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Abstract

The Minimum Cost Network Flow Problem (MCNFP) includes a &rdnge of combinatorial
optimization problems. Many applications exist for MCNHBs instance supply chains, lo-
gistics, production planning, communications and trarnspions. Concave costs are, in many
applications, more realistic than linear ones becausesads$bociation of prices with economies
of scale. When concave costs are introduced in MCNFPs, tleedifficulty to solve them in-
creases and they become NP-Hard. Solution methods deddlopthese problems comprise
both exact and approximate algorithms, the latter onedlysafa heuristic type. What we pro-
pose to do in this work is to present an overview of the pasthaost recent literature published
on the subject.

Keywords: Minimum Cost Network Flow Problems, Survey, Hstics, Exact Methods.
JEL Classifications: C61, C44.

*This work is funded by the ERDF through the Programme COMPERM& by the Portuguese Government
through FCT - Foundation for Science and Technology, ptsje@ DC/EGE-GES/099741/2008 and PTDC/EEA-
CRO/116014/2009.

fCorresponding author.



1 Introduction

A Minimum Cost Network Flow Problem (MCNFP) can be descrilasdhe problem of mini-
mizing the total cost incurred with the distribution of soomemmodity from the sources to the
demand nodes. MCNFPs have a major role in optimization gimee include problems such
as Transportation Problems (TPs), Assignment Problems)(A#hd Shortest Path Problems
(SPPs). Therefore, MCNFPs have many practical applicationexample in supply chains,
logistics, transportation, and facilities location, jtstnention but a few (Geunes and Pardalos,
2005).

The costs incurred can take several forms but the ones wat@rested in are concave costs,
usually associated to economies of scale, discounts, artelgt costs (Guisewite and Pardalos,
1990), which are much more realistic than the linear onesndfiund in literature and that are
considered easy to solve as they are solvable in polynommal tAn example of a situation
where concave cost functions have to be accounted for iesltige setting of networks of
facilities, such as a network of bank branches, that beslteitial costs incurred with the
opening of facilities and equipment have also to includeraiugg costs, see (Monteiro and
Fontes, 2006). The minimization of a concave function oveorvex feasible region, defined
by the linear constraints of the problem, makes it much mdfieult to solve, therefore more
appealing.

Another attractive characteristic of concave MCNFPs is déing Network Flow Problem (NFP)
with general nonlinear costs can be transformed into a a@nbi®P in an expanded network
(Lamar, 1993).

In this work, we concentrate our attention in the study ofgpecial case of Minimum concave
Cost Network Flow Problems (concave MCNFP). Our objectv®ipresent a review on some
methodologies that have been used in order to address MCNFPs

We start by presenting a formal description of the MCNFP ghaith its mathematical formu-
lation. We also give a brief characterization of a solutionthe concave MCNFP and discuss
some issues that define its complexity. An overview of thehmddlogies used to address this
problem is provided next and it is divided accordingly to theee types of concave cost func-
tions considered. We review both exact and heuristic methiéichally, we close this paper with
the conclusions.

2 Concave Minimum Cost Network Flow Problems

A Minimum Cost Network Flow Problem with a general concavstdanction can be formally
defined as follows.



Given a directed grap&y = (N, A), whereN is a set ofn nodes and is a set ofm available
arcs(i,j), withi € N andj € N, a concave Minimum Cost Network Flow Problem is a
problem that minimizes the total concave cagtsincurred with the network while satisfying
the nodes demandi.

Considering the notation summarized bellow,

n - number of nodes in the network
- number of available argg, j) € A
d; - demand ofnodg ¢ N

z;; - flowonarc(i,j) € A

y;; = binary variable assuming the value 1 if &icj) € A is chosen and 0 otherwise
gi; - concave cost function of af¢, j) € A

w;; - upper limit on flow through ar¢i, j) € A

;7 - lower limit on flow through argi, j) € A

the mathematical model for the concave MCNFP can then bé&ewrds follows:

Model 1 A mixed-integer mathematical programming model for theegahconcave MCNFP
problem.

min: Z 9i5(Zij, Yij) 1)
(i,7)€A

s.t. Z Tij — Z Tk = dj7vjEN7 (2)
{il(4.5)€A} {k|(4.k)eA}
0 <zy <uj,  Viijea (3)
Tij > lijyij,  Vijea- (4)

The objective is to minimize the total costs defined in (1pvuted that the demand is satisfied,
stated by thélow conservation constrain{®), and that the arasapacity constraintg (3) and

(4) are not violated. Regarding the dematidtakes a negative or positive value depending on
whether; is a source or a demand node, respectively. We assume thatahsource demand
equals the total sink demand, thiis _ ; d; = 0. Sometimes neither upper nor lower bounds are
established for the flows in the arcs, therefore the probteoonsidered uncapacitated which
mathematically translates intg; = +oo and/;; = 0.

