FEP WORKING PAPERS Research Work

in P‘rugn:ss

FEP WORKING PAPERS

n. 493 May 2013
ISSNN: 0870-8541

Solving Hop-constrained MST problems with ACO

Marta S.R. Monteiro 2
Dalila B.M.M. Fontes '
Fernando A.C.C. Fontes 3*

I FEP-UP, School of Economics and Management, University of Porto
2 LIAAD/INESC TEC

3 FEUP-UP, Faculty of Engineering, University of Porto

1 ISR-Porto



Solving Hop-constrained MST problems with ACO*

Marta S.R. Monteir$] Dalila B.M.M. Fontes, Fernando A.C.C. Fontés
! Faculdade de Economia and LIAAD-INESC TEC
Universidade do Porto
Rua Dr. Roberto Frias, 4200-464 Porto, Portugal.
E-mail: martam@fep.up.pt;fontes@fep.up.pt
Tel.: +351-22-0426240
2 Faculdade de Engenharia da Universidade do Porto and I88B-Po
Rua Dr. Roberto Frias, 4200-464 Porto, Portugal.
E-mail: faf@fe.up.pt

Abstract

The Hop-constrained Minimum cost Flow Spanning Tree (HMJFBibblem is an extension
of the Hop-Constrained Minimum Spanning Tree problem sincensiders flow requirements
other than unit flows. Given that we consider the total castset nonlinearly flow dependent
with a fixed-charge component and given the combinatorialreaf this class of problems, we
propose a heuristic approach to address them. The propppeckah is a hybrid metaheuris-
tic based on Ant Colony Optimization (ACO) and on Local SeaiicS). In order to test the
performance of our algorithm we have solved a set of benchiprablems and compared the
results obtained with the ones reported in the literatureafMulti-Population Genetic Algo-
rithm (MPGA). We have also compared our results, regardomgputational time, with those of
CPLEX. Our algorithm proved to be able to find an optimum sohuin more than 75% of the
runs, for each problem instance solved, and was also abhedmive on many results reported
for the MPGA. Furthermore, for every single problem instame were able to find a feasible
solution, which was not the case for the MPGA nor for CPLEXg&€ing running times, our
algorithm improves upon the computational time used by CRBEd was always lower than
that of the MPGA.
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1 Introduction

The Minimum Spanning Tree (MST) problem is a very well-knavambinatorial optimization
problem where the objective is to find a tree spanning all sade network while minimiz-
ing the total costs incurred. This combinatorial problenfrégjuently used to model several
applications, specially in the area of telecommunicatiovizere there is a central device, for
example a hub, that must be linked to a set of remote termiffédis is the case of Frey et al
(2008) and Hwang et al (2007) that use the MST to model muiticatworks.

An extension to the MST problem that limits the number of alt®ved on each path from the
root node to any other node is called the Hop-constrainedriim Spanning Tree (HMST)
problem. The addition of a maximum number of arcs in each gathsually, related to relia-
bility issues. Furthermore, these constraints, called-Elmpstraints, can also be associated to
lower delay times in a multi-drop lines network, where pasof information may have to
gueue before reaching their destination. Although in ing@est version the MST problem can
be solved in polynomial time the Hop-constrained versioNfsHard Gouveia (1995). Here,
however, we look into another generalization of the MST feobsince we consider that flow
requirements at client nodes can have values other thamthand be different across clients.
Different flow requirements at client nodes is a charadieref several service networks, such
as telecommunications, water, gas, and electrical poweth&more, the cost functions con-
sidered involve two components: a setup or fixed cost indusseusing the arc and a routing
cost nonlinearly dependent on the flow being routed throbglatc.

In this work, we propose a Hybrid Ant Colony Optimization (B8) algorithm to solve the
Hop-constrained Minimum cost Flow Spanning Tree (HMFSDgbem. The use of an heuris-
tic method is adequate, since exact methods can be very sixpémterms of memory require-
ments and also of computational effort, leading to largenimg times whenever the problem
is solvable. The choice of a population based method has imetinated by an increasing
interest in recent metaheuristics, such as Ant Colony Qpéition, Swarm Optimization, or
Genetic Algorithms, that by themselves or hybridized haserbknown to have the best results
to the moment for some problems, Talbi (2002). In particuA&O algorithms were firstly de-
veloped to solve hard combinatorial optimization problddasigo and Stitzle (2004); Dorigo
and Blum (2005), being initially applied to solve the wetldewvn NP-Hard Travelling Salesman
Problem. ACO algorithms have also been successfully appiesolve flow problems with
concave cost functions, as is the case of the Transportatmslem Altiparmak and Karaoglan



(2007) and of the Minimum Cost Network Flow Problem Montestal (2011). The HMFST
problem can be viewed as the problem of finding shortest fathtbe sense of the least cost
paths) between a source node and every single demand nodeiwark having into account
the flow to be routed between pairs of nodes and the limitadiothe number of allowed arcs
in each path. Therefore, even before starting this researehlwould expect that ACO would
have a good performance also while solving the HMFST probl@ims is because all these
three characteristics can be found in them, flow betweers gdinodes, nonlinear costs and
shortest patHs In addition, we are able to cite several other optimizaposblems that have
been solved by ACO algorithms with improved results when gared with other heuristics,
such as GAs, among others, see e.g. Bui and Zrncic (2006)antinWang (2006); Bin et al
(2009); Faria et al (2006); Putha et al (2012); Monteiro €2@lL3). Therefore, we expect ACO
to have a competitive performance, in comparison with dtieerristic methods already used to
solve the HMFST problem.

As far as the authors are aware of, although several MST gmabhave been solved with ant
based algorithms, the special case of the Hop-constrairfed With flow characteristics and
with nonlinear costs has not yet been addressed by using Ag®@itams. Therefore, our
contribution is twofold. Firstly, the application of an ardsed algorithm to solve the HMFST
problem is, to the best of our knowledge, here proposed ®fitkt time. Secondly, the use of
general nonlinear and concave cost functions comprisirglfoharges, which we consider to
be more realistic when economies of scale are availableeemgl, works on HMST use linear
costs, for example, Gouveia and Requejo (2001); Gouvein(2041) and, apart from Fontes
(2010) and Fontes and Gongalves (2012), this type of fanstivere never used before with
HMST problems. We compare the results obtained with the oh&sned with the commercial
software CPLEX and with the ones reported in literature foMPGA Fontes and Gongalves
(2012). The MPGA is based on a recently proposed framewor&tycalves and Resende
(2011), to solve combinatorial optimization problems w@enetic Algorithms using biased
random-keys representation, where the authors also mevatirvey of successful applications
of this method reported in the literature.

The remainder of this paper is organized as follows. In $a@j we provide a literature review
on the HMFST problem and other related generalizationseoMBT problem. In Section 3 we
provide a formal description of the HMFST, along with its imaatical formulation and the
cost functions herein considered. In Section 4 we reviewesaark on ACO and in Section 5
we develop our approach to solve the HMFST problem. Thetesbtained and the subsequent
analysis are reported and discussed in Section 6. Finalytiéh 7 provides a summary and
some conclusions of what has been done as well as a discusdidgare work.

1The TSP can be seen as the one where the shortest circulabetuteen a given set of nodes is to be defined,
without visiting twice the same node.



2 Literature review

The MST problem and its extensions have been solved by ddeermiques. Genetic Algo-
rithms (GAs) were first used to solve MST problems in the mid 8@d they are still one of the
most popular heuristic methods to solve them, as well agylt@ snany types of optimization
problems. Zhou et al (1996) use a GA to solve degree-consttdVSTs. They compare three
types of encodings for the chromosome used in the GA theygsepn order to choose the best
one: the first associates an index to each arc thus consiguttromosomes with — 1 genes;
the second, which was the selected one, is based on the Rtiifder encoding allowing the
use ofn — 2 genes to encode a tree withhodes; the third associates a bias value to each node
and each arc. The degree constraint is guaranteed by megplke@ch violating gene with another
gene that is not in violation of the degree constraint. Thtb@s apply their GA only to a lit-
erature problem with a 9-vertex complete graph. Vo3 (1998nels a previous mathematical
formulation for the HMST from Gouveia (1995), which is basedthe Miller-Tucker-Zemlin
subtour elimination constraints originally defined for th®P. The model is solved by a Tabu
Search heuristic that uses a cheapest insertion heuliaged on principles of the Prim’s algo-
rithm Prim (1957), in order to find an initial feasible soturti Hassin and Levin (2003) provide
a polynomial algorithm to solve HMST problems for the case @&-vertex-connected graph
and another polynomial algorithm with bounded performagearantee for the general case.
The Capacitated MST problem is solved in Reimann and Laum@06) by constructing the
solution based on an ant algorithm developed to solve thacaped Vehicle Routing Problem
(CVRP). The algorithm uses a probability function basedhastavings information (for adding
arcs between pairs of demand nodes) in substitution foreéhegtic information. Bui and Zrn-
cic (2006) solve the degree-constrained MST problem wettuse of an ACO algorithm, where
each ant instead of constructing an entire solution onkyctelan arc. These arcs are not used
directly to construct a tree but only to update the pheronteveds of each arc. Afterwards, can-
didate arcs are listed, based on their pheromone levelghanda spanning tree is constructed
with this information and with a modified version of KruslsaBlgorithm. Only linear costs
are considered. A recent work on the MST problem is that obHiat et al (2009), where the
authors propose an algorithm hybridizing a Tabu Search @hfl)an Ant Colony to solve the
K-Minimum Spanning Tree problem. More recently, Neumand #itt (2010) use a simple
ACO algorithm, 1-ANT, to solve the MST problem. They comptwe different construction
techniques in problems where pseudo-Boolean functiondre optimized. One technique is
a modified version of the Broder construction graph BrodéB@), and uses pheromone infor-
mation to choose the next arc to be included into the solufidie other technique includes a
new arc in the solution tree, one at a time, if it does not idela cycle. A polynomial upper
bound is proved for the first technique. The second techrigsehe lowest running times.

