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Abstract

Nonlinear optimal control problems can be associ-
ated with linear quadratic optimal control problems.
Such relation are of interest when deriving second or-
der necessary conditions for the original problem in
terms of conjugate points.

In this work we consider an optimal control prob-
lem with mixed constraints in the form of equali-
ties and inequalities to which we associate a linear
quadratic optimal control problem. For the proposed
auxiliary problem we prove that the cost is in fact
nonnegative. The proof of the main result highlights
the relation between nonnegativeness of the cost of
the associated problem and the optimality of the so-
lution of the original problem.

Key words: Optimal control, mixed constraints, acces-
sory problem.

1 Introduction

Consider the following optimal control problem

(P):

Minimize I(z(b)) + [ L(t, (t), u(t))dt
subject to

i(t) = ftat),ult) ae

0 = b(t,z(t)ut) ae.
(()) > g(t,x(t),u(t) ae.
| ) € C

where | : R* = R, L : [a,b] x R* x R¥ = R, f :
[a,b] x R* x R¥ — R™ b :[a,b] x R* x RF — R™,
g:[a,b] xR* x R¥ — R™s  and C' C R" a set defined
as

C={zeR":h(z) =0},

where h : R — R and r < n.

Throughout this paper we assume that £ > my+m,.

(P) is an optimal control problem involving equal-
ity and inequality state-dependent control constraints,
also known as mixed state-control constraints.

Following standard procedure applied when de-
riving second order conditions (see, for example, [8]),
we associate with (P) an auxiliary problem, which is
to minimise a second variation Jz(v) over all solu-
tions (y,v) of some linearised system. The “auxil-
iary” problem we consider has been proposed before,
for example, in [5], [8] and [2].

Although here we do not derive second order con-
ditions (those can be found, for example, in [2]) we
show that if (Z,u) solves (P), then the proposed lin-
ear quadratic problem, called an “accessory prob-
lem”, has nonnegative cost. In contrast with [2], we
highlight the relation between the nonnegativeness
of the linear quadratic problem and the optimality
of the solution of (P). This is done by building a
family of admissible processes of (P) depending on
some parameter e.

In [4] and [9] similar results were established when
the constraint functions b and g depend only on the
control variable u. We generalise their work to cover
constraints depending jointly on z and u. Our ap-
proach differ from theirs since no admissible direc-
tions set is defined. Notably, we apply an Uniform
Implicit Function Theorem previously obtained (see
[1]) to build a family of admissible processes for (P).

2 Preliminaries

The notation r > 0 means that each component
r; of r € R" is nonnegative. (,-) denotes the Eu-
clidean scalar product on finite dimensional vector
space R¥, | - |= 1/(:,-) the Euclidean norm, and | - |
the induced matrix norm on R™*¥ . To simplify no-
tation ¢(t) will denote the evaluation of a function
¢ at (t,z(t),u(t),v(t)) (or (¢,%(t),w(t)), whereas ¢
may be L, f, b, g or its derivatives.



The following result, proved in [1], will be of im-
portance in the forthcoming developments, mainly in
the proof of our main result.

Theorem 2.1 (Uniform Implicit FunctionThe-
orem)

Consider a set T C RF, a number € > 0, a family of
functions

{ta :R™" X R" - R"}, opr

and a point (ug,vo) € R™ x R" such that

Ya(uo,v0) =0

for all a € T. Assume that:

(1) % is continuously differentiable on (ug,vo) +
EB for alla € T.

(ii) There exists a monotone increasing function 6 :
(0,00) — (0,00) with 6(s) 4 0 as s | 0 such
that, for all a € T, (u',0"), (u,v) € (ug,v0) +
éB,

| Vipo (u',0")=Vipa (u,v) | < 6( ] (u',0")—(u,v) | ).

(iil) V1 (ug,v0) is nonsingular for each a € T and
there exists ¢ > 0 such that, for alla € T,

| [Vv'ﬁba(UOa'UO)]_l | < e

Then there exist 6 > 0 and a family of continuously
differentiable functions

{¢a tug+ 0B — vy +5B}a€T’

which are Lipschitz continuous with common Lips-
chitz constant k, such that, for all a € T,

vo = ¢a(uo)
Yo(u,da(uw)) = 0 for all u € ug + B
Vu¢a(u0) = _[Vv¢a (UOaUO)]_lvu¢a(UOaUO)-

The numbers § and k depend on 8, ¢ and € only.

