDL operational model.

The service test system used to validate the FA1201 system was imple-
mented according to this method. Although very powerful and efficient from
the modelisation point of view, the method has the disadvantage of being
proprietary and, for that reason, somehow restricts the attempt of this thesis
to propose a general testing method. For that reason, a new test environ-
ment is presented in simple SDL, so that it can be compiled to run in the
more popular real time operating systems for which SDL can be translated
by commercial tools.

SDL, as described in Chap. 2, consists of a set of processes that commu-
nicate exchanging signals. Each process is described as a state machine where
signal input and output events can be defined. Each process holds a queue
in which the signals sent by the other processes are stored before being con-
sumed by the owner process. Transitions are atomic. In addition, processes
can be extended with data which is manipulated in transitions and a set of
predefined data types is also available. SDL contains the two most important
characteristics required by a system implementing the testing methodology
proposed: (1) it supports the description of concurrent/parallel processes
and (2) processes are described as state machines. Besides that, it has ad-



172 CHAPTER 6. TEST OF ACCESS NETWORK SERVICES

Telephone

Emulator Exchanget+ Telephone
+ MGMT PSTN BCC BCC PSIN  MGMT —Emidior
PSTNPort  (AN) (AN) (AN) (LE) (LE) (LE) (LE)
— [ ] —-_— —-_— L | —— ] | ] _— — —
Onhook
FE-line_signal
SIGNAL
FE-line_signal_ind
MDU-BCC(dealloc-req)
BAyhgisaget u) bt dis T L
Remoteonhook
DEALLOCATION
,,,,,,,,
MDU-BCC(dealloc-ind)
| SRS
|MDU-BCC(dealloc-compi) |
DEALLOCATION-COMPLETE
77777777
MDU-BCC(dealloc-conf)
,,,,,,,,,,,, N ——
FE-disconnect_req
DISCONNECT
DISCONNECT| COMPLETE
FE-disc._cgmplete_ind
Callcleared
Onhook
_— _— —-— _— _— | —-— L _— —

———————— V5.2 signal

Figure 6.13: Call termination

ditional advantages: it is supported by tools, it has a graphical format and
it can be automatically translated into programming languages, such as C
or C++4. It has, however, two characteristics which are serious drawbacks
for the proposed methodology - (1) its asynchronous interprocess commu-
nications model and (2) the utilization of the process queue for signalling
timeouts.

6.4.1 Communications model

Let us assume that a service component is represented by an SDL Block and
each service interface is modeled by an SDL process, as shown in Fig. 6.14
and Fig. 6.15.

System Smulation_System
Block Test Block Serv_A
[ [bd] =[[ 11(1,1)
cl
T(1,1)
[e] [d] { 12(1.1) J
c2

Figure 6.14: Service component represented in SDL
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It is also assumed that a Test block containing the test process 7', is as-
sociated to the service component. This process will, according to Sec. 4.3.3,
be used both to derive the Serv_A safety automaton and to represent a par-
ticular test. According to SDL, a signal queue of infinite length is associated
whith each SDL process, that is, with interface 1 (I;), interface 2 (I) and
test process (7).

Process 11

Figure 6.15: Process [; state machine

The problem

According to the methodology presented in Chap. 4, the service component
safety automaton would be obtained by simulating the three processes and
their associated queues. The relevant test events would be, in this case, to
get a signal from the test process signal queue and to put a signal into a
service interface process queue. This means that the process queues would
be considered as part of the component specification. While for certain cases,
such as SDL specifications, this situation can be considered acceptable and
the tests can be derived, in other cases, such as the V5 service components
defined above, queues can be a source of problems.

For the Access Network service components, the interfaces presented
above appeared naturally. The TEPATH interface (Fig. 6.8 and Fig. 6.9), for
instance, should emulate an analogue telephone. For that reason, it was de-
veloped having the user interface of this telephone as a behaviour model. The
interactions between a telephone and a human are, by nature, synchronous.
The user action of picking up the handset (T!Offhook) and the telephone
action of having the handset picked up (TE?Offhook) occur at exactly the
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same time instant. The artificial inclusion of communications queues in the
service test system may, for that reason, lead to wrong test results. Let us
suppose that the test 7" intends to establish a call but, just before it outputs
the Offhook signal to the telephone queue (T!Offhook event), the telephone
rings, that is, it outputs the Ring signal to the test queue (TE!Ring). From
the test point of view, the T!O f fhook.T? Ring sequence would be observed.
If the test was derived by considering the queue context, this sequence would
be considered valid from the safety automaton point of view. The problem
arises if, in fact, the telephone implementation is faulty and always rings
after the handset is picked up. It would generate the same event sequence,
T'Of fhook.T? Ring which, due to the process T queue, would be considered
valid. The problem would not happen if synchronous user-telephone interac-
tions were assumed, since the event order would always be preserved.

The immediate procedure to test-optimise the SDL communications model
is to provide the SDL kernel with synchronous communications. Although
this assumption violates the SDL operational model, it is frequently suppor-
ted by SDL simulation tools. The usual approach for this communication
mode is to mark some process communication events as rendez-vous. It
means that, for instance, after a process outputs a rendez-vous tagged sig-
nal, the kernel assumes that there is an implicit state after this output event
and runs immediately after the process transition enabled by the correspond-
ing input signal event, which should also have been marked as rendez-vous.
A similar solution was used in the FA1201 validation project. The concept of
synchronous process, where all the signal input events are tagged as rendez-
vous, was introduced and used.

This type of solution, although optimal from the test point of view, re-
quires the control of the SDL kernel. Since, most of the times, test engineers
do not have such control, a pragmatic solution is presented which does not
use the rendez-vous SDL ”violation”. Let us first characterise the process
queue and the service components.

Queue influence. When developing tests, engineers rarely think about the
queuing effect, although this type of context is present in most of the test
environments. The TTCN operational model, for instance, considers the
existence of two queues between the tester and the implementation under
test. Conformance tests developed by hand, however, rarely consider the
queue effect. One of two positions can be taken: 1) these tests may be
incorrect because they should but do not consider the queue effect; 2) the
queue effect is not considered because there is no real need to consider it.
The position adopted throughout this thesis has been to consider that
formal methods should be used to understand and improve practical engin-
eering methods which were assumed as the methodology departure point. Let
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us come back to the telephone case and suppose that the tests were derived
using the rendez-vous communications model (no queues) but were executed
in a queue based context. The immediate consequence is that, in this case,
a T'Of fhook.T'? Ring sequence would be considered incorrect whereas, in
reality and due to the queue, it could correspond either to a good or a faulty
implementation. The next question that can now be asked is — in what cases
will this sequence correspond to a good implementation (the two events are
correct and the sequence problem is due to the queue)? Only when the two
events are separated by a few miliseconds, which is the time the kernel makes
the T E?Ring signal wait in the process T" queue before it is consumed! In all
the other situations the test would correctly evaluate the implementation.

This argument could not be used to justify the use of tests derived by
synchronous methods in asynchronous environments. But it can be taken
into account.

Logging facilities. Another lesson learned from practice is that relevant
service components have parts inside the test system. These parts are usu-
ally emulation of protocols for which the test system usually provides logging
facilities, since this information is important for practical debugging. Con-
sidering the Path service component, for instance, let us assume that its
Telephone Emulator (Fig. 6.8) can log with time all the events observed at
the TEPAT H interface (e.g. TE?O f fhook and TE!Ring).

