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Abstract

Using problem-specific background knowledge, computer programs
developed within the framework of Inductive Logic Programming (ILP)
have been used to construct restricted first-order logic solutions to sci-
entific problems. However, their approach to the analysis of data with
substantial numerical content has been largely limited to constructing
clauses that: (a) provide qualitative descriptions (“high”, “low” etc.)
of the values of response variables; and (b) contain simple inequalities
restricting the ranges of predictor variables. This has precluded the ap-
plication of such techniques to scientific and engineering problems re-
quiring a more sophisticated approach. A number of specialised meth-
ods have been suggested to remedy this. In contrast, we have chosen to
take advantage of the fact that the existing theoretical framework for
ILP places very few restrictions of the nature of the background knowl-
edge. We describe two issues of implementation that make it possible
to use background predicates that implement well-established statisti-
cal and numerical analysis procedures. Any improvements in analytical
sophistication that result are evaluated empirically using artificial and
real-life data. Experiments utilising artificial data are concerned with
extracting constraints for response variables in the text-book problem
of balancing a pole on a cart. They illustrate the use of clausal defini-
tions of arithmetic and trigonometric functions, inequalities, multiple
linear regression, and numerical derivatives. A non-trivial problem con-
cerning the prediction of mutagenic activity of nitroaromatic molecules
is also examined. In this case, expert chemists have been unable to de-
vise a model for explaining the data. The result demonstrates the
combined use by an ILP program of logical and numerical capabili-
ties to achieve an analysis that includes linear modelling, clustering
and classification. In all experiments, the predictions obtained com-
pare favourably against benchmarks set by more traditional methods
of quantitative methods, namely, regression and neural-network.
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1 Introduction

The framework defining Inductive Logic Programming (ILP: see [22]), has
seen the advent of efficient, general-purpose programs capable of using domain-
specific background knowledge to construct automatically clausal definitions
that in some sense, generalise a set of instances. This has allowed a novel
form of data analysis in molecular biology [15, 16, 26], stress analysis in engi-
neering [7], electronic circuit diagnosis [11], environmental monitoring [10],
software engineering [1], and natural language processing [49]. Of these,
some, such as those described in [1, 10, 11, 26, 49], are naturally clas-
sificatory. Others, such as those described in [7, 15, 16], are essentially
concerned with predicting values of a numerical “response” variable (for
example, chemical activity of a compound). For problems of this latter
type, ILP programs have largely been restricted to constructing definitions
that are only capable of qualitative predictions (for example, “high”, “low”
etc.). Further, if the definition involves the use of any numerical “predictor”
variables, then this usually manifests itself as inequalities that restrict the
ranges of such variables. This apparent limitation of ILP programs has been
of some concern, and rates highly on the priorities of at least one prominent
research programme designed to address the shortcomings of ILP [5].

In theory, any form of numerical reasoning could be achieved from first
principles by an ILP program. Thus, much of the limitations stated above
must stem from practical constraints placed on ILP programs. Some of
these constraints pertain to ILP programs like those described in [29, 33],
where background knowledge is restricted to ground unit clauses. But what
about programs capable of understanding background knowledge that in-
cludes more complex logical descriptions? Such programs are in some sense
closer to the spirit of the ILP framework defined in [22]. In this paper, we
explore the possibility of improving the numerical capabilities of such an
ILP program by the straightforward approach of including as background
knowledge predicates that perform numerical and statistical calculations.
In particular, by the phrase “numerical capabilities” we are referring to the
ability to construct descriptions that may require at least the following:

• Arithmetic and trigonometric functions;

• Equalities and inequalities;

• Regression models (including equations constructed by linear or non-
linear regression); and
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• Geometric models (that is, planar shapes detected in the data).

An ILP program capable of using such primitives would certainly be
able to provide more quantitative solutions to the molecular biology and
stress analysis problems cited earlier. In this paper we describe two im-
plementation details that considerably improve the quantitative capabilities
of the ILP program Progol [24]. The first allows the inclusion of arbitrary
statistical and numerical procedures. The second allows, amongst others, a
cost function to be minimised when obtaining predictions. It is important
to note that these are implementation details only, and do not in anyway,
compromise the general applicability of the ILP program. The capabilities
for quantitative analysis are assessed empirically with experiments using
artificial and natural data.

Experiments with artificial data are concerned with extracting constraints
– in the form of equations – for numerical variables from simulator data
records of a control task. Balancing a pole on a cart is a text-book prob-
lem in control engineering, and has been a test-bed for evaluating the use
of machine learning programs to extract comprehensible descriptions sum-
marising extensive simulator records of controller behaviour. Data records
are usually tabulations of the values of numerical-valued variables, and so
far, feature-based machine learning programs either equipped with built-
in definitions for inequalities or those capable of regression-like behaviour
have been used to analyse such data. There are some advantages to the
pole-and-cart problem. First, the simulations provide ready access to data
records. Second, the nature of the equations to be extracted is relatively
straightforward, and known prior to the experiments (from the dynamics of
the physical system concerned: see Appendix B). This allows us to focus
on the question of whether the ILP program is able to reconstruct these
equations.

The experiments with artificial data whilst being instructive, are unrep-
resentative. In most realistic scenarios, the nature of the underlying model
is not known. Under this category, we examine the case of predicting the
mutagenic activity of a set of nitroaromatic molecules as reported in [6]. In
that study, the authors identify these compounds as belonging to two dis-
parate groups of 188 and 42 compounds respectively. The main interest in
the group of 42 compounds stems from the fact that they are poorly mod-
elled by the analytic methods used by experts in the field. Elsewhere [16]
an ILP program has been shown to find qualitative descriptions for activity
amongst some of these molecules, but no models capable of quantitative pre-
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diction was reported. The second set of experiments reported in this paper
is concerned with constructing an explanation for this data.

The paper is organised as follows. Section 2 introduces the main fea-
tures of a general ILP algorithm, and how these are implemented within the
Progol program. It also describes aspects within the Progol implementa-
tion that impede its use when analysing numerical data. Section 3 describes
two general-purpose extensions to the implementation of an ILP algorithm
that overcome such problems. Section 4 describes how this work contributes
to existing research in this area. Section 5 contains the pole-and-cart ex-
periment, and Section 6 the experiment with predicting mutagenic activity.
Section 7 concludes this paper.

2 ILP and Progol

2.1 Specification

Following [23], we can treat Progol as an algorithm that conforms to the
following partial specifications (we refer the reader to [19] for definitions in
logic programming).

• B is background knowledge consisting of a set of definite clauses C1 ∧
C2 ∧ . . .

• E is a set of examples = E+ ∧ E− where

– E+ = e1∧e2∧. . . are “positive examples” that are definite clauses.
These are often ground unit clauses;

– E− = f1∧f2∧ . . . are “negative examples” that are Horn clauses.
These are also often ground unit clauses; and

– B 6|= E+ – that is, there is some prior necessity to construct a
hypothesis.

• H = D1 ∧D2 ∧ . . ., the output of the algorithm given B and E, is a
good, consistent explanation of the examples and is from a predefined
language L. Such an output usually satisfies at least the following
conditions:

– Each Di in H has the property that it can explain at least
one positive example. That is, B ∧ Di |= e1 ∨ e2 ∨ . . ., where
{e1, e2, . . .} ⊆ E+
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– B ∧H |= E+;

– B ∧H 6|= 2; and

– B ∧H ∧ E− 6|= 2

– | B ∧H |<| B ∧ E+ | where | . . . | denotes some measure of size.

In practice, Progol typically does not meet the requirement for “Strong
Consistency”, as some members of E− are treated as “noise”. This intro-
duces some complications in the calculation of | B ∧H |, which have to be
augmented by an amount required to specify the noisy instances (or excep-
tions). The hypothesis language L is specified by:

• Predicate argument annotations (or “modes”). These are usually of
the form:

– Input/Output/Constant. An input argument is a variable that is
expected to be instantiated, and will not be further instantiated
by the predicate. An output argument is a variable that is not
expected to be instantiated. This variable will be instantiated
by the predicate. For predicates that are “non-deterministic”,
multiple instantiations may be be possible on backtracking. An
argument can be specified as being instantiated to a constant
symbol.

