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ABSTRACT

In this work, we address an investment problem where the investment can either be made imme-
diately or postponed to a later time, in the hope that market conditions become more favourable.
In our case, uncertainty is introduced through market price. When the investment is undertaken,
a fixed sunk cost must be paid and a series of cash flows are to be received. Therefore, we are
faced with an irreversible investment. Real options analysis provides an adequate framework
for this type of problems by recognizing these two characteristics, uncertainty and irreversibil-
ity, explicitly. We describe algorithmic solutions for this type of problems by modelling market

prices evolution by Markov jump processes.
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1 INTRODUCTION

The timing of market entry decisions is a central concern for business strategy. In a context of
uncertainty and irreversibility the entry timing decision becomes even more important since by
making a commitment we loose the option of waiting for a better opportunity.

The problem that we discuss here is deciding on the optimal timing for an irreversible invest-
ment. A firm has an investment opportunity in the exploration of a natural resource, such as oil.
When the investment decision is made, the firm pays a sunk fixed cost and from then on it will
start to receive the incomes of the exploration over a long period, considered infinite. This prob-
lem falls within the real options category, since at each point in time we have the option to invest
or to wait for a more appropriate time and also because the investments discussed here typically
involve real assets rather than financial assets (see e.g. (Dixit and Pindyck 1996 , Trigeorgis
1996)).

The income received at each instant of time, the price of the resource, is considered to evolve
according to a known stochastic dynamic model. Therefore, the expected total income will then
be the integral over time of the expected discounted incomes received at each instant, i.e. the
expected discounted prices of the resource integrated from the time of investment to infinity.

Usually, a simple static Net Present Value analysis of this problem is made. A comparison
is made between the fixed cost of the investment and the total expected income. Questions
like “Will the expected total income be greater then the investment cost?”, “If yes, what is the
probability of that happening?”, and “How many years will it take for the investment to be
paid?”, are typically answered by such analysis.

Here, we use a real options approach to this problem focusing on the optimal time for invest-
ment. Even if the answers to the previous questions would lead us to invest, the expected
evolution of the resource price could be such that the conditions in the future would be even
better. In this scenario, although a decision to invest now is a profitable one, the decision to wait
and invest in the future would be more valuable, as long as the opportunity to invest remains
available. In the real options literature this is known as the option to delay.

The question addressed in this work is the instant of time at which the best conditions for
investment occurs, i.e. the optimal investment time. To answer this, instead of comparing the
present expected total income just with the sunk cost of investment, we have to compare the
present expected total income with the expected total incomes of all future times and choose the
maximum one. This problem, as we will see, falls within a category of problems known in the
literature as “Optimal Stopping Problems” (see e.g. (Shiryayev 1978 , Peskir and Shiryayev
2006 )).

We note that the solution we seek for is not a time value, but rather a policy. That is, a rule that



specifies under which conditions we should invest. In fact, the results obtained state that the
investment should be undertaken once the price reaches a certain threshold value. However, for
a specific price value, it is possible to obtain an estimate of the waiting time till investment.

This problem can be addressed using a set of known methodologies to analyse and price Amer-
ican options. The most used are the ones based on the Black-Scholes model ( Black and
Scholes 1973) for infinite horizon problems (perpetual American options) with prices follow-
ing geometric Brownian motion, as well as the discrete-time models such as the binomial and
other lattice-based models (Cox, Ross, and Rubinstein 1979 ). In the latter set of methodolo-
gies, most literature addresses the finite horizon case, since in opposition to the Black-Scholes
based methods, these methodologies are more complicated in the infinite horizon case. Notable
exceptions are the recent works of Boyarchenko and Levend@¢Bskyarchenko and Leven-
dorski 2007a, Boyarchenko and Levendoiskd07b) proposing an elegant framework to ad-
dress the infinite horizon case when prices follow binomial/trinomial lattices or a random walk.

Here we consider that the evolution of the price is modelled as a Markov jump process. The
randomness of the process is considered to occur not in a continuous way, but rather at specific
instants of time. This is particularly suitable when the main random factors that affect the
price are point events, occurring at random times and with random intensity. There are several
examples of price changes in natural resources caused by financial, political or environmental
events. Oil prices are a typical example of a variable whose value is affected by abnormal
news and their sudden variations are more adequately modelled by jump processes. A possible
application for the model and algorithms here developed is the decision to make an investment
in the exploration of an oil field.