Hybrid solution

The proposed solution consists in deriving the service component safety auto-
maton assuming a synchronous communication model, that is, the effect of
SDL queues during the simulation of the system is not considered. Tests and
verdict functions are then derived based on this safety automaton, according
to the procedures presented in Chap. 4. Tests, however, will be implemented
as normal SDL processes (with queues). The verdict functions are also im-
plemented as SDL processes but using the log information generated by the
service component instead of the test observed/ generated events.

Let us assume the situation of Fig. 6.14, where the incompletly specified
service component Serv_A is described by two non-comunicating processes,
I, and I,. When rendez-vous communication is assumed between these pro-
cesses and the process T', the interface safety automaton associated with
channel ¢l is, according to Sec. 4.4.1, the automaton (Ag, ) shown in Fig. 6.16.
For the use case described by the guarantee automaton Aq of Fig. 6.16, the
test T and the verdict function V' should be those described also in Fig. 6.16.
Test T was derived based on the rules presented in Sec. 4.6.3 and the ver-
dict function based on the rules defined in Sec. 4.6.1 which should take into
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Figure 6.16: Test example - automata

account the verdict interpretation rules presented in Sec. 4.4.1.

Let us now assume that the process I; is modified so that it can be
able to log all its user visible events, as shown in Fig. 6.17. This logging is
represented by the output of some signals. The output of signal InC'(now),
for instance, represents the timestamped log of I;?C', while the output of
OuA(now) represents I1!A. The output of signal F'(now) represents the end
of trace event ¢, generated by the test 7" which, in this case, is directed to
process I;.

In this case, the test T" and the verdict function V' can be represented
in SDL as shown, respectively, in Fig. 6.18 and Fig. 6.19. Now, instead
of the test events T'!c and T7a, for instance, the verdict function uses the
events of process I, I;7c and I !a, which are represented by InC'(now) and
OuA(now) of Fig. 6.17. This substitution is justified by the fact that, in a
synchronous model, the safety automaton generated according to the rules
defined in Sec. 4.3.1 (Synchronous communication) will always model these
interactions as a sequences of consecutive send (!) and receive (?) events. In
this case,

SZ'&)SJ'II—?%S]CM)SZ, Sill—!(L)SjT—?a)Sk%)Sl
If the 3 transitions are assumed to be instantaneous, we can assume that
the 3 events would be timestamped with the same value. Taking this into
account, for the verdict and trace evaluation functions the events T'!c and
T?a can be replaced by their counterparts InC and OuA.
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Figure 6.17: I test process modified for log procedures
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Figure 6.18: Test represented in SDL

177

The overall test case architecture is presented in Fig. 6.20. In this case,
the verdict function is represented (Verd) as well as two trace evaluation

functions, Fwval; and Fwaly, used for cyclic service tests.

The Manager

process is in charge of controlling the test execution (start, stop, getting res-
ults from the trace evaluation functions and provide them externally). The
Demux process is in charge of receiving the service component log inform-
ation and of delivering it to the trace evaluation functions. Note that SDL
processes are not heavy entities like, for instance, Unix processes. Typically
a set of SDL processes are translated into a single executing process (e.g.

Unix process), so this multiplicity of processes is natural in SDL.

With this solution, it is possible to implement simple synchronous service
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Figure 6.19: Verdict function represented in SDL
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Figure 6.20: Service test architecture in SDL

tests in standard SDL and, by doing that, to benefit from the SDL advant-
ages. Another advantage of describing tests in pure SDL is that they can be
easily integrated with the other test system parts, such as signalling stacks
and management components, which were also described in SDL.

Using this approach, tests may drive the service component incorrectly.
However, as shown by the telephone example, the probability of such mislead-
ing situations occurring can be low and, on the other hand, the implement-
ation traces will always be correctly evaluated. When detected, a problem
can be traced in order to verify if the fault has been caused by the service
component under evaluation or by the test, due to the queues effects.

6.4.2 Timed actions

The hybrid solution proposed solves the SDL time problems as well. In the
methodology proposed tests critically depend on time. It means that (1)
the time of occurrence of every test event must be known and (2) some test
events may be required to occur at precise time instants or within some time
boundaries, e.g. ¢ = 15 or 15 < ¢ < 18. While for the first requirement
SDL provides the construct NOW which gives the current global time value,
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for the second, SDL provides no solution. In fact, the SDL solution for
accounting time intervals is to set up a timer which, after expiring, sends a
signal to a process queue and will be received latter.

In the proposed solution, tests are allowed to be not time precise. In
fact, although current real time operating systems use time information to
schedule processes, they are not capable of guaranteeing actions at precise
time instants. In the proposed solution tests will be as good as the operating
system. If CPU loads are low, time can be precise. If not, some lack of pre-
cision will occur. However, by using the service component log information,
the results of the trace evaluation functions will always be correct. In case
of problems, the trace can be inspected and the cause assigned to the test or
to the implementation.

6.5 Examples of Service tests

Three examples of use cases are provided in this section: 1) PSTN Port
operation; 2) Path originating call; 3) Path terminating call.

According to the test method proposed in Chap. 4, each use case must
first be defined as a guarantee automaton (Ag) and each service compon-
ent represented by a safety automaton which, in the Access Network case
study, is assumed to be incompletly defined, that is, the Interface component
defined in Sec. 4.2.3. Also according to the method, every trace accepted by
the guarantee automaton should also be a trace of the corresponding safety
automaton and define complete loops in it - from the initial state back to the
initial state (Sec. 4.2.3, Test derivation).

6.5.1 PSTN Port operation

A possible use case for the PSTN Port service component (Fig. 6.5), which
drives the composed safety automaton from its initial state back to the initial
state, could be creating, unblocking, blocking and deleting a port where the
actions at the AN and LE management interfaces are interleaved. This use
case can be represented by the guarantee automaton Ag described in Fig. 6.21
and accepting the following timed traces:
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timAccept(Ag) = { ANlereateport(t,). AN?portereated(ts).
LE!createport(ts). LE?portcreated(ty).
ANlunblock(ts). LE'unblock(ts).

LE!block(t7)

LE?portblocked(ty). AN ?portblocked(tg).

. AN'block(tg).

LE!deleteport(t11). AN!deleteport(tis),

ANlcreateport(ty). ANTportereated(ts).
LE!createport(ts). LE?portcreated(ty).
ANlunblock(ts). LE'unblock(ts).

LE!block(t7)

AN?portblocked(ty). LE?portblocked(typ).

. AN'block(tg).