– Type. The type or domain of each argument. The set of accept-
able values of each type may be specified by enumeration or by
an intensional definition.

• Other specifications concerning clauses acceptable for inclusion in the
hypothesis. These are usually:

– Variable depth. The maximum length “chain” of input and out-
put variables in a clause.

– Inconsistency. The extent to which the requirement of “Strong
Consistency” can be violated by the clauses. This usually is
an upper bound on the number of examples in E− that can be
treated as “noise”.

– Clause length. The maximum number of literals in any clause.
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2.2 Implementation

Progol [24] implements the specifications listed above by constructing the
set H one clause at a time. Each clause to be added to the set is obtained
using an admissible search procedure that evaluates potential candidates
along the criteria of sufficiency, consistency, and compression. Complete
algorithmic descriptions of the Progol algorithm are available in [24], and
only the main steps are shown in Figure 1.

1. B, L are given. E = E+ ∪ E− are given and have the same predicate
symbol as the target relation. Let c be the specification in L of the
maximum number of negative literals allowed.

2. If E = ∅ then return B.

3. Let e be the first example in E.

4. Construct ⊥ s.t. ⊥ |= B ∪ {e}

5. Let
Sc = {C : 2 � [C] � [⊥] and C has at most c negative literals }

6. Let D = bestclause(B, e,E, Sc)

7. Let B = B ∪D

8. Let E′ = {e : e ∈ E+ and B ∪ {e} ` 2}

9. Let E = E − E′.

10. Goto 2.

Figure 1: The Progol algorithm. Here � denotes a subsumption ordering,
and [.] denotes an equivalence class.

The construction of ⊥ in Step 4 is complicated and we refer the reader
to [24]. For the purposes of this paper, it is sufficient to note that ⊥ is
usually a definite clause (typically with many 100s of literals), and anchors
one end of the space of clauses to be searched (the other end being 2).
Clauses in Sc (Step 5) are enumerated one at a time – starting from 2

– by using a built-in refinement operator (in the sense described by [42],
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and denoted by ρ). The auxiliary function bestclause/4 (again, built-in to
the implementation) returns the clause adjudged to be the best using some
measure of “compression”. Two exceptional situations arise. First, there is
no clause that passes the test of compression. In this case the example e
selected is returned. Second, several clauses have equally good compression.
In this case, the first one obtained is returned.

2.3 Shortcomings for numerical reasoning

The implementation, as described in Section 2.2 poses some special difficul-
ties when dealing with the analysis of numerical data. The first, concerns
the use of functions whose functional result(s) depend on more than 1 ex-
ample. For example, univariate regression can be seen as a function, that,
given examples of (X,Y) pairs, returns the tuple (M,C) representing the
slope and intercept of the line of best-fit through the (X,Y) pairs. A correct
computation of (M,C) requires all the (X,Y) pairs. For such cases, the im-
plementation of Progol is unable to return clauses containing the correctly
computed values. This stems from the fact that clauses are constructed by
selecting from a ⊥ clause constructed from a randomly chosen, single ex-
ample. Some attempt to overcome this can be made by “guessing” correct
values of such functional outputs from the example chosen (for example, see
[28]). However, there are obvious limitations to this approach.

The second difficulty in the current implementation arises from a mis-
match in the criterion being optimised during clause selection. This crite-
rion, encoded within the bestclause/4 function in Section 2.2, is typically
a description-length criterion. In dealing with numeric data, the criterion
to be minimised is usually different (for example, expected mean-square er-
ror). A minor concern pertains to the fact that there may be no concept of
“negative” examples when dealing with numerical data. Learning from pos-
itive examples only has recently been addressed within the ILP framework
in various ways (see for example [25, 38, 37]). However, this has not proved
a difficulty for the problems addressed here, and the changes to the im-
plementation described in the next section adequately address these issues.
Examples of their form and use are available in Appendix A.
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3 Two changes to the implementation

3.1 Lazy evaluation of functions

Using a most-specific clause from a single example to guide the search for
clauses prevents Progol from using predicates like linear regression where
the functional result (here the coefficients of regression) is determined from
a set of values that arise from more than one example. To address this,
we propose the technique of “lazily evaluating” functional outputs. For a
particular function, this requires that the background knowledge B has the
following: (1) a mode annotation specifying input and output argument(s)
along with their types (in the sense described in Section 2.1); and (2) a def-
inition specifying the procedure for evaluating the output argument(s) from
sets of values for the input argument(s). Provided with this, the following
modifications to the basic algorithm are implemented:

1. Notionally construct a sentence ⊥X from the most-specific clause ⊥
constructed in Step 4. ⊥X differs from ⊥ only in the (negative) literals
in ⊥ that represent lazily-evaluated functions. For these, the corre-
sponding literal in ⊥X is obtained by replacing the output terms with
existentially-quantified variables. Each such variable is distinct from
any other output variable in ⊥X . For example, if q/2, r/2 represent
lazily-evaluated functions whose second argument is denoted “output”,
and⊥ : ∀A∀Bp(A,B)← q(A, 3), r(B, 3) then⊥X : ∀A∀B∃Y ∃Zp(A,B)←
q(A, Y ), r(B,Z). ⊥X will take the place of ⊥ in the search.

2. When incrementally constructing clauses, if the literal selected requires
lazy evaluation then its output values are computed (see below). These
values will appear in place of the existentially quantified variables in-
troduced into the literal in ⊥X . If no output values are obtained, then
the literal is not added to the clause.

Without loss of generality, assume that the predicate q/2 has been
marked for lazy evaluation, and the mode annotations state the first ar-
gument to be input and the second as output. This literal now appears as
q(X, Sky) in ⊥X . Here Sky is an existentially quantified variable that does
not appear as the output of any other literal in ⊥X . In the search, we are
concerned with adding this literal to a definite clause C. The main steps of
computing the output value of q/2 are shown in Figure 2

For a given h, the procedure in Figure 2 clearly terminates. Note that
the procedure assumes that the background knowledge B is complete to the
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lazyeval(l, C, h,B,E+, E−)

1. Let l = q(X, Sky), C = head← body

2. Let θX
p = {X/P1, X/P2, . . .} be the substitution instances for X from

each substitution θpi such that head · θpi ∈ E+ and B `h body · θpi

3. Let θX
n = {X/N1, X/N2, . . .} be substitution instances of X from each

substitution θni such that head · θni ∈ E− and B `h body · θni

4. If there is a ground term Ti such that B `h Q([θX
p , θX

n ], Ti) then θ =
{Y/Ti} otherwise θ = ∅

5. return θ

Figure 2: The lazy evaluation procedure. Here h is a natural number, and
`h denotes derivation in at most h resolution steps. Q is used to distinguish
the definition that allows computation of output values for q/2.

extent that an answer substitution for Y is obtainable within h resolution
steps by the query Q([θp, θn], Y )?. As stated, it is evident that even when
several answer substitutions exist for Y , the procedure returns only one.
This is not of concern if the literal being evaluated represents a function.
We also note in passing that the θX

p , θX
n are similar to the “positive” and

“negative” substitutions defined in [36, 37].
The inclusion of lazy evaluation results in one additional violation to the

Progol algorithm described in Figure 1. There, any clause C in the search is
such that 2 � [C] � [⊥], where � is a subsumption ordering – normally
Plotkin’s θ-subsumption [32]. Analogously, with lazy evaluation it would be
desirable to show a clause C in the search is such that 2 �X [C] �X [⊥X ]
where �X is a (possibly different) subsumption ordering. We do not explore
this further here.

