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ABSTRACT 
 
This paper uses Sims’s VAR methodology, as an alternative to Deaton and Muellbauer’s AIDS 
approach, to establish the long-run relationships between I(1) variables: tourism shares, tourism 
prices and UK tourism budget. The VAR deterministic components and sets of exogenous and 
endogenous variables are established, and the Johansen’s rank test is used to determine the 
cointegrated vectors in the system. The structural form of the cointegrated VAR is identified 
and the long-run parameters are estimated under several theoretical restrictions. The restricted 
cointegrated VAR reveals itself a theoretically consistent and statistically robust means to 
analyse the long-run demand behaviour of UK tourists and an accurate forecaster of the 
destinations’ shares. 
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1. INTRODUCTION 

The Almost Ideal Demand System (AIDS) of Deaton and Muellbauer (1980a, 1980b) 

has been used, in tourism demand contexts, for estimating destinations’ tourism shares 

and for verifying consumers theory restrictions of homogeneity and symmetry (e.g. 

Papatheodorou, 1999; De Mello et al., 2001). The model’s specification includes an 

assumed endogenous-exogenous division of variables that may be questionable and the 

use of nonstationary time series. When dealing with nonstationary data, the concept of 

cointegration is synonymous with the concept of long-run equilibrium. Failure to 

establish cointegration often means the non-existence of a steady state relationship 

among the variables and “it is important to recognise the effect of unit roots on the 

distribution of estimators” (Harvey, 1990, p.83). Hence, the estimation results obtained 

with an AIDS model can be deemed spurious and the statistical inference invalid, if the 

assumption of exogenous regressors does not hold and/or no cointegrated relationship(s) 

exist. Consequently, there seems to be a risk involved in the estimation of systems with 

nonstationary data which regress endogenous variables on several assumed exogenous 

variables, without sanctioning their statistical validity with appropriate testing and 

cointegration analysis. Given that the number of cointegrated vectors is unknown, and 

given the possibility of simultaneously determined variables, empirical analysis must go 

one step further and specify econometric models which can be efficiently estimated and 

validly tested within a system of equations approach.  

The main goal of this paper is to contribute an empirical basis for the validation or 

otherwise, of the estimation and inference procedures implemented with an AIDS 

model for the UK tourism demand. We do so by using Sims’ (1980) vector auto-

regressive (VAR) approach to specify the relationship between destinations’ tourism 

shares and their determinants, Johansen’s (1988) reduce rank test to establish the 

number of cointegrated vectors in the system, the findings of Pesaran, Shin and Smith 

(2000) regarding the structural analysis of cointegrated VARs with exogenous I(1) 

variables, and the procedures of Pesaran and Shin (1998) to exactly-identify the long-

run coefficients of the cointegrated vectors in accordance to the theoretical principals 

underlying the AIDS approach. We provide empirical evidence for sanctioning the 

cointegrated VAR and AIDS models as statistically robust and theoretically consistent 

means to produce valid and reliable estimates of the structural parameters underlying 

the relationships between destinations’ tourism shares, tourism prices and an origin’s 
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real per capita tourism budget. In addition, we confirm the competence of the VAR 

model, both in its general unrestricted reduce-form and under the full set of theoretical 

restrictions, for providing accurate forecasts of the destinations’ shares. 

The paper proceeds as follows. Section 2, addresses the main features of the VAR 

methodology, establishes the order of integration and the appropriate lag-length of the 

variables, specifies the (unrestricted) VAR model for the UK tourism demand and 

presents the forecasting results obtained with this specification. Section 3, applies the 

Johansen rank test to determine the number of cointegrated vectors and presents the 

cointegrated structural VAR estimates under exactly- and over-identifying restrictions. 

Section 4, provides the forecasts obtained with the cointegrated VAR and compares 

them with those obtained with the unrestricted VAR and AIDS model of De Mello et al 

(2001). Section 5 concludes. 

2. VAR MODELLING OF THE UK TOURISM DEMAND 

The problem of simultaneous bias is often present in a structural system because this 

specification expresses each endogenous variable as a separate function of other 

endogenous variables, alongside predetermined variables. Since the endogenous 

variables are correlated with the error terms, the structural coefficients cannot be 

consistently estimated by OLS. This problem can be removed if the structural equations 

are solved for the existing endogenous variables, making them dependent solely on 

predetermined variables and stochastic disturbances. Since the former are assumed to be 

uncorrelated with the latter, OLS applied to the reduced-form equations generates 

consistent and asymptotically efficient estimates. Yet, the estimates obtained with this 

procedure are those of the reduced-form and not of the structural-form coefficients 

which are ultimately of interest. Since the latter are combinations of the former, the 

possibility exists that the structural coefficients can be retrieved from the reduced-form 

coefficients. Whether this is the case, brings about the problem of identification. 

Frequently, the “secret” for identification, is related to the use of ‘zero restrictions’. 

Often, however, models seem to be formulated with variables added to equations and 

deleted from others merely to achieve identification, and without much economic 

justification. Critics to multi-equation structural modelling have been centred on the 

role of zero restrictions and on the assumed exogenous/endogenous division of 

variables. Sims (1980), regards zero restrictions as “incredible” and devises a new 
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approach for the specification and estimation of multi-equation systems, known as  

vector autoregressive (VAR) methodology, where all variables are endogenous and no 

zero restrictions are imposed. However, Sims’ VAR is often labelled an a-theoretical 

approach to long-run equilibrium analysis since much of the long-run analysis within 

this ‘purely-statistical’ approach is conducted “without providing an explicit account of 

the type of equilibrium theory that may underlie it”, and “empirical applications of this 

methodology have focused on the statistical properties of the underlying economic time 

series, often at the expense of theoretical insights and economic reasoning” (Pesaran, 

1997, p. 178). Hence, the features that make the VAR a flexible and simple tool, also 

mark an area of weaknesses: a reduced-form VAR is both a truly simultaneous system 

and a simple specification since all it’s variables are regarded as endogenous and it 

requires little more than the choice of appropriate variables and a suitable lag-length. 

Yet, unlike the traditional structural systems, an unrestricted VAR does not use any a 

priori information and, unless the underlying structural model can be identified from the 

reduced-form, the interpretation of its estimates is difficult.  

If autocorrelation exists in the error terms of a VAR, the predetermined right-hand side 

variables can be correlated with the error terms leading to inconsistent estimators. So, 

proper lag-length selection is crucial in VAR modelling. However, the longer the lag-

length, the faster degrees of freedom are eroded and, given the limited number of 

observations generally available in most empirical analysis, the introduction of several 

lags for each variable can be a problem. Still, if an appropriate lag-length can be 

established, the error terms of each equation are serially uncorrelated and, as a VAR 

expresses the current values of each endogenous variable as a function solely of 

predetermined variables and these are not correlated with the error terms, each equation 

can be estimated by OLS providing consistent and asymptotically efficient estimates.1  

A VAR can be viewed as a reduced-form system with no exogenous variables specially 

adapted for forecasting. Even so, an unrestricted VAR model may be over-

parameterised in the sense that some lagged variables in the model could be properly 

deleted on the basis of statistical insignificance. Yet, the advocates of this methodology 

advise against this procedure arguing that the imposition of zero restrictions may 

suppress important information, and that the regressors in a VAR are likely to be highly 

                                                 
1 If the appropriate lag-length is not the same for all variables, or if the equations include different 
regressors, Zellner’s (1962) SURE method is more efficient than OLS for estimating a VAR.  
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collinear so that the t-tests on individual coefficients are not reliable guides for down-

sizing the model. In practice, however, it is impossible to avoid the consideration of 

prior restrictions. Sample size constraints mean that there is always a limit to the 

number of variables and lags included. Even if the sample size is not a problem, the 

possibility of giving some structure to a VAR and using it for economic analysis 

alongside forecasting purposes, requires the imposition of restrictions. Well-founded 

theoretical constraints may help to transform an unrestricted VAR into a restricted 

model “consistent with even highly detailed economic theories” (Charemza and 

Deadman, 1997, p.157). The consideration of such restrictions allows for identification 

and economic interpretation of the structural parameters in a way not possible with the 

reduced-form. Furthermore, a priori information concerning the parameters allows for 

testing restrictions which can improve the precision of estimates and reduce the forecast 

error variance. Hence, even if forecasting is the main objective, the down-sizing of an 

over-parameterised VAR can help to improve results.  

When empirical analysis on the existence of long-run relationships among more than 

two non-stationary series is conducted and there are doubts about the exogenous nature 

of regressors, an appropriate modelling strategy consists of treating all variables as 

endogenous within a reduced-form VAR framework. Then, using one or more of the 

methods available, tests for the exogeneity of the set of variables in doubt can be carried 

out. Once the endogenous-exogenous division is established, the Johansen approach can 

be used to test for the existence of cointegrated relationship(s). The number of 

cointegrated vectors found establishes the number of meaningful long-run relations in 

the system. The estimates of the long-run coefficients can be assessed by imposing 

restrictions to exactly-identify the underlying structural VAR. Once the structural form 

is identified, additional restrictions making the VAR compatible with specific economic 

theories, can also be tested.  