LE!deleteport(t1). AN!deleteport(tis)
| tr —tg > 15 A tll—t10>15}

ANl createport AN?portcreated
- =0 = O

LE!createport

~ LE!block C LE!unblock
(c>15) c:=0

AN!block

LE?portblocked
O P c.=0

AN?portblocked

LEZportblocked AN?portblocked

LE?portcreated

AN!unblock

LE!deleteport

O AN!deleteport @

Figure 6.21: PSTN Port use case guarantee automaton
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A test is derived for this use case by applying the rules presented in
Sec. 4.6. A note must be introduced here: while a test derived from this
use case is able to drive the component through a sequence of steps, in fact
this may not happen if, for instance, the blocking and unblocking procedures
did block/ unblock the path since this can be evaluated only by observing
the Path service component. In order to complete the test it is necessary
to verify if, for instance, (1) a path cannot be established when the PSTN
Port is blocked and (2) a path can be established when the PSTN Port is
unblocked. This subject will be addressed in detail after presenting some

Path service component tests.
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Figure 6.22: Call initiated by terminal equipment

6.5.2 Path originating call

Several use cases can be envisaged for the Path service component (Fig. 6.8).
A possible use case could be allowing a call to be established by the ter-
minal equipment side, tones to be transmitted bidirectionally and, at the
end, the path to be terminated by the terminal equipment side. These calls
are referred as originating calls (the terminal equipment originates the call).
Fig. 6.22 gives the main sequence of messages which describes this compon-
ent usage. This use case can be represented by a guarantee automaton Ag
which is shown in Fig. 6.23 and accepts the following traces:

timAccept(Ag) = {
TE'Of fhook(t,).LE?Remoteof fhook(ts).
TE?Dialtone(ts). T E! Dialnumber(ty).
LE?Incomingcall(ts).LE!Acceptcall(tg).
TE?Callingtone(t;).LE'O f fhook(ts).
LE!'Bip(ty). TE?V oicereceived(typ).
TE!Startvoice(t1).LE?V oicereceived(tys).
TE'Onhook(t3).LE? Remoteonhook(t14).
LE?Callcleared(ts).LE'Onhook(tys) |
ts —t; <10 A t;y — 1, <20

}
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Figure 6.23: Originating call guarantee automaton

This guarantee automaton has been specified to give an example of two
time constraints - dial tone should arrive in less than 10 seconds after the
TE'Of fhook event and the calling tone in less that 20 seconds after the last
digit is sent by the terminal equipment. The derivation of the test is simple
and follows the rules defined in Chap. 4. The test is presented in Fig. 6.38
(at the end of the chapter).

Note that a path can be established only if the PSTN port is previously
created (associated to a V5 interface) and unblocked.

6.5.3 Path terminating call

In the third example, the Path terminating use case, the call is established
by the Local Exchange, tones are transmitted bidirectionally and, at the
end, the path is terminated by the terminal equipment. Fig. 6.24 gives the
sequence of messages exchanged in this case. This use case is represented by
the guarantee automaton Ag, accepting the following traces:

timAccept(Ag) = {
LE!Of fhook(t,). T E?Ring(ts).
TE'Of fhook(t3).LE?Remoteof fhook(ty).
TE'Bip(ts).LE?V oicereceived(ts).
LE!Startvoice(t7). T E?V oicereceived(tg).
T E'Onhook(ty).LE? Remoteonhook (t1g).
LE?Callcleared(tyy).LE!Onhook(t12) |
to —t1 < H

}

The guarantee automaton has been specified with one time constraint -
ring should arrive in less than 5 seconds after the LE'O f f hook event.
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Telephone Exchange+ Telephone

Emulator Emulator
(TE) (LE)
| ] |
Offhook
Ring
Offhook
Remoteoffhook
Bip
Voicereceived
Startvoice
Voicereceived
Onhook
Remoteonhook
Callcleared
Onhook
| | | |

Figure 6.24: Call initiated by the local exchange

6.5.4 Components interactions

Certain operations over some service components may influence the state of
neighbour components. In this case, tests should be improved so that the
affected component may be also observed. In this section the problem will
be addressed for the cases identified.

PSTN Port use case

Two problems were identified in the PSTN Port use cases presented: the
unblocking and the blocking of the port under test was not really verified.
A solution is to define small use cases over the corresponding Path service
component which, coordinated with the main PSTN Port use case, will allow
the test to infer about the (un)blocking of the port. Fig. 6.25 presents a
possible solution based on two small Path use cases (verify port unblocking
and verify port blocking).

The Path unblocking use case verifies if, when unblocked, an offhook, a
tone and an onhook can pass through the Access Network and emulation
components. The Path blocking use case verifies if, when the port is said to
be blocked by the PSTN Port management, the Path component does not
exist. In this case, the test tries to establish the Path but expects no dial tone,
which, in this case, is signalled by the call aborted message at the terminal
equipment side. Note that both Path guarantee automata of Fig. 6.25 (verify
port unblocking and verify port blocking) define complete loops over the
Path component safety automaton, as required by the complete assumption
of Chap. 4. The tests can, is this situation, be also derived according to the
rules defined in Chap. 4.
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Path use case (verify port unblocking)

TE!Offhook _ LE?Remoteoffiook  — gopiait
-0 0O laltone O

TE!Onhool
‘ LE?Callcleared LE?Remoteonhook
O

/PSTN Port use case

AN!createport

AN?portcreated LE!createport

LE?portcreated

AN!unblock

LE!unblock
c:=0

LE?portblocked
c:=0

LE!deleteport

| el
O AN!deleteport .

LE?portblocked G

AN?portblocked

/

Path use case (verify port blocking) =
1 vl |
O TE! Offhook TE?Callaborted TE!Onhook =@

Figure 6.25: Coordinated use cases

The execution of the PSTN Port test implies the coordinated execution
of three parallel testers: one for the PSTN port, one for the Path unblocking
verification procedure and the last for the Path blocking procedure. Fig. 6.26
shows their architecture. Note that while the Path tests are executing, the
PSTN Port test will continue to monitor possible answers of the PSTN Port
service implementation.

At the end, three verdicts will be obtained. The final verdict will take
them all into account.

Originating call use case

In this case, a test is defined for evaluating the establishment of a call from
the terminal equipment side. The Path service component, however, does
not exist before the PSTN port is created and unblocked, hence the Port
must be previously unblocked.

The solution for this problem consists in defining, again, a use case/ test
for the PSTN port which creates and unblocks the port, allows the Path test
to be executed and, at the end, blocks and deletes the port. Fig. 6.27 gives
an example of these tests by presenting the use cases from which they could
be derived.
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Test C
PSTN Port

TestA
TestB

Path

Test Manager

Figure 6.26: Coordinated test architecture

6.6 Path component cyclic tests

According to the method proposed, cyclic tests are used in Network Element
testing, that is, in the joint evaluation of the service components (Sec. 4.7.3).
The main objectives of this type of tests are to get information on the prob-
abilistic behaviour of the service component implementation and, using that
information, to statistically characterise the service component faults and its
quality. For this reason, the service component have to be excited with tests
that must be repeated a reasonable number of times. In the methodology
proposed, the tester controlled behaviour was required to be deterministic so
that the statistical trace evaluation could reflect only the service component
probabilistic aspects (Sec. 4.7.3, step 3). The components which are not eval-
uated can have random tests(Sec. 4.7.3, step 5). In order to allow these tests
to emulate real Network Element loads, the service mix and service usage
must emulate, as closely as possible, expected Network Element traffics.

In the V5 Access Network presented, some service components were iden-
tified: the Access Network which aggregates the Interface, PSTN Port and
ISDN Port components. The PSTN Port, in turn, contains the Path com-
ponent while the ISDN port contains one digital access which aggregates the
2B+D communication channels.

When trying to define real Access Network load or usage scenarios some
questions arise immediately. How many V5 interfaces will the network typ-
ically have? How many PSTN ports? How many ISDN Ports? How often
will a PSTN port be blocked? What type of calls will it support and what
are their characteristics? How often will an ISDN Port be blocked? How
often should access activation/deactivation take place and how should it be
modeled? How to characterise statistically the HDLC frame generation pro-
cess through the ISDN D channel when the access is deactivated?