The technique of lazy evaluation can be extended to handle multiple
answer substitutions and even to the construction of new predicate defini-
tions “on-the-fly.” However in this paper, its scope will be restricted to the
evaluation of functions like linear regression.
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3.2 User-defined search

The problem of mismatch in the optimising criterion arises from a more gen-
eral feature common to most (perhaps all) current programs implementing
the ILP specification. This is to do with the fact that a search procedure is
built-in to the implementation. We propose to remedy this by allowing the
search for clauses to be specified as part of the background knowledge B.
This requires Prolog definitions for at least the following:

1. Refine. Definitions for a refinement operator that specify the transi-
tions in the search space.

2. Cost. Definitions for a function specifying the cost (in a decision-
theoretic sense) of a clause.

3. Prune. Definitions specifying clauses that can be admissibly removed
from the search-space.

With some abuse of notation, it is possible to state the search procedure
implicit in Steps 5-6 of Figure 1. This is shown in Figure 3.

search(⊥, B, e):

1. Let S = {2}, D = e, costmin = cost(D,B)

2. if S = {} return D

3. Let C ∈ S, S = S − {C}

4. If prune(C,B) then goto Step 2

5. If cost(C,B) < costmin then let costmin = cost(C,B), D = C

6. Let S = S ∪ {Ci · θ : Ci ∈ refine(C,B), θ s.t. 2 � Ci · θ � ⊥}

7. Goto 2

Figure 3: The search procedure using user-specified definitions for refine,
cost and prune. Should lazy evaluation be permitted, then � becomes �X

and ⊥ becomes ⊥X .

The concept of enumerating clauses in a search procedure by repeated
application of a refinement operator was introduced in [42]. The use of a
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user-specified cost function is a fundamental construct in statistical decision
theory, and provides a general method of scoring descriptions. With an
arbitrary cost function, it is usually not possible to devise automatically
admissible strategies for pruning the search space. Thus it is also necessary
to specify the prune statements for achieving this. One other construct
that has proven useful is that of user-defined constraints. These specify the
clauses that are unacceptable as hypotheses, but which cannot be removed
admissibly. While this is most naturally specified by assigning an infinite
cost to such clauses, it is sometimes more efficient to have separate constraint
statements.

In this paper, when predicting numerical response variables, the mean-
square-error of prediction on the training sample will be used as a measure
of the cost of a clause performing such a prediction. Infinite cost will be
assigned to clauses that do not compute the response variable. This is
equivalent to specifying a constraint that disallows such clauses. The reader
would note that by defining the cost function in the manner stated, we are
unaffected by the fact that “negative” examples may not exist.

4 Relation to other work

The problem of the limitations in numerical capabilities of existing ILP
systems has been addressed variously in the literature by either restricting
the language of hypotheses to logical atoms [12], using built-in definitions
for inequalities [3, 33, 35] or regression and numerical derivatives [13, 14],
transformations to propositional level [18] or constraint satisfaction prob-
lems [21, 41], or using background knowledge for qualitative regression-like
predicates [28]. The aims of this paper and the ideas developed here also
bear a strong resemblance to the proposals made independently by Dzeroski
in his doctoral dissertation [9] which describes the LAGRANGE system.
This can be formulated as an ILP program with specific background pred-
icate definitions for sines, cosines, multiplication, numerical differentiation
and linear regression. Recent developments have also seen the concept of
propositional regression trees being lifted to the first-order setting [17].

This paper contributes to this research in the following ways. First,
the approach has sought to retain the generality of an ILP program. The
technique of lazy evaluation is not specific to any particular predicate and
allows arbitrary functions (statistical, numerical or even other propositional
learners) to be used as background knowledge. To this extent, there has
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been no need to restrict the hypothesis language (as in [12]), use built-in
predicates, single out regression-like predicates for special attention (as in
[14]), or perform transformations. The resulting ILP program should in
principle, be capable of learning directly theories of the form reported in
[8, 21], or first-order definitions that achieve the aims of regression-trees [2]
or model-trees [34]. It is more difficult to see how the theories obtained relate
to the work in [41], although it is possible to achieve a form of clustering
(see Section 6) making it somewhat similar in spirit to that work. Although
the combined use of LAGRANGE and an ILP program is suggested in [9]
it appears not to have been implemented. The results here can be viewed
as providing evidence of how such hybrid methods work in practice.

Second, the experiments reported here provide a systematic assessment,
in both controlled and realistic environments, of the numerical capabilities
of an ILP program in comparison to some standard methods of quantitative
analysis. The results provide some evidence to question any notion that
the quantitative analysis by ILP programs is inherently inferior to other
methods.

Finally, the use of lazy evaluation and user-defined search specification
make contributions to the implementation of ILP systems. We note that
the ability to specify a cost function provides a decision-theoretic interpre-
tation of language restrictions like maximum “noise” allowed, constraints,
etc. Further, an encoding of the refinement operator within the background
knowledge can be seen the procedural equivalent of specifying the declarative
language bias provided to programs like CLAUDIEN [36].

A note on programs used in experiments

The details described in Section 3 have been implemented in a Prolog ver-
sion of Progol. The resulting program P-Progol (Version 2.3) is available by
anonymous ftp to ftp.comlab.ox.ac.uk in the directory pub/Packages/ILP .
For convenience, in the rest of this paper we will refer to P-Progol (Ver-
sion 2.3) as Progol. The pole-and-cart simulator and associated controller
used in this paper was written by Professor C.A. Sammut. Readers inter-
ested in obtaining this program should contact him directly at the School of
Computer Science and Engineering, University of New South Wales, Kens-
ington, NSW 2052, Australia. Experimental results also tabulate the per-
formance of the following propositional procedures that are more usually
associated with quantitative analysis: (a) a stepwise regression procedure as
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implemented within the SPSS software package [30]; (b) a procedure that
constructs “regression-trees” as implemented within the CART family of
programs [2]; and (c) a backpropagation neural-network algorithm, imple-
mented in the Stuttgart Neural Net Simulator (SNNS) [31].

5 Experiment 1: the pole-and-cart

The experiment concerns extracting constraints – in the form of equations
– describing the linear and angular accelerations for a pole-and-cart system,
using the variables describing the system state (see Figure 4). The reader
would note that the task here is not to construct a controller, but to extract
the equations embodied in the pole-and cart simulator. At this stage, we
are also not concerned with the actual time for theory construction – the
principal focus being a test of the ability to reconstruct the constraints.

Figure 4: The pole-and-cart problem. This refers to maintaining a pole
balanced on a cart and keeping the cart within pre-specified track limits. The
variables annotating the figure are: x, position of the centre of mass of the
cart along the X axis; ẋ, linear velocity of the system; θ, angle of inclination
of the pole; and θ̇, the angular velocity of the pole. Also calculable are the
linear and angular accelerations ẍ and θ̈. The mass of the pole is denoted by
m and that of the cart by M . F refers to a fixed magnitude force that can
be exerted on the cart to push it to the left or right (“bang-bang” control).

5.1 Experimental aims

From simulator records of a controller balancing a pole on a cart:
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1. Determine if Progol, equipped with background definitions for arith-
metic, statistical and numerical predicates, is capable of obtaining
equations describing the linear and angular accelerations for the pole-
and-cart system.

2. Compare the predictions made by any equations so obtained and those
made by linear regression, regression-tree and neural-network methods
on new data obtained under the same operating conditions.

5.2 Materials

5.2.1 Data

Data records available are tabulations of the values of specified numerical
variables over a number of time-instants arising from repeated runs of a pole-
and-cart simulator under the control of the BOXES program [20]. Data
are from 1000 runs of each of 9 pole-and-cart configurations arising from
different forces and mass ratios of pole and cart. A run of the pole-and-cart
simulator terminates when the simulation is unable to keep the pole upright,
and the data are recorded at a pre-specified sampling rate. Examples for
analysis are obtained by randomly selecting 1 record from each run. This
yields 1000 randomly selected examples for each configuration of pole and
cart. Independence of each run of the pole-and-cart is assumed. There is
no meaningful notion of negative examples for the constraints being learnt
here, and each randomly selected example acts as a positive example for the
ILP program.

5.2.2 Background knowledge for ILP

Complete Prolog listings of the background knowledge available to Progol
are available in [43]. The contents can be summarised under the following
categories:

1. Simple arithmetic and trigonometry. These include “built-in” defini-
tions for +,−,×, /, ∗∗ (power),sin, and cos.

2. Inequalities. The inequality ≤ is used to bound the maximum error al-
lowed by an equation. With equations constructed by linear regression
this is usually up to 2 standard deviations from the value predicted.

3. Regression models. The definition of multiple linear regression that
minimises least-square error is included. Only those regression models
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that achieve a goodness-of-fit F − test probability of at least 0.01, and
coefficient of multiple determination (that is, r2) of at least 0.80 are
deemed acceptable. These two parameters are typically used to deter-
mine if linear models obtained are acceptable [46], and their values, as
adopted here, avoid poorly fitting models from being explored. Linear
models with at most 2 independent variables are sufficient, as shown
by the target model in Appendix B. Non-linear models are obtained
naturally by the combined use of the power function (∗∗) and linear
regression.