As the HMST problem belongs to the NP-hard class of problehesdevelopment of lower
bound schemes is very popular. Gouveia and Martins (199&)duace an extended and com-
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pact formulation for the Capacitated MST problem, by obisgr¢hat the problem can be re-
duced to the HMST problem due to the one unit of traffic produngevery demand node that
is considered by the authors. This new formulation intredanother index in the variables, the
hop index, identifying the position of an arc in the solutiéurthermore, a new set of inequal-
ities, called hop-ordering inequalities, are developeskldan a former formulation of Gavish
(1983) for a capacitated MST problem, to limit the flow in gvarc not connected to the root.
Latter on, Gouveia and Martins (2000) improve upon thesetdvounds by proposing several
levels of aggregation. The new model aggregates into oggesiariable all the variables asso-
ciated to a given arc beyond a certain position P. This allmwvshe creation of a hierarchy of
hop-indexed models and a reduction on the number of vagablthe models. Lower bounds
are computed by three iterative methods, based in the gplofia sequence of Lagrangean
relaxations of the hop-indexed models with varying P valules first one uses reduction tests
to eliminate variables from the model; the second one adds kap-ordering inequality vi-
olated by the solution; and the third one includes gen@m@lsibtour elimination constraints
to the model. A Lagrangean Relaxation approach, based omwankeflow formulation, is
used in Gouveia and Requejo (2001) to solve the HMST problant, the flow conservation
constraints are associated to Lagrangean multipliers aatizéd. The problem is further sim-
plified and is separated into two subproblems: one involtirggvariable identifying the arcs
that are in the solution tree and the other involving a vdeiatdicating whether or not an arc
is included in the solution in positianpof the path from the root node to some nddésouveia
et al (2007) model the HMST problem as a Steiner tree in a éaldirected graph. The iden-
tification of each layer is associated to the hop constrahtes, whereh = 1,2,..., H. The
nodes respecting will be copied into the corresponding layker Lower and upper bounds are
computed by using a Dual Ascent Heuristic and a primal heai@PH-Prim, respectively, and
finally a cutting plane algorithm is applied. The interesteader is referred to the comprehen-
sive survey by Dahl et al (2006), and to the references thgpeihow to compute lower bounds
for the Hop-constrained MST problem, including technigsesh as Lagrangian Relaxation or
Column Generation.

Regarding the development of good heuristic methods teedble HMST problem, not much
has been done, apart from the works we review bellow. Feematal (2007), taking advan-
tage of the problems similarity, develop five heuristic maares to solve the HMST problem
based on the ideas previously proposed for the CapacitateidiMim Spanning Tree (CMST).
Initially, a Savings Heuristic (SH) is developed mainly tengrate initial solutions. The SH
starts with a solution with all nodes linked to the sourceenadd then performs swaps, with
arcs not present in the solution tree, that represent theshesgs. To generate different initial
solutions, the savings heuristic is given a set of allowed &y, as well as a set of prohibited
arcsS,, differing from solution to solution. The five heuristicgfdr on the definition of5; and
S,. The first heuristic defineS; as the set of arcs of the previous solution to be excluded from
the next solution, provided that they are not linked to therse node. The second heuristic
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considers prohibiting two arcs at a time. The third hewrisicorporates ins, the cheapest
arcs incident to each node and the arcs with the minimum cbsthware closer to the source
node. The fourth heuristic uses as candidate arcs the setohdite four cheapest arcs incident
to each node provided that they are not linked to the sourde aod they are not yet in the
solution. Finally, the fifth heuristic is a modified versiohtbe second heuristic where at each
iteration a new solution is calculated for each arc to be ipitdd. Then, all arcs of that solu-
tion are possible candidates for prohibition. The last tstiar although having the higher time
requirements, has the best performance. Gouveia et al 28&#& able to improve upon these
results with the use of Dynamic Programming and of heusdi&sed on the exchange of arcs
and on node-level exchanges. The level of a node is defindgeandaximum number of arcs a
node can have between itself and the source node and is taei®ad on a restricted Dynamic
Programming (DP) formulation of the problem. The statecsp@striction rule allows for the
movement of at most nodes, between any consecutive levels, and the statetimarrsile for-
bids parallel shift moves starting and ending at differentgof overlapping levels. Shift, swap,
and shift or swap standard arc-exchange neighbourhoodefned, as well as, a method com-
bining arc-exchange and swap and shift moves. Five dishiaatistics were constructed by
incorporating these neighbourhoods and the method contpbanic-exchange, swap and shift
moves was found to be the best one.

Works considering HMST problems with different node regments are scarce. Fontes (2010)
uses Dynamic Programming to solve the HMFST problem, i.eM&T problem with Hop-
constraints and with flow requirements other than the unite DP formulation is recursive
which means that with the use of a backward-forward proathe state space graph is suc-
cessively expanded. The algorithm starts from the lasesdad works backwards, through not
yet computed states, until a computed state is reached., Eften computing the state value
the algorithm moves forward, through already computecdestaintil it reaches a state not yet
computed. The process is repeated until the final state ¢cheglaand no better solution can be
found. The author considers three distinct nonlinear eaogttions with discontinuities, depend-
ing on a percentage of the total demand, other than at thenoflig total, Fontes solves 4050
problem instances to optimality being able to demonstteethe computational performance
is independent of cost function type. Fontes and Gon¢dR@%2) use a Hybrid Biased Ran-
dom Key Genetic Algorithm with 3 populations evolving segiaty to solve the same problems.
These populations are randomly generated and are let teeevmlependently. Then, every 15
generations the two best chromosomes are included in @l gibpulations. The encoding of
the solution tree is made by resorting to random keys. Thezefa chromosome is made of
3n random numbers, whereis the number of nodes in the tree. The fitstgenes are used
by a Tree Constructor procedure in order to decode the rark@gsiinto a solution tree. The
lastn genes are used by a Local Search procedure in order to imgires®lution found. The
hop-constraint is handled a posteriori, by penalizingasible solutions with more thanarcs

in the path from the source node. Local search is performedfdgcing a node in the tree with
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another node not in the tree, given that the new solutionilisast extreme flow. The results
were obtained for problems considering spanning treeswptto 50 nodes.

3 Problem definition and mathematical formulation

The HMFST problem considers the selection of a tree sparalingpdes in a network in such
a way that costs are minimized. In addition, the flows to beedthrough each arc have to be
found and the maximum number of arcs in each path betweemtieesnode and each demand
node is limited. As the uncapacitated version of the probkbeing considered, there are no
upper or lower bounds on the arcs capacity.

Formally, the problem can be defined as follows. Considerectid networkG = (N, A),
where N is a set ofn + 1 nodes, withn demand nodes and one single source niodend
A(C N x N\ {t}) is a set ofm available arcg:, j). The number of available arcs is at most
(n 4+ 1) - n since there is only one source node. An HMFST is a problemirdea&lith the
minimization of the total costg;; incurred with the network while satisfying the nodes demand
d;. The total demand of the network), is given by the summation of all node demands. The
commodity flows from a single source notléo then demand nodes € N \ {t}. In addi-
tion, the maximum number of arcs on a path from the source m@&ach demand node is
constrained by a hop parametéf, The mathematical programming model that is given next
for the HMFST problem is an adaptation of the hop-indexedhtdation for the Constrained
MST problem by Gouveia and Martins (1999), which in turn isdchon the one developed by
Gavish (1983). An important feature has been added by theéhetmathematical formulation,
which is the introduction of an extra indéxidentifying the position of an arc in the solution
tree counting from the source notld.e, the number of hops to the arc. Therefdrean only
take values from 1 té/. Considering the notation summarized bellow, the modebeanritten

as:

t - source node,
n - number of demand nodes,
d; - demand of demand node= N \ {t},
: 1, if x>0
Yih = { 0, if ayyn =0,
z;; - flowonarc(i, j) which is in positior,
fi; - costofards,j),