6.6. PATH COMPONENT CYCLIC TESTS 187

/Path use case (originating call) h
___ TElOffhook _ LE?Remoteofthoock  Tgopialtone . TE!Dialnumber
=0 (c<10) ~ c:=0
LE?Incomingcall
LE!Bip LE! Offhook TE?callingtone LE! Acceptcall
O O———
(c<20)
TE?Voicereceived
LE?Voicereceived@ TE!Onhook @LE?ren‘oteonhook
TE!Startvoice
LE?Callcleared
\ © LE!Onhook
- \ J
~

PSTN Port use case
AN?portcreated LE!createport
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(c>60)
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LE!deleteport
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Figure 6.27: Coordinated tests for the originating call

In this section, the Path component will be studied in detail. For the
other components the method for defining tests, instance mixing and trace
evaluation functions would be similar.

6.6.1 Usage models

The characterisation of a Path service component usage can be made based
on standard telephony traffic models. This traffic is characterised in terms
of traffic intensity A (Erlang), and call holding time d,, (s), as discussed in

Chap. 3. Let

= 1 _1-4
= dm Xigte A X dm,

where p represents the average service rate and A;g. the call arrival rate
during idle periods.

The telephony loads considered relevant for the NEC Access Network
were the PSTN upper/ increased loads [77] and the V5 upper/ increased
loads [108]. These concepts were also introduced in Chap. 3. In addition
the maximum telephony load expected by the NEC Access Network was also
defined and considered a requirement, as well [109], [110]. Tab. 6.1 sumarises
the characteristics of these five models.
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Traffic Model | A (Erl) | 1/ (s) | 1/ Niate ()
PST Nypper 0.17 90 439
PSTNincreased 0.21 90 339
V Supper 0.7 90 36
Vincreased 0.84 90 17
FA1201 0.83 20 4

Table 6.1: PSTN user port traffic model

6.6.2 Quality of Service

The required quality of service provided by the Path service component can
also be inferred from standard QoS specifications. For example, [108] defines
signalling delay as the time taken by the Access Network to transfer a signal
when no other action is required. With respect to PSTN, two test points are
defined: the Z and V5 interfaces. At the Z interface, entry and exit events
occurrences are defined as the time instant when the current falls/ raises
below/ above threshold values. At the V5 interface, the occurrence of an
entering event is determined by the observation of a relevant message closing
flag in a C channel where an exit event is said to occur when the message
opening flag is observed at the C-channel. Like the performance specifica-
tions presented in Chap. 3, maximum mean (maxrmean) and 95 percentiles
(max95) are specified for some reference loads, as shown in Tab. 6.2. Some

Transfer delay Traffic Model

V5upper V5increased
Signalling transfer mazxmean (ms) | 100 175
maz95 (ms) 200 350
Processing non-intensive | mazmean (ms) | 200 350
maz95 (ms) 400 700

Table 6.2: V5 signalling transfer delay

failure parameters are also defined in [108] as follows:

e Premature release. The probability that an Access Network mal-
function results in the premature release of an established call in any
one minute interval, which should be P < 2 x 107%;
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e Release failure. The probability that an Access Network malfunction
prevents the release of a connection, which should be P < 2 x 107%;

e Other failure. The probability of the Access Network causing a call
failure for any other reason not identified above, which should be P <
2 x 1074,

According to [77], which defines a set of QoS parameters for digital exchanges,
some other parameters can be considered for the definition of the quality
required for the Path service component:

e Call request delay. The interval from the instant the offhook con-
dition is recognized at the subscriber line interface until the exchange
begins to apply the dial tone to the line;

e Call indication delay. The interval from the instant the last digit of
the called number is available for processing at the exchange, until the
instant of the ringing signal is applied to the called subscriber line;

e Exchange call release delay. The interval from the instant the
last information required for releasing a connection is available for
processing the exchange up to the instant that the switch trough-
connection becomes unavailable.

6.6.3 Originating call use case
Cyeclic test

A cyclic test for the Path component can be defined based on the Originating
call test defined in Sec. 6.5.2. This test (shown in Fig. 6.38) and whose use
case was presented in Fig. 6.23, must now be made cyclic according to the
rules of Sec. 4.6.4. For this reason, the reliable reset sequence T'!p must now
be replaced by meaningful sequences. Assuming that:

1. simple service tests were applied before, which implies that immediate
and deterministic component faults were already detected and solved;

2. the service component interfaces are known (code is available for inspec-
tion) since they reside inside the test system and particular attention
has been payed to its validation,

only the events labelling the alternative transitions of the component inter-
face safety automata need to be considered in the derivation of the test.
This simplification, which was not considered in step 2 of the general solu-
tion presented in Sec. 4.6.4, is very efficient from the test length point of
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view (number of transitions). On the other hand, it avoids the difficult task
of finding reset sequences for events not predicted in the component safety
automaton. This simplification is exemplified in Fig. 6.39, where the reset
sequences are shown for states 1 and M of the test in Fig. 6.38. For state

1, for instance, only two alternative transitions were considered in the test:

TE?Ring LE?Remoteof fhook . .
sy —  and s; — which correspond to the alternative trans-

itions in the component safety automaton, shown in Fig. 6.9 and Fig. 6.10.
The test presented in Fig. 6.39 must also be timed with respect to the call
duration C'D and to the intercall interval IC', according to the following
values:

CD=1 IC=

7 Aidle

CD and IC are constant values as defined by the method in Sec. 4.7.3, step
3, so that the test is made deterministic.

Trace evaluation functions

Five trace evaluation functions (Sec. 4.5.2 and 4.6.5) were defined for this
use case: 1) call establishment; 2) tone transmission; 3) call termination; 4)
aborted calls; 5) refused calls.

t1:=0 pathDelay:= t1

A{LE? teoffhook}
A\{T[E! Offhook}

o Po  Po

A={¢, TE!Offhook, LE?Remoteoffhook, TE?Dialtone, TE! Dialnumber, LE?Incomingcall, TE?Callingtone }

Figure 6.28: Call establishment evaluation function

The call establishment function, presented in Fig. 6.28, evaluates how
many traces whose first event is a T FE'Of fhook result in a call correctly
established. In addition, relevant delays are also defined. pathDelay describes
the delay since the subscriber offhooks until the Local Exchange perceives
this information. dtDelay models the dial tone delay. lastDigitDelay models
the delay associated with the transference of the last digit of a dialed number
through the Access Network (decadic dialing is assumed). ctDelay models
the calling tone delay, that is, the time interval since the subscriber dials the
last digit until the corresponding tone is heard.

The tone transmission function, presented in Fig. 6.29, says that every call
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TE! Offhook

LE?Voicereceiv

A\{TE! Offhok} A\{LE?Voicereceived}
A\{TE! Sartvoice]}

o o [Po

A={ ¢ , TE!Offhook, TE!Sartvoice, LE?Voicereceived}

Figure 6.29: Tone transmission evaluation function

establishment, represented by T E'O f fhook event, must be followed by the
transmission of a tone from the Terminal Equipment to the Local Exchange.

LE?Callcleared @4
callclrdelay:=t

A{LE?Callcleared}

A={¢, TE!Offhook, TE!Onhook, LE?Callcleared}

Figure 6.30: Call termination evaluation function

The call termination function, presented in Fig. 6.30, states that calls
should always be terminated gracefully, that is, with a LE?Callcleared event.

The call aborted function, presented in Fig. 6.31, evaluates the number
of times a call has had problems. The terminal equipment emulator was
designed to send this event if a dial tone, a calling tone or a voice indication
were not received when expected, as defined in Fig. 6.9. Since different time
intervals reveal different types of failures, a clock ¢ was associated to the
automaton of Fig. 6.31.