Furthermore, if T is a Borel set and a — 1,(u,v)
is a Borel measurable function for each

(U,’U) € (’LLU,’UU) +5—B7

then a — ¢,(u) is a Borel measurable function for
each u € ug + 6B.

A process (Z,u) of (P), i.e., a pair of an absolutely
continuous function Z : [a,b] — R™ and measurable
function 4 : [a, ] — R* satisfying the constraints of
(P), is called a weak local minimizer if, and only if,
there exists some £ > 0, such that it minimizes the
cost over all processes (z,u) of (P) which satisfy

(@(t),u(t)) € T:(1),

for a.a. t € [a,b],

where T:(t) = (z(t) +&B) x (u(t) + €B). Here B
denotes the closed unit ball.

Since we have inequality constraints in (P) we
introduce the set Z,(t) of indexes of the active con-
straints as

To(t)={i e {1,... ,my} | gi(t,2(t),u(t)) =0}.
and we denote its cardinal by g, (t).
Let

gL @ (t,z(t),a(t)) € Re=(H*k

(if go(t) = 0, then the latter holds vacuously) denote
the matrix we obtain after removing from g, (t) all
the rows of index i ¢ Z,(t).

We shall invoke the following hypotheses on (P),
which refers to some process (Z,%) and parameter
E>0:

H1. L(,=z,u), f(-,z,u), b(-,z,u), are measur-
able for each (z,u).

For almost every t € [a, b], f(t,-,-), L(t,-,-), b(¢t, -, -)
and g(t,-, ) are twice continuously differentiable on
(Z(¢t),u(t)) + &B.

f(tv K '): L(ta K ')v b(t; " ) and g(tv K ) and their
derivatives are essentially bounded at (¢, Z(t), @(t)).

H2. There exists a monotone increasing func-
tion € : (0,00) — (0,00) with 6(s) { 0 as s | 0 such
that, for all ¢ € [a,b], (z,u), (z',u") € (F(t),a(t)) +
B,

| Vx,ugo(t,x,u)— Vx7uQ0(t,.’El,’U/l) | S

(] (@' ') = (z,u) |)

where
o(t,z,u) = (L(t,z,u), f(t,,u),b(t,z,u), g(t, z,u))".

H3. There exists K > 0 such that, for almost all
t € [a,b],
det {Y®)Y(t)'} > K

where

H4. hanl are C? on {z:| z — Z(b) |< £} and the
matrix A'(Z(b)) has full rank.

Define the Hamiltonian:
H(t,z,p,q,r,u) =
p- f(t,a:,u) +4q- b(tvmau) +r 'g(tama’u‘) - )\L(t,x,u)
Under these set of hypotheses a Weak Maximum

Principle, proved in [3], asserts the existence of of an
absolutely continuous function p, two L°°-functions



q and 7, a vector u and a scalar A > 0 such that, for
almost all ¢ € [a, b],

(i) 0 # llpllee +A,

(i) —p(t) = H.(t2(t),p(t),q(t),r(t),u(t)),
(iii) 0 = Hy(t z(t),p(t),q(t),r(t), u(?)),
(iv) 0 = 7r(t)g(t, z(t),u(t)) and r(t) <0,
(v)  —p(b) = H(@O0)"n+AVIE(D).

An admissible process for (P), (z,u), is called an
extremal if it satisfies H1-H4 and there exist multi-
pliers, i.e., functions p, ¢ and r, u € R", and a scalar
A > 0 such that conclusions (i) through (v) above
hold.

For any extremal (z,u) we define the set of mul-
tipliers as A = (p(+),q(-),7(-), A\, ). An extremal is
called a normal extremal if there exists one set of
multipliers satisfying A = 1. An extremal (z,u) of
(P) is strongly normal if the only solution of the sys-
tem:

_p(t) = Hz(t,a_:(t),p(t),q(t),r(t),ﬂ(t))
0 = Hu(taj(t)vp(t)aQ(t)vr(t)vﬂ(t))
0 = r(t)-g(t,2(t),a))

-p(b) = N(@0)

is p(-) = 0. Tt can also be deduced from the Weak
Maximum Principle in [3] that if p(-) = 0, then r(¢) =
q(t) = 0 for almost all ¢ € [a, b].

Throughout the remainder of this paper we as-
sume that (Z,a) is a strong normal solution of (P)
and that the set of multipliers A associated with
(Z,u) is a singleton. Denote the multipliers as p,
q, r, A=1and p.

