
n. 493 May 2013

ISSN: 0870-8541

Solving Hop-constrained MST problems with ACO

Marta S.R. Monteiro 1,2

Dalila B.M.M. Fontes 1,2

Fernando A.C.C. Fontes 3,4

1 FEP-UP, School of Economics and Management, University of Porto
2 LIAAD/INESC TEC

3 FEUP-UP, Faculty of Engineering, University of Porto
4 ISR-Porto



Solving Hop-constrained MST problems with ACO∗

Marta S.R. Monteiro1†, Dalila B.M.M. Fontes1, Fernando A.C.C. Fontes2

1 Faculdade de Economia and LIAAD-INESC TEC

Universidade do Porto

Rua Dr. Roberto Frias, 4200-464 Porto, Portugal.

E-mail: martam@fep.up.pt;fontes@fep.up.pt

Tel.: +351-22-0426240

2 Faculdade de Engenharia da Universidade do Porto and ISR-Porto

Rua Dr. Roberto Frias, 4200-464 Porto, Portugal.

E-mail: faf@fe.up.pt

Abstract

The Hop-constrained Minimum cost Flow Spanning Tree (HMFST) problem is an extension

of the Hop-Constrained Minimum Spanning Tree problem sinceit considers flow requirements

other than unit flows. Given that we consider the total costs to be nonlinearly flow dependent

with a fixed-charge component and given the combinatorial nature of this class of problems, we

propose a heuristic approach to address them. The proposed approach is a hybrid metaheuris-

tic based on Ant Colony Optimization (ACO) and on Local Search (LS). In order to test the

performance of our algorithm we have solved a set of benchmark problems and compared the

results obtained with the ones reported in the literature for a Multi-Population Genetic Algo-

rithm (MPGA). We have also compared our results, regarding computational time, with those of

CPLEX. Our algorithm proved to be able to find an optimum solution in more than 75% of the

runs, for each problem instance solved, and was also able to improve on many results reported

for the MPGA. Furthermore, for every single problem instance we were able to find a feasible

solution, which was not the case for the MPGA nor for CPLEX. Regarding running times, our

algorithm improves upon the computational time used by CPLEX and was always lower than

that of the MPGA.
∗This work is funded by the ERDF through the Programme COMPETEand by the Portuguese Government

through FCT - Foundation for Science and Technology, projects PTDC/EGE-GES/099741/2008 and PTDC/EEA-
CRO/116014/2009.

†Corresponding author.

1



Keywords: Ant Colony Optimization, Nonlinear Costs, Hybrid, Local Search, Minimum Span-

ning Tree Problem, Hop-constraints

JEL Classifications: C61, C44.

1 Introduction

The Minimum Spanning Tree (MST) problem is a very well-knowncombinatorial optimization

problem where the objective is to find a tree spanning all nodes in a network while minimiz-

ing the total costs incurred. This combinatorial problem isfrequently used to model several

applications, specially in the area of telecommunications, where there is a central device, for

example a hub, that must be linked to a set of remote terminals. This is the case of Frey et al

(2008) and Hwang et al (2007) that use the MST to model multicast networks.

An extension to the MST problem that limits the number of arcsallowed on each path from the

root node to any other node is called the Hop-constrained Minimum Spanning Tree (HMST)

problem. The addition of a maximum number of arcs in each pathis, usually, related to relia-

bility issues. Furthermore, these constraints, called Hop-constraints, can also be associated to

lower delay times in a multi-drop lines network, where packages of information may have to

queue before reaching their destination. Although in its simplest version the MST problem can

be solved in polynomial time the Hop-constrained version isNP-Hard Gouveia (1995). Here,

however, we look into another generalization of the MST problem since we consider that flow

requirements at client nodes can have values other than the unit and be different across clients.

Different flow requirements at client nodes is a characteristic of several service networks, such

as telecommunications, water, gas, and electrical power. Furthermore, the cost functions con-

sidered involve two components: a setup or fixed cost incurred by using the arc and a routing

cost nonlinearly dependent on the flow being routed through the arc.

In this work, we propose a Hybrid Ant Colony Optimization (HACO) algorithm to solve the

Hop-constrained Minimum cost Flow Spanning Tree (HMFST) problem. The use of an heuris-

tic method is adequate, since exact methods can be very expensive in terms of memory require-

ments and also of computational effort, leading to large running times whenever the problem

is solvable. The choice of a population based method has beenmotivated by an increasing

interest in recent metaheuristics, such as Ant Colony Optimization, Swarm Optimization, or

Genetic Algorithms, that by themselves or hybridized have been known to have the best results

to the moment for some problems, Talbi (2002). In particular, ACO algorithms were firstly de-

veloped to solve hard combinatorial optimization problemsDorigo and Stützle (2004); Dorigo

and Blum (2005), being initially applied to solve the well-known NP-Hard Travelling Salesman

Problem. ACO algorithms have also been successfully applied to solve flow problems with

concave cost functions, as is the case of the TransportationProblem Altiparmak and Karaoglan

2



(2007) and of the Minimum Cost Network Flow Problem Monteiroet al (2011). The HMFST

problem can be viewed as the problem of finding shortest paths(in the sense of the least cost

paths) between a source node and every single demand node in anetwork having into account

the flow to be routed between pairs of nodes and the limitationon the number of allowed arcs

in each path. Therefore, even before starting this research, we would expect that ACO would

have a good performance also while solving the HMFST problem. This is because all these

three characteristics can be found in them, flow between pairs of nodes, nonlinear costs and

shortest paths1. In addition, we are able to cite several other optimizationproblems that have

been solved by ACO algorithms with improved results when compared with other heuristics,

such as GAs, among others, see e.g. Bui and Zrncic (2006); Yinand Wang (2006); Bin et al

(2009); Faria et al (2006); Putha et al (2012); Monteiro et al(2013). Therefore, we expect ACO

to have a competitive performance, in comparison with otherheuristic methods already used to

solve the HMFST problem.

As far as the authors are aware of, although several MST problems have been solved with ant

based algorithms, the special case of the Hop-constrained MST with flow characteristics and

with nonlinear costs has not yet been addressed by using ACO algorithms. Therefore, our

contribution is twofold. Firstly, the application of an antbased algorithm to solve the HMFST

problem is, to the best of our knowledge, here proposed for the first time. Secondly, the use of

general nonlinear and concave cost functions comprising fixed-charges, which we consider to

be more realistic when economies of scale are available. In general, works on HMST use linear

costs, for example, Gouveia and Requejo (2001); Gouveia et al (2011) and, apart from Fontes

(2010) and Fontes and Gonçalves (2012), this type of functions were never used before with

HMST problems. We compare the results obtained with the onesobtained with the commercial

software CPLEX and with the ones reported in literature for an MPGA Fontes and Gonçalves

(2012). The MPGA is based on a recently proposed framework byGonçalves and Resende

(2011), to solve combinatorial optimization problems withGenetic Algorithms using biased

random-keys representation, where the authors also provide a survey of successful applications

of this method reported in the literature.

The remainder of this paper is organized as follows. In Section 2, we provide a literature review

on the HMFST problem and other related generalizations of the MST problem. In Section 3 we

provide a formal description of the HMFST, along with its mathematical formulation and the

cost functions herein considered. In Section 4 we review some work on ACO and in Section 5

we develop our approach to solve the HMFST problem. The results obtained and the subsequent

analysis are reported and discussed in Section 6. Finally, Section 7 provides a summary and

some conclusions of what has been done as well as a discussionof future work.
1The TSP can be seen as the one where the shortest circular route between a given set of nodes is to be defined,

without visiting twice the same node.

3



2 Literature review

The MST problem and its extensions have been solved by several techniques. Genetic Algo-

rithms (GAs) were first used to solve MST problems in the mid 90’s and they are still one of the

most popular heuristic methods to solve them, as well as, to solve many types of optimization

problems. Zhou et al (1996) use a GA to solve degree-constrained MSTs. They compare three

types of encodings for the chromosome used in the GA they propose, in order to choose the best

one: the first associates an index to each arc thus constructing chromosomes withn− 1 genes;

the second, which was the selected one, is based on the Prüfer number encoding allowing the

use ofn− 2 genes to encode a tree withn nodes; the third associates a bias value to each node

and each arc. The degree constraint is guaranteed by replacing each violating gene with another

gene that is not in violation of the degree constraint. The authors apply their GA only to a lit-

erature problem with a 9-vertex complete graph. Voß (1999) extends a previous mathematical

formulation for the HMST from Gouveia (1995), which is basedon the Miller-Tucker-Zemlin

subtour elimination constraints originally defined for theTSP. The model is solved by a Tabu

Search heuristic that uses a cheapest insertion heuristic,based on principles of the Prim’s algo-

rithm Prim (1957), in order to find an initial feasible solution. Hassin and Levin (2003) provide

a polynomial algorithm to solve HMST problems for the case ofa 2-vertex-connected graph

and another polynomial algorithm with bounded performanceguarantee for the general case.

The Capacitated MST problem is solved in Reimann and Laumanns (2006) by constructing the

solution based on an ant algorithm developed to solve the Capacitated Vehicle Routing Problem

(CVRP). The algorithm uses a probability function based on the savings information (for adding

arcs between pairs of demand nodes) in substitution for the heuristic information. Bui and Zrn-

cic (2006) solve the degree-constrained MST problem with the use of an ACO algorithm, where

each ant instead of constructing an entire solution only selects an arc. These arcs are not used

directly to construct a tree but only to update the pheromonelevels of each arc. Afterwards, can-

didate arcs are listed, based on their pheromone levels, andthen a spanning tree is constructed

with this information and with a modified version of Kruskal’s algorithm. Only linear costs

are considered. A recent work on the MST problem is that of Katagiri et al (2009), where the

authors propose an algorithm hybridizing a Tabu Search (TS)and an Ant Colony to solve the

K-Minimum Spanning Tree problem. More recently, Neumann and Witt (2010) use a simple

ACO algorithm, 1-ANT, to solve the MST problem. They comparetwo different construction

techniques in problems where pseudo-Boolean functions areto be optimized. One technique is

a modified version of the Broder construction graph Broder (1989), and uses pheromone infor-

mation to choose the next arc to be included into the solution. The other technique includes a

new arc in the solution tree, one at a time, if it does not include a cycle. A polynomial upper

bound is proved for the first technique. The second techniquehas the lowest running times.