H
min: Z Z Zfij(iﬂijh,yijh)a 1)

iEN jEN\{t} h=1

H
S.t. ZZ Yijh = 1, Vien\{, 2)
i€N h=1
Zﬂfijh - Z Tjihg1 = djz Yijhy  VieN\{t}» Vhe{l,...H-1} (3)
ieN iEN\{t} ieN
Yijh < Tijh < D - Yijn,  Vien, Vien\{t}, Vhefl,.. H} (4)
Tijn 2 0, Vien, Vieniy, Vae(i,.. H}, (5)
Yijn € 10,1}, Vien, Viemi, Vhefr,.. o) (6)

Please note that, in this model we do not consider varialgesandz;, for all h > 2 because
any arc leaving the root node cannot have a hop value largarthvariableg;;; andx;;, (for

all 7, 7) because in this case we are dealing with arcs not directigected to the root, therefore
they cannot be in position (hop) 1; and variablgs andx;;; because we are not considering
loops in the tree. The objective in this problem is to minieniatal costs incurred with the tree
spanning all its nodes, as given in (1). Equations (2) guaeathat every node is in the solution
in exactly one position. Equations (3) are called the flowsepmation constraints, and they
state that the difference between the flow entering a nodéhentliow leaving a node must be
the demand of the node. Furthermore, they also state tha fldw enters a node through an
arc in positiom, then the flow leaves that same node through an arc in pogition Equations
(4) are called the coupling constraints. Constraints (8l) (&) state the nonnegative and binary
nature of the decision variables. It is assumed that the amtitynproduced by the source node
t equals the sum of all the demandisi.e.,

Y dj+d =0, (7)

JEN\{t}
whered; is the demand of node(represented by a negative value).
3.1 Cost Functions

Given the easiness of approximation of any cost functionnayfirst few terms of a Taylor
Series, four types of polynomial cost functions are considén this work:



o Type 1:

bij © Tij + Cijs if Ty > 0,
() = _ 8
Ji (i) { 0, otherwise. ®
e Type 2:
O’ if Ty = 0,
fij(wij) = S by - w45 + cijy if z;; < D/2, 9)
bij “ Ty + G+ bij, otherwise.
e Type 3:
O, if Tij = O,
fij(l’ij) == bij * Ly + Cij, |f Tij S D/2, (10)

bi; - x;; + ¢;; — bi;, otherwise.

These first three cost functions F1, F2, and F3 considerrlimeding cost9;; per unit of flow
routed through ar¢i, j), as well as, fixed costs;. In addition, there is a discontinuity in F2
cost functions by addind;, and in F3 cost functions by subtractig, when the flow passing
through an arc is higher than half the total demandrhe fourth cost function is represented by
complete second-order polynomials and is initially comcamd then convex, the discontinuity
point being at half of the total demand.

e Type 4:
07 |f xij = O,
fis(wig) = § —ay -2 + by - iy + ¢y, 2y < D)2, (11)
Qij - x?j + b - x;; + ¢;;, otherwise.

All cost functions consided;;, b;;, andc;; € Z*. Please note that we have dropped/ihirdex
in the flow variablesr;; since the cost of an arc does not depend on its position inrées t
provided that the position does not violate the hop-coirgtra

The use of these cost functions, except for F1, follows thekvad (Fontes and Gongalves,
2012). Cost function F1 was herein introduced with the psepof assessing the behaviour
of the algorithm when small changes are introduced in thefof the cost function, when
considered along with F2 and F3, given that the three costifums are based on first order
polynomials.



4 Ant colony optimization

In their daily life, one of the main tasks ants have to perfasnto search for food, in the
vicinity of their nest. While walking in such a quest, the sadeposit a chemical substance
called pheromone in the ground. This is done with two obyesti On the one hand, it allows
ants to find their way back to the nest, such as Hansel andI@réte fairytale. On the other
hand, it allows other ants to know the way they have takerhathey can follow them. Since
hundreds or even thousands of ants have this behaviour ifould see the pheromone laid in
the ground as a kind of light, one could see a large network sdime of the arcs brighter than
the others. And within the paths created by those arcs wautlysbe the shortest path between
the nest and the food source. What has been observed by Dengudi al (1990) is that every
time an ant has to choose between paths to follow to reaclotdtedource, the ant will choose
with higher probability the path with the largest pheromonacentration. However, they have
also observed that there are always some ants that “likeXptoee new paths. These are the
principles of Ant Colony Optimization. It was the obsereatiof this sort of communication
developed by the ants that inspired Dorigo and Stiitzle welde the first ant based algorithm
which was called\nt System Dorigo et al (1996), that was used to solve the TravellingSakn
Problem (TSP), a well known NP-Hard problem.

Ant based algorithms have two main phases, one is the catistnof the solution and the
other is the pheromone update. Let us consider a networlcefaard nodes. Ants move on the
network by going from one node to another. The node wherettimaves to is probabilistically
chosen based on the pheromone quantities deposited onah@wigoing from the node it
stands. After the ants have constructed their respectikgicos, the pheromone trails are
updated. The update is performed in two steps: in the firptigteromone values are decreased
by a constant decay so as to mimic the natural process of esapg in the second step, the
pheromone on the arcs of the network which are present irothéan are reinforced with extra
pheromone. Such reinforcement is usually proportionahéosolution quality. The process of
solution construction and pheromone updating is repeatgitl sSome stopping criterion has
been reached.

The description of the Ant Colony Optimization Metaheucidty Dorigo and Stutzle (2004)
was followed by several works that studied the introducttdmodifications to the AS, such

as the introduction of ®aemon. The daemon, which has no equivalence in nature, has a
very active and important role in the algorithm becauseldve for operations that use global
knowledge of the ant solutions. In ACO, the daemon can cbtitedfeasibility of each solution,

for example, by evaporating a percentage of the pheromoastityiin each arc as a way of
penalizing such a solution. To avoid premature convergarseally daemon actions make use
of the best solution in the current iteration and/or the Iseéition found so far, whose arcs
are the only ones to be allowed to have pheromone depositéenm. Soon it was also made
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clear that ant algorithms would benefit from the introduciod a Local Search feature, to cope
with a thorough exploitation of the search space nearby gobdions, leading almost always
to better performances of the produced hybrid ACOs.

Nevertheless, regardless of their type, ant algorithmarecvery popular since the beginning
and have been used to solve combinatorial problems in deesearch areas: Image Process-
ing Meshoul and Batouche (2002), Data Mining Parpinelli €2802), Protein Folding Hu et al
(2008), Power Electronic Circuit Design Zhang et al (20@jd Workflow Scheduling Prob-
lem Chen and Zhang (2009), Transportation Problem Musa @04l0); Santos et al (2010),
just to mention but a few. With time, several modificationgénbeen introduced and considered
as the main components of ant algorithms.

Talbi et al (2001) developed an AS algorithm, that uses afseam@llel ant colonies, to solve
the Quadratic Assignment Problem. In it, they use the ppiesiof both the AS, as every ant
is allowed to deposit pheromone in every component of itstamis, and the ACO heuristic, as
the pheromone quantity to be deposited is dependent of daaations, over all best and worst
solutions found. Thus, the pheromone update reinforcesopiene values of the parts of every
solution S taking into account not only its valug(.S) but also the value of the best solution
F(S*) and the value of the worst solution fourdd.S—), making it proportional to the ratio
W. Their purpose is to weaken the reinforcement, preventopgek convergence, due
to the unusual large number of ants depositing pheromonssarsolutions. A similar approach
is used by Alaya et al (2004) to solve multidimensional kia&gsproblems. In their case, the
pheromone update is done in such a way that the quantity dlegpas each component of the
solution includes information about the difference betatee objective function value of the
best solution of the iteratiof’(5?) and of the global best solutidfi(.S*), m There-
fore, the closer the solution is to the global best solutibe higher the quantity of pheromone
deposited. The influence of the heuristic information ingegormance of ant algorithms when
solving Set Covering Problems was studied in Lessing etG04® Other works use different
types of ants in their algorithm. Rappos and Hadjiconstaxti2004) use ACO to solve two-
edge connected network flow design problems introducingtasses of ants, flow ants that are
mainly related to the construction of the network, and keligy ants that are concerned with
the reliability of the network. Chen and Ting (2008) solveilagle Source Capacitated Facility
Location Problem using two colonies, one with location d@aotéind the location of facilities,
and the other with selection ants to assign customers ttidmsa A Terminal Assignment prob-
lem is solved in Bernardino et al (2009) by means of an ACOré#lym with a Local Search
procedure embedded in it. The information about the phenenguantity laid in each path
is used to modify the solutions that were obtained previgusstead of producing new solu-
tions. Although ACO algorithms perform well, there are scadgantages in hybridizing them
with other metaheuristics, thus benefiting from the joirdreltteristics obtained. While Craw-
ford and Castro (2006) solve both Set Covering and Set Raitig benchmark problems with
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ACO algorithms, and with hybridizations between ACO and €wint Programming tech-
niques, Forward Checking, Full Lookahead, Arc Consisteacy Post Processing procedures,
Bouhafs et al (2006) join Simulated Annealing and an Ant @Ggl8ystem (ACS) to solve Ca-
pacitated Location-Routing problems. The SA componentefdlgorithm is used to locate
the distribution centres (DC) and to assign customers th B&z, while the best routes are de-
fined by the ACS. In Altiparmak and Karaoglan (2007) the arghnybridize ACO and Genetic
Algorithms to solve Transportation Problems with squar@ mncave costs. They introduce
a mechanism to identify the stagnation of the algorithm io tmays: i) whenever more than
50% of the arcs in the network have reached a minimum valwsvat for the pheromones,
setting all the pheromones to a maximum value, and ii) whentie global best solution has
not been updated for 50 iterations, in this case replacifg @bthe worst chromosomes of the
population with randomly generated ones.