In this work, we discuss 3 solution methodologies, leading to 3 different algorithms, for the
optimal stopping problem modelling an irreversible investment decision when the prices follow
a Markov jump process. For illustration purposes, though, we start by discussing a discrete time
Markov model.

2 PRELIMINARIES

Consider a Markov jump procegs\;; ¢t € R*} with transition functionP;, generatorA, and
state-spacé’ (countable). Letv be a nonnegative number. Thepotential of the function g
(bounded, non-negative, and definedionfor the processX is the expected value of the total
discounted return of the rewargsgiven by

vat) = £ | ety e
0
and the matribJ¢ can be computed as

U° (i, §) = / P (i, j)dt, Vi,j € E.
0
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Proposition 2.1 Letg be a bounded function and > 0 then the vector = U“ - g is the unique
solution to the system of linear equations

(ol —A)u=y.
Proposition 2.2 For any stopping tim&’

vrgtiy = [ [ ety Oenpa] + B0 ()

(See (Cinlar 1975 ) for the proof of these propositions.)

Let f be a finite-valued function defined dn, the state-space of a Markov processwith
semigroupP;, and letr > 0. Functionf is said to be am-excessive functiofor the processy
if forall z € £ and forallt > 0

f(x) > e P f(a),
or equivalently

rf(z) — Af(z) > 0.

A function which is 0-excessive is simply called excessive.
Theorem 2.3 The value function V is the minimal r-excessive function that majorises g.
(See (Shiryayev 1978 ) chapter 3, for a proof.)

Hence for a finite spac#, V can be computed by linear programming as

miny GZEV(j)

s.t. (i‘l —rV(zx) <0
—V(z) < —h(x)

forallz € F,

where the second set of constraints is active (satisfied as equality)mibedongs to the stop-
ping set; otherwise the first set of constraints is active.

Hence, these constraints can also be written as the following Variational Inequality

max {AV (z) —rV(z), h(xz) = V(z)} =0, Vo € E.



3 DISCRETETIME MODEL

The problem here is to decide the best period of time to invest in the extraction of a resource
given its actual price and a stochastic model of the price evolution. For simplicity of exposition,
itis assumed that the investment can be done immediately, once decided, and the corresponding
income starts on the next time period.

The prices are considered to evolve according to

Pr+1 = (1 4+ wy)pr, (1)

wherew,, values are uncorrelated, belonging to a finite ordered set of vala¢g,, ..., Oy}
distributed according t&'(£2;)=Probu; < ;) with corresponding meagw;, = m and density
f(Q:)=Probu, = €2;).

Our goal is to determine the investment timing that maximises the net expected discounted profit

max {E
k

wherel! is the fixed cost of investment amdhe interest rate.

> @+ p) = (L4 |po, s pk] } 7

i=k+1

Alternatively, we can write a dynamic programming recursion (see e.g (Bertsekas, D.P. 1976))
to decide at each time period whether to invest now or wait at least one more period.

max Jo(po)
where
Jk<pk>:max{E S () Tp) — (L) ,Eum(pkﬂ))},
i=k+1
(invest) (wait)

or using the value function at current prices

Vi (pe) = (14 7)" Ju(pr),



Vi(pr) = max {E Z (L+7)""p) = I|,(1+ r)lE(VkH(pkH))} :
(invest) (wait)

For the infinite time horizon case, the case in which we are interestég(im, = V' (p) for all
k, and so the value functiovi satisfies

o0

S (+r) ) 1

i=1

V(pr) = max {Epk

) (1 + T)_lEpk<V(pk+1))} )
(invest) (wait)

which falls within the Optimal Stopping Problems category.

3.1 Solution method

Defineh(p) as the net expected return of investing now, i.e. the sum of the discounted incomes
from now till infinity net of the investment cost

h(pr) =E (Z (1+ T)_ipwk) -1

=1
[e'e) 1+m —1
— — —1
> (57) »

1 .
= +mpk—l, if r>m
r—m

andu(p) as the net expected return if we wait at least one unit of time

v(pr) = (L+ 1) E(Viea (Prs))-

At time k, the decision is to invest ifi(px) > v(py), to wait if h(py) < v(px), and either
decision is optimal if2(p,) = v(px) . If in this last case we choose to invest, the decision rule
is to invest if and only ifa(px) > v(px), i.€.

e 1
iff +m

ok — 1 > v(pk),
T—m



. r m
i > T (v(p) + D),

iff p, > p* wherep* satisfiegp* = Z J_rm(v(P*) +1).
m

A graphical interpretation of the decision rule is given in Hig.

uip)=vip)

% :

I :
|

!

invest

wait

Figure 1:Optimal stopping graphical interpretation.