As the HMST problem belongs to the NP-hard class of problems,the development of lower

bound schemes is very popular. Gouveia and Martins (1999) introduce an extended and com-

4



pact formulation for the Capacitated MST problem, by observing that the problem can be re-

duced to the HMST problem due to the one unit of traffic produced by every demand node that

is considered by the authors. This new formulation introduces another index in the variables, the

hop index, identifying the position of an arc in the solution. Furthermore, a new set of inequal-

ities, called hop-ordering inequalities, are developed based in a former formulation of Gavish

(1983) for a capacitated MST problem, to limit the flow in every arc not connected to the root.

Latter on, Gouveia and Martins (2000) improve upon these lower bounds by proposing several

levels of aggregation. The new model aggregates into one single variable all the variables asso-

ciated to a given arc beyond a certain position P. This allowsfor the creation of a hierarchy of

hop-indexed models and a reduction on the number of variables in the models. Lower bounds

are computed by three iterative methods, based in the solution of a sequence of Lagrangean

relaxations of the hop-indexed models with varying P values: the first one uses reduction tests

to eliminate variables from the model; the second one adds each hop-ordering inequality vi-

olated by the solution; and the third one includes generalised subtour elimination constraints

to the model. A Lagrangean Relaxation approach, based on a network flow formulation, is

used in Gouveia and Requejo (2001) to solve the HMST problem.In it, the flow conservation

constraints are associated to Lagrangean multipliers and dualized. The problem is further sim-

plified and is separated into two subproblems: one involvingthe variable identifying the arcs

that are in the solution tree and the other involving a variable indicating whether or not an arc

is included in the solution in positionq of the path from the root node to some nodek. Gouveia

et al (2007) model the HMST problem as a Steiner tree in a layered directed graph. The iden-

tification of each layer is associated to the hop constraint valueh, whereh = 1, 2, . . . , H. The

nodes respectingh will be copied into the corresponding layerh. Lower and upper bounds are

computed by using a Dual Ascent Heuristic and a primal heuristic SPH-Prim, respectively, and

finally a cutting plane algorithm is applied. The interestedreader is referred to the comprehen-

sive survey by Dahl et al (2006), and to the references therein, on how to compute lower bounds

for the Hop-constrained MST problem, including techniquessuch as Lagrangian Relaxation or

Column Generation.

Regarding the development of good heuristic methods to solve the HMST problem, not much

has been done, apart from the works we review bellow. Fernandes et al (2007), taking advan-

tage of the problems similarity, develop five heuristic procedures to solve the HMST problem

based on the ideas previously proposed for the Capacitated Minimum Spanning Tree (CMST).

Initially, a Savings Heuristic (SH) is developed mainly to generate initial solutions. The SH

starts with a solution with all nodes linked to the source node and then performs swaps, with

arcs not present in the solution tree, that represent the best savings. To generate different initial

solutions, the savings heuristic is given a set of allowed arcsS1, as well as a set of prohibited

arcsS2, differing from solution to solution. The five heuristics differ on the definition ofS1 and

S2. The first heuristic definesS1 as the set of arcs of the previous solution to be excluded from

the next solution, provided that they are not linked to the source node. The second heuristic

5



considers prohibiting two arcs at a time. The third heuristic incorporates inS2 the cheapest

arcs incident to each node and the arcs with the minimum cost which are closer to the source

node. The fourth heuristic uses as candidate arcs the set made of the four cheapest arcs incident

to each node provided that they are not linked to the source node and they are not yet in the

solution. Finally, the fifth heuristic is a modified version of the second heuristic where at each

iteration a new solution is calculated for each arc to be prohibited. Then, all arcs of that solu-

tion are possible candidates for prohibition. The last heuristic, although having the higher time

requirements, has the best performance. Gouveia et al (2011) were able to improve upon these

results with the use of Dynamic Programming and of heuristics based on the exchange of arcs

and on node-level exchanges. The level of a node is defined as the maximum number of arcs a

node can have between itself and the source node and is the base used on a restricted Dynamic

Programming (DP) formulation of the problem. The state-space restriction rule allows for the

movement of at mostd nodes, between any consecutive levels, and the state-transition rule for-

bids parallel shift moves starting and ending at different pairs of overlapping levels. Shift, swap,

and shift or swap standard arc-exchange neighbourhoods aredefined, as well as, a method com-

bining arc-exchange and swap and shift moves. Five distinctheuristics were constructed by

incorporating these neighbourhoods and the method combining arc-exchange, swap and shift

moves was found to be the best one.

Works considering HMST problems with different node requirements are scarce. Fontes (2010)

uses Dynamic Programming to solve the HMFST problem, i.e. anMST problem with Hop-

constraints and with flow requirements other than the unit. The DP formulation is recursive

which means that with the use of a backward-forward procedure the state space graph is suc-

cessively expanded. The algorithm starts from the last stage and works backwards, through not

yet computed states, until a computed state is reached. Then, after computing the state value

the algorithm moves forward, through already computed states, until it reaches a state not yet

computed. The process is repeated until the final state is reached and no better solution can be

found. The author considers three distinct nonlinear cost functions with discontinuities, depend-

ing on a percentage of the total demand, other than at the origin. In total, Fontes solves 4050

problem instances to optimality being able to demonstrate that the computational performance

is independent of cost function type. Fontes and Gonçalves(2012) use a Hybrid Biased Ran-

dom Key Genetic Algorithm with 3 populations evolving separately to solve the same problems.

These populations are randomly generated and are let to evolve independently. Then, every 15

generations the two best chromosomes are included in all other populations. The encoding of

the solution tree is made by resorting to random keys. Therefore, a chromosome is made of

3n random numbers, wheren is the number of nodes in the tree. The first2n genes are used

by a Tree Constructor procedure in order to decode the randomkeys into a solution tree. The

lastn genes are used by a Local Search procedure in order to improvethe solution found. The

hop-constraint is handled a posteriori, by penalizing infeasible solutions with more thanh arcs

in the path from the source node. Local search is performed byreplacing a node in the tree with

6



another node not in the tree, given that the new solution is still an extreme flow. The results

were obtained for problems considering spanning trees withup to 50 nodes.

3 Problem definition and mathematical formulation

The HMFST problem considers the selection of a tree spanningall nodes in a network in such

a way that costs are minimized. In addition, the flows to be routed through each arc have to be

found and the maximum number of arcs in each path between the source node and each demand

node is limited. As the uncapacitated version of the problemis being considered, there are no

upper or lower bounds on the arcs capacity.

Formally, the problem can be defined as follows. Consider a directed networkG = (N, A),

whereN is a set ofn + 1 nodes, withn demand nodes and one single source nodet, and

A(⊆ N × N \ {t}) is a set ofm available arcs(i, j). The number of available arcs is at most

(n + 1) · n since there is only one source node. An HMFST is a problem dealing with the

minimization of the total costsfij incurred with the network while satisfying the nodes demand

dj. The total demand of the network,D, is given by the summation of all node demands. The

commodity flows from a single source nodet to then demand nodesi ∈ N \ {t}. In addi-

tion, the maximum number of arcs on a path from the source nodeto each demand node is

constrained by a hop parameter,H. The mathematical programming model that is given next

for the HMFST problem is an adaptation of the hop-indexed formulation for the Constrained

MST problem by Gouveia and Martins (1999), which in turn is based on the one developed by

Gavish (1983). An important feature has been added by them tothe mathematical formulation,

which is the introduction of an extra indexh identifying the position of an arc in the solution

tree counting from the source nodet, i.e, the number of hops to the arc. Therefore,h can only

take values from 1 toH. Considering the notation summarized bellow, the model canbe written

as:

t - source node,

n - number of demand nodes,

dj - demand of demand nodej ∈ N \ {t},

yijh =

{
1, if xijh > 0

0, if xijh = 0,

xijh - flow on arc(i, j) which is in positionh,

fij - cost of arc(i, j),

7



min:
∑

i∈N

∑

j∈N\{t}

H∑

h=1

fij(xijh, yijh), (1)

s.t.:
∑

i∈N

H∑

h=1

yijh = 1, ∀j∈N\{t}, (2)

∑

i∈N

xijh −
∑

i∈N\{t}
xji,h+1 = dj

∑

i∈N

yijh, ∀j∈N\{t}, ∀h∈{1,...,H−1}, (3)

yijh ≤ xijh ≤ D · yijh, ∀i∈N , ∀j∈N\{t}, ∀h∈{1,...,H}, (4)

xijh ≥ 0, ∀i∈N , ∀j∈N\{t}, ∀h∈{1,...,H}, (5)

yijh ∈ {0, 1}, ∀i∈N , ∀j∈N\{t}, ∀h∈{1,...,H}. (6)

Please note that, in this model we do not consider variablesy0jh andx0jh for all h ≥ 2 because

any arc leaving the root node cannot have a hop value larger than 1; variablesyij1 andxij1 (for

all i, j) because in this case we are dealing with arcs not directly connected to the root, therefore

they cannot be in position (hop) 1; and variablesyiij andxiij because we are not considering

loops in the tree. The objective in this problem is to minimize total costs incurred with the tree

spanning all its nodes, as given in (1). Equations (2) guarantee that every node is in the solution

in exactly one position. Equations (3) are called the flow conservation constraints, and they

state that the difference between the flow entering a node andthe flow leaving a node must be

the demand of the node. Furthermore, they also state that if the flow enters a node through an

arc in positionh, then the flow leaves that same node through an arc in positionh+1. Equations

(4) are called the coupling constraints. Constraints (5) and (6) state the nonnegative and binary

nature of the decision variables. It is assumed that the commodity produced by the source node

t equals the sum of all the demandsdj, i.e.,

∑

j∈N\{t}
dj + dt = 0, (7)

wheredt is the demand of nodet (represented by a negative value).

3.1 Cost Functions

Given the easiness of approximation of any cost function by the first few terms of a Taylor

Series, four types of polynomial cost functions are considered in this work:

8



• Type 1:

fij(xij) =

{
bij · xij + cij, if xij > 0,

0, otherwise.
(8)

• Type 2:

fij(xij) =





0, if xij = 0,

bij · xij + cij , if xij ≤ D/2,

bij · xij + cij + bij , otherwise.