4. Numerical differentiation. The use of a 5-point formula for calculating
first-order derivatives of time-varying quantities [48] is explored when
analysing the pole-and-cart data. The definition is constrained to ob-
tain values of linear and angular accelerations from the corresponding
velocities.

5. Search specification. The refinement operator used is the usual one
defined in [24]. The cost function defined directs Progol to find con-
cepts that minimise the mean square error arising from predictions on
the training set of the response variable (ẍ, θ̈). For this cost function,
the only pruning defined removes those clauses in Progol’s hypothesis
space that contain irrelevant additional literals (after computing the
response variable), or those that could not possibly be compute the
response variable within the constraints on the hypothesis language. A
constraint specifies the straightforward requirement that clauses must
contain an equation for the response variable along with error-bounds
on the estimates made by any equations.

5.2.3 Attributes for propositional learners

For a fair comparison with propositional procedures, it is necessary that
these procedures are also provided with attributes that encode the same
background information. All attributes that can be constructed within the
hypothesis language for Progol are provided to the propositional programs.
A listing of these is available in [43].

5.3 Method

Appendix B contains a brief description of the simulator equations that act
as target descriptions for experiments here. In these experiments, equations
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for linear and angular acceleration are constructed separately. When ob-
taining constraints for ẍ, Progol has access to tabulated values of x, ẋ, θ, θ̇,
and θ̈ for the examples chosen. Similarly, when obtaining constraints for
θ̈ the ILP program has access to values of x, ẋ, θ, θ̇, and ẍ. The following
method was adopted to generate data, obtain and test any constraints:

1. 1000 runs are performed with each of the following values of force
(F in N), mass of pole (m in kg), and mass of cart (M in kg): (i)
F = 0.0,m = 0.1,M = 1.0; (ii) F = 0.0,m = 1.0,M = 1.0; (iii)
F = 0.0,m = 1.0,M = 0.1; (iv) F = +10.0,m = 0.1,M = 1.0; (v)
F = +10.0,m = 1.0,M = 1.0; (vi) F = +10.0,m = 1.0,M = 0.1; (vii)
F = ±10.0,m = 0.1,M = 1.0; (viii) F = ±10.0,m = 1.0,M = 1.0;
and (ix) F = ±10.0,m = 1.0,M = 0.1. On each run the values of
x, ẋ, θ, and θ̇, ẍ, θ̈ are tabulated once every 0.02s.

2. For each configuration of F,m, M , a data record is selected at random.
This yields 1000 data records for each configuration. The first 500 of
these are used for “training” and the remainder are set aside to “test”
any constraints obtained.

3. Using tabulated values for x, ẋ, θ, θ̇, θ̈, and the background knowledge
obtain equations for ẍ.

4. Using tabulated values for x, ẋ, θ, θ̇, ẍ, and the background knowledge
obtain equations for θ̈

5. Record ẍ and θ̈ values computed by these equations on the test set.

6. For each of ẍ and θ̈, use training-set values for the attributes in Section
5.2.3 to (a) obtain a linear equation using stepwise linear regression;
(b) obtain a regression tree; and (c) train the neural net. Record ẍ
and θ̈ values computed by each of these methods on the test set.

7. Compute the degree of agreement of each method to the actual values
of ẍ and θ̈ by computing the mean of the squared difference between
actual values and those predicted by each method. In keeping with
[40], this statistic is termed the “mean square error of prediction”
(MSEP).

Parameter settings for the stepwise regression procedure control the in-
clusion and exclusion of variables in the equation. These parameters relate
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to the level of significance that has to be achieved above (or below) which a
variable is retained in the model (or removed from the model). There is no
prescribed setting for these parameters (termed PIN and POUT respec-
tively in SPSS). We have adopted the procedure of setting PIN,POUT to
values that result in equations with no more than 2 independent variables
on the training data, except when predicting ẍ with F = ±10N . In this
case, up to 3 independent variables are allowed, to enable the program to
use values of F in the equation. This is in accordance with the restrictions
provided to the ILP program.

The regression-tree procedure implemented within CART is equipped
with validation procedures that enable it to estimate automatically the pa-
rameters specifying the tree-construction.

For the neural-network algorithm in SNNS, 10000 epochs were used with
the “shuffle” option. In each epoch all training examples were presented.
The net has one input unit for each attribute, 4 hidden units and 1 output
unit and was fully connected. There is no accepted method for determining
the number of hidden units. The settings chosen were obtained based on the
fact that they yielded the lowest error on the training data across possible
settings ranging from 0 to 5 units in the hidden layer.

5.4 Experimental results and discussion

Figures 5 and 6 tabulate values of MSEP summarising the difference be-
tween actual values of ẍ, θ̈ and those predicted by each method. The actual
equations on which these calculations are based are in Appendix C.

The tabulations show that the mean-square-error of prediction (MSEP)
from the ILP theory is usually lower than all programs other than regression.
Figure 7 tabulates a comparison of the MSEP of Progol against that of the
propositional learners for the 18 errors tabulated in Figures 5 and 6.

In general, we would expect the predictivity of Progol’s theories to be at
least comparable to those of linear regression given that the ILP program
relies on regression definitions provided as background knowledge to con-
struct its equations. Further, since by virtue of its search technique, Progol
would do an “all-subsets” regression, it would seem to be surprising to find
instances where the SPSS regression procedure (which implements “step-
wise” regression) actually does perform better. Closer examination reveals
that in 3 of the 4 cases that this occurs in Figure 7, Progol has identified
the correct target equation. This suggests its higher error to be an artifact
of the test sample. To this extent, the entries in the first row of Figure 7

17



Algorithm F = 0 F = +10 F = ±10

m/M m/M m/M

0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

Progol 9e− 6 9e− 6 2e− 5 6e− 5 1e− 5 6e− 4 4e− 5 4e− 4 2e− 2

Regression 9e− 6 9e− 6 2e− 5 6e− 5 1e− 5 6e− 4 6e− 5 1e− 5 1e− 2

Regression tree 3e− 5 4e− 4 3e− 3 3e− 5 7e− 4 2e− 2 5e− 5 1e− 3 3e− 2

Neural network 2e− 5 6e− 4 5e− 3 3e− 5 1e− 3 3e− 2 8e− 4 1e− 2 1e− 1

Figure 5: Mean square error of predicted values of ẍ on 500 test examples.
The notation ae− b stands for a× 10−b.

are as expected.
On both data sets, the regression tree’s predictions appear to be con-

siderably worse than those made by Progol. By producing axis-parallel
partitions and predicting mean values for each partition, the tree program
is unable to capture the linear nature of the constraints involved. Defini-
tive statements concerning the apparent poorer performance of the neural
network are confounded by the absence of a principled technique for select-
ing the topology of the network. We can therefore do no more than state
that for the particular topology used, the neural network’s predictions are
consistently worse than Progol’s on the pole-and-cart data.

Besides a comparison of predictive accuracies, it is instructive to exam-
ine, where possible, the nature of the theories obtained by each algorithm.
Appendix C shows that for the pole-and-cart problem, Progol constructs 24
equations corresponding to different physical parameter settings. Of these,
the reader can verify that the correct linear model is identified on 22 oc-
casions. Here, by “correct” we mean that the linear model has the same
predictor variables as those in the target model described in Appendix B –
we will examine the issue of correctly estimating the coefficients for these
variables in greater detail below. In contrast, linear regression constructs 18
equations, of which 9 are correct. The difference in the number of equations
highlights an important point of difference between the two programs when
constructing theories for the case where F = ±10N . Here, Progol constructs
a pair of equations corresponding to the situations arising from F = +10N ,
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Algorithm F = 0 F = +10 F = ±10

m/M m/M m/M

0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

Progol 2e− 3 1e− 3 2e− 3 2e− 3 2e− 3 1e− 3 2e− 3 2e− 3 2e− 3

Regression 2e− 3 4e− 4 8e− 4 2e− 3 2e− 3 5e− 2 1e− 2 8e− 3 7e− 2

Regression tree 3e− 3 5e− 3 2e− 2 3e− 3 1e− 2 4e− 2 5e− 3 1e− 2 1e− 1

Neural network 6e− 3 1e− 2 3e− 2 5e− 3 9e− 3 1e− 1 1e− 1 1e− 1 4e− 1

Figure 6: Mean square error of predicted values of θ̈ on 500 test examples.
The notation ae− b stands for a× 10−b.