Note that forp greater thap* (inside the stopping region)p) is greater tham(p) because we

are in fact loosing an opportunity if we do not make the correct decision even if it is only for
one instant of time. The value functidncoincides withu(p) for p less than or equal to* and
coincides withh(p) for p greater than or equal 1.

To achieve the solution it remains only to computg).

3.1.1 Computation ofv(p)

We know that(py) satisfies

v(0) =0,
v(p*) = h(p*),
o(p) = (1+ 1) E{V[(L +w)pl} = (1 +7) L E{max{A[(1 + w)p], v[(1 +w)p]}}.



Let us consider separately the cases when {a)(b > px, and when (b) (2w)p < p*.
a) Case (¥w)p > px = w > 2 —1

Let N1 be such tha®2; = min {Q; € Q: Q; > % — 1}, i.e. N1 is the index of the first term
in Q that satisfies the condition of being in this case.

v'(p) = (L4 7) ' E{R[(1 + w)p]lw > Qn} =

14+m

r—m

= (147" ( E[(1 +w)plw > Q1] — ]> _

_ -1 L+m 300 v (14 Q) () 7
o (T—m Sl @) " )

And the probability of being in this case is

px _
b) Case(l + w)p <px < w < B —1

Let N2 be such thaf)yy = max {Ql e, < %* — 1} .i.e. N2 is the index of the last term
in Q) that satisfies the condition of being in this case.

v'(p) = (147 E{o[(1 + wipllw < i} =

sz\g vI[(1+)p] f(€%) '
Zé\fl f(Qz)

=147

And the probability of being in this case is



N2
-r ()
;f() Pro(wgp 1)=F . 1

Finally, using the Bayes ruley(p) is given by

p

(1+r)o(p) = {1 _F (79—* . 1)] v (p) + F (p—* - 1> W p),

(I+7r)v(p) =

3.1.2 Computing an estimate for the Optimal “waiting” time

Recall that the original problem was

max {E
k

In the case that at the present titnehe decision obtained is to wait, we may wish to estimate
(given the present daga, ..., px) for how long we should wait before investing. The answer is
given by

Z (1+7)""pi) = (L +7) " |po, -'-,pk] } :

i=k+1

7 =min{t > 0: E[h(peye)|po, -, k] > Elv(prye)|pel} =

=min{t > 0: By, [h(pete)] = Ep, [0(Pr4e)]}
which, as we have seen, is equivalent to

T=min{t > 0: Epes  |po, -, 0] >0}

AS E(prit|pos s k) = E (Dt o) =(A+m)pi, we get

T=min{t > 0: (1 +m)'p, >p*},



andsm=min{t20:t2

In (p*/p) }

In (14 m)

Hence for each value qi;, the corresponding stopping time can be directly determined as
_ In(p*/ps)
T=—".
In(1+m)

3.1.3 Special Case

In the special case where the prices are monotonically increasing (i.euPxd)E1) we have
that F’ (%* — 1) = ( for p = p*, and so the expression fe(p) simplifies to

v(p*) = (1+7r)"" {1 m D>+ Q) () - 1} .

r—m :
i=N1

Sinceu(p*) = h(p*) and % (14 €)£(£2;)=1+m, we obtain

i=N1
1 2 1
(1+n)" [—( +m) p*—[} = +mp*—I.
r—m r—m
Finally, after some algebra we get
. ol )
L

Sop*can be determined explicitly in closed form for this special case. In the general case, this
equation can be used as an educated initial guegs faran iterative procedure.

3.2 Algorithm

An algorithm to compute the solution to this problem is the following:
1. lteration index K=1
2. Set initial guess for px! (e.g. by eq. ( 12)

3. Initialise v(p) as straight lines

10



For p=0... px!

h(p*!)
U(p) - p*l ’
For p=p*'... P
v(p) = h(p)

Update estimate of v(p)

For p=0.. P,

v(p)=(1+r>‘1{1+m i (1+Qi)f(Qi)p—][1—F(p—*—]>} +

=N1 p
— Z v (14 Q)p| f(fm} -

Stopping condition

If max|v(p) —vorp(p)| < e then STOP.
P

Update estimate of D

p* ! =min {p : v(p) = h(p)}.

k=k+1, GOTO 4.