The use of several colonies of ants, whether with differemnith similar tasks, has also been
approached in the literature. One of the first works was d@esl by Gambardella et al (1999).
They use two different colonies to solve the Vehicle Routitrgblem. One such colony is
the ACS-VEI which is used to handle the minimization of thentuer of vehicles (routes). The
other, is the ACS-TIME colony that will try to optimise thatelling time of the solutions found
by the ACS-VEI. Middendorf et al (2002) present a study orr fdifferent techniques to share
information between the colonies. The first identifies anttiseo all the colonies the overall
best solution. In the second strategy each colony will se&htest solution to its neighbour
colony. The third strategy identifies the bestsolutions between a pair of neighbour colonies
and these are the ones used to update the pheromone matratly Rihe fourth strategy is a
combination of the previous two methods.

Many more works could be cited, but it would be beyond the abje of this work. For the
interested reader, besides the works already mentionedanérthe references therein, Cordon
et al (2002), Garcia-Martinez et al (2007), and Mullenl €2@09) provide excellent surveys on
ant colony algorithms and their applications.

Next, we will describe the approach we have made with ACO keesihe HMFST problem.

5 Antcolony optimization approach for the nonlinear HMFST
problem

The construction of a heuristic algorithm is always asdedi@o a set of major decisions that
have to be made regarding parameters values and more comeples such as the decision
of how to construct a solution. ACO algorithms are no differeTherefore, the following
list of decisions, considered as their building bricks, ggecified: method chosen to construct
the solution, heuristic information, pheromone updatiaig,r probability function, parameter
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values, and finally, but also very important, the terminagondition. In the following sections
we describe each one of them.

5.1 Defining a solution to the HMFST problem

The first and most important decision to be made is the reptasen of the solution to the
problem being solved, since a poor representation can ¢eadttso good solutions, and high
computational running times.

The solution for the HMFST problem is a tree, i.e. a graph eoting all nodes without cycles.
Therefore, between the central node, also known as rootocsoaode, and every demand node,
there can only exist a single directed path. The solutiostanted by an ant must then consist
on as many arcs as the number of demand nodes and includenalhdenodes. Furthermore, a
solution is considered feasible if the path from the souien to every demand node has at
mostH arcs.

5.2 Constructing a solution

In the method used to construct solutions for this probldhajds begin their solution construc-
tion at the source node. Initially, an ant selects an exgsine linking the source nodeand one

of the demand nodesc N \ {t}. Then, the ant selects another arc, from the set of available
arcs linking the source or one of the demand nodes alreadyeipartial solution to another
demand node not yet considered, and adds it to the solugen fior example, consider a fully
connected network with four demand nodesb, ¢, d} and a source node Let us suppose that
the first arc added to the solution is dfca). The next step to be taken is to choose from the
remaining demand nodd®, ¢, d} the one entering the solution tree provided that it is either
linked to the source nodeor to the demand node already in the solution. The possibilities
are thus{(¢,b), (t,¢), (t,d), (a,b), (a, c), (a,d)}. One of these arcs is chosen not at random but
rather based on the pheromone quantity present in it. Tinessteps are repeatedly performed
until there remains no demand node outside the solution tree

The steps described above, do not guarantee the feasifilibe solution regarding the hop-
constraints. To overcome this problem each time an(/arg¢) is added to the solution tree the
length!; of the path linking the demand nodeo the source nodeis computed. If;, = H,
the maximum length (number of hops) allowed has been reaahbdt path and thus the arcs
considering nodg as a parent are excluded from the set of viable arcs. New agcadaled
until all the demand nodes are in the solution, or until ndl@aarcs are available. If an ant is
able to construct a solution with arcs then the solution is feasible. Otherwise, the soluion
discarded. Since the problem instances do not consider pletemetwork at some point an ant
may have no possibility of constructing a feasible solutilonthis case, we could have chosen
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to fix unfeasible solutions or allow the ant to look for anatbelution. However, given that the
number of discarded solutions was not significant we dedideisregard unfeasible solutions.

As said before, an arc entering the solution is not chosemtaiely at random. Instead, it is
chosen by using a probability function incorporating imi@tion about the visibility of arcs and
on the pheromone quantity associated to them, as definexhbell

[7:5]* - [n35)°
D jea lmil® - nigl?’

Py = (12)
wherer;; is the pheromone present in dicj) at the current iterationy;; is the visibility of arc
(,7) and is usually represented as the inverse of the cost of thexad > 0 are parameters
weighting the relative importance of the pheromone valukdrihe visibility information, re-
spectively. The visibility of an arc is also known laauristic information and is only calculated
once at the beginning of the algorithm, since it depends onlthe problem data. If we make
an analogy between cost and distance, the visibility of arfiay) is higher if nodej is “close”
to node; and thus we casee it while standing at nodg and is lower if it is difficult tosee node

j from nodei.

5.3 Updating and bounding pheromone values

After all ants have constructed their solutions, the atyamisteps into the pheromone updating
phase. In this phase, the best solution of the current iberat’ is identified and the algo-
rithm updates the pheromones. We only allow the ant that bastaictedS® to reinforce
the pheromone quantity in the arcs of its solution. The up@htpheromones initially sim-
ulates the natural process of evaporation by reducing tleeopione values in every existing
arc (i,j) € A. This is represented by the first component of Equation (@Bgrep €]0, 1]
represents the pheromone evaporation ratergnthe pheromone quantity in af¢, j). If the
evaporation rate parametetakes a value near to 1, then the pheromone trail will not laave
lasting influence throughout the following iterations, \wdes a small value will increase the
importance of the arcs a lot longer.

Tij = (1 — ,0) X Tij + ATij- (13)

The second componenhr;;, represents the pheromone quantity to be deposited it afg
and is given by:

@ if (4,5) belongs to solutior?,

Ay = F(SY) _
0 otherwise,

(14)
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where() is a positive proportionality parameter aAdS") is the cost of the best solution found
at the current iteration.

In the initialization phase of the algorithm, an equal amafrpheromoner, is deposited in
every arc of the problem, thus guaranteeing that every arthiegessame chance of being chosen,
as stated in Equation 15.

Ti; = To, V(i,7) € A. (15)

At each iteration, after the pheromone update is perforraezheck is done to find out if its
value is within the intervalr, ., Tma:|, following the work of Stutzle and Hoos (1997). The
Tmae Value depends on the cost of the best solution found sd@'faand on the pheromone
evaporation rate, and ther,,;,, value depends on the upper bound for the pheromone value
Tmae @nNd ON a parameter,.;, the probability of constructing the best solution, as give
Equation (16).
Tmae - (1= Phes) 1] (16)

(5 =1 /Prest " p- F*
Since bothr,,;, andr,,... only depend on the cost of the best solution found so far, thenely
have to be updated each time the best solution is improvednWhecking if the pheromone
values are within the limits defined, the following correetiactions are taken: if on the one
hand, some pheromone value is bellaw,, it is set tor,,;,; on the other hand, if some
pheromone value is abovg,,,, it is set tor,,... By limiting the pheromone value within these
bounds, the choice of the initial pheromone vatybecomes less important as pheromones
converge within a few iterations to reasonable values withé desired interval.

[Tmin y Tmax ] -

Although setting pheromone bounds is a good way to prevetihgdrapped into local optima,
the algorithm needs an extra mechanism to deal with stagmatid cycling of solutions. To
solve this problem we keep track of the number of iterationmiaumbent solution has not been
changed. Whenever that number reaches 200 iterationshérerpone values are reinitialized,
that is, the pheromone values are setddor all arcs. This gives the algorithm a chance to
search for a better solution in another region of the segelses before the fixed number of
allowed iterations is reached.

5.4 ACO algorithm to solve nonlinear HMFST problems

Now that we have described every specific characteristit@falgorithm let us present the
flowchart for the HACO heuristic, which is given in Fig. 1, atpwith a brief description.

The algorithm starts by depositing an initial pheromonengjtsar,, on every arc and by initial-
izing all necessary parameters. Then, every ant constitaaslution following the procedure
explained in Section 5.2. Solutions are sorted in ascenadlidgr of cost and the best solution
of the iterationS! is afterwards identified. A sét’ is created with the best five solutions found
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at the current iteration. Local search is performed on dlltems S € W and a set?’ with
the improved solutions, if any exist, is returnesl.is updated by identifying the best solution
between the previouS’ and the solutions returned iY’. If the cost ofS® is lower than the
cost of the best solution found so féif, the incumbent solutiof? and the best codt(57) are
updated.