F = −10N . The regression program attempts to explain both situations
by using F as an independent variable in equations for ẍ. Given the nature
of their theories, we are not in a position to directly compare the output
of the regression tree and neural network against the target model. On the
pole-and-cart data, the tree program produces reasonably complex theories
(some upto 200 nodes), and the latter’s “theory” consisting of a listing of 25
floating-point numbers corresponding to the weights associated with each
node in the network.

The availability of an automated controller (here the BOXES program)
and a known target theory allows us to investigate further the nature of
theories obtainable from Progol. In what follows, we restrict attention to
a commonly used pole-and-cart configuration, namely F = ±10N,m =
0.1kg,M = 1.0kg. Within this setting, we are in a position to examine
empirically: (a) the convergence of coefficients in Progol’s equations to the
coefficients in the target theory; (b) bias in prediction and the estimation of
the coefficients by Progol; and (c) extensions to the background knowledge
to allow numerical differentiation by Progol.

We first examine how Progol’s estimation of the target theory changes
with increasing the number of training examples. Target theories for ẍ and θ̈
are obtained from the equations of motion given in Appendix B. These are of
the form ẍ = C1−M1θ̈cosθ+M2θ̇

2sinθ and θ̈ = C2+K1sinθ−K2ẍcosθ. For
the given set of physical parameters, namely F = ±10N,m = 0.1kg,M =
1.0kg, the coefficients take the particular values: C1 = ±9.091,M1 = M2 =

19



Algorithm MSEP of Progol

Better Worse Same

Regression 5 4 9

Regression tree 16 1 1

Neural network 17 1 0

Figure 7: A comparison of the MSEPs on the pole-and-cart data. The terms
“better”, “worse” and “same” denote the cases that the MSEP of Progol is
lower, higher, or the same (up to the precision shown in Figures 5 and 6) as
the corresponding propositional learner.

0.045, C2 = 0.000,K1 = 14.7,K2 = 1.50 (the two values of C1 result from
F = ±10N). Figure 8 tabulates the progressive change in error of the
Progol estimates from these expected values, averaged over the two values
of F . The tabulation suggests that Progol’s approximation of the target
theory does improve as the number of training examples is increased.

We now turn our attention to the question of bias in Progol’s predictions
and estimates of the coefficients. For the physical settings under consider-
ation, Figure 9 tabulates the frequencies of positive and negative residuals
arising from over and under-estimates of ẍ and θ̈ on the 500 test exam-
ples. Also tabulated are the means of the predicted and actual values for
each variable. The entries suggest that on Progol’s predictions appear to be
largely unbiased.

Consider now any bias in the estimation of coefficients that appear in
equations for the dependent variables. Operating under the control of a
two-sided force provides us with two estimates for each coefficient – one
for which F is positive (here +10N) and the other when it is negative
(−10N). Calling these two estimates “duplicates” 1, and repeatedly per-
forming the experiment of learning equations for ẍ and θ̈ allows us to record
the number of occasions that (a) both duplicates overestimate a coefficient;
(b) both duplicates underestimate a given coefficient; (c) the F-positive du-
plicate overestimates a coefficient while the F-negative underestimates; (d)
the F-positive duplicate underestimates a coefficient while the F-negative
overestimates; (e) one duplicate under or over-estimates a coefficient while

1This term and the analysis following are due to Donald Michie
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Training Examples Error in coefficients for ẍ Error in coefficients for θ̈

100 – 0.803

250 0.002 0.587

500 0.002 0.876

1000 0.002 0.350

1500 0.001 0.141

Figure 8: Error of coefficients estimated in the linear model obtained by
Progol for the pole-and-cart data. For a given number of training examples,
this error is the average of the total absolute deviation of estimates from
expected values (from the target model) for F = +10 and F = −10. Esti-
mates and expected values are recorded up to 3 significant figures. An entry
of “–” denotes that the target model was not identified by Progol.

the other is exact (up to some degree of precision); and (f) both duplicates
estimate a coefficient exactly (again, up to some degree of precision). Severe
discrepancies between the tallies in (a) and (b) would suggest that Progol’s
estimation of that coefficient was biased. Discrepancies in the tallies (c) and
(d) would suggest bias in the simulator. Tallies of (e) and (f) are not of
particular interest here.

Figure 10 tabulates these numbers over 10 repeats of obtaining equations
for ẍ and θ̈ from independent training sets of 500 examples each. The 6 cases
(a)–(f) in the tabulation correspond to the situations described above, and

Dependent Frequency Mean

variable + residuals − residuals Actual Predicted

ẍ 0.46 0.52 −0.195 −0.196

θ̈ 0.54 0.46 0.309 0.310

Figure 9: Examining residuals for bias in Progol’s prediction of the depen-
dent variable on the pole-and-cart data.
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the coefficients C1 . . .K2 are as before. The comparison of estimates and
expected values proceeds to 3 significant figures. It is evident from this
figure that for 4 of the 6 coefficients, there is no evidence of any bias. Of
the remaining two, the evidence for bias in estimates of M1 does not appear
to be substantial. Some degree of uncertainty does however rest on the
estimates of M2, and suggests further investigation.

Case Predicting ẍ Predicting θ̈

C1 M1 M2 C2 K1 K2

(a) 0 0 5 1 0 3

(b) 0 3 0 1 0 3

(c) 0 0 2 5 0 1

(d) 0 0 0 3 0 1

(e) 0 5 3 0 2 2

(f) 10 2 0 0 8 0

Figure 10: Occurrences of cases arising from duplicate estimates over, under
or exactly estimating a given coefficient in the linear models describing the
pole-and-cart data. The cases (a) – (f) are as described in the text. As
before, estimates and expected values are recorded up to 3 significant figures.

In the experiments undertaken, the reader would have noticed that the
target equations for ẍ require the values of θ̈ and vice-versa and that Progol
obtained these values directly from the tabulated records. It is of interest
to examine whether the ILP program could achieve comparable results by
calculating the derivatives required by using background knowledge defini-
tions for numerical differentiation. This would allow the ILP program to
emulate other, more special purpose programs like LAGRANGE [8]. We
close this discussion with a demonstration that such behaviour is possible
by extracting constraints for ẍ and θ̈ using x, ẋ, θ, and θ̇ in conjunction with
a well-known 5-point formula for numerical differentiation. Examples are
time-indexed to allow such a calculation. The physical parameters remain
as before, namely F = ±10N,m = 0.1kg,M = 1.0kg, and the correspond-
ing mean-square-error on the test sample is in Figure 11. The errors can be
seen to be comparable to the corresponding ones obtained earlier in Figures
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5 and 6. However, it is important to note here that the 5-point formula for
numerical derivatives are not calculable for examples that are too close to
the edges of a run. Prediction of values is thus possible for only a subset of
the data – an issue that is not peculiar to the use of Progol, but one that
arises from the particular numerical method employed to obtain derivatives.

Variable Mean square error

ẍ 3e− 5

θ̈ 2e− 3

Figure 11: Mean square error of Progol predictions for ẍ and θ̈ on test ex-
amples with programs for numerical differentiation provided as background
knowledge. The notation ae − b stands for a × 10−b. Note that the errors
reported are calculated only on those examples in the test-set for which
numerical derivatives are defined.

5.5 Conclusion

The experiments in this section have concentrated on the relatively well-
defined world of the pole-and-cart. The conclusions to be drawn from this
are straightforward, namely: (1) when the data are fully predictable from
simple linear equations, linear modelling does as well or better than methods
unable to express such models; and (2) regression used within an ILP harness
to exhaust the subsets of possibly predictive independent variables does
better than following the greedy strategy of “stepwise” regression. There
are thus, no surprises at all for data analysts. The experiments do however
serve to illustrate the possibility of using statistical and numerical predicates
within an ILP program. We now consider a case where there are no known
models for predicting the data. This provides a sterner test of the capabilities
of the ILP program.