11



3.3 Alternative Solution Methods
3.3.1 Reformulating as a finite state Markov chain model

As the evolution of the prices considered before is a process with independent increments, it
satisfies the Markov property. In order to get a finite state-space (the previous case had not a
finite state-space) we first apply logarithms to both sides of equét)ayefting

log Py11 = log Py + log (1 + wy) .
Define
Xk: = 1Og le

we have now a countable state-space for the prog&gsk € N}. By setting upper and lower
bounds for the state-spack,,., and X,,;,, which we define ags; = X,,;;, andz,, = X,,.x, we

get a finite state-spac€ = {z1, z, ..., x, } . Naturally, by clipping the state-space in this way,

we get a different process, but in a real problem application, the majority of the possible prices
will certainly be within a bounded interval with high probability and so the difference will not
be meaningful.

This being case, the new gain functibfx) is defined as

i (1+ T)_ieXi] — 1,

i=1

h(z)=F

which is the(1 + r)-potential of the exponential function minus the investment €ost

Defining
h=[h(z1),....h(z)]",
f=lexp(z1),...,exp (z,)]",
I=1x[1,1,.,1]",

and/, as the identity matrix of dimension

By Proposition 2.1
h = (In_ (1+T)Q)i_l-

Thus, the problem
V (Xp) = max E [(1 )k (Xk)] ,
can be solved for this finite state-space case, simply by calculltifoy all z € X, such that

V satisfies
V(z) = max{h(z), TV (x)},

where
TV (Xi) = (1+7) "BV (X)) = (1+71)7 ) Q(Xpz)) V (a).

.’EjGX

12



Alternative Solution Method 1  The functionV can be computed iteratively as

{ Vo(z) = h(x)
Ving1(2) = max {h(z), TV (2)},

andV,, — V asm — oo.

Alternative Solution Method 2 Knowing that the value functiol” is the minimum(1 + r)-
excessive function that majorisigsit can be computed by linear programming as

min x;{‘/(x)

st. V(x)> h(x)
Viz) > (1+7)"'TV (2)
V(xz) > 0.

These alternative solution methods are adapted and implemented for the case of the Markov
jump processes, as developed in the next section.

4 MARKOV JUMP MODEL

In this section, we consider the price to be modelled as a Markov jump process. Such process
is able to capture price jumps that are induced by the occurrence of rare events typically related
to the arrival of new information. This information might be of different nature: technological
(innovations)(Greenwood, Hercowitz , and Krussell 1997 , Galor Tsiddon 1997 , Grenadier
and Weiss 1997 ), competition (new product or competitor entry)(Ghemawat Kennedy 1999 ,
Bresnahan and Greenstein 1999), political (wars, expropriation, change in legislation) (Clark
1997 , Wagner 1997 ), natural conditions (natural hazards, hurricanes)or even various types of
rare events simultaneously (Martzoukosand Trigeorgis 2002 ).

Consider the resource prigeto evolve according to

_ Xt
pr=€ 7,

where X, is a piecewise constant Markov process, taking values in a finite ordered set

{1, 29, ..., 2, }, having a jump rate. and with the post-jump location defined by the transition
probabilitiesQ) (i, j) = Prob(Xt = x;| Xy = z;) in whichQ(¢,7) = 0 for i=0...N.

For a constant jump ratethe transition function is given by

o0 -t )\tn
pt:ZQn& >0,
n=0

n!

13



If the jJump rate) is dependent on the state, the transition function is given by
Pi(i,j) = e 2Ot + [SA(1)e D5 32 Q(i, k) Py (k, j)ds,

L . keE
wheres;; = { (1):]‘: z 7‘_’é ?

The generatoA for this process is given by
- ~\i)  ifi=j
A(i, j) = N e
(3.J) { A@)Q(, j) if i # ],
or in matrix notationd = A(Q — I) whereA = diag(A(1), A(1),..., A(N)).

Our problem is to decide the time instant in which to invest that maximises the net expected
discounted profit
plx) = sup E, [ h(X,)]

7>0

whereh is the expected income at the time of investment.