3 Main Result

We now associate with (P) the following linear
quadratic problem (AC):

Minimise )
Jo(v) = 3 {lg(y(b)) +/ Lg(t,y(t),'v(t))dt}
subject to ~ ~
y(t) = fa@y(t) + fu(t)o(?) a.e
0 = ba(D)y(t) + bu(t)v(t) a.e
0 = gy +g5e " BoE) ae
y(a) = 0
\ My(b) =0

where M = h'(z(b)),

Iy (y(b)) = y" (b)Ty(b),

T = {I"(z(b) + [1"(2(6)Tu] }
and

Lo(t,y(t),v(t)) = —y(t)" Haa (t)y(t) —

2y(t)" Hou()o(t) — v(t)" Huu(t)0(2)

For simplicity of exposition, we define (AC) with
only equality constraints of the form

0= g2 (0y(t) + g (Do(t),

although another, possibly more general, “accessory
problem” can be considered, as proposed in [5], by
separating g 1)y (t)+ gL (£)v(t) in both inequal-
ity and equality constraints in the following way. De-
fine two subsets of I, (¢):

Iy(t) = {iel(t): ri(t) =0}

I(1)

{i € I,(t): ri(t) < 0}
and consider

0 = g="Wy)+ gV ()o(t)

0 > gDy + g ()o(t)

Our approach can be generalized to cover this other
problem and it will be the focus of some future work.

Theorem 3.1 Assume that (Z,a) is an optimal so-
lution of (P) and that it is strongly normal. Then,
for any admissible solution (y,v) of (AC), we have

J2 (’U) Z 0.

4 Proof of the Main Result
Set & € L*([a, b]; R™9) to be

1 if i€ I(t)
‘Si(t):{ 0 it i¢ It

Define two diagonal matrices A(t), A'(t) € My, xm,
as

A) = diag {5.(t),... ,0m, (1)},
A(t) = T-A®).

Consider now a L*([a, b]; R™s)-function w and
two systems, (.S)

i) = L@0y) + fu)v(D)
0 = bo(t)y(t) + bu(t)o(t)
0 = gD @Dy) + g6
yl@ = 0
My®d) = 0



and (S*)
y(@) = fe@y(t) + fult)v(?)
0 = ba(t)y(t) + bu(t)o(t)
0 = AB)g.(t)y(t) + At)gu(t)v(t)+
Al (t)w(t)
yla) =
My() = 0

Observe that any solution of (S) is an admissible
solution for problem (AC) and that (y =0,v =0) is
a solution of (S).

As it can easily be seen, (§,7) is a solution of (.S)
if and only if there exists an L function @ such that
(9,9, @) is a solution of (S*).

If (g, 9, ) is a solution of (S*), then @;(t) = 0 for
any i ¢ I,(t).
Set w = (v,w). Defining

At) = fo(t), B(t

and

y(t) = A@®y@) + Bt)w(t) ae
0 = C(t)y(t)+D)w(t) a.e
y@) = 0

My®) = 0

Let (y,w) be a solution of (S*). Since, by H3, D(#)
is of full rank, we set

D#(t) = D" (D@)D()")
A(t) = A(t)— B@t)D*(t)C(t)
B(t) = B(t) (I -D#(t)D(t))
I (t) = (I—D#(t)D(t))
Define the system (S):

y(t) = A(t)y(t) + B()((?)
{ y@ =0

My() = 0

The following lemma relates the solutions of (S*)
and (S). The proof is an easy task that we omit here.

Lemma 4.1 If (y,w), is a solution of (S*), then
there exists an ( € L™ such that

I (£)(¢(2) —w(t)) =0
and (y,¢) is a solution of (S).
If (y,C) is a solution of (S), then (y,w), where

w(t) = My (1)¢(t) = D* (1) C )y (1),

is a solution of (S*).

Let ®(¢,a) be the transition matrix of
§(t) = A()y(2). (4.1)
The reachable set of (5) is
Ra(b) =

[ a0.m0 saBeomceas:ce =]

Definition 4.2 Let M be a full rank r x n real ma-
triz. The system (S) is M-controllable if

MTRa(b) = R

By Lemma 4.1, M-controllability of (3) is equiva-
lent to the M-controllability of (S) (when considering
the controllability we ignore the end point constraint
My(b) = 0).

Proposition 4.2 of [8] asserts that (7, u) is strongly
normal on [a, b] if and only if (S) is M-controllable.

We now focus on the system

Bb(t) = AW(t) + B)E) + c(t)
0 C(t)y(t) + D()E(E) +d(t) (4.2)
M(b) = 0,

where ¢ and d are two essentially bounded functions
and e € R".