The call refused function, presented in Fig. 6.31, is also an example of a
function evaluating faults which are related to the transfer of digits across the
Access Network. When the number contained in LE?Incomingcall(number)
differs from the number dialed in TE!Dialnumber(number) the use case is
violated and the reset sequence will include a LE!Refusecall event. This
evaluation function accounts for this type of situations.
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TE! Offhook l

2
TE?Callaborted TE!Offhook ,— LE!Refusecall
_ ¢ ®
(t>=25)

TE?Callaborted

LE!Refusecall | TE!Offhook TE! Offhook
] ! [0 LE!Refusecall

o

9| TE!Offhook

¢
pc rercalimored

o

TE! Offhook TE!Offhook TE!Offhook TE! Offhook
TE?Callaborted TE?Callaborted LE!Refusecall LE!Refusecall
0 0 ¢ 0

Aborted calls Refused calls

Figure 6.31: Call aborted and call refused functions

6.6.4 Terminating call use case
Cyeclic test

Another cyclic test for the Path component can be defined based on the Ter-
minating call test defined above (Sec. 6.5.3). The test must also be timed
with respect to the call duration C'D and to the intercall interval IC, ac-
cording to the following values:

CD=- IC=

1 1
o A

Trace evaluation functions

Four trace evaluation functions were defined for this probabilistic use case,
as shown in Fig. 6.32: 1) call establishment; 2) tone transmission; 3) call
termination; /) aborted calls;

The call establishment trace function evaluates the number of T'E?Ring
events which follow LE'O f fhook event, that is, the call establishment phase.
ringDelay describes the delay between these events, when they are observed
in this sequence. The tone transmission function evaluates the bidirectional
exchange of tones. The call termination function evaluates the call termina-
tion phase which is said to be terminated gracefully when a LE?Callcleared
is observed. The call aborted function is used to evaluate failure situations,
here represented by the LE?Callaborted event. Since different time intervals
may describe different faults, a clock ¢ was associated to the automaton.

6.6.5 Path component random usage

Cyclic tests, as referred above, are supposed to be deterministic with respect
to the test controlled events. When carrying out Access Network joint service
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Figure 6.32: Call terminating trace functions

tests, as defined in Sec. 4.7.3, it is not required to evaluate every Path service

component instance. The instances not evaluated are used with random tests.

A possible random test may combine originating and terminating calls with a

50% probability each. In addition, call duration and intercall interval are now

assumed to be exponentially distributed according to the following functions,
CD = —iln(u) IC = —in(u); u €]0,1]

where, now, C'D and IC take values which are variable and have to be
recalculated everytime a constraint is in use (e.g. icinterval > IC, Fig. 6.39).

6.6.6 V5 Access Network load tests

In the methodology proposed, after being individually evaluated (one in-
stance of each service) these service components must be jointly evaluated
with cyclic tests. A joint V5 Access Network test is characterised by the
following attributes, as defined in Sec. 4.7.3:

e User ports. The number of PSTN and ISDN ports provisioned. A
typical example can be an Access Network supporting 480 PSTN ports
and no ISDN ports;

e Sample ports. The number of ports which will be evaluated. A typical
figure can be 10% of the ports;
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e Traffic model. The call/ packet traffic which will be used to load the
Access Network in this configuration. The V5., traffic model can be
used which means that 1/u = 90 s and 1/ = 36 s, according to
Tab. 6.1;

o Test distribution. The PSTN ports not selected for testing can be
loaded with the random PSTN usage assuming also the V5, traffic
model. The sample PSTN ports should be loaded either by an originat-
ing or a terminating call test. A 50%/50% distribution for the sample
ports is a good example;

e V5 Interfaces. The number of V5.1 and V5.2 interfaces supported. A
good example can be an Access Network supporting two V5.2 interfaces
using the 16 links;

Based on combinations of these parameters several service joint tests can
be defined. These will be considered part of the Access Network and applied
to the Network Element every time a new equipment version is released.

6.7 Application of the methodology

First, it must be mentioned that the methodology proposed in Chap. 4, which
constitutes the core of the thesis, is a generalisation of the methodology used
to validate the FA1201 equipment. For this reason, the proposed meth-
odology takes advantage of the experience gained from testing the FA1201
equipment.

In this chapter, the proposed methodology has been applied to the FA1201
case, so that it can be understood. Since, at the time the FA1201 system was
tested, the methodology was not so clear, there are minor differences between
what has been carried out and what has been described in the previous
sections.

Next, these differences will be pointed out. Then, the FA1201 validation
process will be described so that each type of test and its real meaning be-
comes even more clear. At the end, an overview of the service test equipment
developed will also be given.

6.7.1 Differences

The differences between the correct application of the methodology and the
real testing of the FA1201 system can be described as follows:

e Service components. Instead of the 8 service components presented
in Fig. 6.1, the NEC FA1201 services have been modeled as only two
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components - the PSTN Port and the ISDN Port, which were also spe-
cified as interface components. The PSTN Port, for instance, instead of
the two interfaces mentioned in Fig. 6.8, supported the management in-
terfaces of Fig. 6.5 as well. The definition of 4 interfaces, however, made
the concept of cyclic test, which is very important, much more complex.
Instead of defining cycles through the component initial state, the cyclic
test would have to use another state (e.g. unblocked state). The ap-
proach presented in Sec. 6.2 is, for that reason, more clean and enables
the use of the generalised test methodology proposed in Chap. 4.

e ISDN Port service component. Although the ISDN Port com-
ponent has been specified along with its tests and trace evaluation
functions, there was no opportunity to apply them to an Access Net-
work configuration provisioned with ISDN Ports. In order to avoid
the description of unproved solutions, no ISDN examples are included,
although they were similar to the PSTN solutions presented.

e Test distribution. While the tests presented throughout this chapter
are non-distributed, in reality all tests were distributed by the Local
Exchange and Terminal Equipment emulators. For that reason some
simplifications on the tests were required, some tricks were introduced
and complex synchronisation equipment/ functions had also to be de-
veloped.

6.7.2 FA1201 testing process

The first tests applied to the NEC FA1201 were the standard ETSI V5 con-
formance tests. V5.1 layer 2, V5.1 layer 3, V5.2 layer 2 and V5.2 layer 3
tests were performed in this sequence. These tests were used basically be-
cause they were available, they are required by the telecom operators and
they address important parts of the system.

According to the methodology proposed in Chap. 4, the execution of
conformance tests corresponds to the test of the communication components
presented in Sec. 4.7.2. If, for instance, the V5 conformance tests were not
available, a set of communication components should be identified for testing.
These components, called in the proposed methodology the communication
components, are those presented in Fig. 5.6 and Fig. 5.10. For most of
them there are complete specifications available and therefore, according to
the methodology, they could be tested either by use cases or by the state
machine methods presented in Chap. 2. This decision would mainly depend
on the time available for testing. Sec. 4.7.2 describes the communication
component testing approach proposed in the methodology.
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FA1201 service tests were addressed at the same time as conformance
tests. The initial objective was to develop a simple V5 Local Exchange
Emulator which could be used to excite the Access Network. However, the
advantages of having control not only over the Local Exchange but also
over the Terminal Equipment became evident and it was decided to include
also 480 analogue telephone emulators and 120 ISDN emulators [111], [112],
[113], [114] in the service test system. In this way, realistic loads could also
be simulated. In order to include the service testing methodology in the
emulators, services had first to be identified and their interfaces specified as
the automata presented in Fig. 6.9 and Fig. 6.10. Based on the specification
of the interfaces of the service components, which in the project were known
as test interfaces, development of the emulators and the tests started.