6 Experiment 2: mutagenesis

There are two broad stages in rational drug design [39]. The first involves
the identification of one or more compounds – known as leads – with some
suitable biological activity. This activity is obtained from historical records,

23



or chemical assays. The second stage involves optimising the activity of
these leads. Typically, the medicinal chemist has access to the 2 and 3-
dimensional structure of the possible leads, along with their activities. Em-
pirical Structure-Activity Relationships – or SARs – are concerned with
obtaining accurate descriptions that describe levels of biological activity in
terms of molecular structure. These descriptions can then be used to direct
the synthesis of new compounds, possibly culminating in a new drug. The
SAR problem here is taken from the chemical literature as reported by [6].
The authors are concerned with obtaining SARs describing mutagenicity
in nitroaromatic compounds. These compounds occur in automobile ex-
haust fumes and are also common intermediates in the synthesis of many
thousands of industrial compounds [6]. Highly mutagenic nitroaromatics
have been found to be carcinogenic, and it is of considerable interest to
the pharmaceutical industry to determine which molecular features result
in compounds having mutagenic activity.

Since its introduction in [45], the problem has become an important test-
bed for ILP programs. Most of this research has however concentrated in
obtaining rules for classifying the compounds into one of several categories,
although the original problem is concerned with the quantitative task of pre-
dicting actual mutagenic activity. In [6] the authors list the activity of 230
compounds, obtained from a procedure known as the Ames test. They fur-
ther identify this set as being composed of two disparate groups of 188 and 42
compounds respectively. The first group is adequately explained by linear
modelling using 5 specifically selected predictor variables. The remaining
42 compounds however form an “outlier” group for which no explanatory
model has been proposed by the chemists. It is this subset of compounds
that are of particular interest to us. They provide the opportunity of exam-
ining whether the first-order capabilities of a program like Progol provide
the edge required to find explanatory models. This capability allows Progol
to include relational descriptions in terms of molecular structure, thus going
beyond the routine use of propositional algorithms like regression. Recent
work on this subset of data [44] examines augmenting the independent vari-
ables used by linear regression with new “features” constructed by an ILP
program. In some sense, the technique used in this paper can be seen as
a dual to that work (in which the results of an ILP program are used by
linear regression). The advantage of the technique adopted here, as seen
below, is that it allows a uniform treatment of mixed class types (that is,
both numerical and nominal).
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6.1 Experimental aims

For the 42 nitroaromatic molecules not explained by chemists:

1. Determine if Progol, equipped with background definitions for describ-
ing molecular structure, the expert selected predictor variables, and
statistical predicates is capable of obtain an explanation for the mu-
tagenic activity of the molecules.

2. Compare the predictions made by the Progol theory and those made
by regression, regression-tree and neural-network methods using the
expert selected predictor variables only.

We note here that a chemical evaluation of any theory constructed by Progol
is beyond the scope of this paper.

6.2 Materials

6.2.1 Data

Data are available for the mutagenic activity of 42 compounds. Of these, 20
compounds have recordable levels of activity. The activity of the remaining
22 compounds is below the minimum levels measurable. These have been
marked simply as “very low”. This poses special problems for programs
that are incapable of dealing with mixed data types. While there is no nat-
ural notion of “negative” examples for the 20 compounds for which numeric
activity levels are available, it is possible to view them as acting as nega-
tive examples when learning rules for “very low” activity (that is, for the
remaining 22 compounds).

6.2.2 Background knowledge for ILP

Besides the 5 predictor variables devised by the chemists (see Section 6.2.3),
Progol has the following additional information as background knowledge
(complete Prolog listings of these are available in [43]):

1. Molecular structure. These are primitive structural descriptions in
terms of the atom and bond structures in each molecule, along with
associated information concerning atom/bond types. They are repre-
sented by a pair of predicates atm/5 and bond/4 (as in [15]), and are
obtained automatically from a molecular modelling package.
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2. Inequalites. The inequality ≤ is used to bound values attained by
numeric predicator variables, partial charges on atoms, and the maxi-
mum error allowed by a regression equation.

3. Regression models. The definition of multiple linear regression that
minimises least-square error is included. As before, only those regres-
sion models that achieve a goodness-of-fit F − test probability of at
least 0.01, and coefficient of multiple determination (that is, r2) of at
least 0.80 are deemed acceptable. Further, models are again restricted
to those with at most 2 independent variables.

4. Expected values. A function that computes (lazily) the expected value
of the activity of a set of compounds.

5. Search specification. For efficiency, we define a refinement operator
that constrains atom or bond descriptions to appear at most once in a
hypothesised clause. Progol does not have a difficulty with mixed data
types, and the cost function assigns (a) mean-square-error as the cost
for clauses computing a numeric value for activity; and (b) compression
(as defined in [24]) as the cost for clauses classifying compounds as
having “very low” activity. No pruning was specified.

6.2.3 Expert-selected attributes

The following attributes have been used in [6] to obtain SARs:

Attribute Description

εLUMO Energy level of lowest unoccupied molecular orbital in compound

log(P ) Hydrophobicity of compound

I1 Logical attribute: 1 if compound contains 3 or more benzyl rings

Ia Logical attribute: 1 if compound is an acenthrylene

log10(10(log(P )−5.48) + 1) Attribute constructed by chemists (called Hansch attribute)

6.3 Method

The small number of compounds – 42, of which only 20 have numeric values
– forces any estimates of the predictive power of models obtained to be
necessarily speculative. We adopt the following experimental design:
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1. Using the background knowledge described in Section 6.2.2 and the
expert-selected attributes in Section 6.2.3 construct Progol theories
explaining the activity of the 20 compounds with numeric activity,
and the 22 compounds classified as “very low”.

2. Using the expert selected attributes described in Section 6.2.3 for the
20 compounds with numeric activity: (a) obtain a linear equation
using stepwise linear regression; (b) obtain a regression tree; and (c)
train the neural net.

3. Find estimates of the mean square error of prediction (MSEP) by
obtaining leave-one-out predictions [47] by all algorithms for the 20
compounds. Two complications can arise with Progol. First, Progol’s
theory may be overspecific. This may result in the activity of some
compounds not being predicted. Second, more than one rule may be
applicable, resulting in multiple predictions of activity. For the latter,
we adopt the convention of using the first rule that is applicable. The
same effect is achieved by using refine definitions that include Prolog
cuts (“!”) at the end of each clause. For the former, we tabulate
MSEP values obtained by (a) ignoring non-predicted compounds; and
(b) assigning the mean activity of the training set to such compounds
(this acts as a “default” rule).

The reader will note that comparative statistics are only obtainable on
the subset of compounds with numeric activity values. The reader could cor-
rectly question the value of obtaining a theory using stepwise linear regres-
sion, as this has already been rejected by the chemists. We do so here only
for completeness. For this, the SPSS regression parameters PIN,POUT
are progressively relaxed until an equation is obtained. Parameter settings
for the regression-tree and neural-network were obtained in the manner de-
scribed earlier – namely, automatic optimisation (regression-tree) and man-
ual experimentation with a range of topologies (neural-network).

6.4 Experimental results and discussion

Figure 12 tabulates values of MSEP summarising the difference between
actual values of mutagenic activity and those predicted by each algorithm.
Progol (1) refers to the error when non-predicted compounds were ignored.
There were 5 such compounds. Progol (2) refers to the error when these
compounds were assigned mean activity values of the training set. ‘Default”
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refers to the strategy of prediction being the mean activity of the training
set. We note here that the internal optimiser within the regression-tree
program is unable to find a good tree for the 20 compounds.

Algorithm MSEP

Progol (1) 1.8

Progol (2) 2.2

Regression tree –

Regression 2.9

Neural network 3.1

Default 2.2

Figure 12: Mean square errors of prediction on the 20 compounds with
recorded activity values. The estimates are from leave-one-out cross-
validation.