Lemma 4.3 For any c,d € L™ and any e € R, the
system (4.2) has a solution.

Proof. The system (4.1) has an unique solution
given by 9(t) = ®(t,a)pg. Let L € R" and set
Yo = @7 (b,a)MT (MMT) L. Then the solution
¥ of (4.1) is such that

Mp(b) = L.

Premultiplying the algebraic equation of (4.2) b
D#(t), we obtain

—D#()C(t)p(t) — D#(t)d(t) = D¥ () D(t)E(t).

Subtracting £ to both sides of this equality and re-
placing ¢ in the differential equation of (4.2) we de-
duce that y is a solution of

h(t) = AR (t) + B)E) + (1) (4.3)
where 7(t) = c(t) — B(t)D#(t)d(t).
Denote by (1, £) a solution of (4.3).
Set A= M)(b) and L = -\ —e.
Let 1) be the solution of (4.1) (M1 (b) = £).

Then, (4 €) where U(0) = 9(0) (1) and €(1) =
—D#(t)C( ) (t) =TIy (£)E(t) — D#(t)d(t) is a solution
of (4.3) and

My(b) = Myp(b) + Mp(D) =X —X—e = —e



completing the proof. [ |

Let £4,L5,..., L, be a linearly independent set
of R"-vectors and let 1, e, . .. , e, be such that Me; =
Lifori=1,... r. Set

¢(t) = [ (), g7 ()]-

For each ¢ = 1,... ,r consider the system
“ 2
0 = @®)y)+ Y(@)v(t
(Sz) y(a) = 0 (4-4)
y(b) = e

The hypotheses H1 - H4 | the strongly normal as-
sumption of (Z,%) on [a,b] and Proposition 4.2 of
([8]) ensure that the above system is M-controllable
on [a,b]. It follows that there exists a solution of
(yi,v;) of (S;), foreachi=1,... 7.

We now focus on the proof of Theorem 3.1.

Proof of Theorem 3.1. Let £ > 0 be the param-
eter in hypotheses H1-H4.

Let (y,w), where w = (v,w), be a solution of
(S*). Recall that (y,v) is an admissible solution of
(AC).

Let z € ®™s be the vector z = (1,1,...,1)7T.

Let (y;,v;) be a solution of (4.4) for each i =
1,...,r.

Let g(tﬂ x’ u) = (b(t’ x’ u)?.g(t?m?u))'
Let (1, £) be a solution of (4.2) where

and e = %yT(b)h”(f(b))y(b)-
Let v = (71,72) € R*F™, where m = my, + my,.
Let 8= (B1,...,8-) € R" and € € R

Define the matrices
Li(t) =[L1:(t) 0] and Ly(t)=[0 DT(t)]

where
t
Lll(t) = —/ A(s)Lu(s)ds + 1.
Set 170(67'77 Oé) = j(a’)v
l‘(t,e,’y,ﬁ) =

2(t) + ey(t) + p(t) + Li(t)y + Z Biyi(t) (4.5)

and
u(t,e,y) =

u(t) + ev(t) + €£(t) + La(t)y + Y _ Bivi(t). (4.6)

Consider the function

F(t7 65 ’y’ ﬁ) =
(Fl(tv65'77ﬂ):FZ(ta6:’775)7173(6:'775))

where
Fl(t,E,’y,,B) = .’E(t,E,’y,IB) - wo(ea%ﬂ) -

t
[ #oals.7,8).uts. e, 8)ds,
F?(t; €7, /8) = b(ta ilf(t, €7 ﬁ): U(t, €7, /8)))

F3(t7€ary,ﬂ) = A(t)g(t,w(t,e,'y,ﬂ),u(t,e,’y,,ﬁ)) +
A1) (12 + ew®) + *plt e, 7.9))
with
p(tv €7 ﬂ) = g(si .T,‘(S, €7 5)7 ’LL(S, €7 ﬂ)) -
g(t) + 2.
We have F(t,0,0,0) = 0.
Differentiating F' with respect to e, we obtain

OF
E(ta 07 05 O) -

< y(t) = ! (As)y(s) + B(s)u(s) ) ds ) _ < 0 ) ‘
C(t)y(t) + D(t)w(t) 0
Differentiating F' with respect to v, we get

OF
8_7(t7 05 07 0) -

I 0
C(t)Lu(t) DD (t) + [ A'O(t) ] ] |

We deduce from H3 that $£(¢,0,0,0) is nonsingular.
By H1, it can be proved that %(t,0,0,0) satisfies
condition (iii) of Theorem 2.1. This, together with
H2, allows the application of Theorem 2.1 which as-
serts the existence of a > 0 and a function

v:Jd % (=6,0) x (=4,6)" — &B,
where J C [a,b] is a set of full measure and B is the
unitary open ball in R**™  such that y(t,-,) is C?,
~(t,0,0) = 0 and

F(t7 65 ’Y(t7 65 a)iIB) = 0 (4'7)

for almost all ¢ € [a,b] and all € € (=4, ).