(9)

• Type 3:

fij(xij) =





0, if xij = 0,

bij · xij + cij, if xij ≤ D/2,

bij · xij + cij − bij , otherwise.

(10)

These first three cost functions F1, F2, and F3 consider linear routing costsbij per unit of flow

routed through arc(i, j), as well as, fixed costscij . In addition, there is a discontinuity in F2

cost functions by addingbij , and in F3 cost functions by subtractingbij , when the flow passing

through an arc is higher than half the total demandD. The fourth cost function is represented by

complete second-order polynomials and is initially concave and then convex, the discontinuity

point being at half of the total demand.

• Type 4:

fij(xij) =





0, if xij = 0,

−aij · x2
ij + bij · xij + cij , if xij ≤ D/2,

aij · x2
ij + bij · xij + cij , otherwise.

(11)

All cost functions consideraij , bij, andcij ∈ Z+. Please note that we have dropped theh index

in the flow variablesxij since the cost of an arc does not depend on its position in the tree,

provided that the position does not violate the hop-constraint.

The use of these cost functions, except for F1, follows the work of (Fontes and Gonçalves,

2012). Cost function F1 was herein introduced with the purpose of assessing the behaviour

of the algorithm when small changes are introduced in the form of the cost function, when

considered along with F2 and F3, given that the three cost functions are based on first order

polynomials.

9



4 Ant colony optimization

In their daily life, one of the main tasks ants have to performis to search for food, in the

vicinity of their nest. While walking in such a quest, the ants deposit a chemical substance

called pheromone in the ground. This is done with two objectives. On the one hand, it allows

ants to find their way back to the nest, such as Hansel and Gretel in the fairytale. On the other

hand, it allows other ants to know the way they have taken, so that they can follow them. Since

hundreds or even thousands of ants have this behaviour, if one could see the pheromone laid in

the ground as a kind of light, one could see a large network with some of the arcs brighter than

the others. And within the paths created by those arcs would surely be the shortest path between

the nest and the food source. What has been observed by Deneubourg et al (1990) is that every

time an ant has to choose between paths to follow to reach the food source, the ant will choose

with higher probability the path with the largest pheromoneconcentration. However, they have

also observed that there are always some ants that “like” to explore new paths. These are the

principles of Ant Colony Optimization. It was the observation of this sort of communication

developed by the ants that inspired Dorigo and Stützle to develop the first ant based algorithm

which was calledAnt System Dorigo et al (1996), that was used to solve the Travelling Salesman

Problem (TSP), a well known NP-Hard problem.

Ant based algorithms have two main phases, one is the construction of the solution and the

other is the pheromone update. Let us consider a network of arcs and nodes. Ants move on the

network by going from one node to another. The node where the ant moves to is probabilistically

chosen based on the pheromone quantities deposited on the arcs outgoing from the node it

stands. After the ants have constructed their respective solutions, the pheromone trails are

updated. The update is performed in two steps: in the first step pheromone values are decreased

by a constant decay so as to mimic the natural process of evaporation; in the second step, the

pheromone on the arcs of the network which are present in the solution are reinforced with extra

pheromone. Such reinforcement is usually proportional to the solution quality. The process of

solution construction and pheromone updating is repeated until some stopping criterion has

been reached.

The description of the Ant Colony Optimization Metaheuristic by Dorigo and Stützle (2004)

was followed by several works that studied the introductionof modifications to the AS, such

as the introduction of aDaemon. The daemon, which has no equivalence in nature, has a

very active and important role in the algorithm because it allows for operations that use global

knowledge of the ant solutions. In ACO, the daemon can control the feasibility of each solution,

for example, by evaporating a percentage of the pheromone quantity in each arc as a way of

penalizing such a solution. To avoid premature convergence, usually daemon actions make use

of the best solution in the current iteration and/or the bestsolution found so far, whose arcs

are the only ones to be allowed to have pheromone deposited inthem. Soon it was also made

10



clear that ant algorithms would benefit from the introduction of a Local Search feature, to cope

with a thorough exploitation of the search space nearby goodsolutions, leading almost always

to better performances of the produced hybrid ACOs.

Nevertheless, regardless of their type, ant algorithms became very popular since the beginning

and have been used to solve combinatorial problems in several research areas: Image Process-

ing Meshoul and Batouche (2002), Data Mining Parpinelli et al (2002), Protein Folding Hu et al

(2008), Power Electronic Circuit Design Zhang et al (2009),Grid Workflow Scheduling Prob-

lem Chen and Zhang (2009), Transportation Problem Musa et al(2010); Santos et al (2010),

just to mention but a few. With time, several modifications have been introduced and considered

as the main components of ant algorithms.

Talbi et al (2001) developed an AS algorithm, that uses a set of parallel ant colonies, to solve

the Quadratic Assignment Problem. In it, they use the principles of both the AS, as every ant

is allowed to deposit pheromone in every component of its solutions, and the ACO heuristic, as

the pheromone quantity to be deposited is dependent of daemon actions, over all best and worst

solutions found. Thus, the pheromone update reinforces pheromone values of the parts of every

solutionS taking into account not only its valueF (S) but also the value of the best solution

F (S∗) and the value of the worst solution foundF (S−), making it proportional to the ratio
F (S−)−F (S)

F (S∗) . Their purpose is to weaken the reinforcement, preventing aquick convergence, due

to the unusual large number of ants depositing pheromone on their solutions. A similar approach

is used by Alaya et al (2004) to solve multidimensional knapsack problems. In their case, the

pheromone update is done in such a way that the quantity deposited in each component of the

solution includes information about the difference between the objective function value of the

best solution of the iterationF (Si) and of the global best solutionF (S∗), 1
1+F (S∗)−F (Si)

. There-

fore, the closer the solution is to the global best solution,the higher the quantity of pheromone

deposited. The influence of the heuristic information in theperformance of ant algorithms when

solving Set Covering Problems was studied in Lessing et al (2004). Other works use different

types of ants in their algorithm. Rappos and Hadjiconstantinou (2004) use ACO to solve two-

edge connected network flow design problems introducing twoclasses of ants, flow ants that are

mainly related to the construction of the network, and reliability ants that are concerned with

the reliability of the network. Chen and Ting (2008) solve a Single Source Capacitated Facility

Location Problem using two colonies, one with location antsto find the location of facilities,

and the other with selection ants to assign customers to locations. A Terminal Assignment prob-

lem is solved in Bernardino et al (2009) by means of an ACO algorithm with a Local Search

procedure embedded in it. The information about the pheromone quantity laid in each path

is used to modify the solutions that were obtained previously, instead of producing new solu-

tions. Although ACO algorithms perform well, there are someadvantages in hybridizing them

with other metaheuristics, thus benefiting from the joint characteristics obtained. While Craw-

ford and Castro (2006) solve both Set Covering and Set Partitioning benchmark problems with

11



ACO algorithms, and with hybridizations between ACO and Constraint Programming tech-

niques, Forward Checking, Full Lookahead, Arc Consistency, and Post Processing procedures,

Bouhafs et al (2006) join Simulated Annealing and an Ant Colony System (ACS) to solve Ca-

pacitated Location-Routing problems. The SA component of the algorithm is used to locate

the distribution centres (DC) and to assign customers to each DC, while the best routes are de-

fined by the ACS. In Altiparmak and Karaoglan (2007) the authors hybridize ACO and Genetic

Algorithms to solve Transportation Problems with square root concave costs. They introduce

a mechanism to identify the stagnation of the algorithm in two ways: i) whenever more than

50% of the arcs in the network have reached a minimum value allowed for the pheromones,

setting all the pheromones to a maximum value, and ii) whenever the global best solution has

not been updated for 50 iterations, in this case replacing 10% of the worst chromosomes of the

population with randomly generated ones.

The use of several colonies of ants, whether with different or with similar tasks, has also been

approached in the literature. One of the first works was developed by Gambardella et al (1999).

They use two different colonies to solve the Vehicle RoutingProblem. One such colony is

the ACS-VEI which is used to handle the minimization of the number of vehicles (routes). The

other, is the ACS-TIME colony that will try to optimise the travelling time of the solutions found

by the ACS-VEI. Middendorf et al (2002) present a study on four different techniques to share

information between the colonies. The first identifies and sends to all the colonies the overall

best solution. In the second strategy each colony will send its best solution to its neighbour

colony. The third strategy identifies the bestm solutions between a pair of neighbour colonies

and these are the ones used to update the pheromone matrix. Finally, the fourth strategy is a

combination of the previous two methods.

Many more works could be cited, but it would be beyond the objective of this work. For the

interested reader, besides the works already mentioned here and the references therein, Cordon

et al (2002), Garcı́a-Martı́nez et al (2007), and Mullen et al (2009) provide excellent surveys on

ant colony algorithms and their applications.

Next, we will describe the approach we have made with ACO to solve the HMFST problem.

5 Ant colony optimization approach for the nonlinear HMFST

problem

The construction of a heuristic algorithm is always associated to a set of major decisions that

have to be made regarding parameters values and more complexissues such as the decision

of how to construct a solution. ACO algorithms are no different. Therefore, the following

list of decisions, considered as their building bricks, arespecified: method chosen to construct

the solution, heuristic information, pheromone updating rule, probability function, parameter

12



values, and finally, but also very important, the termination condition. In the following sections

we describe each one of them.

5.1 Defining a solution to the HMFST problem

The first and most important decision to be made is the representation of the solution to the

problem being solved, since a poor representation can lead to not so good solutions, and high

computational running times.

The solution for the HMFST problem is a tree, i.e. a graph connecting all nodes without cycles.

Therefore, between the central node, also known as root or source node, and every demand node,

there can only exist a single directed path. The solution constructed by an ant must then consist

on as many arcs as the number of demand nodes and include all demand nodes. Furthermore, a

solution is considered feasible if the path from the source nodet to every demand node has at

mostH arcs.