We specify a general unrestricted VAR model of the UK tourism demand for France, 

Spain and Portugal which includes the variables in vector 

[ ]tttttttt E,PP,PS,PF,WP,WS,WFz = . Where WF, WS and WP represent, respectively, 

the UK tourism expenditure shares of France, Spain and Portugal; PF, PS and PP 

represent tourism prices in France, Spain and Portugal and E represents the UK real per 

capita tourism budget. All variables in zt, and data sources are described in Appendix A, 

according to the definitions and data sources used in De Mello et. al. (2001). 
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The specification of a VAR model starts with establishing the order of integration and 

the appropriate lag-length of its variables. Hence, we start by determining whether the 

time series in zt are stationary and the appropriate lag-length of the VAR. All 

estimations and statistical tests implemented below were computed using Pesaran and 

Pesaran (1997) Microfit 4.0. 

3.1. Order of integration of the variables included in the VAR 

Table 1 shows the statistics and respective critical values at the 5% significance level of 

the Dickey-Fuller (1979, 1981) (DF) and Augmented Dickey-Fuller (ADF) unit root 

tests for the levels and first differences of variables WF, WS, WP, PP, PS, PF and E. It 

also shows the Akaike Information Criterion (AIC) and Schwarz Bayesian Criterion 

(SBC) for the lag-length selection of the DF test equations. 

******************* 
Insert Table 1 here 

******************* 

The tests indicate that all variables in levels are non-stationary and, except for ∆PP, all 

variables in first differences are stationary. This means that according to the DF and 

ADF tests, all variables, except  PP, can be considered I(1) variables. Doubts about the 

order of integration of variables PP and ∆PP can be cleared with the Phillips-Peron 

(1988) test. The Phillips-Peron test is based on a simple DF regression, such that 

 1t10t PPPP −β+β=∆                (1) 

The OLS estimation results for equation (1) are (t-ratios in brackets), 

 1tt PP14139.00079.0PP̂
)4177.1()536.0( −−

−=∆   

To carry out the non-parametric correction of the t statistic proposed by Phillips and 

Peron, we use the White and Newey-West covariance matrix and compute the adjusted 

variances. The estimates of regression (1) using the adjusted covariance matrix are 

 1tt PP14139.00079.0PP̂
)9039.2()5112.0( −−

−=∆   

The adjusted t ratio for β1 coefficient is now the valid statistic to compare with the 

critical value. As –2.9039< –2.971 we cannot reject the hypothesis of PP being non-

stationary. This confirms the result obtained with the ADF test in Table 1 for the same 
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variable. However, the problem resides in that the ADF test indicates ∆PP to be non-

stationary as well. So, we perform the Phillips-Peron test for ∆PP, with regression: 

 1t10t PP''PP −∆β+β=∆∆               (2) 

The OLS estimation results for regression (2) are 

 1tt PP51046.0001692.0PP̂
)4803.2()1211.0( −∆−−=∆∆

−−
  

The estimation results for (2) using the adjusted covariance matrix are 

 1tt PP51046.0001692.0PP̂
)9587.3()1576.0( −∆−−=∆∆

−−
 

As –3.9587>–2.975 we cannot reject the hypothesis of ∆PP being stationary. Hence, 

the variable in levels PP is I(1) and we can consider all variables in levels as I(1). 

3.2 Determination of the order of the VAR 

Given the number of variables and sample size, the lag-length (p) for this VAR model 

cannot exceed two. Given these limitations, we used the AIC and SBC criteria and the 

adjusted (for small samples) Likelihood Ratio (LR) test for selecting the order of the 

VAR with the maximum lag-length permitted. The LR test rejects order zero but cannot 

reject a first order VAR. The SBC criterion clearly indicates the order of the VAR to be 

one. The AIC criterion indicates p to be two, but by a very small margin. So, we select a 

order one VAR. Yet, it is always prudent to examine the residuals of the equations in 

order to check for serial correlation. Table 2 presents the LR statistic and the two 

selection criteria for choosing the lag-length (p). 

******************* 
Insert Table 2 here 

******************* 

3.3. The unrestricted VAR specification of the UK demand for tourism  

The reduced form of a first order unrestricted VAR of the UK tourism demand for 

France, Spain and Portugal (denoted VAR I) can be written as: 2 

 t1t10t *zAA*z ∈++= −               (3) 

where z*t = [WFt , WSt , PPt , PSt , PFt , Et]  
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Since the share variables observations (WFt, WSt and WPt) sum up to unity, one of the 

share equations is omitted. We omit the equation for the share of Portugal (WPt). The 

estimation results are invariant whichever equation is excluded and, by the adding-up 

property, all coefficient estimates of the omitted equation can be retrieved from the 

coefficient estimates of the other two.  

The statistical quality of VAR I model is accessed by estimating (3) and computing 

relevant diagnostic statistics. Table 3 shows the estimation results (t ratios in brackets), 

the AIC and SBC criteria and a set of statistics - adjusted R2, F statistic and χ2 statistic 

for diagnostic tests of serial correlation, functional form, error normality and 

heteroscedasticity (p values in brackets) - for all equations included in the basic 

unrestricted VAR I structure. 

******************* 
Insert Table 3 here 

******************* 

There is no statistical evidence of serial correlation in VAR I equations. Hence, the lag-

length selected seems to be adequate. However, the tests indicate problems in the 

functional form and error normality for some equations. We are interested in the 

expenditure share equations and functional form problems for these, appear severe.  

In an AIDS system, the tourism shares of France (WF), Spain (WS) and Portugal (WP) 

would be the only endogenous variables, and changes in these variables would be 

explained by a set of exogenous regressors which includes tourism prices (PF, PS and 

PP) and the UK real per capita tourism expenditure (E). Within a VAR specification, we 

question the assumed exogeneity of the price variables. However, there seems to be no 

obvious theoretical or empirical basis for challenging the multi-stage budgeting process 

underlying the rationality of an AIDS expenditure share system, which sets the variable 

‘UK real per capita expenditure’ as an exogenous determinant of the demand shares in 

(3). The reasons are as follows. 

A VAR model sets all its variables as endogenous. Hence, a bi-directional cause-effect 

relationship (feedback) between them should exist. In a tourism demand context, 

however, even if it is reasonable to consider that changes in the UK real per capita 

expenditure affect the tourism shares of important UK holiday destinations such as 

                                                 
2 This basic specification of the unrestricted VAR I is later subjected to modifications due to the 
introduction of dummy variables and the exogeneity assumption concerning some regressors. 
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France, Spain or Portugal, it does not seem realistic to expect that changes in these 

shares affect the way in which UK consumers allocate their budgets. Empirical evidence 

seems to support this line of reasoning. As it can be inferred from the estimation results 

of the equation for Et in Table 3, the 99% of this variable’s variations explained by the 

model lie exclusively on its own lagged value. No other variable in that equation is 

individually or jointly statistically significant. In fact, the F test for the joint significance 

of all explanatory variables, excluding Et-1, presents a value of 0.86 implying that the 

hypothesis of these variables’ coefficients being zero cannot be rejected. Furthermore, 

the estimation results of the VAR equations for WFt and WSt indicate that the lagged 

value of Et does not affect significantly the current values of these tourism shares.   

To investigate further the features of the link between the expenditure shares (Wit) and 

the UK real per capita tourism budget (Et), we analyse the relationships between the 

error term of the conditional model for Wit and the stochastic disturbance of the 

assumed data generating process (d.g.p.) of Et. 

Consider that the ith share equation is 

  t1t2t10t uiWiEWi +α+α+α= −   where i = F, S, P         (4) 

and assume that Et is a stochastic variable which underlying d.g.p. is 

 t1t1t EE ε+β= −   ;  β1<1  and  εt → N(0, σ2)         (5) 

If uit and εt are not correlated we can say that EV(uit, εs )=0 for all t, s (where EV stands 

for expected value, not to be confused with variable E). Then, it is possible to treat Et as 

if it was fixed, that is, Et is independent of uit such that EV(Et,uit)=0. Hence, we can 

treat Et as exogenous in terms of (4), with the current value of the UK real per capita 

expenditure (Et) being said to Granger-cause Wit. Equation (4) is a conditional model 

since Wit is conditional on Et, with Et being determined by the marginal model (5).3  

 “A variable cannot be exogenous per se” (Hendry, 1995, p.164). A variable can only 

be exogenous with respect to a set of parameters of interest. Hence, if Et is deemed to be 

exogenous with respect to parameters αj (j = 0, 1, 2) in (4), the marginal model (5) can 

be neglected and the conditional model (4) is complete and sufficient to sustain valid 

                                                 
3 As noted in Harris (1995), if (5) is reformulated as t1t21t1t WiEE εββ ++= −− , EV(Et, uit )=0 still holds. 
However, as past values of Wit now determine Et, Et can only be considered weakly exogenous in (4). 
The current value Et still causes Wit but not in the Granger sense, since lags of Wit now determine Et. 
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inference. So, knowledge of the marginal model will not significantly improve the 

statistical or forecasting performance of the conditional model. Following this line of 

reason, we run regression (4) for the expenditure shares of France, Spain and Portugal 

and regression (5) as a representation of the d.g.p. of Et. We retrieve the residual series 

of these four regressions, namely uFt , uSt , uPt standing for the residual series of (4) for, 

respectively, France, Spain and Portugal, and εt standing for the residuals of (5). We 

then run regressions of the current and lagged values (up to the fifth lag) of the residuals 

uit (i = F, S, P) on the current and lagged (up to the fifth lag) values of εt. The estimation 

results of all 90 regressions indicate no significant relationship linking the current or 

lagged residuals of the conditional models to the current and lagged residuals of the 

marginal model. These results can be viewed as an indication that knowledge of the 

marginal model does not improve the statistical or forecasting performance of the 

conditional (on Et-1) equations for WFt, WSt, PPt, PSt and PFt in the VAR and so Et may 

be treated as exogenous in the VAR given by (3). 