The emulator tasks were implemented in SDL and C++ and built so that
they rigorously complied with the service interfaces specified. Moreover,
these emulators were developed so that the service component interfaces
could be made available as an API (Application Programming Interface)
[115], [116] which, in fact, was a set of C++ classes. The service interfaces
were also made available to the test system graphical interface [117] in order
to let humans interact directly with the service components.

Based on the interface specification of the service component, develop-
ment of the tests started also. According to the methodology proposed, which
was followed in the case of service testing, service components must be tested
individually and jointly (Sec. 4.7.3). For the PSTN Port service component,
for instance, several use cases were informally defined and the corresponding
tests were applied using the service test system graphical interface. To be
rigorous, the procedures presented in Sec. 4.6.2 and Sec. 4.6.3 would have to
be applied.

The joint service tests (or NE tests), described in Sec. 4.7.3, were de-
veloped next. These tests require automatic execution since they need to
run for hours. Four tests for PSTN Port and four tests for ISDN Port were
implemented in SDL, using the service API previously defined. They are
large and, for this reason, they are not reproduced in the thesis. Instead,
their relevant aspects are presented in Fig. 6.38 and Fig. 6.39. These tests
allow the configuration of some parameters (e.g. call duration, intercall in-
terval, number of digits). Each of these parameters could be deterministic or
probabilistically distributed with exponential or uniform distribution func-
tions.

In addition, and for each test, a set of trace evaluation functions were
defined according to the rules specified in Sec. 4.5.2 and Sec. 4.6.5. Fig. 6.28
to Fig. 6.32 show some of these trace evaluation functions. These properties
were specified as annotated MSCs and, using a simple translator (developed
by the author), a C++ class was automatically generated to allow the eval-
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uation of individual traces. Fig. 6.20 shows the cyclic test architecture used.
The results gathered by these functions were collected in histograms and
presented graphically at the user interface.

Several NE tests were defined. Each of them basically reflects one expec-
ted configuration and one usage condition of the FA1201 system. After the
execution of a NE test, a set of histograms were obtained. By inspecting
them, several classes of faults could be identified. Typically, the most likely
fault was selected for debugging and the traces obtained overnight were re-
inspected with refined trace evaluation functions (PERL scripts) in order to
better understand the pattern of the selected fault.

In some cases, the test would have to run again so that it could stop
on the first occurrence of the most probable fault. This is the reason why
trace evaluation functions need to run in real time - as soon as they reach a
particular faulty state they may ask the test manager to stop the test, leaving
the service component in the desired faulty state. Using this methodology
the most likely service faults could have been eliminated first, satisfying the
main project management expectations.

6.7.3 Service test equipment

The service test equipment is composed of two equipment - the V5 Local
Exchange Emulator [118] and the Terminal Equipment Emulator [119], as
shown in Fig. 6.33.

These emulators are connected to the V5 Access Network as well as to
a PC which is in charge of controlling the execution of the tests, of getting
test results and providing the graphical interfaces of the service components.
This graphical man machine interface can be downloaded from

http://puma.inescn.pt:8080/test /results/load_mmi.html

The two emulators are also connected by a synchronisation bus. This
bus (TTS in Fig. 6.33) enables the Terminal Equipment Emulator to provide
a clock and a reset line which is used in the Local Exchange Emulator to
feed a timer, [120], [121]. In this way, the two emulators are synchronised
with respect to time. In addition, the TTS bus provides a parallel data
bus (8 bits) which is used to transfer log events from the Local Exchange
Emulator to the Terminal Equipment Emulator, where the trace evaluation
functions are located. The TPU (Tones Processing Unit) board is in charge
of generating and detecting the tones exchanged by the emulators through
the Access Network.

The emulation, test and trace evaluation functions run at the SCU board
(Signalling Control Unit) of both systems. For the Local Exchange Emulator
(Fig. 6.34), this board contains, among others, the V5 signalling stack (Local
Exchange side) and parts of the tests. In the Terminal Equipment emulator
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Figure 6.33: Service test equipment
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i |

Figure 6.36: V5 service test system



6.8. THE VALUE OF THE METHOD 201

this board contains the basic (layer 1) emulators, parts of the tests and the
trace evaluation functions, as shown in Fig. 6.35.
The service test system is shown in Fig. 6.36 and documented in [114].

6.8 The value of the method

The validation of the FA1201 Access Network was carried out in the period
1996-1999 using a preliminary version of the testing method proposed in
Chap. 4. About 1000 different tests were applied to the communications
components (the V5 protocol conformance tests) and 50 service tests were
applied to the service components [122].

6.8.1 Test of communications components

The ETSI V5 conformance tests used to validate the FA1201 communications
components enabled the detection of about twenty faults. Due to the fact
that these components were implemented in SDL (V5 specifications were
available as simple SDL diagrams) faults were generally easy to detect and
correct. These faults were mainly caused by the implemented components
being more complex than their specifications, that is, containing more states
and transitions.

Nevertheless, conformance tests proved useful, since the faults of com-
munications components had impact on the equipment interoperability and,
if not found, they could prevent the equipment from interworking with V5
local exchanges and terminal equipments. The results of the final complete
V5 conformance testing campaign can be found at

http://puma.inescn.pt:8080/start.htm.
The FA1201 equipment is at present free of communication faults, that is,
compliant with the ETSI V5 standards.

6.8.2 Service component tests

Service component tests provided a complementary evaluation view of the
system. The simple (non cyclic) service component tests which were applied
to single service component instances using the graphical interface did not
provide much fault information, since these tests basically replicated the tests
previously carried out by the FA1201 developers.

Joint cyclic tests, however, proved very important. As an example, the
first results of the Path trace evaluation function presented in Fig. 6.28 gave
failure probabilities of about 70%, distributed among all states. On the other
hand, all the failure states defined in the trace evaluation functions of the
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Figure 6.37: Results of Path establishment trace function
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Path components were reached. Faults were found in most of the basic com-
ponents. Device drivers and programmable logic devices as well as memory
and queue management procedures were the main faulty components.

Due to a set of reasons, the service test equipment was developed by
reusing FA1201 components (hardware and communications components).
Therefore faults could be found in both systems. The definition of simple
testing interfaces (the service component interface automata) has proved
very useful to reason about problems independently of the complexity of
interactions and fault location.

Another advantage of the method was its ability to statistically classify
the faults as a function of equipment configurations. This helped the manage-
ment of field trials and equipment demonstrations, since the less problematic
configurations were known and could be selected in advance.