Initialize pheromones and
set parameters

o | Create ants and let them
construct their solutions

v

Identify best solution S’

Create set ¥ containing the
5 best solutions of the
current iteration i

Perform local search on
every SeW andreturn W'

Y

Update S’ as the best solution
between S' and all Sew’

se=5'
Yes Update:F(Sg):F(Si)
Trm'n’rmax

No
Evaporate pheromones ‘

for all (i, j)e 4

Next Reinforce pheromone
iteration values for all (i, j)€S'

A

Get an arc(i, j)€e4 ‘

Pheromone
values out of
bounds?

Yes Modify
accordingly

Get next(i, j)e 4
A

No Stopping

riteria satisfied?

Figure 1. Flowchart for the ACO algorithm

The next step is to update the pheromone values. Firstlypptenes are evaporated in every
single arc. Then, a pheromone value proportional to the afoste best solution found at the
current iteration is added to all the arcs in the solutionteAfards, the algorithm tests all
pheromone values for violations of the pheromone boundthelpheromone accumulated on
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an arc exceeds,,,. then its value is set te,,,.,, and if it falls belowr,,;,,, then its value is set

to Tmin -

Continuing with the flowchart, if any of the stopping criteis satisfied, then the algorithm stops
and returns the best solution found, as well as its cost,eafirthl result; otherwise it continues
to the next iteration. Two stopping conditions are used. dlgerithm stops running if a pre-
defined maximum number of iterations is reached, or it stbfggée consecutive restarts, of
the pheromone matrix, have been performed. Recall thatitbeommone matrix is reinitialized
every time that a number of iterations (200 in our case) has performed without improving
the best solution.

5.5 Local Search

A Local Search procedure was developed and, as said bef@eplied right after the ants have
constructed a feasible solution and identifi&d The feasible solutions provided by the ants are
sorted in ascending order of total costs, that is to sayeddrom the best to the worst. Then,
we create a sdt/, containing the first five solutions, to have local searclquared on. The
local search, when performed in the vicinity of a particidalution.S, allows the algorithm to
search for a neighbour solution that might have a lower dést.this problem, a solutiog”

is a neighbour solution of solutiafi if SV is obtained fromS by swapping an ar¢i, j) € S
with another ardl, j) ¢ S that does not create a cycle and still ensures no node is more
than H arcs away from the source node. Therefore, after the swas f@llace node gets its
demand and the demand of all nodes it supplies, if any, frode himstead of from nodé The
local search algorithm, that is applied to the aforememiibfive solutions, is given in Fig. 2.
The algorithm starts by sorting the arcs in the selectedisoly in ascending order of their
pheromone value, in order to try to substitute in the firstglthe “worst” arcs, i.e., the ones
with the least pheromone. For each one of them we try to findtamative arc that improves
the cost of the solution. In order to do so, we find all the &fcg) that can replace the current
one while maintaining feasibility of the solution, i.e. rfotming a cycle and maintaining the
constraint// for all paths. We attempt to replace the original @rg), by starting with the ones
with a higher pheromone value. If one of the replacementsongs the cost of the solution
we proceed to the next af¢, j) in the solution without attempting the remaining optionseT
solution to be used in the remaining of the algorithm is either SV, whichever has the lowest
cost.

Let us consider a small example to clarify how the local deprocedure is applied. Consider a
problem defined on a fully connected graph with six demaneaéd b, ¢, d, e, f}, a root node

t, and whereH = 2. We make use of Fig. 3 in order to illustrate the evolution @éution

S with the application of local search. Assume that we havesaly identified the set of five

solutions selected to perform local search on and that wenapecting the neighbourhood of
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Create a set W containing
the 5 best solutions of
the current iteration

For all Sew

Sortall (i, j)€S
in ascending order &
of pheromone

Next
Solution

A

Choose the first
(i, j)es

Y

Sortall (7,)¢S thatcan
replace (i, j))€S ,while
mantaining feasibility, in < Next (i, /)
descending order of
pheromone |

For each (/,j)&S

Create $" by

> Next(/. ) replacing (i, j) with (Z, /)

v

No

Undo replacement

All(7, j) tested? All (i, j) tested?

All solutions No

tested?

Return set W' with
improved solutions

Yes

Figure 2. Pseudo-code of the Local Search procedure thahwaporated into the ACO algo-
rithm developed

one particular solutioty, whereS = {(f,¢), (¢, f), (f,e), (a,b),(t,d),(t,a)}, see Fig. 3 (a).
In order to simplify, assume also that the arcsiare already sorted in ascending order of arc
pheromone, i.ets. < 7yp < T < Top < Tia < Tia-

We try to improve solutiorb by replacing each of the six arcs ) one at a time, with better
arcs, i.e. with arcs that decrease the total cost.of

First, we remove arf, c¢) from S, and then we identify the sét of candidate arc§, ¢) ¢ S to
substitute ar¢f, ¢), since this is the arc with the smallest pheromone value.céhedidate arcs
setis given byP = {(d, ¢), (¢, ¢), (a, c)}. Suppose thaP is already sorted in descending order
of arc pheromone, i.ery. > 7. > 7,4.. In Fig. 3 (b) all fine dashed lines represent arcs that can
be used to reconnect nodé¢o the solution tre&, whereas all dashed lines represent arcs that
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cannot be considered as candidate arcs because they wadltblenfeasible solutions. Note
that arcgb, ¢) and(e, c), in dashed lines, cannot be in the set of candidate Arascause they
would violate the hop-constraiif = 2.

Following the algorithm, we replace afg, ¢) with arc(d, ¢) thus obtaining a neighbour solution
SN ={(d,c),(t, f),(f,e), (a,b),(t,d),(t,a)}. Next, we calculaté’(S") and compare it with
F(S). Let us assume thdt(S") < F(S). Then, we accept this arc swap and continue with the
local search procedure considering this new solufidn by makingsS « S¥, see Fig. 3 (c).
After this swap takes place nod@ets its demand from nodginstead of from nod¢.

The local search will now try to replace the next arc in lineSinwhich is arc(¢, f). Itis
important to notice though that we never go backwards wiyieg to improve a solution,
which means that once a swap has been made, the procedunetiiy to improve the swaps
that have already been performed. Let us go back to our exsampl

Forarc(t, f) the newP = (), because none of the ar@s f) ¢ S can provide a feasible solution
(they would all introduce either a cycle or violate the hamstraint), see Fig. 3 (d). Therefore,
arc(t, f) is keptinS, and the procedure continues the search with the next arcf.ar), which
will render P = {(a, e), (d, e), (t,e)}, as can be seen in Fig. 3 (e).

The local search procedure continues the search for bettgios until all arcs in the original
solution S have been tested. This is repeated for the remaining soutroll/, until all five
solutions have been inspected in order to be improved.

6 Computational Experiments

6.1 Test Problems

In order to test the algorithm that was developed we dowrdddlde Euclidean test set available
from Beasley (2010). The set is divided in ten groygs, ¢o, - . ., gio} With different ratios
between variable and fixed costs/F'. Each of these subsets has three problem instances.
Furthermore, the number of nodes considered is 10, 12, 13,9125, 30, 40, and 50. For the
problems with 40 and 50 nodes, there are only 5 groups defiredfurther details on these
problems please refer to Fontes et al (2003). Thereforeg tha total of 240 problem instances

to be solved ten times for each of the four cost functions idensed F1, F2, F3, and F4 and
each of the fou#! values, wherd{ € {3,5,7,10}.

It is important to report that from the 240 available prob¢erior H# = 3 and H = 5 and for

cost functions F1, F2 and F3 only 165 and 233 problems, réspBg have feasible solutions.
Regarding cost function F4, neither HACO nor MPGA were ablertd a feasible solution for
H = 3 for any of the problem instances with size 40 and 50, whilefo« 5 they were not able
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Figure 3: Graphical representation of the example givetherl.ocal Search procedure

to solve two problem instances with size 40 and five problestaimces with size 50. However,
since these problem sizes have not been solved by an exaobdnatd we cannot guarantee
that they have no feasible solution. Thus, all things careid, we have solved a total of 35120
problem instances. In the following sections, we presedtdascuss the results obtained.

6.2 Parameters setting

There are a few decisions regarding the values to be takehebgarameters described in the
previous sections. The development of our algorithm wasgeael in several phases and we
had to set some values for our first experiences. In an ipliake, based on the literature and
previous experience, we tested the parameter values gitba second column of Table 1. The
ones with the best results are summarized in the third colukfter developing the last phase

of the HACO algorithm, we tested the parameter values onae nikhe results indicated that

the ones chosen in the first tests were still the ones aclgi¢henbest results. Some comments
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Table 1: Parameter values for the ACO.

Parameter Tested Values Final Values
« 1,3,5 1
16 1,2,3,5 2
0 0.05,0.1,0.2,0.5 0.1
Q 1,2,5 2
Poest 05, 005, 0.01 0.5
To 1, 1000000 1000000
g %’j’%‘j’cijibij Cijibij
no. of ants n, 2n 2n

no. of iterations 500, 1000, 2000 2000

must be made regarding the choice of the parameters.