The tabulation in Figure 12 shows that when it predicts a value, Pro-
gol’s model has the lowest mean-square-error of prediction. However, this
edge appears to be reduced to no better than mean-value prediction once
augmented by the default rule to enable prediction of such compounds.
Leave-one-out comparisons of the MSEP values do not however bring out
differences in the explanatory power provided by the methods. A measure of
the association of predicted and actual values is obtained by the correlation
between these two quantities using complete theories for the 20 compounds.
This comparison is shown in Figure 13. Rank correlation estimates are pro-
vided as they make no assumptions of normality. Given the small size of the
sample, we do not perform any tests of significance. These results therefore
can only be taken as providing evidence for a further investigation, but they
do serve to highlight the inadequacy of using the default rule for explana-
tion. We note in passing that the rank correlations in Figure 13 are similar
to those reported in [44] for the same subset of 20 compounds (there a value
of 0.64 is obtained).

The relatively poor performance of the neural-network’s and the lack of
a model from the regression tree have to accompanied by the caveat that
better results may be possible with more experimentation with topological
parameters (for the network) or language restrictions (for the tree). We do
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Algorithm Correlation

Progol (1) 0.84

Progol (2) 0.71

Regression tree –

Regression 0.65

Neural network -0.2

Default –

Figure 13: Spearman’s rank correlation estimates of true activity to values
predicted by the theories. Progol (1) and (2) are as earlier. The regression-
tree and default strategy predict the same activity for all compounds, mak-
ing estimates of correlation meaningless.

not pursue this further as such manipulations would then have to performed
with other algorithms as well, which is beyond the scope of this study. That
logical structuring using molecular structure aids predicitivity appears to
be supported by the fact that Progol has lower error rates than programs
unable to use such information. We also note that the models in Progol’s
were required to achieve a goodness-of-fit F−test probability of at least 0.01.
No such models were available using regression only, confirming the chemists
opinion that no good models were directly obtainable from regression.

As in the case of the pole-and-cart, it is instructive to examine the ac-
tual theory constructed by Progol. Figure 14 shows a text translation of this
theory. It is evident that explanation is achieved by a combination of logical
and statistical descriptors. The former are concerned with identification of
chemical substructures, or numeric comparisons. The latter deal with linear
models, or calculations of expected activity levels. Clauses use these de-
scriptors to predict either a numeric or nominal value. The result therefore,
is more sophisticated than piecewise linear modelling. Such a treatment of
mixed data types illustrates well the type of analysis that can be achieved.

6.5 Conclusion

We are now in a position to build on the conclusions reached earlier from
experiments with the pole-and-cart. The results here suggest: (1) when the
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If Molecule A has:
a Lumo value L1 of at most -1.35, and
a carbon atom C in a 6-membered aromatic ring with nitrogens around, and
a LogP value L2

then: its expected activity is -2.92 × L1 + 1.499 × L2 - 12.72

Else If Molecule A has:
a carbonyl carbon C with partial charge at most 0.608,
C is connected via a single bond to some atom D

then: its expected activity is 1.38

Else If Molecule A has:
a hydroxyl oxygen (i.e. the structure H −O− < C >= O)

then: its expected activity is very low

Figure 14: Progol’s theory for the 42 compounds. The theory shown is an
English translation of the Prolog clauses found by Progol. These clauses
leave as outliers 5 of the 20 compounds with numeric values, and 16 of the
22 compounds with “very low” activity.

data are known not to be predictable from simple linear models, an ILP
program can achieve explanations where none are possible from (expert-
guided) regression; and (2) an ILP program can naturally represent and
analyse mixed data types, thus making it possible to achieve a combination
of classification and numeric prediction within the one framework. Further,
there appears to be some evidence that the predictivity of the ILP the-
ory appears to be better than that of quantitative analytical methods like
regression-trees and neural networks. However this requires further rigorous
experimentation.

7 Concluding Remarks

By adopting logic programs as its basic representation formalism, an ILP
program can use and construct clauses in a Turing-equivalent language. In
principle therefore, there is no restriction to the functions that can be used
as background knowledge or learnt by such a program.

This paper has described two implementation extensions that allow an
ILP program to exploit more fully the power afforded by the theoretical
framework of ILP. We have then sought to demonstrate empirically how a
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program equipped with these changes could go some way towards redress-
ing a perceived limitation of existing ILP programs, namely, the analysis
of numerical data. The results from the experiments reported provide evi-
dence that the analytical capabilities of an ILP program are not inferior to
traditional quantitative methods like regression and neural-networks. The
richer language and comprehensibility of ILP theories that follow naturally
from their use of first-order logic, are of course, retained. We should em-
phasise here that the apparently confrontational nature of the experimental
methodology is illusory as lazy evaluation allows any propositional algorithm
to be used as background knowledge to an ILP program. This has not been
exploited fully by the experiments in this paper, nor has the possibility of
obtaining rules evaluation of which requires a general constraint-solver. The
latter leads to the promising area of learning constraint logic programs. To
this extent, we take the results here as providing further incentive for in-
vestigating the use of general-purpose ILP programs for the quantitative
analysis of scientific and engineering data.
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A Examples of implementation changes

This section gives some examples of the implementation, within P-Progol
2.3, of two changes proposed in Section 3 namely, lazy evaluation and user-
definable search functions.

A.1 Lazy evaluation

We demonstrate here the construction of a regression line between a pair of
points. Suppose E+ = {p(0, 1) ←, p(8, 4) ←}, E− = ∅, and B contains a
correct definition for computing least-square estimates for the slope (M) and
intercept (K) of line drawn through a set of points. The target therefore,
is to construct a clause of the form p(X, Y )← line(X, Y,m, k), where m, k
are some specific values for M,K, with the first two arguments of line are
“input”, and the remainder are constants to be computed lazily.

In executing the lazy evaluation procedure described in Figure 2, the
following steps are followed:

lazyeval(l, C, h,B,E+, E−)

1. Here l = line(X, Y,∃M,∃K), C = p(X, Y ), E+ = {p(0, 1), p(8, 4)}, E− =
∅, B, h are given

2. Then θX
p = {X/0, X/8}, θX

n = ∅ and θY
p = {Y/1, Y/4}, θY

n = ∅

3. Call LINE([θX
p , θX

n ], [θY
p , θY

n ],M, K)

4. Background B contains definition LINE/4 that returns (within h res-
olution steps) the answer substitution {M/0.375,K/1}.

Search now proceeds with the clause p(X, Y )← line(X, Y, 0.375, 1).
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A.2 User-defined search

We give examples of the the three different search operations described in
Section 3. Consider for example, the task undertaken in [27]. There, the task
set for the ILP program is to find within an organic molecule, a conjunction
functional classes – like hydrogen donors, hydrogen acceptors, and zinc-
binding sites – and the 3-dimensional distances between such classes. In [27]
the authors use a rather circuitous method of specifying this requirement.
The following refine clauses within Progol achieve the same effect more
directly (we do not show definitions for auxiliary predicates like member
and dist).

refine(false,active(A)).

refine(active(A),Clause):-

member(Pred1,[hacc(A,B),hdonor(A,B),zincsite(A,B)]),

member(Pred2,[hacc(A,C),hdonor(A,C),zincsite(A,C)]),

member(Pred3,[hacc(A,D),hdonor(A,D),zincsite(A,D)]),

member(Pred4,[hacc(A,E),hdonor(A,E),zincsite(A,E)]),

Clause = (active(A):-

Pred1,

Pred2,

dist(A,B,C,D1,E1),

Pred3,

dist(A,B,D,D2,E2),

dist(A,C,D,D3,E3),

Pred4,

dist(A,B,E,D4,E4),

dist(A,C,E,D5,E5),

dist(A,D,E,D6,E6)).

Cost specification takes the form of definition of a 3-place predicate. The
one extra argument is an efficiency concern that provides some pre-computed
statistics of the clause (like number of positive and negative examples deriv-
able and clause length). Here are the cost functions used in the experiments
in this paper – again without detail of intermediate predicates.

% cost is mean-square-error for numeric calculations

cost((Head:-Body),Label,Cost):-

mse(Head,Body,Cost),

Cost \= undef, !.