By presenting the component test results graphically, the concept of beha-
viour histogram was introduced to provide a clear indication of the overnight
fault distribution. Fig. 6.37, for instance, presents one window of the graph-
ical interface containing the results of the evaluation of a set of Path service
components with respect to the trace evaluation function of Fig. 6.28, where

| 120014/176570 = 68.0%, s=s
| (130202 — 120014)/176570 =  5.8%, s = sy
| (155463 — 130202)/176570 = 14.3%, s = s;
p(s) = | (155463 — 155463)/176570 = 0%, s=s4
| (166562 — 155463)/176570 =  6.3%, s = ss
| (176570 — 166562)/176570 =  5.7%, s = s
| 0/176570 = 0%, s = s

Depending on the probability of the states being reached, these results
can be interpreted as follows, using the automaton defined in Fig. 6.28:

e s = sg. About 5.7% of the call attempts, represented by the
TE'Of fhook event which is observed at the TEPATH of Fig. 6.8,
have not been followed in sequence by the event LE?Remoteof fhook
at the LEPATH of Fig. 6.8. It means that this last event was not
observed at all or was observed out of sequence. This situation gives
and indication of errors which can be interpreted in the simple reference
model of Fig. 5.2 as follows:

— the PSTN Ports block does not correctly sample the loop current
at Z interface and, for this reason, it does not understand the
offthook event;

— the PSTN Ports block is aware of the offhook request but it forms
a wrong message which is then sent to the Signalling block through
the Control channel;
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the protocol used to transfer messages between the PSTN Ports
and Signalling blocks has problems;

the Control channel device driver, at the Signalling block, is faulty
and, from time to time, looses messages;

inside the Signalling block the F'E — subscriber_seizure signal
is unable to reach the corresponding PSTN Protocol instance
(Fig. 5.6 and Tab. 5.4);

e s = s5. For 6.3% of the call attempts the traces obtained indicate that
the T E? Dialtone event was not observed after the

TE!Of fhook.LE?Remoteof fhook sequence. This figure indicates the
possible occurence of one of the following problems:

difficulties in allocating the E1 bearer channel which is negoti-
ated between the Access Network and the Local Exchange for the
transmission of tones;

the Time-Space Exchange block incorrectly switches the time slot
allocated to the call;

connecting problems on the B channel of Fig. 5.2;

the PSTN Ports block cannot correctly convert the dial tone di-
gital octets into an analogue signal;

the clock is badly recovered from the main E1 link and the drifts
introduced originate an analogue signal which cannot be recog-
nised as the dial tone by the tones detection function at the ter-
minal equipment emulator;

the local exchange emulator injects the dial tone into a wrong
bearer channel;

e s = s4. The probability of this state being reached is estimated in 0%,
which means that the test has generated a dial number every time a
dial tone has followed the T'E'Of fhook event. The test, in this case,
is working correctly;

® S —

s3. In this case, the LE?Incommingcall event is not observed

after the

TE'Of fhook.LE? Remoteof fhook.T E? Dialtone.I' E! Dialnumber
sequence, for 14.3% of the call attempts. It is the most important
source of problems found by this trace evaluation function and this
problem can be caused by:

the PSTN Ports block, which is unable to sample correctly the
loop current so the number dialed is badly interpreted. In this
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case, the emulator at the Local Exchange must have means to
detect a wrong number and, in this case, should not generate the
LE?Incommingcall signal;

— the PSTN Ports block, which correctly perceives the digits but,
due to overload conditions, is unable to transmit all the digits to
the Signalling block through the Control channel;

— the process in the Signalling block in charge of transmitting the
digits received from the PSTN Ports block to the convenient PSTN
state machine instance which misroutes, from time to time, the
digits to another PSTN instance;

e s = sg. For 5.8% of the tests (call attempts) the T E?Callingtone
event was not observed or was observed out of sequence. It gives an
indication of errors, which can be interpreted as follows:

— the Time-Space Exchange had been requested by the Signalling
to stop exchanging the bearer E1 channel used to transport the
tones. In this case, this order must have been given after the dial
number since the dial tone has already been received for the same
call through the same E'1 channel;

— the local exchange emulator may have generated the tone for a £'1
channel which is different from the timeslot negotiated between
the Access Network and the Local Exchange;

— The PSTN Ports block has stopped converting digital octets into
an analogue signal, after the transmission of the digits;

e s = s;. 68% of the call attempts succeded in correctly establishing a
call, which means that, after eliminating the events non-visible by the
call establishment function, 68% of the traces obtained were
o =TFE!Of fhook.LE?Remoteof f hook.T'E? Dialtone. T E! Dialnumber.
LE?Incommingcall. TE?Callingtone.¢

This situation is said to be the expected and it indicates the presence
of no faults, with respect to the call establishment evaluation function.

Relevant delays were also statistically evaluated. The time histogram
of Fig. 6.37, for instance, represents the pathDelay of Fig. 6.28. The final
FA1201 service test results, which show the equipment free of service faults
and having delays evaluated for 90% confidence intervals, are available at

http://puma.inescn.pt:8080/loads.html
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6.9 Conclusions

In this chapter, the application of the service part of the methodology pro-
posed in Chap. 4 to a real Network Element, the NEC FA1201 Access Net-
work, was described.

The first conclusion is that service components can be abstracted quite
naturally from existing specifications. In order to access them, they require
that parts of the service are located in emulation (test) equipments.

The second conclusion is that a service component can be easily specified
by describing only its interfaces. These specifications are simpler and easier
to develop than their complex protocol counterparts.

The third conclusion is that SDL is a good language for service testing.
It provides the mechanisms required by parallel programs and its drawbacks
(queues and timed actions) can be partially overcome.

The fourth and last conclusion is that cyclic service tests are the most
valuable tests proposed by the methodology, since they enable the detection
and statistical classification of complex problems from the user/ management
point of view.
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Figure 6.38: Originating call test case
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Chapter 7

Conclusions

7.1 Introduction

This thesis has proposed a methodology for testing telecommunications Net-
work Elements which may help implementers to develop high quality equip-
ment and increase the probability of success in trials during which the equip-
ment is externally evaluated.

To achieve efficiency it is required that the testing method can cope with
and link complementary views of the system, can be incrementally applied
and can provide information about the equipment failures and the quality
achieved at any time. The approach adopted was to reuse and improve the
traditional testing practices (conformance and load testing), since they are
oriented towards the solution of real (most likely) equipment problems but
are not aimed at functional Network Element testing. This improvement
should carefully take into consideration the recent advances in formal meth-
ods applied to conformance testing, since they could provide an adequate
framework to precisely understand the meaning and the value of each type
of test.

Therefore, protocol conformance testing was selected as the first area
of work. Due to the increasing number of protocol based telecommunica-
tion systems over the last fifteen years and to the importance of testing for
the interoperability of equipment from different vendors, this test area has
become quite mature. It is limited in scope since it addresses only the ob-
servable behaviour of protocol implementations and explicitly avoids other
types of validation, such as system testing or performance evaluation. It
has, however, two characteristics that were found appealing for this work.
First, the specification and execution testing practices are well documented
in live standards. Second, a very large effort has been made by the test
research community to formalise these tests and to automate the derivation
process. The current protocol testing practices and theories were, for this

209
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reason, presented in Chap. 2.

The traditional load tests are in a very different situation. They are
quite common for the evaluation of equipment but serious research work
about their value is just beginning. The ad-hoc methods employed cur-
rently are conceptually simple and consist in loading the equipment with
expected and overload traffic scenarios. Besides measuring the relevant per-
formance/quality parameters, these tests are used to demonstrate that the
equipment is able to survive under real traffic conditions for long periods of
time. Our experience in previous projects, however, showed that, if improved
with some behaviour information, these tests could be very valuable. For
these reasons, instead of presenting the (inexistent) load testing theory and
methods, the problem of performance and quality evaluation was addressed
from scratch in Chap. 3. First, the common performance models (loss and
delay system) were introduced from an (implicit) discrete event simulation
perspective. Then, the approach normally used to specify quality and per-
formance parameters was presented by means of examples with the objective
of demonstrating the closeness between these specifications and protocol be-
haviour specifications. The purpose was to suggest the integration of the two
worlds which, from the test point of view, would be quite appealing. In order
to support this hypothesis well known concepts of computer science, but new
in the communications field, such as timed and probabilistic behaviour, were
adopted.