The claim that feedback effects might be absent in the relationships between variables 

‘UK real per capita expenditure’ (Et) and expenditure shares (Wit, i = F, S), can be 

further investigated using the causality concept proposed by Granger (1969). A test for 

causality is related to whether the lags of a variable are statistically significant in the 

equation of another variable. Using Griffiths et al.’s (1992, p. 695), definition “a 

variable y1t is said to be Granger-caused by y2t, if current and past information on y2t 

help improve forecasts in y1t”. 4 Hence, if the lagged values of y2t do not improve the 

forecasts of y1t, i.e., if the lagged values of y2t are statistically insignificant in the 

reduced form equation for y1t, then y2t does not Granger-cause y1t. 

A multivariate generalisation of the Granger-causality test can be used to establish if 

one or more variables in a VAR should or should not integrate the group of endogenous 

variables. The use of the LR statistic for testing the null that the coefficients of a subset 

of variables in a VAR are zero, is called ‘block Granger non-causality test’. This test 

provides a statistical measure of the extent to which lagged values of a set of variables 

(say Et), are important in predicting another set of variables (say Wit), once lagged 

values of the latter (Wit-1) are included in the model. The LR statistic value for block 

Granger non-causality of variable Et, testing the null that the coefficients of Et-1 are zero 

                                                 
4 Granger’s causality concept does not imply a cause-effect relation. Indeed, “causality has a meaning 
more on the lines of ‘to predict’ rather than ‘to produce” (Charemza and Deadman, 1997, p. 165).  
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in the block equations for WFt, WSt, PPt, PSt and PFt, is χ2(5)=10.578. As the 5% 

critical value is 11.071, the null cannot be rejected. 

Given the above, we exclude Et from the set of endogenous variables and re-formulate 

the VAR under this assumption. This new version of the model is denoted VAR II. 

Table 4 shows the model’s estimates and the selection criteria and diagnostic statistics 

previously used to access its quality. The selection criteria and diagnostic tests indicate 

VAR II to be statistically more robust than VAR I. However, problems with the 

functional form of the share equations still remain. 

******************* 
Insert Table 4 here 

******************* 

There is cause to believe that events in the 1970s (change of political regimes in 

Portugal and Spain and the oil crises) may have affected the time path of variables 

included in the VAR. Additionally, the integration process of Spain and Portugal in the 

European Union (EU) in 1986 is likely to have affected the UK tourism demand for its 

southern neighbours. To account for the 1970s events we add a dummy variable D1 

taking the value of unity in the period 1975-1981 and zero otherwise. To account for the 

integration of the two Iberian countries in the EU, we use dummy variables D2 (taking 

the unity value in the period 1982-1997 and zero otherwise) and D3 (taking the unity 

value in the period 1989-1997 and zero otherwise) to split the integration process into 

two sub-periods: the integration period (1982-1988) and the pos-integration period 

(1989-1997). These dummies are assumed to be exogenous. This third version of the 

VAR is denoted VAR III. Table 5 shows the AIC and SBC criteria and the same set of 

diagnostic statistics used before to access the quality of the VAR III. 

******************* 
Insert Table 5 here 

******************* 

The results in Table 5 indicate that the statistical quality of VAR III over-performs 

those of VAR I and VAR II, particularly with respect to the expenditure share 

equations. Additionally, the LR test for block Granger non-causality of variable Et 

performed on VAR III specification, confirms the results of the similar test performed 

on VAR I. The LR test presents now the statistic value of χ2(5)=8.376, which is well 

below the 5% critical value (11.071), further supporting the null that the coefficients of 

Et-1 are statistically insignificant in the block equations of the VAR. The tests results 
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concerning the significance of the intercept, the joint significance of the dummy 

variables, and the Granger block non-causality of variable Et-1 are shown in Table 6. 

The first column presents the null hypothesis for each test and shows the variables 

entering the VAR under the “unrestricted” hypothesis (U), and the “restricted” null 

hypothesis (R) (for simplicity, the time subscripts are omitted). In each case, the set of 

endogenous variables is separated from the set of deterministic components and 

exogenous variables by the symbol ‘&’. The second column presents the maximum 

value of the likelihood function (ML) for the unrestricted and restricted alternatives. In 

the third column the LR statistic is computed. Under the null, LR is asymptotically 

distributed as χ2 with degrees of freedom (i) equal to the number of restrictions. The 

null is rejected if LR statistic is larger than the relevant critical value. 

******************* 
Insert Table 6 here 

******************* 

Although VAR III is statistically more robust than VAR I, the latter is a more general 

model, not being restricted in any way, while the former is a specific model, being a 

partial system conditioned on exogenous variables. Hence, it is interesting to use both 

models for comparison purposes in accessing the features of the UK tourism demand for 

France, Spain and Portugal, within a reduced-form VAR specification. However, a 

reduced-form VAR may not be the ideal means to conduct economic analysis. First, 

because an a-theoretical model is unlike to produce estimation results interpretable 

within the limits of economic theory. Second, because the economic interpretation of 

the structural parameters is only possible if the underlying structural model is identified 

from the reduced-form. Finally, because the lag-structure of the reduced-form is likely 

to be over-parameterised causing imprecision in the coefficients’ estimates and 

obscuring the economic meaning of the long-run parameters. However, for forecasting 

purposes, a simple reduced-form VAR has its advantages. Hence, we use VAR I and 

VAR III reduced-forms for forecasting rather than for economic analysis.  

3.4. Forecasting ability  of the reduced-form VAR I and VAR III models 

To obtain forecasts for the UK tourism shares of France, Spain and Portugal from VAR 

I and VAR III, we estimate these models for the period 1969-1993, using the last four 

observations for forecasting. Tables 7, 8 and 9 report the actual and forecasted values 

and the forecast errors for, respectively, the shares of France, Spain and Portugal, and a 
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number of summary statistics (mean absolute prediction errors – MAE; mean squared 

prediction errors – MSE; root mean squared prediction errors – RMSE) to evaluate the 

models’ forecasting accuracy. The forecast errors and all quality criteria indicate VAR I 

to be a better forecaster than VAR III. 

************************ 
Insert Tables 7, 8, and 9 here 
************************ 

The fact that the variables included in the VAR models are I(1) implies that estimation, 

statistical tests and forecasting procedures are strictly valid if cointegrating 

relationship(s) exist linking the variables. Therefore, the next step for proceeding the 

empirical analysis is to establish whether cointegrated vectors exist within the VARs. 

To do so we use the Johansen’s cointegration rank test.  

Besides establishing the procedure for cointegration rank test, the Johansen approach 

provides a general framework for identification, estimation and hypothesis testing in 

cointegrated systems (see Johansen, 1988, 1991, 1995 and 1996 and Johansen and 

Juselius, 1990 and 1992). Hence, given a cointegrated system, this approach provides a 

method for identifying the structural relationships underlying the unrestricted reduced-

form. However, the Johansen’s ‘empirical process’ to exactly-identify the long-run 

coefficients may not always be adequate, particularly in economic contexts where 

theory provides strong, sensible and testable restrictions (Pesaran and Shin, 1998). In 

these cases, the cointegrated vectors must be subject to exact- and over-identifying 

restrictions suggested by theory and other relevant a priori information, rather than 

being subject to some normalisation process that does not consider the theoretical and 

empirical framework within which the phenomenon evolves. As Harris (1995, p.117) 

points out “what is becoming increasingly obvious is the need to ensure that prior 

information motivated by economic arguments forms the basis for imposing restrictions, 

and not the other way around”. This is particularly important in a tourism context 

involving an AIDS system of equations regressing (m-1) tourism shares on m tourism 

prices and an origin’s per capita tourism budget. In this case, the number of long-run 

relationships predicted by theory is (m−1), i.e., the number of equations in the system. 

Hence, if theory is right, the cointegration tests involving a VAR of the UK tourism 

demand with variables WFt, WSt, PPt, PSt, PFt and Et should indicate that the model’s 

relevant long-run relationships are those established by the share equations. 
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Furthermore, the identification process of the structural equations should confirm that 

their steady-state form is that of an AIDS model’s equations. Consequently, in either 

VAR I and VAR III, we expect to find exactly two cointegrated vectors and to identify 

the structural parameters with restrictions that match those of the normalisation process 

used for identifying the share equations of an AIDS model. If this is the case, then we 

can subject the long-run relationships to further hypothesis testing, such as homogeneity 

and symmetry, and contribute an empirical basis for the validation of the principals of 

consumer theory within an AIDS system framework using a VAR specification.  