4.1 Solution Method

In order to determine the optimal stopping policy, we first compute the gain funitithe net
expected income at time of investment. Define

J(Xi) = exp(Xy)

andV (z), ther-potential off, as

Viz) = U f(z) = E, UOOO e”f(xgdt} |

The vectoV=[V (1), V(3),...,V(zx)]T can be computed as the unique solution of the system
of equations
(T’IN — A)K = i

wheref=[f(z1), f(x2),..., f(zn)]" andly is the identity matrix. Hence, the vector[h (1),
h(z3),...,h(zn)]T is given by
h=V -1,

wherel=I*[1,1,...,1]".

To compute the value function we develop, for the Markov jump processes case, the three
methods referred to previously corresponding to the following3 different algorithms:

14



1. By using dynamic programming arguments, we can compute an approximation of the
value function when the inter-decision timés a “small” value.

2. By using known properties of the value function we can reformulate the problem as a
linear programming one.

3. By using dynamic programming arguments, the value function can be computed by analysing
an increasing sequence of allowed jumps.

4.1.1 Solution Method 1

This method follows closely the first method described in the previous section and it is based
on determining an approximation of the function

Defining

vs(11) = e " p(T15), ()
as the net expected return if we wait a small tilmeve have the obvious result

lim vs(2) — p(x).

This means that, for very small s gives us a good estimate pfand so an “almost optimal
solution can be achieved by applying the following rule

Invest
|ﬁ h(Xt) ZV(;(Xt),
iff X, > X7,

whereX; is given by

Xy =inf{xr € X : h(x) > vs(x)};

Otherwise, wait for a time, given by

Ts = inf{t > 0: h(X;) > vs(Xy)}.

15



Now, we develop/s, knowing that it is given by

vs(Xy) = e " p(X,) = e " Emax {h(Xits), vs(Xiss) }-

Similar to what we have done for the discrete time case, let us consider separately the two cases
when a)X;,s > X; and when b)X,,; < Xj.

a) CaseX,;;5 > Xj

We start by defining®,, the probability of being in this case as

N
P, =Prob(Xews > X; | Xe=1)=> p(i,j,0)Ls,5x-.
7=1
Since a Poisson process for small intervalls-ly[ can be given by
A+ o(d)ifm=1
Proof Ns =m) =< o(d0)if m > 1 4)
L =X +o0(5)ifm=0,

P, can be rewritten as

N
Po=X> qijlaysx- + (1=X0) o5 x. (5)
j=1

And so

vi(Xy) = e P Emax {h(Xy15)| Xiys > X5} =

N
A0 D2 () Gijla; > x- + h(i) (1=A0) Lo, > x-
=1

—ré J=

=€

P,

b) CaseX; s < X;

Defining P, the probability of being in this case as,

16



P=Prob(X,.s < X; | X; = z;)=
- )‘52%] T <x* T 1 /\5) zj<X*s

we have

V(X)) = e " Emax {v(X,15)| Xips < X;} =

N
Z v(25)qij Lo <xce + (1) (1A Ly < x-
—rd Jj=1

=€

P,

Finally v5(z) is then given by

vs(x) = gug (Xo) Py 4+ v3(X) Py =

(6)

— T {A(SZqij[h(xj)Iszx* + V(@) o, <x+] + (1=A0) (@) Lo, > x+ + V@z)[md*]} :

Having a recursive equation fog(x) we only need a fixed point to start with.

Choosing this point to be the largest valueinsayzx v, we get

vs(zy) = h(zy).

(7)

If this is not true for this point, then it is also not true for any other, and then we would have the

trivial solution “never to invest”.

Algorithm
1. Determine h(x)

2. Set initial guess for X*

17



3. Initialise vs(z) as vs(x) = h(x)

4. Update estimate of vs(x) for i=1,.,N

5. Stopping condition

If  max|v(z;) — vaa(z;) < g| then stop

(2

6. Update estimate of X*

X* = miin {z; :v(z;) < h(x;)}

7. Goto 4.

4.1.2 Solution Method 2

The previous method can be supported by the known result that the value function is the minimal
r-excessive function that majorisés where ther-excessive function is defined as a function

fsatisfying:
flx) =z e P f(2)
or
rf(z) — Af(x) > 0.
We no longer have to consider any valtuir a discretization of, because we are already using
an infinitesimal operator - the generatérlt follows the result of the/ariational Inequalities

max {rV (z) — AV (z), h(xz) = V(z)} =0, Vo € E,
which can be formulated as a linear programming problem

min %:EV(j)

st. AV(z) —rV(z) <0
V(z) —h(xz) >0

forallz € F,

An implementation of this method in MATLAB was carried out, where a MATLAB built in
function for solving the linear programming problem was used.