In Chap. 4, the proposed testing methodology was presented. First,
a mathematical framework was selected - the timed automata. Although it
may be argued that it places problems in the representation of real situations
since very large automata will be obtained, it has proved very useful for the
representation of the essential methodology aspects (behaviour, time and
probabilities) while avoiding, at same time, the noisy characteristics. Next,
it was showed how complex systems could be modelled independently of the
availability of rigorous specifications. Then, by reusing the concept of safety
and guarantee automata from protocol conformance testing, it was proved
how different types of tests could be derived - behaviour, timed behaviour
and probabilistic time behaviour. By decoupling trace evaluation functions
from tests it was shown how performance measurement tools could be de-
veloped and QoS properties evaluated. Taking advantage of these tests, a
methodology was proposed which consists in modelling the Network Element
as two sets of components (communication and service) and evaluating them
with different type of tests.

In Chap. 5, a complex Network Element was presented, to which the
testing methodology was applied - the V5 Access Network. Its main build-
ing blocks, protocols and services were introduced. The conformance tests
developed by ETSI were also presented and characterised.
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In Chap. 6, the application of the new part of the methodology (service
testing) to a V5 Access Network implementation, the NEC FA1201, was de-
scribed. Service components were developed based on existing V5 document-
ation and specified as interface components. Next, a set of relevant simple
service tests and time probabilistic tests, along with their trace evaluation
functions, were introduced. A solution for implementing short tests (using
synchronous communication) and precise times in pure SDL was proposed
as well.

7.2 Original contributions

Testing methodology. The methodology proposed consists in modelling
the Network Element as two sets of components: communications and ser-
vice. Communications components are those which implement the commu-
nications protocols at every Network Element interface. Service compon-
ents are abstractions which, in reality, are composed of a number of basic
components which can include communications components, management
components, operating systems and device drivers. Significant parts of ser-
vice components, known as emulation components, are required to reside
within the test system. Communications components should be tested using
well-known protocol conformance testing techniques, which assume that the
complete component specifications are known. Service components can, ac-
cording to the methodology proposed, be partially specified as the so called
interface components. The combination and testing of both views of the
Network Element enables the detection of a large spectrum of faults, in par-
ticular those which have random appearance and manifest only after long
working hours and whose consequences are usually catastrophic.

Service testing method. The methodology proposed combines existing
testing results (protocol conformance testing) with a new part - service test-
ing. At the time of the author’s first international publication [10], and to
the best of his knowledge, this service testing approach was new. In fact,
and due to the relevance this work (that was presented in invited papers in
two conferences and attracted visitors from two companies), similar solutions
appeared latter on on commercial V5 test equipments. However, the service
testing approach is presented in this thesis with a level of detail and justific-
ation which are new. The principle which has made service tests new and so
useful is very simple: knowing in advance about the load tests potential to
make the complex and problematic situations visible, it was just necessary
to improve the expressiveness of the tests so that faults could be described
and distinguished. In this way, tests have been treated as behaviour tests
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using the hypothesis that every test which drives an implementation from its
initial state and back to its initial state can be made cyclic. Conformance
test suites are full of these test cases. By adding time, using discrete event
simulation techniques to generate event inter arrival times, and probabilities
for selecting among cyclic tests in random usages, a rich load test concept
has emerged. After understanding precisely the meaning of verdicts in be-
haviour tests it was possible to extend the concept to more generic trace
evaluation functions. The probabilistic classification of traces, from which
very rich fault information can be gained, as well as the classification of the
delays, which is relevant for performance evaluation, were then possible.

Specification of QoS properties. A new, simple and behaviour rich tech-
nique for describing QoS propertied was also introduced. In standards, QoS
is described by statistical parameters which, as argued in this thesis, are dif-
ficult to relate to the corresponding protocol behaviour situations. By using
trace evaluation functions it was possible to describe precisely the behaviour
situations to which the statistical parameters are related, which can be final
states reached or delays.

Service testing architecture. It consists in modelling the services at
the test system as a set of components, in exciting component instances
with test instances and in separating tests from trace evaluation functions.
Particularly relevant is the implementation of this architecture in pure SDL,
which can be easily translated into programming languages for the most
popular real time operating systems.

7.3 Further research directions

The work described in this thesis can continue in three main directions, which
may be seen as promising areas of work: 1) the distribution of the methodo-
logy; 2) the improvement of the methodology by applying it to new networks
or network elements; 2) the realisation of loosely coupled and distributed test
systems.

Distribution of the methodology. Although the service tests in the
NEC project were carried out using a distributed test system and using dis-
tributed tests, the generalisation of the distribution problems and the pro-
posal (discussion and analysis) of solutions were avoided in this thesis. A
new PhD work programme on this theme seems to be appropriated by a
set of reasons: 1) this thesis provides the basics for that work; 2) the first
attempts to distribute protocol conformance tests are now being attempted
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by researchers; 3) from the experience in the NEC project, the distribution
problems are already known and practical solutions have already been im-
plemented. This work should be done using high level abstraction models,
such as timed automata, so that the nature of the problems and the valid-
ity of the solutions can be understood and validated. As a complement, a
MSc student has already started working on test distribution at the SDL
level with the proprietary method used in the NEC project. The problem
here consists in providing the proprietary SDL environment with facilities
required to support test components in a multi-host environment.

Application of the method to new case studies. As previously men-
tioned, the proposed method has been generalised based on the V5 case study.
It possibly has, for this reason, a number of shortcomings which can only be
eliminated by applying the method, or parts of it, to new case studies. Work
is already on-going on the following fields:

e VoIP test trial. It consists on the develoment of at test environment
(tests, test system and network elements) which was motivated by con-
sulting contracts with a U.S. test company (Schlumberger) and is being
used as a basis for new projects under negotiation. This trial aims at
extending and engineering the methodology towards real time services
over IP networks, voice over IP being a good example. The method/test
system is addressing not only individual IP equipment (routers, gate-
ways and gatekeepers) but also networks, that is, sets of interconnected
systems.

e UMTS test system. This is a joint project proposal to the IST pro-
gramme involving some European companies, namely GMD-Focus, CTS,
Nokia and British Telecom. This is an excellent case study because it
is similar similar to the V5 case (ITU-T and ESTT specifications, con-
formance tests being developed) but, due to the UMTS transmission
characteristics which accept new calls by lowering the quality of the
overall system, requires more service testing. The aim is to develop
service tests using the service methodology proposed and to validate a
real Network Element using the test system developed by the consor-
tium.

e Develoment of a TCP/IP test suite. This project, in cooperation with
a small Portuguese company, will consist on the derivation of sets of
tests described in TTCN. It is also an excellent case study, since IETF
protocols in general and TCP in particular, unlike ITU-T /ETSI pro-
tocols, are very much data oriented. Events, in this case, will have to
represent combinations of data values.
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Loosely coupled testing system. The VoIP and UMTS projects are
pushing the extension of the method towards monitoring, that is, passive
testing, which consists basically in avoiding tests and working only with
trace evaluation functions. Another interesting point is that both types of
service tests (passive and active) may have to be supported by test elements
which can be separated by long distances and, for that reason, require syn-
chronisation mechanisms without, possibly, any interactions during the test
execution. The inclusion of these elements as IP hosts and the representation
of test relevant information as MIBs which can be accessed through SNMP
is being addressed, so that these test elements can be gracefully incorporated
in actual network management schemes.
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