5.2 Constructing a solution

In the method used to construct solutions for this problem, all ants begin their solution construc-

tion at the source node. Initially, an ant selects an existing arc linking the source nodet and one

of the demand nodesj ∈ N \ {t}. Then, the ant selects another arc, from the set of available

arcs linking the source or one of the demand nodes already in the partial solution to another

demand node not yet considered, and adds it to the solution tree. For example, consider a fully

connected network with four demand nodes{a, b, c, d} and a source nodet. Let us suppose that

the first arc added to the solution is arc(t, a). The next step to be taken is to choose from the

remaining demand nodes{b, c, d} the one entering the solution tree provided that it is either

linked to the source nodet or to the demand nodea, already in the solution. The possibilities

are thus{(t, b), (t, c), (t, d), (a, b), (a, c), (a, d)}. One of these arcs is chosen not at random but

rather based on the pheromone quantity present in it. These two steps are repeatedly performed

until there remains no demand node outside the solution tree.

The steps described above, do not guarantee the feasibilityof the solution regarding the hop-

constraints. To overcome this problem each time an arc(k, j) is added to the solution tree the

lengthlj of the path linking the demand nodej to the source nodet is computed. Iflj = H,

the maximum length (number of hops) allowed has been reachedin that path and thus the arcs

considering nodej as a parent are excluded from the set of viable arcs. New arcs are added

until all the demand nodes are in the solution, or until no viable arcs are available. If an ant is

able to construct a solution withn arcs then the solution is feasible. Otherwise, the solutionis

discarded. Since the problem instances do not consider a complete network at some point an ant

may have no possibility of constructing a feasible solution. In this case, we could have chosen

13



to fix unfeasible solutions or allow the ant to look for another solution. However, given that the

number of discarded solutions was not significant we decidedto disregard unfeasible solutions.

As said before, an arc entering the solution is not chosen completely at random. Instead, it is

chosen by using a probability function incorporating information about the visibility of arcs and

on the pheromone quantity associated to them, as defined bellow:

Pij =
[τij ]

α · [ηij ]
β

∑
(i,j)∈A [τij ]α · [ηij]β

, (12)

whereτij is the pheromone present in arc(i, j) at the current iteration;ηij is the visibility of arc

(i, j) and is usually represented as the inverse of the cost of the arc; α, β > 0 are parameters

weighting the relative importance of the pheromone value and of the visibility information, re-

spectively. The visibility of an arc is also known asheuristic information and is only calculated

once at the beginning of the algorithm, since it depends onlyon the problem data. If we make

an analogy between cost and distance, the visibility of an arc (i, j) is higher if nodej is “close”

to nodei and thus we cansee it while standing at nodei, and is lower if it is difficult tosee node

j from nodei.

5.3 Updating and bounding pheromone values

After all ants have constructed their solutions, the algorithm steps into the pheromone updating

phase. In this phase, the best solution of the current iteration Si is identified and the algo-

rithm updates the pheromones. We only allow the ant that has constructedSi to reinforce

the pheromone quantity in the arcs of its solution. The update of pheromones initially sim-

ulates the natural process of evaporation by reducing the pheromone values in every existing

arc (i, j) ∈ A. This is represented by the first component of Equation (13),whereρ ∈]0, 1]

represents the pheromone evaporation rate andτij the pheromone quantity in arc(i, j). If the

evaporation rate parameterρ takes a value near to 1, then the pheromone trail will not havea

lasting influence throughout the following iterations, whereas a small value will increase the

importance of the arcs a lot longer.

τij = (1− ρ)× τij + ∆τij . (13)

The second component,∆τij , represents the pheromone quantity to be deposited in arc(i, j),

and is given by:

∆τij =

{
Q

F (Si)
if (i, j) belongs to solutionSi,

0 otherwise,
(14)

14



whereQ is a positive proportionality parameter andF (Si) is the cost of the best solution found

at the current iteration.

In the initialization phase of the algorithm, an equal amount of pheromoneτ0 is deposited in

every arc of the problem, thus guaranteeing that every arc has the same chance of being chosen,

as stated in Equation 15.

τij = τ0, ∀(i, j) ∈ A. (15)

At each iteration, after the pheromone update is performed,a check is done to find out if its

value is within the interval[τmin, τmax], following the work of Stützle and Hoos (1997). The

τmax value depends on the cost of the best solution found so farF ∗ and on the pheromone

evaporation rateρ, and theτmin value depends on the upper bound for the pheromone value

τmax and on a parameterpbest, the probability of constructing the best solution, as given in

Equation (16).

[τmin, τmax] =

[
τmax · (1− n

√
pbest)

(n
2
− 1) · n

√
pbest

,
1

ρ · F ∗

]
. (16)

Since bothτmin andτmax only depend on the cost of the best solution found so far, theymerely

have to be updated each time the best solution is improved. When checking if the pheromone

values are within the limits defined, the following corrective actions are taken: if on the one

hand, some pheromone value is bellowτmin, it is set toτmin; on the other hand, if some

pheromone value is aboveτmax, it is set toτmax. By limiting the pheromone value within these

bounds, the choice of the initial pheromone valueτ0 becomes less important as pheromones

converge within a few iterations to reasonable values within the desired interval.

Although setting pheromone bounds is a good way to prevent getting trapped into local optima,

the algorithm needs an extra mechanism to deal with stagnation and cycling of solutions. To

solve this problem we keep track of the number of iterations an incumbent solution has not been

changed. Whenever that number reaches 200 iterations, the pheromone values are reinitialized,

that is, the pheromone values are set toτ0 for all arcs. This gives the algorithm a chance to

search for a better solution in another region of the search space, before the fixed number of

allowed iterations is reached.

5.4 ACO algorithm to solve nonlinear HMFST problems

Now that we have described every specific characteristic of the algorithm let us present the

flowchart for the HACO heuristic, which is given in Fig. 1, along with a brief description.

The algorithm starts by depositing an initial pheromone quantity τ0, on every arc and by initial-

izing all necessary parameters. Then, every ant constructsits solution following the procedure

explained in Section 5.2. Solutions are sorted in ascendingorder of cost and the best solution

of the iterationSi is afterwards identified. A setW is created with the best five solutions found

15



at the current iteration. Local search is performed on all solutionsS ∈ W and a setW ′ with

the improved solutions, if any exist, is returned.Si is updated by identifying the best solution

between the previousSi and the solutions returned inW ′. If the cost ofSi is lower than the

cost of the best solution found so farSg, the incumbent solutionSg and the best costF (Sg) are

updated.

Figure 1: Flowchart for the ACO algorithm

The next step is to update the pheromone values. Firstly, pheromones are evaporated in every

single arc. Then, a pheromone value proportional to the costof the best solution found at the

current iteration is added to all the arcs in the solution. Afterwards, the algorithm tests all

pheromone values for violations of the pheromone bounds. Ifthe pheromone accumulated on

16



an arc exceedsτmax then its value is set toτmax, and if it falls belowτmin, then its value is set

to τmin.

Continuing with the flowchart, if any of the stopping criteria is satisfied, then the algorithm stops

and returns the best solution found, as well as its cost, as the final result; otherwise it continues

to the next iteration. Two stopping conditions are used. Thealgorithm stops running if a pre-

defined maximum number of iterations is reached, or it stops if three consecutive restarts, of

the pheromone matrix, have been performed. Recall that the pheromone matrix is reinitialized

every time that a number of iterations (200 in our case) has been performed without improving

the best solution.

5.5 Local Search

A Local Search procedure was developed and, as said before, is applied right after the ants have

constructed a feasible solution and identifiedSi. The feasible solutions provided by the ants are

sorted in ascending order of total costs, that is to say, sorted from the best to the worst. Then,

we create a setW , containing the first five solutions, to have local search performed on. The

local search, when performed in the vicinity of a particularsolutionS, allows the algorithm to

search for a neighbour solution that might have a lower cost.For this problem, a solutionSN

is a neighbour solution of solutionS if SN is obtained fromS by swapping an arc(i, j) ∈ S

with another arc(l, j) /∈ S that does not create a cycle and still ensures no node is more

thanH arcs away from the source node. Therefore, after the swap takes place nodej gets its

demand and the demand of all nodes it supplies, if any, from nodel instead of from nodei. The

local search algorithm, that is applied to the aforementioned five solutions, is given in Fig. 2.

The algorithm starts by sorting the arcs in the selected solution S in ascending order of their

pheromone value, in order to try to substitute in the first place the “worst” arcs, i.e., the ones

with the least pheromone. For each one of them we try to find an alternative arc that improves

the cost of the solution. In order to do so, we find all the arcs(l, j) that can replace the current

one while maintaining feasibility of the solution, i.e. notforming a cycle and maintaining the

constraintH for all paths. We attempt to replace the original arc(i, j), by starting with the ones

with a higher pheromone value. If one of the replacements improves the cost of the solution

we proceed to the next arc(i, j) in the solution without attempting the remaining options. The

solution to be used in the remaining of the algorithm is either S or SN , whichever has the lowest

cost.

Let us consider a small example to clarify how the local search procedure is applied. Consider a

problem defined on a fully connected graph with six demand nodes{a, b, c, d, e, f}, a root node

t, and whereH = 2. We make use of Fig. 3 in order to illustrate the evolution of asolution

S with the application of local search. Assume that we have already identified the set of five

solutions selected to perform local search on and that we areinspecting the neighbourhood of

17



Figure 2: Pseudo-code of the Local Search procedure that wasincorporated into the ACO algo-
rithm developed

one particular solutionS, whereS = {(f, c), (t, f), (f, e), (a, b), (t, d), (t, a)}, see Fig. 3 (a).

In order to simplify, assume also that the arcs inS are already sorted in ascending order of arc

pheromone, i.e.τfc ≤ τtf ≤ τfe ≤ τab ≤ τtd ≤ τta.

We try to improve solutionS by replacing each of the six arcs inS, one at a time, with better

arcs, i.e. with arcs that decrease the total cost ofS.

First, we remove arc(f, c) from S, and then we identify the setP of candidate arcs(l, c) 6∈ S to

substitute arc(f, c), since this is the arc with the smallest pheromone value. Thecandidate arcs

set is given byP = {(d, c), (t, c), (a, c)}. Suppose thatP is already sorted in descending order

of arc pheromone, i.e.τdc ≥ τtc ≥ τac. In Fig. 3 (b) all fine dashed lines represent arcs that can

be used to reconnect nodec to the solution treeS, whereas all dashed lines represent arcs that

18



cannot be considered as candidate arcs because they would lead to unfeasible solutions. Note

that arcs(b, c) and(e, c), in dashed lines, cannot be in the set of candidate arcsP because they

would violate the hop-constraintH = 2.