4. JOHANSEN’S REDUCED RANK TEST 

Let zt be a vector of n potentially endogenous variables. Then, it is possible to model zt 

as an unrestricted VAR involving up to p-lags such that  

 ),0(INuuzA...zAz ttptp1t1t ∑→+++= −−            (6)    

where zt is a (n x 1) vector and each of the Ai is a (n x n) matrix of parameters. The 

VAR model in (6) can be reformulated as a vector error-correction (VEC) such that: 

 tpt1pt1p1t1t uzz...zz +Π+∆Γ++∆Γ=∆ −+−−−             (7) 

where 1p,...,1i),A...AI( i1i −=−−−−=Γ  and  )A...AI( p1 −−−−=Π = αβ′ 

α represents the speed of adjustment matrix and β is the matrix of long-run coefficients 

such that, β′zt-p implicit in (7) represents up to (n−1) cointegration vectors in the 

multivariate VAR. These cointegrating vectors define the relationships which ensure 

that the variables in zt converge to their long-run solutions. If the variables in zt are I(1) 

then, ∏zt-p in (7) must be stationary for ut ∼ I(0) to be a white noise. This happens when 

∏ = αβ′ has reduced rank, that is, when there are r ≤ (n−1) cointegrating vectors in β 

alongside (n−r) nonstationary vectors. Hence, testing for cointegration amounts to 

determining the number of r linearly independent columns in ∏. 

The hypothesis that there are at most r cointegrating vectors (n−r nonstationary 

relationships) can be tested with the eigenvalue trace statistic (λtrace) which null is r=q 

(q=0, 1,…, n−1) against the alternative r≥q+1, and/or the maximum eigenvalue statistic 

(λmax) which null is that there are r=q cointegrating vectors against the alternative r=q+1 

exist. The results of these tests are given in Table 10. The first column shows the 
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eigenvalues associated with each of the I(1) variables, ordered from highest to lowest, 

necessary to compute λmax and λtrace. The second column shows the various hypothesis 

to be tested, starting with no cointegration (r=0 or n−r=6 in the case of VAR I, and r=0 

or n−r=5 in the case of VAR III) and followed by increasing numbers of cointegrated 

vectors. The following columns show the estimated λmax and λtrace and respective 5% 

and 10% critical values. The last column presents the SBC model selection criterion. 

******************* 
Insert Table 10 here 

******************* 

For VAR I, both the λmax and λtrace statistics give evidence, at the 5% level, of two 

cointegrated vectors corresponding to the higher eigenvalues attached to the share 

equations. Both statistics associated with the null of  r=0 and r=1 reject these hypothesis 

(statistic value>critical value) but cannot reject r=2 (statistic value<critical value). The 

SBC criterion further supports these findings by selecting the model with two 

cointegrated vectors. For VAR III, at the 5% level, λmax statistic suggests the existence 

of two cointegrating vectors while λtrace statistic does not reject the hypothesis of only 

one vector. This disagreement is not uncommon, particularly in cases of small samples 

and added dummy variables. However, we have enough evidence supporting the choice 

of r=2: we have λmax statistic clearly rejecting the existence of only one in favour of two 

cointegrated vectors; we have SBC criterion selecting VAR III model with two 

cointegrating vectors; we have theory suggesting the existence of two and not one long-

run relationships which is unmistakably supported by both test statistics and selection 

criterion in the more general VAR I model. Hence, given that evidence against theory 

prediction seems weak, we proceed by setting r=2 for both VAR I and VAR III. 

To identify the structural form of the two cointegrated vectors we follow Pesaran and 

Shin (1998) and use the theoretical exact-identifying restrictions implicit in the share 

equations’ of an AIDS model. Consider the following notation for matrix β of the two 

cointegrating vectors in VAR I with variables WFt WSt PPt PSt PFt Et and intercept, 

 







βββββββ
βββββββ

=β
72625242322212

71615141312111
I'   

and for matrix β of the two cointegrating vectors in  VAR III with variables WFt, WSt, 

PPt, PSt, PFt, Et, D1, D2, D3 and intercept 
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 







ββββββββββ
ββββββββββ

=β
102928272625242322212

101918171615141312111
III'  

The theoretical restrictions which exactly-identify the cointegrated vectors as the share 

equations of an AIDS specification in both VAR I and VAR III models are given by: 

 








−=β=β
=β−=β

10
01

:H
2221

1211
AIDS   

The coefficients estimates of the two exactly-identified cointegrated vectors in VAR I 

and VAR III models are presented in Table 11 (asymptotic t ratios in brackets). The 

‘third vector’ corresponds to the share equation for Portugal, and was retrieved from the 

estimates of the other two applying the adding-up property. 

******************* 
Insert Table 11 here 

******************* 

There is a sharp difference between the estimates of VAR I and VAR III models, both 

in magnitude, statistical relevance and in their expected signs. For instance, VAR I 

estimates indicate all coefficients as statistically irrelevant at the 5% level in the share 

equation for Portugal, and in the share equations for France and Spain only the price of 

Spain and the intercept as significant at the 5% level. In the equation for Portugal, the 

own-price and intercept estimates have ‘wrong’ signs and implausible magnitudes and 

in the equation for France, implausible magnitude is also the case for the intercept 

estimate. In contrast, the estimates of the cointegrated VAR III model are overall 

statistically relevant, present the expected signs and magnitudes and give plausible 

information about how the events represented by the dummy variables affected the UK 

tourism demand for the destinations. Indeed, the coefficients of D1 indicate that the oil 

crises and political changes in Portugal and Spain, affected significantly and negatively 

UK tourists preferences for these destinations, favouring France instead in 1975-1981. 

The coefficients of D2 indicate that Spain and Portugal’s integration process in the EU 

caused UK tourism flows to divert from France to the Iberian peninsula, although 

favouring more Spain than Portugal. The D3 coefficients, representing the post-

integration period, indicate a recovery of the share for France at the expense of Spain’s 

which steadily declines (the opening of the channel tunnel in 1994 may also have 

contribute for this result). In the same period, the share of Portugal shows an increase 

although not statistically significant. 
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We showed that the intercept is a relevant deterministic component of the VAR 

specifications. We considered that time trends should not be included as there is no 

statistical support for their presence. We found statistical support for not rejecting the 

possibility of treating Et as exogenous, and for including variables D1, D2 and D3 as 

statistically relevant regressors. VAR III model integrates all these features in its 

specification while VAR I considers only the former two. Hence, the consistency and 

plausibility of results obtained with VAR III in contrast with those of VAR I, should be 

expected. Hence, we consider VAR I not to be an appropriate means to supply reliable 

information on the long-run demand behaviour of UK tourists and proceed the analysis 

with the cointegrated VAR III model.  

In many cases, and particularly in demand systems, “the focus of interest is on a set of 

hypothesis relating to the long-run structure of the model, which is quite independent of 

any short-run dynamics fitted to the empirical model” (Chambers 1993, p.727). 

Likewise, in the case of a VAR system for the UK tourism demand, our interest is 

focused on the structural equations upon which parameter restrictions are to be imposed 

to test theoretical hypothesis on the long-run equilibrium relationships. Theory suggests 

that homogeneity and symmetry, reflecting the rationality of consumers behaviour, 

should hold in a system of demand equations. In addition, and according to De Mello et 

al.’s (2001) assumption about the competitive behaviour of neighbouring destinations, 

price changes in France (Portugal) should not affect UK tourism demand for Portugal 

(France), while price changes in Spain should affect significantly UK tourism demand 

for both France and Portugal. To test these hypothesis we use the LR statistic on the 

cointegrated VAR III model. Table 12 shows the tests results for the hypothesis of null 

cross-price effects between France and Portugal, homogeneity and symmetry and all 

these hypothesis simultaneously. The tests indicate that the set of hypothesis cannot be 

rejected. Hence, the cointegrated VAR III complies with the theoretical restrictions of 

homogeneity and symmetry and with the assertion of null cross-price effects between 

the share equations for France and Portugal. 

******************* 
Insert Table 12 here 

******************* 

The coefficients estimates for the two cointegrated vectors of VAR III under the full set 

of restrictions are given in Table 13 (asymptotic t ratios in brackets). The results show 

the cointegrated VAR III as a statistically robust, theoretically consistent and 
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empirically plausible model, indicating it as an adequate basis for analysing the long-

run behaviour of the UK tourism demand for France Spain and Portugal.  

******************* 
Insert Table 13 here 

******************* 

Even so, a more detailed investigation requires the analysis of the relevant elasticity 

values. We compute the expenditure, and uncompensated own- and cross-price 

elasticities, using the long-run estimates of the cointegrated VAR III under the full set 

of restrictions and the formulae given in Appendix A. Table 14 presents these and the 

corresponding estimates obtained with the AIDS model of De Mello et al. (2001).5  

******************* 
Insert Table 14 here 

******************* 

The elasticities estimates of the VAR and AIDS models are similar. The expenditure 

elasticities are close to unity for all destinations in both models and except in the VAR 

equation for Spain, the own-price elasticity estimates are close to –2. In the VAR 

equation for Spain this estimate is roughly half of that of its neighbours. The VAR 

cross-price elasticities estimates give the same indications as those of the AIDS model. 