% otherwise cost is compression

cost(_,[P,N,L],Cost):-

P > L, N = 0, !,

Cost is -P.

cost(_,_,inf).
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A typical use of pruning statements may be to remove redundant literals in
a search. A case in point are implication relationships arising from inequal-
ities. Here is an example resulting from addition of a literal performing an
inequality test. In the definition below, in(L1,L2) is a predicate that checks
if a literal L1 is in a conjunction L2, and add(L1,L2,L3) adds a literal L1
to the end of a sequence of conjoined literals L2 to give L3.
prune((Head:-Body)):-

add((X =< N2),L,Body),

in((Y =< N1),L),

X == Y,

N1 =< N2.

B The pole-and-cart model

Exact equations of motion for the pole-and-cart system are available in the
literature, and we do not include their derivation here. For this, the reader
is referred to the treatment in [4], pp 703-710. Instead, we merely reproduce
the relevant equations here. The state of the system is given by θ: the
angle of the pole from the upright position; θ̇: angular velocity of the pole;
x: horizontal position of the cart’s center; and ẋ: the velocity of the cart.
Given a force on the cart of fixed magnitude F , and a pole of length l, cart
and pole masses of M and m, the equations of motion are:

(M + m)ẍ +
1
2
ml(θ̈cosθ − θ̇2sinθ) = F

ẍcosθ +
2
3
lθ̈ = gsinθ

These can be re-arranged to give constraints for ẍ and θ̈:

ẍ =
F − 1

2ml(θ̈cosθ − θ̇2sinθ)
M + m

θ̈ =
gsinθ − ẍcosθ

2
3 l

C A selection of theories obtained from Progol

C.1 Pole-and-cart

Actual Prolog definitions found by Progol are only of interest for syntac-
tic reasons, and are presented for one configuration only. A mathematical
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representation of all equations obtained follow, and can be used to under-
stand better the Prolog representation. In constructing these clauses, Progol
treated lin regress2 as a lazily-evaluated literal, and the constants that ap-
pear are a result of the implementation described earlier. Thus, the literal
lin regress2(G,I,K,14.667,-1.560,0.583,0.044,L) encodes the regression line
G = 14.667× I − 1.56×K + 0.583, with standard deviation s = 0.044 and
standard residual L.

% F = +/- 10, m = 0.1, M = 1.0

accel(A,B,C,D,E,F,f(10.000),G,H) :-

sin(A,B,E,I), cos(A,B,E,J), mult(A,B,J,H,K),

lin_regress2(G,I,K,14.667,-1.560,0.583,0.044,L), lte(L,2.000).

accel(A,B,C,D,E,F,f(-10.000),G,H) :-

sin(A,B,E,I), cos(A,B,E,J), mult(A,B,J,H,K),

lin_regress2(G,I,K,14.686,-1.565,-0.633,0.040,L), lte(L,2.000).

accel(A,B,C,D,E,F,f(10.000),G,H) :-

sin(A,B,E,I), cos(A,B,E,J), mult(A,B,J,G,K), pow(A,B,F,2,L),

mult(A,B,I,L,M), lin_regress2(H,M,K,0.046,-0.046,9.088,0.003,N), lte(N,2.000).

accel(A,B,C,D,E,F,f(-10.000),G,H) :-

sin(A,B,E,I), cos(A,B,E,J), mult(A,B,J,G,K), pow(A,B,F,2,L),

mult(A,B,I,L,M), lin_regress2(H,M,K,0.047,-0.046,-9.090,0.003,N), lte(N,2.000).

C.2 Mutagenesis

The complete theory in Prolog form is shown below. The text translation
appearing in Figure 14 is of the non-ground clauses below. Both lin regress2
and expected value4 are lazily evaluated. The literal expected value(B,1.38,0.6144,F)
states that the set of values B have expected value 1.38 with standard de-
viation s = 0.6144, and standard residual F .
active(A,B) :-

lumo(A,C), lteq(C,-1.35),

logp(A,D), atm(A,E,c,22,F), bond(A,E,G,7),

lin_regress2(B,C,D,-2.902,1.499,-12.72,0.6289,H), lte(H,2).

active(A,B) :-

atm(A,C,c,14,D), lteq(D,0.608), bond(A,C,E,1),

expected_value(B,1.38,0.6144,F), lte(F,2).

active(A,vlow) :- atm(A,B,o,45,C).

active(e10,vlow). active(e11,vlow). active(e6,vlow).

active(e16,vlow). active(e14,vlow). active(e3,vlow).

active(e18,vlow). active(e24,vlow). active(e21,vlow).

active(e9,vlow). active(e13,vlow). active(e12,vlow).

active(e4,vlow). active(e7,vlow). active(e8,vlow).

active(e5,vlow).
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F m/M Target equation Equation obtained

0 0.1 θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ θ̈ = −0.002 + 12.644sinθ − 4.543ẍcosθ

ẍ = 0.0− 0.045θ̈cosθ + 0.045θ̇2sinθ ẍ = 0.0− 0.045θ̈cosθ + 0.043θ̇2sinθ

1.0 θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ θ̈ = −0.0003− 4.099ẍcosθ + 1.067θ̇2sinθ

ẍ = 0.0− 0.25θ̈cosθ + 0.25θ̇2sinθ ẍ = 0.0− 0.25θ̈cosθ + 0.247θ̇2sinθ

10.0 θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ θ̈ = 0.0 + 13.182sinθ − 1.581ẍcosθ

ẍ = 0.0− 0.45θ̈cosθ + 0.45θ̇2sinθ ẍ = 0.0− 0.455θ̈cosθ + 0.457θ̇2sinθ

+10 0.1 θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ θ̈ = 0.253 + 14.68sinθ − 1.526ẍcosθ

ẍ = 9.09− 0.045θ̈cosθ + 0.045θ̇2sinθ ẍ = 9.091− 0.045θ̈cosθ + 0.045θ̇2sinθ

1.0 θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ θ̈ = 0.041 + 14.647sinθ − 1.510ẍcosθ

ẍ = 5.0− 0.25θ̈cosθ + 0.25θ̇2sinθ ẍ = 5.0− 0.25θ̈cosθ + 0.251θ̇2sinθ

10.0 θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ θ̈ = 0.0004 + 14.692sinθ − 1.5ẍcosθ

ẍ = 9.09− 0.45θ̈cosθ + 0.45θ̇2sinθ ẍ = 9.094− 0.454θ̈cosθ + 0.453θ̇2sinθ

±10 0.1 θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ (F = +10) θ̈ = 0.583 + 14.667sinθ − 1.56ẍcosθ

θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ (F = −10) θ̈ = −0.633 + 14.686sinθ − 1.565ẍcosθ

ẍ = 9.09− 0.045θ̈cosθ + 0.045θ̇2sinθ (F = +10) ẍ = 9.088− 0.046θ̈cosθ + 0.046θ̇2sinθ

ẍ = −9.09− 0.045θ̈cosθ + 0.045θ̇2sinθ (F = −10) ẍ = −9.09− 0.046θ̈cosθ + 0.047θ̇2sinθ

1.0 θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ (F = +10) θ̈ = 0.556 + 14.338sinθ − 1.57ẍcosθ

θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ (F = −10) θ̈ = −0.574 + 14.314sinθ − 1.573ẍcosθ

ẍ = 5.0− 0.25θ̈cosθ + 0.25θ̇2sinθ (F = +10) ẍ = 5.103− 0.016θ̈cosθ + 0.241θ̇2sinθ

ẍ = −5.0− 0.25θ̈cosθ + 0.25θ̇2sinθ (F = −10) ẍ = −5.001− 0.250θ̈cosθ + 0.249θ̇2sinθ

10.0 θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ (F = +10) θ̈ = 0.075 + 14.639sinθ − 1.503ẍcosθ

θ̈ = 0.0 + 14.7sinθ − 1.5ẍcosθ (F = −10) θ̈ = −0.044 + 14.634sinθ − 1.502ẍcosθ

ẍ = 9.09− 0.45θ̈cosθ + 0.45θ̇2sinθ (F = +10) ẍ = 9.096− 0.454θ̈cosθ + 0.451θ̇2sinθ

ẍ = −9.09− 0.45θ̈cosθ + 0.45θ̇2sinθ (F = −10) ẍ = −9.096− 0.454θ̈cosθ + 0.453θ̇2sinθ

Figure 15: Descriptions of equations obtained by Progol on the pole-and-cart
data.
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