Following the algorithm, we replace arc(f, c) with arc(d, c) thus obtaining a neighbour solution

SN = {(d, c), (t, f), (f, e), (a, b), (t, d), (t, a)}. Next, we calculateF (SN) and compare it with

F (S). Let us assume thatF (SN) < F (S). Then, we accept this arc swap and continue with the

local search procedure considering this new solutionSN , by makingS ← SN , see Fig. 3 (c).

After this swap takes place nodec gets its demand from noded instead of from nodef .

The local search will now try to replace the next arc in line inS, which is arc(t, f). It is

important to notice though that we never go backwards while trying to improve a solution,

which means that once a swap has been made, the procedure willnot try to improve the swaps

that have already been performed. Let us go back to our example.

For arc(t, f) the newP = ∅, because none of the arcs(l, f) 6∈ S can provide a feasible solution

(they would all introduce either a cycle or violate the hop-constraint), see Fig. 3 (d). Therefore,

arc(t, f) is kept inS, and the procedure continues the search with the next arc, arc (f, e), which

will renderP = {(a, e), (d, e), (t, e)}, as can be seen in Fig. 3 (e).

The local search procedure continues the search for better solutions until all arcs in the original

solutionS have been tested. This is repeated for the remaining solutions in W , until all five

solutions have been inspected in order to be improved.

6 Computational Experiments

6.1 Test Problems

In order to test the algorithm that was developed we downloaded the Euclidean test set available

from Beasley (2010). The set is divided in ten groups{g1, g2, . . . , g10} with different ratios

between variable and fixed costs,V/F . Each of these subsets has three problem instances.

Furthermore, the number of nodes considered is 10, 12, 15, 17, 19, 25, 30, 40, and 50. For the

problems with 40 and 50 nodes, there are only 5 groups defined.For further details on these

problems please refer to Fontes et al (2003). Therefore, there is a total of 240 problem instances

to be solved ten times for each of the four cost functions considered F1, F2, F3, and F4 and

each of the fourH values, whereH ∈ {3, 5, 7, 10}.

It is important to report that from the 240 available problems, for H = 3 andH = 5 and for

cost functions F1, F2 and F3 only 165 and 233 problems, respectively, have feasible solutions.

Regarding cost function F4, neither HACO nor MPGA were able to find a feasible solution for

H = 3 for any of the problem instances with size 40 and 50, while forH = 5 they were not able

19



Figure 3: Graphical representation of the example given forthe Local Search procedure

to solve two problem instances with size 40 and five problem instances with size 50. However,

since these problem sizes have not been solved by an exact method and we cannot guarantee

that they have no feasible solution. Thus, all things considered, we have solved a total of 35120

problem instances. In the following sections, we present and discuss the results obtained.

6.2 Parameters setting

There are a few decisions regarding the values to be taken by the parameters described in the

previous sections. The development of our algorithm was achieved in several phases and we

had to set some values for our first experiences. In an initialphase, based on the literature and

previous experience, we tested the parameter values given in the second column of Table 1. The

ones with the best results are summarized in the third column. After developing the last phase

of the HACO algorithm, we tested the parameter values once more. The results indicated that

the ones chosen in the first tests were still the ones achieving the best results. Some comments

20



Table 1: Parameter values for the ACO.
Parameter Tested Values Final Values

α 1, 3, 5 1
β 1, 2, 3, 5 2
ρ 0.05, 0.1, 0.2, 0.5 0.1
Q 1, 2, 5 2

pbest 0.5, 0.05, 0.01 0.5
τ0 1, 1000000 1000000
ηij

1
cij

, 1
bij

, 1
cij+bij

1
cij+bij

no. of ants n, 2n 2n
no. of iterations 500, 1000, 2000 2000

must be made regarding the choice of the parameters.

The observation of Equation (12) allows for the conclusion that α andβ are related and that

the choice of their values must be made carefully. Therefore, the tests we have made in order

to choose them, consider all combinations between the values of these parameters, and the best

combination was the one used thereafter. As for the evaporation rate, parameterρ, it was found

that 10% was the best value, which points towards privileging the exploitation of the search

space nearby the best solution of each iteration.

6.3 Comparing our results with the ones in literature

In this section, we present the computational results that were obtained with the HACO algo-

rithm that was developed along with results obtained with the commercial software CPLEX

12.0 and also some literature results for the same problems,in order to compare the efficiency

end effectiveness of our algorithm. The analysis of the robustness, the ability of the heuristic to

reproduce the same solution or a very similar one in different runs, is approximately achieved

by solving 10 times each problem instance and then by computing the minimum, maximum,

average and standard-deviation of the solutions obtained.If the first three statistics are around

the same values and the standard deviation is small, then themethod may be considered robust.

The algorithm described in this paper was implemented in Java and the computational experi-

ments were carried out on a PC with a Pentium D at 3.20GHz and 1GB of RAM. The CPLEX

was run on the same PC.

To evaluate an heuristic, we characterise its solutions regarding:

1. Time, in seconds, required to perform a full run of the algorithm;

2. Optimality gap in %, which is given by:

21



Gap(%)=
HS −OptS

OptS
× 100,

where OptS stands for the optimum solution, obtained by CPLEX for cost functions F1, F2 and

F3 when available, and the best known otherwise; and the HS stands for the best solution found

with the heuristic in question.

The HMFST problem was solved with CPLEX for F1, F2, and F3 costfunctions. CPLEX does

not solve problems with functions of type F4. Nonetheless, Fontes (2010) provided times and

optimal solutions obtained with a Dynamic Programming (DP)algorithm for cost functions

of type F4 and problems with up to 19 nodes. For larger problems we have used the results

obtained by Fontes and Gonçalves (2012), available in www.fep.up.pt/docentes/fontes (under

project PTDC/EGE-GES/099741/2008), by calculating the gap between the costs obtained by

our HACO and the very best ones obtained with the Multi-Population hybrid biased random

key Genetic Algorithm (MPGA), since no optimal results are available to the moment.

In order to infer about the stability of our method, we present a set of statistics regarding the

gap. Tables 2 to 5 summarize the gap results obtained for eachcost function herein consid-

ered. Note that Table 5 refers to problems with cost functionF4 only with up to 19 nodes.

Each table presents Minimum (Min), Average (Avg), 3rd Quarter (3Q), Maximum (Max), and

Standard Deviation (SD) values obtained with the HACO algorithm, grouped by hop value, as

well as Minimum (Min), Average (Avg), and Maximum (Max) gap results obtained with the

aforementioned MPGA.

Before going any further please note that as cost function F1was not considered in Fontes and

Gonçalves (2012), Table 2 does not include results for the MPGA algorithm. Furthermore, by

setting the hop value to 3 problems with 40 and with 50 nodes donot have any feasible solution.

Recall that the problem instances do not consider a completenetwork.

Let us begin by analysing the gap. First of all, we observe that the minimum gap value obtained,

regardless of cost function and hop value considered, is always zero. This result is very impor-

tant because it means that in the 10 runs of the algorithm we are always able to find, at least

once, the optimum solution. Furthermore, the value for the third quarter of the gap distribution

is also zero, meaning that at least 75% of the solutions foundby the HACO are optimal.

When we analyse the results from the Hop value point of view, it is curious to notice that,

although it is known that the difficulty in solving these problems increases with the decrease

on the hop parameter valueH, the HACO heuristic has a very good performance forH = 3,

regardless of the cost function, and finds the optimum value for all runs of the algorithm. The

same can not be said about the performance of the MPGA which presents the worst gap values

precisely forH = 3, in particular, the largest gap value, 17%, was obtained fora problem with

19 nodes and considering cost function F2. The HACO and MPGA performance achieved for

22



Table 2: HACO optimality gap (%) for F1 cost function withH = 3, 5, 7, and 10
H=3 H=5

N Min Avg 3Q Max Sd Min Avg 3Q Max Sd

10 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0.002 0 0.08 0.010

40 0 0 0 0 0

50 0 0.010 0 0.49 0.069

H=7 H=10

N Min Avg 3Q Max Sd Min Avg 3Q Max Sd

10 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0

40 0 0.001 0 0.02 0.003 0 0 0 0 0

50 0 0.002 0 0.05 0.010 0 0 0 0 0

H = 10 is also of zero gap for cost functions F2, F3 and F4. Problems with H = 5 andH = 7

proved to be the most difficult ones to solve by HACO, and the largest gap value obtained is

0.51%, considering F2 andH = 5. Gaps larger than zero tend to happen with problems with at

least 30 nodes, although one 17 node problem presented a nonzero gap.

Looking now at the results obtained by type of cost function,there seems to be no influence on

the performance of our algorithm as the gap values are not that different. In general, whenever

MPGA presents a positive average gap, HACO has improved it except for the particular case,

already mentioned, of the problem with 17 nodes.

In Table 6, we report on the optimality gap results for the HACO and for the MPGA for prob-

lems with 25 up to 50 nodes and cost function F4. These problems have only been solved with

these two heuristics therefore, the optimality gap is calculated by comparing the results obtained

by each of the heuristics with the currently best solutions (lowest cost solution found by HACO

or by MPGA). As it can be seen in Table 6, the tendency for finding the optimum value that

has been observed for the former three functions is confirmedfor HACO whenH = 3, and for

23



Table 3: HACO and MPGA optimality gap (%) for F2 cost functionwith H = 3, 5, 7, and 10
H=3 H=5

HACO MPGA HACO MPGA
N Min Avg 3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max

10 0 0 0 0 0 0 0.360 7.157 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0.104 1.900 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0.031 0.641 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0.120 3.743 0 0.008 0 0.46 0.0590 0 0
19 0 0 0 0 0 0 0.182 17.353 0 0 0 0 0 0 0.062 4.919

25 0 0 0 0 0 0 0.283 6.141 0 0 0 0 0 0 0.005 0.162
30 0 0 0 0 0 0 0 0 0 0.002 0 0.08 0.013 0 0.109 4.083

40 0 0 0 0 0 0 0.139 7.501
50 0 0.005 0 0.51 0.051 0 0.076 0.991

H=7 H=10
HACO MPGA HACO MPGA

N Min Avg 3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0.005 0.258 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0.0004 0 0.02 0.003 0 0.074 1.945 0 0 0 0 0 0 0 0
50 0 0.001 0 0.05 0.007 0 0.047 1.426 0 0 0 0 0 0 0 0

HACO and MPGA whenH = 10. Nonetheless, there are two important advantages regard-

ing the HACO algorithm. Firstly, HACO is always able to find a feasible solution whereas the

MPGA is not. The MPGA was not able to find a feasible solution for 19 problem instances,

see the results reported in Fontes and Gonçalves (2012). Secondly, the stability of HACO is

confirmed by observing the maximum gap values obtained. Although each problem instance

was solved 10 times by the HACO algorithm and only 5 times by the MPGA, the maximum

gap values observed for HACO are much lower than the ones observed for MPGA, except for

the aforementioned problem with 17 nodes. Nevertheless, even in such case the maximum gap

is below 0.5%.