For instance, insignificant cross-price effects between the equations for Portugal and 

France, indicating that the UK demand for Portugal (France) is not sensitive to price 

changes in France (Portugal), and significant cross-price effects between Spain and 

France and Spain and Portugal, indicating bilateral competitive behaviour. These cross-

price estimates also imply that the UK demand for Portugal or France is more sensitive 

to price-changes in Spain than that for Spain is to price changes in its neighbours. 

The results substantiate the importance of the VAR approach and the Johansen’s rank 

test in finding statistical support for the existence of the two cointegrated vectors which 

endorse the share equations of the AIDS system as the only meaningful long-run 

relationships. In addition, as showed by Pesaran and Shin (1998), also in the case of 

tourism share equations the identification of the long-run structural model requires a 

priori information provided by economic theory and knowledge of pragmatic aspects 

concerning the relationships between the countries involved. Exogeneity of regressors, 

market conditions, policy regulations, institutional aspects, geographical attributes, 

                                                 
5 We use De Mello et al.’s (2001) estimates for the ‘second period’ (1980-1997), as these correspond to 
more recent behaviour of the UK tourism demand. 
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political upheavals and economic instability, need to be appropriately modelled and 

tested within a restricted VAR approach to obtain theoretically consistent, empirically 

plausible and statistically reliable estimates for the structural parameters. As the 

cointegrated VAR III model fully complies with the theory predictions underlying the 

AIDS approach, the similarity of their estimates is not surprising. This similarity gives 

further support to the AIDS approach as a theoretical and empirical robust means for 

economic analysis of long-run tourism demand. However, the analysis is not complete 

without accessing the forecasting ability of the cointegrated VAR III.  

5. FORECASTING WITH A COINTEGRATED VAR SPECIFICATION 

For assessing the forecasting ability of cointegrated VAR III under the full set of 

restrictions (denoted hereafter by ‘over-VAR’) we estimate it for the period 1969-1993, 

leaving the last four observations for forecasting purposes. To compare the forecasting 

accuracy of this model with that of the unrestricted VAR I of section 2 (denoted 

hereafter ‘pure-VAR’), and that of the De Mello et al.’s (2001) AIDS model, tables 15, 

16 and 17 show the actual values, forecasts and forecast errors of, respectively, the 

tourism shares of France, Spain and Portugal.6 The corresponding summary statistics 

MAE, MSE and RMSE are reported in table 18. 

******************************* 
Insert Tables 15, 16, 17, and 18 here 

******************************* 

For an overview of the three models’ forecasting performance we display Figures 1, 2 

and 3 showing a plot of the actual and forecasted values of the destinations’ tourism 

shares obtained with the three models.  

************************** 
Insert Figures 1, 2, and 3 here 

************************** 

For the shares of France and Spain, the over-VAR is the best forecaster, followed by the 

AIDS model. For the share of Portugal, the pure-VAR is the best forecaster followed by 

the over-VAR. For this share, however, the differences between the two VAR models’ 

forecasts are so small that they can be considered equivalently as excellent forecasters. 

                                                 
6 The forecasts reported in De Mello et al. (2001) were computed for the last three observations (1995-
1997). The VAR forecasts in this study are computed for the last four observations (1994-1997). Hence, 
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Hence, we find VAR III specification under the full set of theoretical restrictions as the 

best forecasting device. The forecasting performance of the AIDS model is also 

remarkable, particularly in the cases of the share equations for France and Spain. 

Although the pure-VAR predictions are not as accurate as the other models’ they are, 

even so, fairly precise. This brings out the unrestricted VAR forecasting ability 

alongside its remarkable qualities of form simplicity, estimation ease and assumption 

minimalism. Indeed, if the main purpose of a research is to provide fairly accurate 

forecasts of expenditure shares, the estimation of a unrestricted reduce-form VAR with 

the appropriate variables and lag-length, might be considered the preferable approach, 

since the quality differences do not seem to justify undergoing the complexities of 

cointegration testing and identification procedures of the structural model.  

6. CONCLUSION 

Economic models portraying long-run relationships of time series variables are a central 

aspect of theoretical and empirical research. Part of the role of applied work is to 

establish appropriate formal specifications which can be considered valid means to 

estimate the equilibrium path of relevant variables and to test competing theoretical 

hypothesis underlying those specifications. However, estimation of equation systems 

involving long-run relationships of nonstationary data, dubious assumptions on the 

exogeneity of regressors and the inclusion of zero restrictions with poor economic basis, 

may lead to invalid inference and forecasting procedures. Yet, inference based on such 

systems can be validated if one or more cointegrated relationships exist and the 

exogeneity assumptions and zero restrictions have theoretical and statistical support. 

Hence, tests must be performed to determine whether a system is cointegrated and its 

underlying assumptions are statistically valid and, if so, proceed with suitable 

estimation techniques which can provide valid estimates for its structural parameters. 

Besides establishing a test procedure for determining the number of cointegrated 

vectors, the Johansen approach provides a general framework for identification, 

estimation and hypothesis testing of the structural model within a VAR specification. 

However, the Johansen’s identification process may not be appropriate in economic 

contexts where theory provides specific ‘rules’ to identify the structural parameters of 

                                                 
to compare the forecasting ability of the VAR and AIDS models on an equal basis, we re-estimate the 
AIDS model of De Mello et al. for the period 1969-1993, and obtain forecasts for the period 1994-1997.  
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the cointegrated vectors. The AIDS model of the UK tourism demand for France, Spain 

and Portugal, is a system of equations which includes nonstationary I(1) series and 

assumes exogeneity for all its right-hand side variables. The implications of these 

features can risk the validity of its estimation results, statistical inference and forecasts, 

if no cointegrating relationships exist among the variables and/or the regressors’ 

exogeneity assumption does not hold. As an alternative to such an AIDS model, we 

specified a reduced-form unrestricted VAR system and used statistical tests to establish 

the lag-length, deterministic components and the endogenous/exogenous division of its 

variables. Once the appropriate form of the VAR was in place, we used the Johansen 

rank test to determine the number of cointegrated vectors. Theory underlying a system 

of equations regressing two destinations’ tourism shares on tourism prices and an 

origin’s tourism budget, predicts the existence of exactly two long-run (cointegrated) 

relationships. Therefore, in a VAR system with the same variables, two cointegrated 

vectors should be accounted for. The cointegrated rank test provided statistical evidence 

to support the theory predictions. The theoretical framework of an AIDS system of the 

UK tourism demand also establishes the structural form of the long-run relationships it 

predicts. Hence, the structural parameters of the cointegrated vectors in the VAR should 

be exactly-identified with restrictions matching those of the normalisation process used 

to identify the tourism share equations of an AIDS system. This was done and the 

resulting structural form of the cointegrated VAR was then subject to additional 

restrictions such as homogeneity, symmetry and null cross-price effects between the 

share equations for Portugal and France. These restrictions could not be rejected. 

Consequently, evidence was obtained on the capability of the cointegrated VAR to 

comply with theoretical predictions underlying the rationality of the UK tourism 

demand behaviour and the destinations’ competitive conduct. The estimates of the 

structural coefficients of the cointegrated VAR under the full set of restrictions were 

then used to compute the expenditure, own- and cross-price elasticities estimates of the 

UK tourism demand. These estimates, similar to the corresponding ones obtained with 

the AIDS model of De Mello et al. (2001), proved to be statistically relevant and 

empirically plausible.  

Given the theoretical consistency and statistical robustness of the cointegrated VAR 

model under the full set of restrictions, its excellent predictive ability was expected. 

Indeed, the quality criteria measuring the forecasts’ accuracy of this model’s indicate it 
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as the best forecasting model, when compared with the reduce-form “pure” VAR and 

the AIDS models. Nevertheless, these same quality criteria suggest the reduced-form 

(unrestricted) VAR to be a fairly accurate forecasting device. This finding gives support 

to the claimed competence of the VAR approach for forecasting purposes, and 

emphasizes the valuable qualities of modelling simplicity and estimation ease of a 

“pure” unrestricted VAR for forecasting purposes.  
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Table 1: Unit root DF and ADF tests for the variables WF, WS, WP, PF, PS, PP and E 

Variable Test Statistic AIC criterion SBC criterion Critical value 

ADF(0) -2.100 54.21* 52.87* -2.971 WF 
ADF(1) -2.008 50.81 48.87 -2.975 
ADF(0) -5.163 49.71* 48.42* -2.975 

∆WF 
ADF(1) -3.284 46.36 44.47 -2.980 
ADF(0) -1.965 52.09* 50.76* -2.971 WS 
ADF(1) -1.756 48.71 46.77 -2.975 
ADF(0) -5.187 48.08* 46.72* -2.975 

∆WS 
ADF(1) -3.510 44.78 42.89 -2.980 
ADF(0) -1.738 86.03* 84.70* -2.971 WP 
ADF(1) -1.458 81.64 79.69 -2.975 
ADF(0) -5.429 81.49* 80.20* -2.975 