The observation of Equation (12) allows for the conclusiwosi tv and § are related and that
the choice of their values must be made carefully. Theretheetests we have made in order
to choose them, consider all combinations between the saliinese parameters, and the best
combination was the one used thereafter. As for the evaparatte, parameter, it was found
that 10% was the best value, which points towards privilgdhre exploitation of the search
space nearby the best solution of each iteration.

6.3 Comparing our results with the ones in literature

In this section, we present the computational results tleaewbtained with the HACO algo-
rithm that was developed along with results obtained with ¢dbmmercial software CPLEX
12.0 and also some literature results for the same probi@nosder to compare the efficiency
end effectiveness of our algorithm. The analysis of the stiess, the ability of the heuristic to
reproduce the same solution or a very similar one in differens, is approximately achieved
by solving 10 times each problem instance and then by comgpdtie minimum, maximum,
average and standard-deviation of the solutions obtailfi¢lde first three statistics are around
the same values and the standard deviation is small, thengtieod may be considered robust.

The algorithm described in this paper was implemented ia dan the computational experi-
ments were carried out on a PC with a Pentium D at 3.20GHz aiIdf®AM. The CPLEX
was run on the same PC.

To evaluate an heuristic, we characterise its solutionercigg:

1. Time, in seconds, required to perform a full run of the athm;

2. Optimality gap in %, which is given by:
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HS — OptS
%)= —————— x 1
Gap(%) Opis x 100,
where OptS stands for the optimum solution, obtained by CPIdE cost functions F1, F2 and
F3 when available, and the best known otherwise; and the &iffistfor the best solution found

with the heuristic in question.

The HMFST problem was solved with CPLEX for F1, F2, and F3 éasttions. CPLEX does
not solve problems with functions of type F4. Nonethelessit€s (2010) provided times and
optimal solutions obtained with a Dynamic Programming (@Rjorithm for cost functions
of type F4 and problems with up to 19 nodes. For larger problem have used the results
obtained by Fontes and Goncalves (2012), available in vigpwup.pt/docentes/fontes (under
project PTDC/EGE-GES/099741/2008), by calculating the lgg@tween the costs obtained by
our HACO and the very best ones obtained with the Multi-Pafoih hybrid biased random
key Genetic Algorithm (MPGA), since no optimal results avaikable to the moment.

In order to infer about the stability of our method, we preseset of statistics regarding the
gap. Tables 2 to 5 summarize the gap results obtained for @sthfunction herein consid-
ered. Note that Table 5 refers to problems with cost funcEkdronly with up to 19 nodes.

Each table presents Minimum (Min), Average (Avg), 3rd Qea(BQ), Maximum (Max), and

Standard Deviation (SD) values obtained with the HACO atgor, grouped by hop value, as
well as Minimum (Min), Average (Avg), and Maximum (Max) gapsults obtained with the

aforementioned MPGA.

Before going any further please note that as cost functiow&l.not considered in Fontes and
Gongalves (2012), Table 2 does not include results for tR&M algorithm. Furthermore, by
setting the hop value to 3 problems with 40 and with 50 nodesadbave any feasible solution.
Recall that the problem instances do not consider a compétteork.

Let us begin by analysing the gap. First of all, we observettteaminimum gap value obtained,
regardless of cost function and hop value considered, igyew&ero. This result is very impor-
tant because it means that in the 10 runs of the algorithm walarays able to find, at least
once, the optimum solution. Furthermore, the value for ltrel tquarter of the gap distribution
is also zero, meaning that at least 75% of the solutions fiwrtie HACO are optimal.

When we analyse the results from the Hop value point of viéws curious to notice that,
although it is known that the difficulty in solving these plains increases with the decrease
on the hop parameter valué, the HACO heuristic has a very good performance fioe= 3,
regardless of the cost function, and finds the optimum valuealf runs of the algorithm. The
same can not be said about the performance of the MPGA whedepts the worst gap values
precisely forH = 3, in particular, the largest gap value, 17%, was obtained famoblem with
19 nodes and considering cost function F2. The HACO and MP&#opmance achieved for
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Table 2: HACO optimality gap (%) for F1 cost function with = 3, 5,7, and 10
H=3 H=5
N Min Avg 3Q Max Sd Min Avg 3Q Max Sd

10 0 0 0 O O O 0 0 0 O
2 0 0 0 0 O O 0 0 0 O
15 0 0 0 0 O O 0 0 0 O
77 0 0 0 O O O 0 0 0 O
19 0 0 0 0 O O 0 0 0 O
25 0 0 0 0 O O 0 0 0 O
30 0 0 0 0 O 0 0.002 0 0.08 0.010
40 O 0 0 0 O
50 0 0.010 0 0.49 0.069
H=7 H=10

N Min Avg 3Q Max Sd Min Avg 3Q Max Sd

10 0 O O 0O © 0O 0 0O 0O oO
12 0 0 0 0 O 0O 0 O O O
15 0 0 0O 0 O O 0 O o0 O
17 0 O O 0 O O 0 O 0O oO
19 0 0 0 0 © 0O 0 O O oO
25 0 0 0 0 O 0O 0 0O 0O oO
30 0 0 O O O O 0 0 o0 O

40 O 0.001 0 0.020003 O O O O O
50 O 0.002 0 0.050010 O O O O O

H = 10 is also of zero gap for cost functions F2, F3 and F4. Probleitts /= 5 andH =7
proved to be the most difficult ones to solve by HACO, and tingdst gap value obtained is
0.51%, considering F2 anl = 5. Gaps larger than zero tend to happen with problems with at
least 30 nodes, although one 17 node problem presented arnayap.

Looking now at the results obtained by type of cost functibere seems to be no influence on
the performance of our algorithm as the gap values are nbdifferent. In general, whenever
MPGA presents a positive average gap, HACO has improvect@pmdor the particular case,
already mentioned, of the problem with 17 nodes.

In Table 6, we report on the optimality gap results for the KHDA@nd for the MPGA for prob-
lems with 25 up to 50 nodes and cost function F4. These prableave only been solved with
these two heuristics therefore, the optimality gap is dated by comparing the results obtained
by each of the heuristics with the currently best solutidmsé€st cost solution found by HACO
or by MPGA). As it can be seen in Table 6, the tendency for figdire optimum value that
has been observed for the former three functions is confifiordd ACO whenH = 3, and for
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Table 3: HACO and MPGA optimality gap (%) for F2 cost functwith H = 3,5, 7, and 10

H=3 H=5
HACO MPGA HACO MPGA
N Min Avg3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max
10 O 0 0 O 0 00.360 7.157 O 0O 0 O 00 0 0
12 0 0 0 O 0 00.104 1900 O 0 0 O 00 0 0
15 O 0 0 O 0 00.031 0641 O 0O 0 O 00 0 0
17 O 0 0 O 0 00.120 3.743 00.008 0 0.460.0590 0 0
19 O 0 0 O 0 00.18217.353 O 0 0 O 0 00.0624.919
25 0 0 0 O 0 00.283 6.141 O 0 0 O 0 00.0050.162
30 O 0 0 O 0 0 0 0O 00.002 00.080.013 00.1094.083
40 0 0 0 O Q0 00.1397.501
50 00.005 00.510.091 00.076 0.991
H=7 H=10
HACO MPGA HACO MPGA
N Min  Avg 3Q Max SdMin Avg Max Min Avg3Q Max SdMin Avg Max
10 O 0 0 O 0 0 0 0O O 0O 0 O 0 O 0 0
12 0 0 0 O 0 0 0 0O O 0O 0 O 0O O 0 0
15 0 0 0 O 0 00.005 0.258 O 0O 0 O 00 0 0
17 O 0O 0 O 0 0 0 0O O O 0 O 0O O 0 0
19 O 0 0 O 0 0 0 0O O 0O 0 O 0 O 0 0
25 0 0 0 O 0 0 0 0O O 0O 0 O 0 O 0 0
30 O 0 0 O 0 0 0 0O O O 0 O 0O O 0 0
40 00.0004 00.020.003 00.074 1945 O 0O 0 O 00 0 0
50 0 0.001 00.050.007 00.047 1.426 O 0 0 O 00 0 0

HACO and MPGA whend = 10. Nonetheless, there are two important advantages regard-
ing the HACO algorithm. Firstly, HACO is always able to findemaible solution whereas the
MPGA is not. The MPGA was not able to find a feasible solution® problem instances,
see the results reported in Fontes and Goncalves (2012phn8ly, the stability of HACO is
confirmed by observing the maximum gap values obtained. oMjh each problem instance
was solved 10 times by the HACO algorithm and only 5 times l&yNMPGA, the maximum
gap values observed for HACO are much lower than the oneswaastor MPGA, except for

the aforementioned problem with 17 nodes. Neverthelegs vsuch case the maximum gap

is below 0.5%.

Running time results are presented in Table 7, for CPLEX aA@® and in figures 4, 5, and 6
for MPGA and HACO.