Running time results are presented in Table 7, for CPLEX and HACO and in figures 4, 5, and 6

for MPGA and HACO.

The time spent by CPLEX to solve the HFMST problem clearly increases both with size and

with hop value. This behaviour was expected since the numberof feasible solutions increases

24



Table 4: HACO and MPGA optimality gap (%) for F3 cost functions withH = 3, 5, 7, and 10
H=3 H=5

HACO MPGA HACO MPGA
N Min Avg 3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max

10 0 0 0 0 0 0 0.389 7.162 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0.110 1.914 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0.075 2.396 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0.120 3.743 0 0.005 0 0.46 0.0460 0 0
19 0 0 0 0 0 0 0.041 1.787 0 0 0 0 0 0 0.095 4.922

25 0 0 0 0 0 0 0.251 6.993 0 0 0 0 0 0 0.006 0.177
30 0 0 0 0 0 0 0 0 0 0.002 0 0.08 0.010 0 0.071 4.083

40 0 0 0 0 0 0 0.425 13.909
50 0 0 0 0 0 0 0.084 0.992

H=7 H=10
HACO MPGA HACO MPGA

N Min Avg 3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0.006 0.228 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0.001 0 0.02 0.004 0 0.048 1.945 0 0 0 0 0 0 0 0
50 0 0.004 0 0.05 0.011 0 0.004 0.243 0 0 0 0 0 0 0 0

rapidly with problem size due to the combinatorial nature ofthe problem.

As we have already said, one of our objectives was to infer on the behaviour of the HACO algo-

rithm as small changes were introduced in cost function F1, which in this work is represented

by F2 and F3. It is curious to notice that even though CPLEX is much influenced with the form

of the cost function, with average running time increasing,in general, from F1 to F2 and then to

F3, the HACO performance is almost the same for the three functions. Furthermore, the HACO

heuristic can be up to 7 times faster than CPLEX. Not even F4 cost function seems to influence

HACO average running times.

This means that one way or the other, with more realistic industrial problems, the HACO heuris-

tic will be able to give a very good answer within a reasonableamount of time, whereas exact

methods will not. Furthermore, our algorithm does not seem to be influenced by the type of

cost function taken into account (whereas CPLEX seems to findF2 and F3 more challenging),

which allows for concluding it to be very robust.

25



Table 5: HACO and MPGA optimality gap (%) for F4 cost functions withH = 3, 5, 7, and 10
H=3 H=5

HACO MPGA HACO MPGA
N Min Avg 3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max

10 0 0 0 0 0 0 0.251 7.160 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0.157 2.453 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0.038 2.352 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0.093 3.858 0 0.01 0 0.48 0.0670 0 0
19 0 0 0 0 0 0 0.122 9.108 0 0 0 0 0 0 0.042 1.615

H=7 H=10
HACO MPGA HACO MPGA

N Min Avg 3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0.003 0.131 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In addition, we present graphical representations of the average running times for both the

HACO and the MPGA, by cost function, in figures 4, 5 and 6. The results show no big difference

between the MPGA and the HACO time performance. However, it should be noticed though

that the MPGA was run on a much faster PC, an Intel Core2 processor at 2.4 GHZ.

Figure 4: Computational time results obtained with HACO andMPGA for F2 cost functions

In order to infer about the evolution of CPLEX and HACO computational times, as well as

about the HACO gap performance, we have also generated larger size problem instances with

60 and 80 nodes. For these sizes, we only consider five different groups, i.e. five different ratios

26



Table 6: Optimality gap (%) obtained by HACO and MPGA for F4 cost functions withH =
3, 5, 7, and 10 when compared with the currently best known solutions (obtained either by
HACO or by MPGA)

H=3 H=5

HACO MPGA HACO MPGA
N Min Avg 3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max

25 0 0 0 0 0 0 0.287 6.961 0 0 0 0 0 0 0.004 0.148
30 0 0 0 0 0 0 0.113 2.664 0 0.012 0 0.329 0.0550 0.152 4.087
40 0 0 0 0 0 0 0.118 7.646

50 0 0.023 0 0.579 0.115 0 0.077 0.579

H=3 H=5

HACO MPGA HACO MPGA
N Min Avg 3Q Max SdMin Avg Max Min Avg 3Q Max SdMin Avg Max
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0.001 0 0.078 0.009 0 0.084 1.984 0 0 0 0 0 0 0 0

50 0 0.008 0 0.221 0.038 0 0.048 1.225 0 0 0 0 0 0 0 0

between the variable and the fixed cost components. We have also considered a larger number

of arcs in the networks that we have generated, since otherwise there would not be any feasible

solutions for small hop values. The larger number of arcs in the networks for problems with 60

and with 80 nodes is the reason why they have feasible solutions even in cases whereH = 3, as

opposed to what happened with the set of problem instances that we have downloaded. Since

these larger problems have not been solved with the MPGA, we only report on the results

obtained by CPLEX and by HACO.

Although HACO was able to solve all problem instances with 60and with 80 nodes, it is impor-

tant to refer that CPLEX was not, due to memory failure. Sincethe behaviour of CPLEX was

not uniform, regarding the number of problem instances solved without memory problems, we

report in Table 8 the number of problem instances solved by CPLEX. Please recall that consid-

ering five groups and three problem instances in each of them,we have 15 problem instances to

be solved per size and hop value, each of which is to be solved 10 times. For both F2 and F3

cost functions CPLEX was not able to solve all problem instances, having once more problems

with shortage of memory.

In Table 9, we have the average optimality gap obtained by cost function and hop value. As it

can be seen, HACO maintains its lower average gaps and we werealways able to find an opti-

mum solution within the 10 runs each problem instance was solved, for the problems CPLEX

was able to solve.

Regarding computational running times, see Table 10, besides the already observed increasing

behaviour with problem size, for both CPLEX and HACO, there is now stronger evidence of the

27



Table 7: Computational time results, for CPLEX and HACO, obtained for cost functions F1,
F2, F3 and F4 andH = 3, 5, 7, and 10

Time (s)
CPLEX HACO

Function N 3 5 7 10 3 5 7 10
10 0.7 1.3 1.4 2.20.3 0.5 0.5 0.5
12 0.9 1.6 2.2 3.40.4 0.7 0.8 0.7
15 1.6 2.6 3.9 5.70.7 1.2 1.4 1.2
17 2.0 3.7 5.5 10.11.0 1.7 2.0 1.9

F1 19 2.8 4.7 8.6 11.11.4 2.1 2.6 3.0
25 5.1 9.5 18.9 26.02.7 4.3 5.4 5.9
30 7.8 16.2 30.3 54.54.7 8.4 8.9 10.1
40 37.2 71.2 117.8 15.1 27.7 24.6
50 98.6 138.5 252.2 35.6 68.8 44.8
10 1.2 1.9 3.4 4.30.3 0.5 0.5 0.5
12 1.9 2.9 5.6 6.80.5 0.7 0.9 0.8
15 2.8 5.2 8.8 11.10.7 1.2 1.5 1.3
17 3.8 7.8 11.8 16.91.0 2.0 2.1 1.9

F2 19 5.3 8.3 13.9 21.81.3 2.2 2.7 3.0
25 9.7 17.6 28.9 44.12.8 4.7 5.4 5.8
30 14.3 29.1 47.2 70.24.6 9.1 8.9 9.8
40 65.2 113.1 172.4 15.0 26.3 24.3
50 161.0 225.9 288.5 35.5 50.7 47.3
10 2.2 2.0 2.9 3.30.3 0.5 0.6 0.5
12 2.6 2.6 4.7 5.50.5 0.7 0.9 0.9
15 3.4 4.3 7.2 8.50.8 1.2 1.5 1.5
17 4.1 6.4 10.1 21.71.2 1.9 2.1 2.3

F3 19 5.6 7.4 15.7 24.11.4 2.2 2.7 2.9
25 11.0 13.5 33.3 52.22.9 4.4 5.3 5.7
30 16.5 29.4 55.7 70.94.6 8.7 8.6 9.5
40 60.5 139.4 239.3 15.0 25.3 23.4
50 155.5 275.3 367.4 32.4 68.0 48.0
10 0.3 0.7 0.9 0.9
12 0.8 1.3 1.6 1.8
15 1.3 1.5 2.5 2.5
17 1.0 1.8 2.2 2.3

F4 19 2.9 3.7 3.7 4.2
25 2.6 4.1 4.9 4.8
30 3.9 6.7 8.6 8.4
40 14.2 19.6 20.3
50 27.8 48.9 47.1

28



Figure 5: Computational time results obtained with HACO andMPGA for F3 cost functions

Figure 6: Computational time results obtained with HACO andMPGA for F4 cost functions

influence of the hop values. It is notorious, by solving larger size problems, that running times

increase with the hop parameter value, although for CPLEX the rate of influence is much larger.

For instance, considering problems with 80 nodes and cost function F1, there is an increase of

more than 75% of CPLEX running times fromH = 7 to H = 10. Finally, these new problem

instances confirm the conclusion already stated that CPLEX is influenced by the type of cost

function whereas HACO is not.