∆WP 
ADF(1) -4.827 78.25 76.36 -2.980 
ADF(0) -1.869 32.98* 31.64* -2.971 PF 
ADF(1) -2.311 32.24 30.30 -2.975 
ADF(0) -3.435 30.59* 29.23* -2.975 

∆PF 
ADF(1) -3.417 28.69 26.80 -2.980 
ADF(0) -2.083 33.50* 32.17* -2.971 PS 
ADF(1) -2.428 31.74 29.80 -2.975 
ADF(0) -3.788 29.78* 28.48* -2.975 

∆PS 
ADF(1) -2.968 27.24 25.35 -2.980 
ADF(0) -1.418 31.74 30.41 -2.971 PP 
ADF(1) -2.605 34.17* 32.23* -2.975 
ADF(0) -2.480 31.81* 30.51* -2.975 

∆PP 
ADF(1) -2.245 29.16 27.27 -2.980 
ADF(0) -2.362 20.51* 19.18* -2.971 E 
ADF(1) -1.624 18.48 16.53 -2.975 
ADF(0) -3.696 18.07* 16.77* -2.975 

∆E 
ADF(1) -2.675 16.94 15.06 -2.980 

Table 2: AIC and SBC criteria and adjusted LR test for selecting the order of the VAR 

Order (p) AIC SBC Adjusted LR test 

2 296.91 246.37 ------- 
1 296.59 269.37 χ2(36) = 37.67 (0.393) 
0 185.90 182.01 χ2(72) = 366.02 (0.000) 
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Table 3. Estimation results and statistical performance of the unrestricted VAR I model 
EQUATIONS 

REGRESSORS 
WFt WSt PPt PSt PFt Et 

WFt-1 
0.9518 
(2.10) 

-0.5617 
(-1.14) 

-2.0208 
(-1.57) 

-1.0503 
(-0.75) 

-1.3501 
(-1.32) 

-0.3106 
(-0.15) 

WSt-1 
0.6820 
(1.44) 

-0.2932 
(-0.57) 

-1.9954 
(-1.48) 

-0.7034 
(-0.48) 

-0.9772 
(-0.78) 

-1.3497 
(-0.61) 

PPt-1 
-0.0712 
(-1.14) 

0.1062 
(1.56) 

1.2525 
(7.05) 

0.2108 
(1.10) 

0.5033 
(3.06) 

-0.4728 
(-1.62) 

PSt-1 
0.4620 
(4.85) 

-0.4622 
(-4.45) 

-0.1341 
(-0.49) 

0.7453 
(2.54) 

-0.0014 
(-0.01) 

0.0602 
(0.14) 

PFt-1 
-0.3195 
(-2.38) 

0.3157 
(2.16) 

-0.4922 
(-1.29) 

-0.2276 
(-0.55) 

0.0598 
(0.17) 

0.6837 
(1.09) 

Et-1 
-0.0071 
(-0.79) 

0.0000 
(0.00) 

-0.0312 
(-1.23) 

-0.0027 
(-0.10) 

-0.0318 
(-1.35) 

0.9315 
(22.40) 

Intercept -0.2630 
(-0.60) 

0.8449 
(1.77) 

1.9533 
(1.57) 

0.7627 
(0.57) 

1.1671 
(1.01) 

1.1990 
(0.59) 

SLECTION CRITERIA AND DIAGNOSTIC STATISTICS 

AIC 61.24 58.82 31.99 29.77 34.10 18.12 
SBC 56.58 54.15 27.33 25.11 29.44 13.45 

Adjusted R2 0.789 0.824 0.771 0.562 0.612 0.991 
F statistic 17.88 22.12 16.11 6.79 8.09 511.34 

Serial Correlation 0.78(0.38) 2.48(0.12) 0.73(0.39) 0.19(0.67) 0.37(0.54) 0.58(0.45) 

Functional Form 3.81(0.05) 8.66(0.00) 1.85(0.17) 7.39(0.01) 0.00(0.98) 0.18(0.67) 

Normality 1.02(0.60) 1.56(0.46) 0.56(0.75) 4.82(0.09) 11.65(0.00) 1.66(0.44) 

Heteroscedasticity 0.39(0.53) 1.19(0.28) 1.33(0.25) 0.28(0.60) 0.03(0.87) 0.21(0.65) 

Table 4. AIC and SBC selection criteria and diagnostic tests for the VAR II model 
SELECTION CRITERIA AND DIAGNOSTIC TESTS 

EQUATIONS 
 WFt WSt PPt PSt PFt 

AIC 61.39 58.83 33.58 30.02 34.62 
SBC 56.73 54.17 28.92 25.36 29.96 

Adjusted R2 0.792 0.825 0.795 0.570 0.656 
F statistic 18.11 22.15 18.47 6.97 8.53 

Serial Correlation 0.83(0.38) 2.16(0.14) 0.27(0.50) 0.46(0.67) 0.47(0.49) 
Functional Form 3.28(0.07) 8.49(0.00) 0.70(0.40) 5.56(0.02) 0.02(0.90) 

Normality 0.86(0.65) 1.55(0.46) 0.05(0.97) 3.04(0.22) 6.49(0.04) 
Heteroscedasticity 0.42(0.52) 1.23(0.27) 0.84(0.36) 0.21(0.65) 0.00(0.95) 
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Table 5. AIC and SBC selection criteria and diagnostic tests for the VAR III model  
SELECTION CRITERIA AND DIAGNOSTIC TESTS 

EQUATIONS 
 WFt WSt PPt PSt PFt 

AIC 69.79 65.69 32.27 27.28 33.69 
SBC 63.13 59.03 25.61 20.62 27.02 

Adjusted R2 0.892 0.899 0.788 0.508 0.623 
F statistic 25.87 27.64 12.16 4.10 5.96 

Serial Correlation 0.35(0.55) 0.02(0.90) 0.04(0.85) 0.21(0.64) 0.10(0.66) 
Functional Form 0.04(0.84) 0.21(0.64) 0.57(0.45) 7.24(0.01) 0.14(0.71) 

Normality 1.28(0.53) 0.63(0.73) 0.08(0.96) 3.50(0.17) 11.64(0.03) 

Heteroscedasticity 0.10(0.75) 0.01(0.92) 0.68(0.41) 0.26(0.61) 0.03(0.86) 

 

 

 

Table 6. LR tests for restrictive hypothesis on the intercept and variables of the VAR 

MODEL ML LR → χ2(i) 
Critical 
value 
(5%) 

Result 

H0: Non-significance of intercept (INT)    

U: WF WS PP PS PF E & INT 351.68 

R: WF WS PP PS PF E & 342.05 
χ2(6)=18.05 12.59 

Rejected 

H0: Non-significance of dummy variables D1 D2 D3    

U: WF WS PP PS PF E & D1 D2 D3 INT 385.40 

R: WF WS PP PS PF E & INT 351.68 
χ2(18)=67.43 28.87 

Rejected 

H0: Block non-causality of E without dummy variables    

U: WF WS PP PS PF E & INT 351.68 

R: WF WS PP PS PF & E INT 346.39 
χ2(5)=10.58 11.07 

Not 
rejected 

H0: Block non-causality of E with dummy variables    

U: WF WS PP PS PF E & D1 D2 D3 INT 385.40 

R: WF WS PP PS PF & E D1 D2 D3 INT 381.21 
χ2(5)=8.37 11.07 

Not 
rejected 
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Table 7: Forecasting results for the UK expenditure share of France 
FRANCE 1994 1995 1996 1997 

Actual values 0.39700 0.38540 0.38967 0.40481 
Forecast 0.34422 0.36840 0.39676 0.42782 VAR 

I Forecast error 0.052780 0.017006 -0.007086 -0.023007 
Forecast 0.34274 0.44818 0.41524 0.40121 VAR 

III Forecast error 0.054261 -0.062778 -0.025567 0.003595 
SUMMARY STATISTICS FOR RESIDUAL AND FORECAST ERRORS 

 Estimation period: (1970 -1993) Forecast period: (1994 –1997) 
MAE 0.015321 0.024970 
MSE 0.000315 0.000914 VAR 

I 
RMSE 0.017734 0.030226 
MAE 0.008510 0.036550 
MSE 0.000119 0.001888 VAR 

III 
RMSE 0.010917 0.043451 

 

 

 

Table 8: Forecasting results for the UK expenditure share of Spain 
SPAIN 1994 1995 1996 1997 

Actual values 0.51857 0.52625 0.52292 0.50691 
Forecast 0.57000 0.54972 0.52281 0.49058 VAR 

I Forecast error -0.051431 -0.023469 0.000108 0.016328 
Forecast 0.56593 0.45798 0.48770 0.50172 VAR 

III Forecast error -0.047361 0.068264 0.035218 0.005191 
SUMMARY STATISTICS FOR RESIDUAL AND FORECAST ERRORS 

 Estimation period: (1970 -1993) Forecast period: (1994 –1997) 
MAE 0.016475 0.022834 
MSE 0.000301 0.000866 VAR 

I 
RMSE 0.019780 0.029422 
MAE 0.010340 0.039009 
MSE 0.000192 0.002043 VAR 

III 
RMSE 0.013847 0.045195 
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Table 9: Forecasting results for the UK expenditure share of Portugal 
PORTUGAL 1994 1995 1996 1997 
Actual values 0.08443 0.08835 0.08741 0.08828 