The time spent by CPLEX to solve the HFMST problem clearly@ases both with size and
with hop value. This behaviour was expected since the nuwibeasible solutions increases
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Table 4: HACO and MPGA optimality gap (%) for F3 cost funcsomith H = 3,5, 7, and 10

H=3 H=5
HACO MPGA HACO MPGA
N Min Avg3Q Max SdMin Avg Max Min Avg3Q Max SdMin Avg Max
10 O 0 0 O 0 00.3897.162 O 0O 0 O 00 0 0
12 0 0 0 O 0 00.1101914 O 0O 0 O 00 0 0
15 0 0O 0 O 0 00.0752.396 O 0O 0 O 00 0 0
17 O 0 0 O 0 00.1203.743 00.005 0 0.460.0460 0 0
19 O 0O 0 O 0 00.0411.787 O 0O 0 O 0 00.095 4.922
25 0 0O 0 O 0 00.2516.993 O 0O 0 O 0 00.006 0.177
30 O 0O 0 O 0 O 0 0O 00.002 00.080.010 00.071 4.083
40 0 0O 0 O 0 00.42513.909
50 0 0O 0 O 0 00.084 0.992
H=7 H=10
HACO MPGA HACO MPGA
N Min Avg3Q Max SdMin Avg Max Min Avg3Q Max SdMin Avg Max
10 O 0 0 O 0 O 0 0O O 0O 0 O 0 O 0 0
12 0 0O 0 O 0 O 0 0O O 0O 0 O 0 O 0 0
15 0 0O 0 O 0 00.0060.228 O 0O 0 O 00 0 0
17 O 0O 0 O 0 O 0 0O O 0O 0 O D O 0 0
19 O 0O 0 O 0 0 0 0O O 0 0 O 0 O 0 0
25 0 0 0 O 0 0 0 0O O 0 0 O 0 O 0 0
30 O 0O 0 O 0 O 0 0O O 0 0 O D O 0 0
40 00.001 00.020.004 00.0481.945 O 0O 0 O 00 0 0
50 00.004 00.050.011 00.0040.243 O 0O 0 O 00 0 0

rapidly with problem size due to the combinatorial naturéhefproblem.

As we have already said, one of our objectives was to infeheméhaviour of the HACO algo-
rithm as small changes were introduced in cost function Fi¢hvin this work is represented
by F2 and F3. Itis curious to notice that even though CPLEXusImnfluenced with the form
of the cost function, with average running time increasingieneral, from F1 to F2 and then to
F3, the HACO performance is almost the same for the thredifumec Furthermore, the HACO
heuristic can be up to 7 times faster than CPLEX. Not even Béfaoction seems to influence
HACO average running times.

This means that one way or the other, with more realisticsiéil problems, the HACO heuris-
tic will be able to give a very good answer within a reasonai®unt of time, whereas exact
methods will not. Furthermore, our algorithm does not seebet influenced by the type of
cost function taken into account (whereas CPLEX seems tdHiha@nd F3 more challenging),
which allows for concluding it to be very robust.
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Table 5: HACO and MPGA optimality gap (%) for F4 cost funcsomith H = 3,5, 7, and 10

H=3 H=5
HACO MPGA HACO MPGA
N Min Avg 3Q Max SdMin  Avg Max Min Avg 3Q Max SdMin Avg Max
10 0 0 0O O 0 002517160 O O O O 00 0 0
12 0 0 0 0 0 001572453 0 0 0 O 00 0 0
15 0 0 0 O 0 00038232 0 00 O 00 0 0
17 0 0 0O O 0 00.0933.858 00.01 00.480.0670 0 0
19 0 0 0 0 0 001229108 0 0 0 O 0 00.0421.615
H=7 H=10
HACO MPGA HACO MPGA

N Min Avg 3Q Max SdMin  Avg Max Min Avg 3Q Max SdMin Avg Max

10 0 0 0 OO0 O 0 O 0 00 O 0 O 0 0
12 0 00 00 O 0 O 0 OO0 O 0 O 0 0
15 0 0 0 O (¢ 00.0030.131 O O O O 00 0 0
17 0 0 0 00 O 0 O 00 O 0 O 0 0
19 0 00 00 O 0 0O 00 O 0 O 0 0

In addition, we present graphical representations of ttexame running times for both the
HACO and the MPGA, by cost function, in figures 4, 5 and 6. Tiseilts show no big difference
between the MPGA and the HACO time performance. Howevehatkl be noticed though
that the MPGA was run on a much faster PC, an Intel Core2 psoces 2.4 GHZ.

60
== HACO

=% MPGA
50

Time (s)

Figure 4. Computational time results obtained with HACO MTIGA for F2 cost functions

In order to infer about the evolution of CPLEX and HACO congiignal times, as well as
about the HACO gap performance, we have also generated kimgeproblem instances with
60 and 80 nodes. For these sizes, we only consider five diffgreups, i.e. five different ratios
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Table 6: Optimality gap (%) obtained by HACO and MPGA for F&tctunctions withH =
3,5,7, and 10 when compared with the currently best known solati@btained either by
HACO or by MPGA)
H=3 H=5
HACO MPGA HACO MPGA

N Min Avg3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max
25 0 0 0 0 0 00.2876.961 O 0 0 0 0 00.0040.148
30 0 0 0 0 0 00.1132.664 00.012 00.3290.0550 0.152 4.087

40 0O 00 O 0 00.1187.646
50 00.023 00.5790.115 00.077 0.579
H=3 H=5
HACO MPGA HACO MPGA

N Min Avg3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max
25 0 00 0 0 O 0 0O O 00 0 0 0 0 0
30 O 00 0 0 O 0 0O O 00 0 0 O 0 0
40 00.001 00.0780.009 00.0841.984 O 00 0 00 0 0
50 00.008 00.2210.038 00.0481.225 O 00 0 00 0 0

between the variable and the fixed cost components. We hsweahsidered a larger number
of arcs in the networks that we have generated, since otbewere would not be any feasible
solutions for small hop values. The larger number of archémietworks for problems with 60
and with 80 nodes is the reason why they have feasible snkigeen in cases whefé = 3, as
opposed to what happened with the set of problem instane¢svihhave downloaded. Since
these larger problems have not been solved with the MPGA, nle report on the results
obtained by CPLEX and by HACO.

Although HACO was able to solve all problem instances witta6a with 80 nodes, it is impor-
tant to refer that CPLEX was not, due to memory failure. Sitieebehaviour of CPLEX was
not uniform, regarding the number of problem instancesezbivithout memory problems, we
report in Table 8 the number of problem instances solved HyEXP Please recall that consid-
ering five groups and three problem instances in each of thverhave 15 problem instances to
be solved per size and hop value, each of which is to be so@duhes. For both F2 and F3
cost functions CPLEX was not able to solve all problem ins¢snhaving once more problems
with shortage of memory.

In Table 9, we have the average optimality gap obtained byfoostion and hop value. As it
can be seen, HACO maintains its lower average gaps and wealveags able to find an opti-
mum solution within the 10 runs each problem instance wasesolfor the problems CPLEX
was able to solve.

Regarding computational running times, see Table 10, beshtke already observed increasing
behaviour with problem size, for both CPLEX and HACO, thaereaw stronger evidence of the
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Table 7: Computational time results, for CPLEX and HACO,aifx¢d for cost functions F1,
F2,F3and F4 andl = 3,5,7,and 10
Time (s)
CPLEX HACO

Functon N 3 5 7 1003 5 7 10
10 0.7 1.3 14 220305 05 05

12 09 16 22 3.40.4 0.7 08 0.7
1516 26 39 570712 14 1.2

17 20 3.7 55 10.1.01.7 2.0 1.9

F1 1928 47 86 11.1.4 21 26 3.0
25 51 95 189 26.2.7 43 54 5.9

30 7.8 16.2 30.3 54.8.7 8.4 8.9 10.1

40 37.2 71.2 117/8 15.127.724.6

50 98.6 138.5252(2 35.668.844.8

10 1.2 19 34 430305 05 05
1219 29 56 6.8050.7 09 0.8
1528 52 88 11.10.7 12 15 13

17 3.8 7.8 118 16.4.0 20 2.1 1.9

F2 1953 83 139 214.3 22 2.7 3.0
25 9.7 176 28,9 44.8 4.7 54 5.8
3014.3 29.1 47.2 70.2.6 9.1 8.9 9.8

40 65.2 113.1172|4 15.026.324.3

50 161.0225.9288|5 35.550.7 47.3
1022 20 29 330305 06 05
1226 26 47 550507 09 0.9
1534 43 72 850812 15 15
1741 64 101 21.4.2 19 21 23

F3 1956 7.4 157 24M.422 27 29
2511.0 135 33.3 5229 44 53 5.7
3016.5 29.4 55.7 70.4.6 8.7 8.6 9.5

40 60.5 139.4 239/{3 15.025.323.4

50 155.5275.3367(4 32.468.048.0

10 0.3 0.7 0.9 0.9
12 0813 16 1.8
15 1315 25 25
17 1018 22 23
F4 19 29 3.7 3.7 4.2
25 26 41 49 48
30 3.9 6.7 86 8.4
40 14.219.6 20.3
50 27.848.947.1
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60

== HACO

Time (s)

Nodes

Figure 5: Computational time results obtained with HACO 8fIGA for F3 cost functions

60
== HACO

—F=— MPGA
50

Time (s)

Figure 6: Computational time results obtained with HACO 8fIGA for F4 cost functions

influence of the hop values. It is notorious, by solving largiee problems, that running times
increase with the hop parameter value, although for CPLEXdke of influence is much larger.
For instance, considering problems with 80 nodes and castiin F1, there is an increase of
more than 75% of CPLEX running times frobh = 7 to H = 10. Finally, these new problem

instances confirm the conclusion already stated that CPIsEKXfluenced by the type of cost
function whereas HACO is not.