In order to better understand the results obtained with CPLEX, regarding running times, we

have performed two extra experiences considering F2 and F3 cost functions. In the first expe-

rience we allowed CPLEX to run 15 seconds for problems with upto 30 nodes, 70 seconds for

problems with 40, 50 and 60 nodes and 150 seconds for problemswith 80 nodes, i.e. we gave

CPLEX a time bound above the maximum average running times obtained with HACO. The

29



Table 8: Number of problem instances with 60 and with 80 nodessolved by CPLEX
No. of problems

HOP

Function N 3 5 7 10

F1 60 3 12 11 11
80 3 9 9 9

F2 60 3 10 10 –
80 3 8 – –

F3 60 3 12 9 9
80 6 9 9 –

Table 9: Average optimality gap (%) obtained with HACO for F1, F2, and F3 cost functions for
H = 3, 5, 7, and 10 for problems with 60 and with 80 nodes

GAP

HOP

Function N 3 5 7 10

F1 60 0 0 0 0
80 0.001 0 0 0

F2 60 0 0 0 –
80 0.001 0 – –

F3 60 0.001 0 0 0
80 0.001 0 0 –

Table 10: Computational time results, for CPLEX and HACO, obtained for problems with 60
and with 80 nodes considering cost functions F1, F2, and F3 and H = 3, 5, 7, and 10

Time (s)

CPLEX HACO

Function N 3 5 7 10 3 5 7 10

F1 60 65,9 246,8 297,6 517,5 16,6 31,5 36,7 40,8
80 235,8 483,1 845,5 1511,8 56,1 89,7 105,8 116,7

F2 60 67,8 289,6 368,3 – 16,2 29,5 35,4 42,8
80 197,7 541,1 – – 52,1 88,5 109,1 117,0

F3 60 103,2 635,6 336,8 596,7 17,2 29,7 35,8 49,1
80 607,3 549,4 943,3 – 53,4 87,2 131,7 122,0

results obtained can be seen in Table 11, where columns Avg and Max present the average and

maximum gaps observed, respectively, and CT presents the percentage of problem instances

with a feasible solution solved by CPLEX within the time limit. In the second experience we

gave an optimality gap tolerance of 1% to CPLEX and calculated average gap and running times

needed. The results obtained can be seen in Table 12, where columns Avg and Max present the

average and maximum gaps observed, respectively, and T (in %) gives the proportion of the

30



computational time used to reach a 1% optimality gap, when compared with the time needed to

find the optimal solution.

From the results in Table 11, we can observe, from column CT, CPLEX is unable to provide a

feasible solution for a considerable number of problem instances. Furthermore, the optimality

gap for CPLEX is larger than the one observed for HACO. Regarding the results in Table 11,

we can conclude that in order to be within 1% of the optimalitygap CPLEX takes about half

the time needed to prove that the solution is an optimum. However, HACO continues to have a

better performance regarding time and optimality gap.

Table 11: Results obtained by bounding CPLEX in time, and considering F2 and F3 cost func-
tions

H=3 H=5 H=7 H=10
N Avg Max CT(%) Avg Max CT(%) Avg Max CT(%) Avg Max CT(%)
F2
10 0 0 100 0 0 100 0 0 100 0 0 100
12 0 0 100 0 0 100 0 0 100 0 0 100
15 0.0001 0.003 100 0 0 100 0 0 100 0.096 2.872 100
17 0 0 100 0 0 100 0 0 100 0.851 5.609 100
19 0 0 100 0 0 100 0.718 8.124 97 0.457 3.333 67
25 0 0 100 1.012 6.713 97 x x 0 x x 0
30 0 0 100 x x 0 x x 0 x x 0
40 - - - 0 0 100 0.009 0.129 100 0.115 1.718 100
50 - - - 1.918 16.198 90 0 0 53 0.340 2.063 53
60 0 0 100 0 0 9 x x 0 x x x
80 0 0 100 0.002 0.016 78 x x x x x x
F3
10 0 0 100 0 0 100 0 0 100 0 0 100
12 0 0 100 0 0 100 0 0 100 0 0 100
15 0 0 100 0 0 100 0 0 100 0.129 3.867 100
17 0 0 100 0 0 100 0.005 0.160 100 0.994 6.213 100
19 0 0 100 0.097 2.799 97 0.534 5.426 100 0.667 5.657 50
25 0 0 100 1.029 15.269 90 x x 0 x x 0
30 0 0 100 x x 0 x x 0 x x 0
40 - - - 0 0 100 0 0 100 0.034 0.509 100
50 - - - 0 0 100 0.049 0.733 100 1.125 5.667 93
60 0 0 100 1.389 10.963 67 x x 0 3.560 6.664 22
80 0 0 100 0 0 100 0.237 0.945 44 x x x

31



Table 12: Results obtained by CPLEX with an 1% gap tolerance,and considering F2 and F3
cost functions

H=3 H=5 H=7 H=10
N Avg Max T(%) Avg Max T(%) Avg Max T(%) Avg Max T(%)
F2
10 0.036 0.637 66 0.012 0.189 61 0.005 0.159 43 0.001 0.033 46
12 0.001 0.039 53 0.001 0.039 54 0.032 0.764 41 0.037 0.602 47
15 0.045 0.861 54 0.051 0.989 48 0.057 0.969 43 0.023 0.313 43
17 0.045 0.535 56 0.039 0.535 44 0.034 0.480 44 0.084 0.962 40
19 0.003 0.079 49 0.037 0.588 55 0.096 0.749 48 0.025 0.339 38
25 0.070 0.438 49 0.090 0.726 46 0.047 0.377 46 0.076 0.857 38
30 0.009 0.110 51 0.085 0.625 44 0.086 0.656 37 0.129 0.656 41
40 - - - 0.023 0.300 72 0.195 0.927 45 0.100 0.686 38
50 - - - 0.029 0.147 45 0.016 0.234 39 0.021 0.234 37
60 0.012 0.023 63 0.074 0.375 51 0.030 0.107 36 x x x
80 0.330 0.916 53 0.232 0.991 34 x x x x x x
F3
10 0 0 78 0.011 0.184 49 0.000 0.000 49 0.006 0.184 58
12 0.009 0.252 45 0.053 0.794 62 0.036 0.809 47 0.063 0.679 60
15 0.008 0.115 45 0.003 0.091 54 0.000 0.000 49 0.034 0.789 61
17 0.000 0.000 40 0.000 0.000 52 0.028 0.293 55 0.026 0.561 39
19 0.000 0.000 36 0.012 0.232 55 0.012 0.201 39 0.033 0.403 36
25 0.049 0.644 40 0.054 0.428 57 0.041 0.720 35 0.070 0.720 32
30 0 0 27 0.050 0.673 40 0.038 0.822 29 0.018 0.258 35
40 - - - 0.034 0.382 50 0.124 0.442 35 0.101 0.525 29
50 - - - 0.007 0.066 39 0.047 0.658 27 0.008 0.058 28
60 0.005 0.014 29 0.054 0.337 29 0.030 0.078 32 0.089 0.493 16
80 0.082 0.360 21 0.072 0.250 27 0.057 0.250 18 x x x

32



7 Conclusions

In this work, the Hop-constrained Minimum cost Flow Spanning Tree problem with nonlin-

ear costs is addressed by a hybrid algorithm based on Ant Colony Optimization and on Local

Search. The cost functions are of four types, and they comprise both fixed-charge and routing

costs, which are very difficult to solve even for problems with a small number of nodes. We have

solved problems with four different values of the hop-parameter and with a number of nodes

ranging from 10 to 50. We compared our results with the ones reported in the literature and

our algorithm proved to be both very effective and very efficient. The solutions obtained were

always better or as good as the ones provided by current literature, except for 13 problem in-

stances out of the 2798 solved. It should be noticed that for the remaining 82 problem instances

there are no feasible solutions. Furthermore, our algorithm was always able to find a feasible

solution, when there was one, whereas the MPGA was not. In fact, for 19 problem instances the

MPGA failed to find any feasible solution, while for another 13 problem instances only in some

runs a feasible solution was found. Although several cost functions with different complexity

have been used, the algorithm performance has not been affected. Both solution quality and

computational time remain of the same magnitude. Furthermore, the results obtained over 10

runs of the proposed algorithm are within 0.01% of each otherproving the method to be very

robust. Therefore, the proposed HACO heuristic proved to bea good alternative method to solve

HMFST problems, having demonstrated a better performance over the existing heuristic Fontes

and Gonçalves (2012) regarding gap values and over both this heuristic and CPLEX regarding

time.

The quality of the results obtained has encouraged us to extend the scope of application of our

HACO to other network flow problems in future work.

References

Alaya I, Solnon C, Ghédira K (2004) Ant algorithm for the multi-dimensional knapsack prob-

lem. In: International Conference on Bioinspired Optimization Methods and their Applica-

tions, BIOMA 2004, pp 63–72

Altiparmak F, Karaoglan I (2007) A genetic ant colony optimization approach for concave cost

transportation problems. In: Evolutionary Computation, 2007. CEC 2007. IEEE Congress

on, pp 1685–1692

Beasley J (2010) Or-library. http://www.brunel.ac.uk/deps/ma/research/

jeb/orlib/netflowccinfo.html

Bernardino EM, Bernardino AM, Sánchez-Pérez JM, Gómez-Pulido JA, Vega-Rodrı́guez MA

33



(2009) A hybrid ant colony optimization algorithm for solving the terminal assignment prob-

lem. In: IJCCI 2009 - International Joint Conference on Computational Intelligence

Bin Y, Zhong-Zhen Y, Baozhen Y (2009) An improved ant colony optimization for vehicle

routing problem. Eur J Oper Res 196:171–176

Bouhafs L, Hajjam A, Koukam A (2006) A combination of simulated annealing and ant colony

system for the capacitated location-routing problem. In: KES (1), pp 409–416

Broder AZ (1989) Generating random spanning trees. In: 30thAnnual Symposium on Foun-

dations of Computer Science, 30 October-1 November 1989, Research Triangle Park, North

Carolina, USA, IEEE, pp 442–447

Bui TN, Zrncic CM (2006) An ant-based algorithm for finding degree-constrained minimum

spanning tree. In: Proceedings of the 8th annual conferenceon Genetic and evolutionary

computation, ACM, New York, USA, GECCO ’06, pp 11–18

Chen CH, Ting CJ (2008) Combining lagrangian heuristic and ant colony system to solve the

single source capacitated facility location problem. Transp Res Part E: Log 44(6):1099 –

1122

Chen WN, Zhang J (2009) Ant colony optimization approach to grid workflow scheduling prob-

lem with various QoS requirement. IEEE T Sys Man Cybern C 31:29–43

Cordon O, Herrera F, Stützle T (2002) A review on the ant colony optimization metaheuristic:

Basis, models and new trends. Mathw Soft Comput 9:141–175

Crawford B, Castro C (2006) Integrating lookahead and post processing procedures with aco

for solving set partitioning and covering problems. In: ICAISC, pp 1082–1090

Dahl G, Gouveia L, Requejo C (2006) On formulations and methods for the hop-constrained

minimum spanning tree problem. In: Resende MGC, Pardalos PM(eds) Handbook of Opti-

mization in Telecommunications, Springer US, pp 493–515

Deneubourg JL, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of

the argentine ant. J Insect Behav 3:159–168

Dorigo M, Blum C (2005) Ant colony optimization theory: A survey. Theor Comput Sci

344:243–278

Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press, Cambridge, MA

Dorigo M, Maniezzo V, Colorni A (1996) The ant system: Optimization by a colony of cooper-

ating agents. IEEE T Sys Man Cybern B 26(1):29–41

34



Faria J, Silva C, Sousa J, Surico M, Kaymak U (2006) Distributed optimization using ant colony

optimization in a concrete delivery supply chain. In: Yen GG, Lucas SM, Fogel G, Kendall

G, Salomon R, Zhang BT, Coello CAC, Runarsson TP (eds) Proceedings of the 2006 IEEE

Congress on Evolutionary Computation, IEEE Press, Vancouver, BC, Canada, pp 73–80

Fernandes M, Gouveia L, Voß S (2007) Determining hop-constrained spanning trees with repet-

itive heuristics. J Telecom Inform Technol 4:16–22

Fontes DBMM (2010) Optimal hop-constrained trees for nonlinear cost flow networks. Infor

48:13–21

Fontes DBMM, Gonçalves JF (2012) A multi-population hybrid biased random key genetic

algorithm for hop-constrained trees in nonlinear cost flow networks. Optim Lett pp 1–22,

DOI 10.1007/s11590-012-0505-5

Fontes DBMM, Hadjiconstantinou E, Christofides N (2003) Upper bounds for single-source

uncapacitated concave minimum-cost network flow problems.Networks 41(4):221–228

Frey H, Ingelrest F, Simplot-Ryl D (2008) Localized minimumspanning tree based multicast

routing with energy-efficient guaranteed delivery in ad hocand sensor networks. In: Proceed-

ings of the 2008 International Symposium on a World of Wireless, Mobile and Multimedia

Networks, IEEE Computer Society, Washington, DC, USA, pp 1–8

Gambardella LM,́Eric Taillard, Agazzi G (1999) Macs-vrptw: A multiple ant colony system for

vehicle routing problems with time windows. In: New Ideas inOptimization, McGraw-Hill,

pp 63–76

Garcı́a-Martı́nez C, Cordón O, Herrera F (2007) A taxonomyand an empirical analysis of mul-

tiple objective ant colony optimization algorithms for thebi-criteria TSP. Eur J Oper Res

180(1):116–148

Gavish B (1983) Formulations and algorithms for the capacitated minimal directed tree prob-

lem. J ACM 30:118–132

Gonçalves JF, Resende MGC (2011) Biased random-key genetic algorithms for combinatorial

optimization. J Heuristics 17(5):487–525

Gouveia L (1995) Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning

tree problem with hop constraints. Comput Oper Res 22:959–970

Gouveia L, Martins P (1999) The capacitated minimal spanning tree problem: an experiment

with a hop-indexed model. Ann Oper Res 86:271–294

Gouveia L, Martins P (2000) A hierarchy of hop-indexed models for the capacitated minimum

spanning tree problem. Networks 35:1–16

35



Gouveia L, Requejo C (2001) A new lagrangean relaxation approach for the hop-constrained

minimum spanning tree problem. Eur J Oper Res 132:539–552

Gouveia L, Simonetti L, Uchoa E (2007) Modelling the hop-constrained minimum spanning

tree problem over a layered graph. In: In Proceedings of the International Network Opti-

mization Conference, Spa, Belgium,

Gouveia L, Paias A, Sharma D (2011) Restricted dynamic programming based neighborhoods

for the hop-constrained minimum spanning tree problem. J Heuristics 17:23–37

Hassin R, Levin A (2003) Minimum spanning tree with hop restrictions. J Algorithm 48:220–

238

Hu XM, Zhang J, Xiao J, Li Y (2008) Protein folding in hydrophobic-polar lattice model: A

flexible ant-colony optimization approach. Protein Peptide Lett 15:469–477

Hwang IS, Cheng RY, Tseng WD (2007) A novel dynamic multiple ring-based local restoration

for point-to-multipoint multicast traffic in wdm mesh networks. Photonic Netw Commun

14:23–33

Katagiri H, Hayashida T, Nishizaki I, Ishimatsu J (2009) A hybrid algorithm based on tabu

search and ant colony optimization for k-minimum spanning tree problems. In: Proceed-

ings of the 6th International Conference on Modeling Decisions for Artificial Intelligence,

Springer-Verlag, Berlin, Heidelberg, MDAI ’09, pp 315–326

Lessing L, Dumitrescu I, Stützle T (2004) A comparison between ACO algorithms for the set

covering problem. In: ANTS, pp 1–12

Meshoul S, Batouche M (2002) Ant colony system with extremaldynamics for point matching

and pose estimation. In: 16th International Conference on Pattern Recognition, vol 3, pp

823–826

Middendorf M, Reischle F, Schmeck H (2002) Multi colony ant algorithms. J Heuristics 8:305–

320

Monteiro MSR, Fontes DBMM, Fontes FACC (2011) An ant colony optimization algorithm to

solve the minimum cost network flow problem with concave costfunctions. In: Krasnogor

N, Lanzi PL (eds) GECCO, ACM, pp 139–146

Monteiro MSR, Fontes DBMM, Fontes FACC (2013) Concave minimum cost network flow

problems solved with a colony of ants. J Heuristics 19:1–33

Mullen R, Monekosso D, Barman S, Remagnino P (2009) A review of ant algorithms. Expert

Syst Appl 36:9608–9617

36



Musa R, Arnaout JP, Jung H (2010) Ant colony optimization algorithm to solve for the trans-

portation problem of cross-docking network. Comput & Ind Eng 59(1):85 – 92

Neumann F, Witt C (2010) Ant colony optimization and the minimum spanning tree problem.

Theor Comput Sci 411(25):2406–2413

Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with an ant colony optimization algo-

rithm. IEEE T Evolut Comput 6:321–332

Prim R (1957) Shortest connection networks and some generalisations. AT& T Tech J 36:1389–

1401

Putha R, Quadrifoglio L, Zechman E (2012) Comparing ant colony optimization and genetic

algorithm approaches for solving traffic signal coordination under oversaturation conditions.

Comput-Aided Civ Infrastruct Eng 27:14–28

Rappos E, Hadjiconstantinou E (2004) An ant colony heuristic for the design of two-edge con-

nected flow networks. In: ANTS Workshop, pp 270–277

Reimann M, Laumanns M (2006) Savings based ant colony optimization for the capacitated

minimum spanning tree problem. Comput Oper Res 33:1794–1822

Santos L, Coutinho-Rodrigues J, Current JR (2010) An improved ant colony optimization based

algorithm for the capacitated arc routing problem. Transp Res Part B: Methodol 44(2):246–

266

Stützle T, Hoos H (1997) Max-min ant system and local searchfor the traveling salesman prob-

lem. In: IEEE International Conference On Evolutionary Cmputation (ICEC’97), IEEE Press,

Piscataway,NJ, pp 309–314

Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8:541–564

Talbi EG, Roux O, Fonlupt C, Robillard D (2001) Parallel ant colonies for the quadratic assign-

ment problem. Future Gener Comput Sys 17:441–449

Voß S (1999) The steiner tree problem with hop constraints. Ann Oper Res 86:321–345

Yin PY, Wang JY (2006) Ant colony optimization for the nonlinear resource allocation problem.

Appl Math Comput 174:1438–1453

Zhang J, Chung H, Lo WL, Huang T (2009) Extended ant colony optimization algorithm for

power electronic circuit design. IEEE T Power Electr 24:147–162

Zhou G, Gen M, Wu T (1996) A new approach to the degree-constrained minimum spanning

tree problem using genetic algorithm. In: Systems, Man, andCybernetics, 1996., IEEE Inter-

national Conference on, vol 4, pp 2683–2688 vol.4

37



Recent FEP Working Papers

492 Mónica L. Azevedo, Óscar Afonso and Sandra T. Silva, Endoge-
nous growth and intellectual property rights: a North-South mo-
delling proposal, April 2013

491 Francisco Rebelo and Ester Gomes da Silva, Export variety, tech-
nological content and economic performance: The case of Portu-
gal, April 2013

490 João Correia-da-Silva, Impossibility of market division with two-
sided private information about production costs, April 2013

489 Meena Rambocas and João Gama, Marketing Research: The Role
of Sentiment Analysis, April 2013

488 Liliana Araújo, Sandra Silva and Aurora A.C. Teixeira, Knowledge
Spillovers and Economic Performance of Firms Located in De-
pressed Areas: Does Geographical Proximity Matter?, March 2013

487 João Correia-da-Silva, Joana Pinho and Hélder Vasconcelos, Car-
tel Stability and Profits under Different Reactions to Entry in
Markets with Growing Demand, March 2013

486 Ana Pinto Borges, Didier Laussel and João Correia-da-Silva, Mul-
tidimensional Screening with Complementary Activities: Regula-
ting a Monopolist with Unknown Cost and Unknown Preference
for Empire-Building, February 2013

485 Carlos Seixas, António Brandão and Manuel Luís Costa, Policy
Choices by an Incumbent: A Case with Down-Up Problem, Bias
Beliefs and Retrospective Voting, February 2013

484 Pedro Mazeda Gil, Oscar Afonso and Paulo B. Vasconcelos, Indus-
try Dynamics and Aggregate Stability over Transition, February
2013

483 Márcia Oliveira, Dalila B. M. M. Fontes and Teresa Pereira, Mul-
ticriteria Decision Making: A Case Study in the Automobile In-
dustry, February 2013

Editorial Board (wps@fep.up.pt)
Download available at: http://wps.fep.up.pt/wplist.php

also in http://ideas.repec.org/PaperSeries.html

39

mailto:wps@fep.up.pt
http://wps.fep.up.pt/wplist.php
http://ideas.repec.org/PaperSeries.html