Forecast 0.08578 0.08189 0.08043 0.08160 VAR 
I Forecast error -0.001349 0.006462 0.006977 0.006679 

Forecast 0.09133 0.09384 0.09706 0.09797 VAR 
III Forecast error -0.006900 -0.005488 -0.009651 -0.008786 

SUMMARY STATISTICS FOR RESIDUAL AND FORECAST ERRORS 

 Estimation period: (1970 -1993) Forecast period: (1994 –1997) 
MAE 0.008054 0.005367 
MSE 0.000088 0.000034 VAR 

I 
RMSE 0.009365 0.005850 
MAE 0.006276 0.007706 
MSE 0.000060 0.000062 VAR 

III 
RMSE 0.007770 0.007875 

 

 

 

 

Table 10: Tests for the cointegration rank of VAR I and VAR III models 

H0 λmax critical λtrace critical Eigen 
values r n − r 

maxλ̂  
5% 10% traceλ̂  

5% 10% 
SBC 

VAR I 
λ1=0.9201 r = 0 n−r =6 70.76 40.53 37.65 153.96 102.56 97.87 274.71 
λ2=0.7489 r = 1 n−r =5 38.69 34.40 31.73 83.20 75.98 71.81 290.09 
λ3=0.5889 r = 2 n−r =4 24.89 28.27 25.80 44.50 53.48 49.95 292.78 
λ4=0.3273 r = 3 n−r =3 11.10 22.04 19.86 19.61 34.87 31.93 291.89 
λ5=0.1838 r = 4 n−r =2 5.69 15.87 13.81 8.51 20.18 17.88 287.45 
λ6=0.0958 r = 5 n−r =1 2.82 9.16 7.53 2.82 9.16 7.53 283.63 

VAR III 
λ1=0.8798 r = 0 n−r =5 59.31 46.77 43.80 142.48 119.77 114.38 265.82 
λ2=0.7734 r = 1 n−r =4 41.57 40.91 38.03 83.16 90.60 85.34 272.15 
λ3=0.5833 r = 2 n−r =3 24.51 34.51 31.73 41.59 63.10 59.23 272.94 
λ4=0.2767 r = 3 n−r =2 9.07 27.82 25.27 17.08 39.94 36.84 268.54 

λ5=0.2489 r = 4 n−r =1 8.01 20.63 18.24 8.01 20.63 18.24 259.74 
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Table 11: Long-run coefficients  estimates of the exactly-identified share equations  

Cointegrated VAR I Cointegrated VAR III 
Variables Vector 1 

(WF) 
Vector 2 

(WS) 
‘Vector’ 3 

(WP) 
Vector 1 

(WF) 
Vector 2 

(WS) 
‘Vector’ 3 

(WP) 

WF -1 0  -1 0  

WS 0 -1  0 -1  

PP -0.4965 
(-0.86) 

0.1781 
(0.60) 

0.3184 
(0.95) 

-0.0027 
(-0.05) 

0.1090 
(1.69) 

-0.1062 
(-3.28) 

PS 0.8214 
(2.09) 

-0.5937 
(-2.97) 

-0.2277 
(-0.97) 

0.2256 
(4.68) 

-0.3075 
(-5.22) 

0.0820 
(2.90) 

PF -0.2244 
(-0.48) 

0.3119 
(1.20) 

-0.0875 
(-0.33) 

-0.3394 
(-3.59) 

0.3044 
(2.57) 

0.0350 
(0.56) 

E -0.0684 
(-1.12) 

0.0159 
(0.51) 

0.0525 
(1.45) 

0.0153 
(2.33) 

-0.0183 
(2.29) 

0.0030 
(0.78) 

D1    0.0380 
(5.27) 

-0.0154 
(-1.74) 

-0.0226 
(-5.18) 

D2    -0.0565 
(-3.65) 

0.0528 
(2.78) 

0.0037 
(0.41) 

D3    0.0574 
(5.17) 

-0.0590 
(-4.34) 

0.0016 
(0.24) 

INT 0.8309 
(2.20) 

0.3818 
(1.97) 

-0.2127 
(-0.95) 

0.3687 
(16.26) 

0.5443 
(19.50) 

0.0870 
(6.33) 

 

 

 

Table 12: Tests of over-identifying restrictions for cointegrated VAR III model 

Hypothesis LR→χ2(i) 5% Critical value 

Null cross-price effects χ2(2)=0.36 5.99 

Homogeneity and 
symmetry χ2(3)=7.28 7.81 

Homogeneity, symmetry 
and 

null cross-price effects 
χ2(4)=7.53 9.49 
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Table 13 Long-run coefficients estimates of the cointegrated restricted VAR III  

VAR III 
Variables Vector 1 

(WF) 
Vector 2 

(WS) 
‘Vector 3’ 

(WP) 

WF -1 0  

WS 0 -1  

PP 0 0.0895 
(5.80) 

-0.0895 
(-5.80) 

PS 0.2891 
(4.79) 

-0.3785 
(-5.97) 

0.0895 
(5.80) 

PF -0.2891 
(-4.79) 

0.2891 
(4.79) 0 

E 0.0091 
(1.16) 

-0.0121 
(-1.38) 

0.0030 
(0.95) 

D1 0.0354 
(3.83) 

-0.0115 
(-1.13) 

-0.0239 
(-7.05) 

D2 -0.0373 
(-2.36) 

0.0360 
(2.02) 

0.0013 
(0.20) 

D3 0.0429 
(4.56) 

-0.4184 
(-3.95) 

-0.0011 
(-0.27) 

INT 0.3849 
(13.17) 

0.5230 
(16.96) 

0.092 
(11.69) 

 

 

 

Table 14. Expenditure and uncompensated own- and cross-price elasticities estimates 
 

Cross-price elasticities  Models Expenditure 
elasticities 

Own-price 
elasticities PP PS PF 

Cointegrated VAR III 1.039 -2.158 X 1.137 -0.017 
WP 

AIDS (2nd period) 0.947 -1.797 X 0.830 0.019 

Cointegrated VAR III 0.979 -1.057 0.161 X 0.523 
WS 

AIDS (2nd period) 1.150 -1.933 0.124 X 0.658 

Cointegrated VAR III 1.026 -1.817 -0.002 0.793 X 
WF 

AIDS (2nd period) 0.808 -1.901 0.017 1.077 X 
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Table 15: Forecasting results for the UK expenditure share of France 
1994 1995 1996 1997 Actual values 

0.39700 0.38540 0.38967 0.40481 
Forecast 0.34422 0.36840 0.39676 0.42782 

Pure-VAR 
Forecast error 0.052780 0.017006 -0.007086 -0.023007 

Forecast 0.39505 0.39260 0.39485 0.39475 
Over-VAR  

Forecast error 0.001942 -0.007194 -0.005178 0.010054 
Forecast 0.37775 0.38044 0.40188 0.38852 

AIDS 
Forecast error 0.019251 0.004959 -0.012202 0.016484 

Table 16: Forecasting results for the UK expenditure share of Spain 
1994 1995 1996 1997 Actual values 

0.51857 0.52625 0.52292 0.50691 
Forecast 0.57000 0.54972 0.52281 0.49058 

Pure-VAR 
Forecast error -0.051431 -0.023469 0.000108 0.016328 

Forecast 0.51884 0.52718 0.52568 0.52543 
Over-VAR  

Forecast error -0.000264 -0.000932 -0.002761 -0.018518 
Forecast 0.52613 0.52235 0.49786 0.51260 

AIDS 
Forecast error -0.007558 0.003893 0.025054 -0.005696 

Table 17: Forecasting results for the UK expenditure share of Portugal 
1994 1995 1996 1997 Actual values 

0.08443 0.08835 0.08741 0.08828 
Forecast 0.08578 0.08189 0.08043 0.08160 Pure-VAR 

Forecast error -0.001349 0.006462 0.006977 0.006679 
Forecast 0.08611 0.08022 0.07947 0.07982 Over-VAR 

Forecast error -0.001678 0.008124 0.007939 0.008463 
Forecast 0.096126 0.097201 0.100263 0.099071 AIDS 

Forecast error -0.011693 -0.008853 -0.012852 -0.010788 

Table 18: Summary statistics for forecast errors  

FRANCE SPAIN PORTUGAL 
 Pure-

VAR 
Over-
VAR AIDS Pure-

VAR 
Over-
VAR AIDS Pure-

VAR 
Over-
VAR AIDS 

MAE 0.0250 0.0061 0.0132 0.0228 0.0056 0.0106 0.0054 0.0066 0.0110 
MSE 0.0009 0.0000 0.0002 0.0009 0.0001 0.0002 0.0000 0.0001 0.0001 

RMSE 0.0302 0.0068 0.0143 0.0294 0.0094 0.0135 0.0059 0.0071 0.0112 
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Figure 1: Actual values and forecasts for the tourism share of France 

Figure 2: Actual values and forecasts for the tourism share of Spain 

Figure 3: Actual values and forecasts for the tourism share of Portugal 
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APPENDIX A 