In order to better understand the results obtained with CELrEgarding running times, we
have performed two extra experiences considering F2 ana§tXunctions. In the first expe-
rience we allowed CPLEX to run 15 seconds for problems withou®0 nodes, 70 seconds for
problems with 40, 50 and 60 nodes and 150 seconds for probi@m80 nodes, i.e. we gave
CPLEX a time bound above the maximum average running timesregd with HACO. The
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Table 8: Number of problem instances with 60 and with 80 nedésed by CPLEX
No. of problems

HOP

Functon N 3 5 7 10
F1 60 3 12 11 11
8 3 9 9 9
F2 60 3 10 10 -
80 3 8 - -

F3 60 3 12 9 9
8 6 9 9 -

Table 9: Average optimality gap (%) obtained with HACO for, F2, and F3 cost functions for
H = 3,5,7, and 10 for problems with 60 and with 80 nodes

GAP

HOP
Function N 3 5 7 10
F1 60 O 00 O
80 0001 0 0O O
F2 60 O 00 -
80 0.001 0 - -
F3 60 0.001 0 0O O
80 0.001 0 0 -

Table 10: Computational time results, for CPLEX and HACOtaated for problems with 60
and with 80 nodes considering cost functions F1, F2, and B3&#s- 3,5,7, and 10
Time (s)
CPLEX HACO
Function N 3 5 7 10 3 5 7 10

F1 60 65,9 246,8297,6 517,5 16,631,5 36,7 40,8
80 235,8483,1845,51511,8 56,189,7105,8116,7

F2 60 67,8 289,6368,3 - 16,229,5 35,4 42,8
80 197,7541,1 - - 52,188,5109,1117,0
F3 60 103,2635,6336,8 596,7 17,229,7 35,8 49,1
80 607,3549,4943,3 - 53,4 87,2131,7122,0

results obtained can be seen in Table 11, where columns AVdlax present the average and
maximum gaps observed, respectively, and CT presents ticergage of problem instances
with a feasible solution solved by CPLEX within the time [tmin the second experience we
gave an optimality gap tolerance of 1% to CPLEX and calcdlateerage gap and running times
needed. The results obtained can be seen in Table 12, wHarerAvg and Max present the
average and maximum gaps observed, respectively, and T)(giv#s the proportion of the
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computational time used to reach a 1% optimality gap, whempawed with the time needed to
find the optimal solution.

From the results in Table 11, we can observe, from column ®CLEX is unable to provide a

feasible solution for a considerable number of problemaims¢s. Furthermore, the optimality
gap for CPLEX is larger than the one observed for HACO. Reaggrthe results in Table 11,

we can conclude that in order to be within 1% of the optimajigyp CPLEX takes about half
the time needed to prove that the solution is an optimum. KMew& ACO continues to have a
better performance regarding time and optimality gap.

Table 11: Results obtained by bounding CPLEX in time, andicaring F2 and F3 cost func-

tions
H=3 H=5 H=7 H=10

N Avg Max CT(%) Avg Max CT(%) Avg Max CT(%) Avg Max CT(%)
F2

10 O 0 100 O 0 100 O 0 100 | O 0 100
12 O 0 100| O 0 100 O 0 100 | O 0 100
15 0.0001 0.003 100, O 0 100 O 0 100 (0.096 2.872 100
17 O 0 100 O 0 100 O 0 100 (0.851 5.609 100
19 O 0 100 O 0 100 [0.718 8.124 97 |0.457 3.333 67
25 0 0 100 |1.012 6.713 97| X X 0 X X 0
30 O 0 100 | x X 0 X X 0 X X 0
40 - - - 0 0 100 [0.009 0.129 100(0.115 1.718 100
50 - - - 11918 16.198 90| O 0 53 |0.340 2.063 53
60 O 0 100| O 0 9 X X 0 X X X
80 O 0 100 |0.002 0.016 78| x X X X X X
F3

10 O 0 100| O 0 100 O 0 100 | O 0 100
12 0 0 100 O 0 100 O 0 100 | O 0 100
15 O 0 100 O 0 100 O 0 100 (0.129 3.867 100
17 O 0 100| O 0 100 [0.005 0.160 100{0.994 6.213 100
19 O 0 100 |0.097 2.799 97 |0.534 5.426 100|0.667 5.657 50
25 0 0 100 |1.029 15.269 90| x X 0 X X 0
30 O 0 100 | x X 0 X X 0 X X 0
40 - - - 0 0 100 O 0 100 {0.034 0.509 100
50 - - - 0 0 100 [0.049 0.733 100|1.125 5.667 93
60 O 0 100 |1.389 10.963 67| x X 0 |3.560 6.664 22
80 O 0 100 O 0 100 |0.237 0.945 44| X X X
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Table 12: Results obtained by CPLEX with an 1% gap toleraand,considering F2 and F3

cost functions
H=3 H=5 H=7 H=10

N Avg Max T(%)| Ayg Max T(%)| Avg Max T(%)| Avg Max T(%)
F2
10 0.036 0.637 66/0.012 0.189 61|0.005 0.159 43/0.001 0.033 46
12 0.001 0.039 53(/0.001 0.039 54(0.032 0.764 41|0.037 0.602 47
15 0.045 0.861 54(/0.051 0.989 48|0.057 0.969 43|0.023 0.313 43
17 0.045 0.535 56(/0.039 0.535 44|0.034 0.480 44|0.084 0.962 40
19 0.003 0.079 49/0.037 0.588 55|0.096 0.749 48/0.025 0.339 38
25 0.070 0.438 49|/0.090 0.726 46|0.047 0.377 46|0.076 0.857 38
30 0.009 0.110 51/0.085 0.625 44/0.086 0.656 37(0.129 0.656 41
40 - - - 10.023 0.300 72|0.195 0.927 45|0.100 0.686 38
50 - - - 10.029 0.147 45|0.016 0.234 39|0.021 0.234 37
60 0.012 0.023 63/0.074 0.375 51|0.030 0.107 36| X X X

80 0.330 0.916 53|/0.232 0.991 34| x X X X X X

F3
10 O 0 78 |0.011 0.184 49|0.000 0.000 49|0.006 0.184 58
12 0.009 0.252 45/0.053 0.794 62|0.036 0.809 47|0.063 0.679 60
15 0.008 0.115 45/0.003 0.091 54|0.000 0.000 49|0.034 0.789 61
17 0.000 0.000 40/0.000 0.000 52|0.028 0.293 55/0.026 0.561 39
19 0.000 0.000 36/0.012 0.232 55|/0.012 0.201 39/0.033 0.403 36
25 0.049 0.644 40/0.054 0.428 57|0.041 0.720 35(0.070 0.720 32
30 O 0 27 |10.050 0.673 40|0.038 0.822 29|0.018 0.258 35
40 - - - 10.034 0.382 50|0.124 0.442 35|0.101 0.525 29
50 - - - 10.007 0.066 39|0.047 0.658 27|0.008 0.058 28
60 0.005 0.014 29|/0.054 0.337 29|/0.030 0.078 32|0.089 0.493 16
80 0.082 0.360 21/0.072 0.250 27|0.057 0.250 18| x X X
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7 Conclusions

In this work, the Hop-constrained Minimum cost Flow Spagniifree problem with nonlin-
ear costs is addressed by a hybrid algorithm based on Anhg@mptimization and on Local
Search. The cost functions are of four types, and they cammoth fixed-charge and routing
costs, which are very difficult to solve even for problemdweitsmall number of nodes. We have
solved problems with four different values of the hop-pagten and with a number of nodes
ranging from 10 to 50. We compared our results with the onperted in the literature and
our algorithm proved to be both very effective and very effiti The solutions obtained were
always better or as good as the ones provided by curreratliter, except for 13 problem in-
stances out of the 2798 solved. It should be noticed thahforémaining 82 problem instances
there are no feasible solutions. Furthermore, our algoritvas always able to find a feasible
solution, when there was one, whereas the MPGA was not. ijiféacl 9 problem instances the
MPGA failed to find any feasible solution, while for anoth&gdroblem instances only in some
runs a feasible solution was found. Although several casttfons with different complexity
have been used, the algorithm performance has not beeneaffeBoth solution quality and
computational time remain of the same magnitude. Furthexptbe results obtained over 10
runs of the proposed algorithm are within 0.01% of each opiheving the method to be very
robust. Therefore, the proposed HACO heuristic proved @d@od alternative method to solve
HMFST problems, having demonstrated a better performaneetbe existing heuristic Fontes
and Gongcalves (2012) regarding gap values and over batthéiristic and CPLEX regarding
time.

The quality of the results obtained has encouraged us toe@xite scope of application of our
HACO to other network flow problems in future work.
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