18



4.1.3 Solution Method 3

Another particularity of this problem is that singe>0 and X, is constant between jumps, the
optimal solution is always be to invest immediately after a jump.

This happens since if for a certain vali{e the decision is to invest, we should do so as soon as
possible, as we would only be loosing money by waiting.

This can be justified with an example.

ConsiderX; = x constant, then

xT

h(z) :/ etegr =S I,
0

plz) = Sgp{e” (67 - I) } ,

Therefore, instead of considering a small time instaats in the previous method, we can
consider’,,, the time of next jump.

and so

gives, obviously7=0 if » >0.

Define the best value obtainable considering up jomps as
Jn(l'l) = SUpEZ [e_”h (XT)} .
7<Th

It can also be given, as we have seen, by
Jn(l’l) = maX{ Jn_1<l’z‘), E; [e""T"h (XT,,)} } .

(keep strategy)  (invest at the n-th jump)

Since

[e.9]

E; [ h (Xn,)] _/

0
J,(z;) can be computed far1...N and forn=1,2,... as

Moreover, as\ is a bounded function

Ae Mt - ZQ(i,j)h(%) = (Qh);,

A+

lim T, = oo,

n—0o0

and so
Jo() — SUPE, [¢7h (X,)] = p(z),

n—oo T<00

which is our aim to determine.

19



Algorithm

1. Determine h (as in the previous methods)

2. n=0, Minlter=10

FORi=1... N
3. REPEAT
5ma:}c:O
FORi=1... N
)\ n+1
n+1
Jn-l-l(xi) = max {Jn(aji)’ ()\ —l—?“) (Q " h)z}
=0 = [Jnt1(2:) — Ju(:)]
5max = Imax {5a 5maa:}

n=n+l

UNTIL 6,0 <¢ A n > Minlter

4.2 Example and comparison of the algorithms

To illustrate the algorithms consider the following example:
Interest rater=1,
Fixed cost of inv.:./=10,
Xiraz = In(200),

XMm = 111(2),

20



X ={Xuin, ---» Xz } With N=20 points equally spaced,

Jump rate\=10.

For the 1st Algorithm (corresponding to solution method 1):

Errore=1e-3.

6=1le-4.

For the 3rd Algorithm:

Errore=1e-8,

Results of the 1st algorithm

Xstar=X10=1.817

Iteration:1 Error:1.059 Xstar=X13=2.504

Iteration:10 Error:0.0428 Xstar=X15=3.102

Iteration:20 Error:0.02279 Xstar=X15=3.102

Iteration:30 Error:0.01295 Xstar=X15=3.102

Final Result:

Iteration:37 Error:0.0008942 Xstar=X15=3.102

This algorithm converges very fastik <c. Moreover, reducings the difference betweemns
andh for X >= X* is reduced. However, if we reduédoo much, we start having numerical
problems (because the term that is multiplieddbsanishes).

Results of the 2nd algorithm
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Figure 2:1st algorithm results.

Xstar=X15=3.102

NN

]

]

Figure 3:2nd algorithm results.

This algorithm was the fastest to run for this example, but we have used a MATLAB built-

in function to determine the optimal solution of the linear programming problem. Although

linear programming optimisation methods are usually very efficient (the Simplex algorithm,
for example, usually converges in few iterations), this efficiency is not guaranteed for every
instance of the problem.

Results of the 3rd algorithm

Iteration:0 Error:0.7273
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Iteration:10 Error:0.002785

Iteration:20 Error:0.00002414

Iteration:30 Error:2.093e-007

Iteration:37 Error:7.539e-009

Xstar=X15=3.102

40 40
30 30!
" =]
Wl ] 20} ,
h : ho
10 : ol
0 10 ag 0o ¥ 5 10

Figure 4:3rd algorithm results.

As expected we have found the same solution as with the previous methods. Conceptually this
method is, probably, the most simple, resulting in a more clear implementation. Therefore,
it can be more easily expanded to cover more general Markov processes or additional problem
features. In fact, we are developing this solution method for Markov processes that in addition to
random jumps allow a deterministic drift — known as piecewise deterministic Markov processes
(Davis 1993).
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