A1. Derivation of the AIDS model 

Let x be the exogenous budget or total expenditure which is to be spent within a given 

period on some or all of n products. These products can be bought in nonnegative 

quantities iq  at given prices ip , i=1, …, n. Let ( )n21 q,...,q,q=q  be the quantities vector 

of the n products purchased, and ( )n21 p,...,p,p=p  the price vector. The budget 

constraint of the representative consumer is ∑ =
=

n

1i
ii xqp .Defining the utility function as 

( )qu , the consumer's aim is to maximise the utility subject to the budget constrain:  

 max ( )qu  subject to  ∑ =
=

n

1i
ii xqp           (A1) 

The solution for this maximisation problem leads to the Marshallian (uncompensated) 

demand functions ( )x,gq ii p= . Alternatively, the consumer’s problem can be defined 

as the minimum total expenditure necessary to attain a specific level of utility u*, at 

given prices: 

 min ∑ =
=

n

1i
ii xqp subject to ( )qu  = u*          (A2) 

The solution for this minimisation problem leads to the Hicksian (compensated) demand 

functions ( )u,hq ii p= . Therefore, a cost function can be defined as  

 ( ) ( ) xu,hpu,C
n

1i
ii =∑=

=
pp            (A3) 

Given the total expenditure x and prices p, the utility level u* is derived from the 

solution of the problem stated in equation (1). Solving (3) for u, an indirect utility 

function is obtained such that ( )x,vu p= . 

The AIDS model specifies a cost function which is used to derive the demand functions 

for the commodities under analysis. The process of derivation can be summarised in the 

following three steps: 

1st ( ) ( )u,h
p

u,C
i

i

pp
=

∂
∂  is derived establishing the Hicksian demand functions. 

2nd  solving (3) for u, the indirect utility function is obtained, such that ( )x,vu p= .  
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3rd  ( )[ ] ( )x,gx,v,h ii ppp =  is retrieved stating the Hicksian and the Marshallian 

demand functions as equivalent. 

The Hicksian and Marshallian demand functions have the following properties: 

1. Adding-up: ( ) ( ) xx,gpu,hp
i

ii
i

ii =∑=∑ pp ; all budget shares sum to unity; 

2. Homogeneity: ( ) ( ) ( ) ( ) 0x,gx,gu,hu,h iiii >θ∀θθ==θ= pppp ; a proportional 

change in all prices and expenditure has no effect on the quantities purchased; 

3. Symmetry: ( ) ( )
ji,

p
u,h

p
u,h

i

j

j

i ≠∀
∂

∂
=

∂
∂ pp ; consumer's choices are consistent; 

4. Negativity: The (nxn) matrix of elements ( )
j

i

p
u,h

∂
∂ p  is negative semidefinite, that 

is, for any n vector ξ , the quadratic form ( ) 0
p

u,h
i j j

i
ji ≤∑∑

∂
∂

ξξ
p . This means that a 

rise in prices results in a fall in demand as required when the commodities under 

analysis are normal goods. 

The AIDS model specify the following cost function: 

 ( ) ( ) ( )ppp buau,Cln +=            (A4) 

where ( ) ∑ ∑∑ γ+α+α=
i i j

jiijii0 plnpln
2
1plna p       and     ( ) ∏β= β

i
i0

ipb p  

The derivative of (4) with respect to ln pi  is: 

 ( )
∑ ∏ββ+γ+α=

∂
∂ β

j i
i0ijiji

i

ipupln
pln

u,Cln p          (A5) 

As ( ) ( ) xlnu,Clnxu,C =⇔= pp , then  

 ( ) ( )pp buaxln +=               (A6) 

Solving (6) for u we obtain 

 ( )
( )p

p
b

axlnu −
=              (A7) 

Substituting (7) in (5) we have 
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 ( ) ( )
( ) ( ) ( ) ( )[ ]paxlnplnw

x
qp

C
ph

C
p

p
C

pln
Cln

j
ijijii

iii
i

i

ii

−∑ β+γ+α===
•

•=
•∂

•∂
=

∂
•∂  

If we define a price index P such that ln P = a(p), then 

 ( ) [ ]Plnxlnpln
pln

u,Cln
j

ijiji
i

−∑ β+γ+α=
∂

∂ p  

or 





β+∑ γ+α=

P
xlnplnw ij

j
ijii               (A8) 

where l
l

l plnpln
2
1plnPln k

k
k

k
kk0 ∑∑ γ∑ +α+α= ∗          (A9) 

equations (8) and (9) are the basic equations of the AIDS model. 

In a tourism analysis context, i is a destination country among a group of n alternative 

destinations demanded by tourists of a given origin. The dependent variable wi, 

represents destination i share of the origin’s tourism budget allocated to the set of n 

destinations. This share’s variability is explained by tourism prices (p) in i and 

alternative destinations j and by the per capita expenditure (x) allocated to the set of 

destinations, deflated by price index P. The model has the following assumptions:  

1. the adding-up restriction requiring that all budget shares sum up to unity: 

 ∑ ∑ ∑ =γ=β=α
i i i

ijii 0,0,1 , for all j; 

2. the homogeneity restriction requiring that a proportional change in all prices and 

expenditure has no effect on the quantities purchased: ∑ =γ
j

ij 0 , for all i; 

3. the symmetry restriction requiring consistent consumers’ choices: jiij γ=γ , ∀i, j; 

4. the negativity restriction requiring that a rise in prices result in a fall in demand, 

i.e.,  the condition of negative own-price elasticities for all destinations. 

The restrictions imposed on α and γ comply with these assumptions and ensure that 

equation (9) defines P as a linear homogeneous function of individual prices. If prices 

are relatively collinear, then “P will be approximately proportional to any appropriately 

defined price index, for example, the one used by Stone, the logarithm of which is 
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∑ = *Plnplnw kk ” (Deaton and Muellbauer, 1980a, p.76). Hence, the deflator P in 

equation (9) can be substituted by the Stone price index ln P* such that, 

 ∑=
i

i
B
i plnw*Pln           (A10) 

where B
iw  is the budget share of destination i in the base year. With this simplification 

for P, equation (8) can be rewritten and estimated in the following form: 

 





β+∑γ+α=

*P
xlnplnw ij

j
ij

*
ii           (A11) 

A.2  Expenditure, own- and cross-price elasticities formulae 

Equation (11) specifies a model in the linear-log form which prevents the direct 

interpretation of its coefficients as elasticities. The elasticities values are computed 

using the following formulae: 

  Expenditure elasticity: 1
w

1
xlnd

wd
w
1

i

ii

i
i +

β
=+=ε  

 Uncompensated own-price elasticity: 1
w
w

w
1

plnd
wd

w
1

i

B
i

i
i

ii

i

i

i
ii −β−

γ
=−=ε  

 Uncompensated cross-price elasticity: 
i

B
j

i
i

ij

j

i

i
ij w

w
wplnd

wd
w
1

β−
γ

==ε  

 Compensated own-price elasticity: 1w
w

w B
i

i

ii
i

B
iiiii −+

γ
=ε+ε=ε•  

 Compensated cross-price elasticity: B
j

i

ii
i

B
iijij w

w
w +

γ
=ε+ε=ε•  

where iw is the sample’s average share of destination i (i=1,…,n) and B
jw is the share of 

destination j (j=1,…,n) in the base year.  

The model assumes that consumers allocate their budget to commodities in a multi-

stage budgeting process implying independent preferences. Thus, it is assumed that the 

expenditure allocated by UK tourists to France, Spain and Portugal is separable from 

expenditure allocated to other destinations and that the decision to spend money in those 

countries is made in several stages. First, UK tourists allocate their budget to tourism 
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and other goods; then to tourism in their southern neighbouring countries and other 

parts of the world; finally they decide between France, Spain and Portugal. The AIDS 

model is applied to this last stage of expenditure allocation.  

A.3 Variables’ definition 

The variables integrating the VAR model are the destinations’ shares of the UK tourism 

budget: WP, WS and WF; each destination tourism price: PP, PS, PF; and the UK real 

per capita tourism budget E. 

Each destination share of the UK tourism budget allocated to the three countries is Wi, 

where i = F (France), S (Spain) and P (Portugal), and is defined as 

 
PSF

i

EXPEXPEXP
EXPWi

++
=  

where EXPi is the nominal tourism expenditure allocated by UK tourists to destination i. 

The effective prices of tourism in country i is defined as 

 







=

i

UKi

R
CPICPIlnPi   

where CPIi is the consumer price index of destination i, CPIUK is the consumer price 

index of the UK, Ri is the exchange rate between country i and the UK. 

The UK real tourism expenditure allocated to all destinations per capita of the UK 

population is given by 

 















=

∑
*P

UKPEXP
lnE i

i

 

where UKP is the UK population and lnP* is the Stone index defined in equation (A10).  

A.4 Data sources 

The data for UK tourism expenditure, disaggregated by destinations and measured in £ 

million sterling, were obtained from one common source, the Business Monitor MA6 

(1970-1993), continued as Travel Trends (1994-1998). Data on the UK population, 

price indexes and exchange rates were obtained from the International Financial 

Statistics (IMF) Yearbooks (1984, 1990 and 1998). 