Differentiating (4.7) with respect to € we conclude for almost all ¢ € [a,b] and all € € (=4, 6).
that

Oy Observe that J(t,€) = 7y(t,¢,B(€)) is a function
E(tvoa 0) =0. defined on J x (—0,9) and taking values in £B.
For all i = 1 v we also have It follows from (4.9) and the definition of F' that,
T for almost all t € [a,b], all € € (=4, 9)
oF
—(t,0,0,0) =0, .
a5, 00 Bt = f(6.3(.0.1(.0)
asserting that g—gi(t, 0,0) =0. b(t, Z(t,€),a@(t,e)) = 0
By definition of ¢ and ¢,
i(t, Z(t,€),u(t, e < 0 Viellt
g2 gi(t, Z(t, €),u(t, €)) (t)
-5 (t,0,0,0) =0 ~ -
Oe Z(a,e) = Z(a)
2
and we deduce that ‘ZT;(t, 0,0) =0. h(E(b,) = 0
Replacing v by v(t,¢,3) in (4.5) and (4.6), we
have two functions and, for all i ¢ I,(t),
ﬁ(t7 65 /8) = u(t7 65 ’Y(t7 65 18)518)) 4 - ~ _ _
fij(t,é,ﬁ) = x(tﬂeav(taeaﬂ)aﬂ)) € (gi(t,x(t,e),u(t,e)) _gl(t’x(t)’u(t))) =
_ At t _ 4—<
defined on J x (—4,68) x (—4,8)", where J C [a,b] 7_2( ’6)4 ce=
is a set of full measure. These functions have the E1-€) <0

regularity properties of v(t, ¢, 3). It follows from the o
above that @(t,0,0) = a(t), &(t,0,0) = Z(t) and This means that, for all € € (-9, 9), (
an admissible solution of (P).

(',6),’1](',6)) is

SH

ou — o _
5 (1:0,0) = o), 5c (1:0,0) = y(®); Define the function
g_l[?l(ta 050) = 'Uz(t), aa_gl(ta 070) = yl(t)a b
26 =1(60,) + [ Lttt a(t.)ds

28(,0,0) = 2£(t), 2E(t,0,00 = 2y(1), @
for almost all ¢ € [a, b]. on (—4,6). The minimum of J is attained at e = 0.

Define now the map G : (—=4,9) x (=6,0)" = R" Since
as _

. JO0) = V(@0D)Tyb)+
G(t,e,8) = h((b,c, 8). © (@(0))"v(®)

Then G(0,0) =0 and

= —pT)y(b) + [* LT (t)y(t))dt
0 0y e = . O+ ) &7 )
Since {Li,...,L,} is a linearly independent set of =0
vectors, the matrix %(O, 0) is nonsingular. The clas-
sic implicit function theorem asserts the existence
of a 0 < 8 < § and a C? function B defined on
(—do, d0), with 8(0) = 0 and such that

we must have:

J"0) = yT®)"(z(b)y(b)+

h(z(b,e,B(e)) =0 (4.8) ,
T
y' (t) Ly (B)y(t)+
for all € € (—dg,d0). Differentiating (4.8) twice we Ja @ O Lea®y(®)
can further conclude that 3{(0) =0fori=1,...,r 2T (#) Ly ()0(t) + 0T (£) Lo (t)0(2))dt
and 8/(0) =0,fori =1,...,7. > 0
Let 6 = min{1,dq}. We now define on .J x (-4, 6),

where, again, J C [a, D] is of full measure, Suppressing the ¢ for simplicity, observe that

u(t,e) = a(t, e, B(e)) - 7 7 7 _

) b L — _H

.’i(t,é) — .’f?(t, e,ﬂ(e)) zx ez + Pfea + @bez + G20

We conclude from the above that Low = —Hpu+pfou+ @bou + rfeu



We deduce that
J'0) = y"®)"(z(b))y(b)—

proving the theorem. ]
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