Regarding concave cost functions, they can take severakfbut the most popular ones used
in literature are;; - ;; + ¢;;, also known as concave fixed-charge functions. However,ane ¢
also find other concave cost functions such as the squareesbfunctiony;; - ,/z;; that has
been considered by Altiparmak and Karaoglan (2006), angé¢end-order polynomial cost



function—a,; - xfj + b;; - z;; used by Dang et al (2011), just to mention but a few posgislit

2.1 Characterization of a solution for the concave MCNFP

A feasible solution for the concave MCNFP is a solution tha@éginot violate neither (2) nor
(3). Lozovanu (1983) observed that if a feasible solutiosteXor concave MCNFPs, then an
optimal solution must occur at a vertex, i.e. an extremetpoirthe convex polyhedron defined
by the problem constraints (2) and (3). Also, the minimizatof a concave cost function in
a convex polyhedron means that a local optimum does not imgjpbal optimum. Thus, in

order to find the global optimum solution for this probleme #et of all extreme points in the
convex polyhedron has to be searched for.

Furthermore, if the function has a finite global minimum oe teasible region, then there is an
extreme solution that is an optimal solution (Egglestor§3)9

2.2 Complexity

The complexity of an optimization problem is a very impottasue mainly because it will
allow the researcher to choose an adequate method to soltFerntexample, if the MCNFP
instance to be solved is considered easy, an exact method,asusimplex or branch-and-
bound, can be used, whereas if it is considered hard thenrastiemethod is probably more
adequate as it can provide a fairly good solution in a smatiamhof time. In this section, we
provide an insight on the main characteristics of MCNFP$ &na associated with the degree
of their complexity.

The cost function considered in an optimization problem lcave a great impact on the dif-
ficulty to solve it. We have already mentioned that MCNFP$Wiitear costs are considered
easy to solve. However, if concave costs are used the diffitusolve them increases and they
become NP-Hard (Guisewite and Pardalos, 1991a). The caitypsises from the fact that in
the minimization of a concave function (even over a convesitde region) a local optimum
is not necessarily a global optimum. Guisewite and Parddl®81b) provide a study on how
the form of the concavity affects the complexity of thesebtems. The authors use functions
with the following formaijxf;j. They were able to provide evidence that, on the one hand the
number of local optima increases with the decreasg,; ofand, on the other hand the larger
the set from which to draw the value af;, the smaller the set of local optima. Problems with
fixed-charge costs are a special case of concave optimmzatid they may be simpler or harder
to solve accordingly to characteristics that have beeneatdpy Kennington and Unger (1976),
Palekar et al (1990), and Barr et al (1981). One such chaistates the ratio between fixed
(F) and variable () costsZ. On the one hand, Kennington and Unger (1976) claim that the
difficulty to solve fixed-charge problems increases witls tlaitio. On the other hand, Palekar
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et al (1990), which disagree with them, suggest that onlgsatith intermediate values are dif-
ficult to solve because if the ratio is very small or very latfgee problem is easier to solve either
because fixed costs are negligible thus transforming thielgmointo a linear one, or because
the problem reduces to the one of minimizing fixed costs. Pleeial case of the Single Source
Uncapacitated MCNFP with fixed-charge costs has been ptouemNP-Hard (Hochbaum and
Segev, 1989).

Another issue usually related to the complexity of a MCNFthésdensity of the network to be
considered, that is the ratio between thavailable and all existing arcs in a network. It is easy
to conclude that the denser the network the harder the proisiéo solve, because the number
of feasible solutions increases and so does the compuahtiore needed to enumerate all of
them in case of an exact method.

The number of arcs with nonlinear cost is also a major fadfecting the difficulty to solve a
nonconvex MCNFP (Tuy et al, 1995). The larger the number ofinear arcs, the harder the
problem becomes. Some problems with a small number of atbsnenlinear costs have been
proven to be solvable in polynomial time, e.g. (Guisewitd Bardalos, 1993).

Regarding the capacity of arcs in a network, both versionbetoncave MCNFP, Capacitated
and Uncapacitated, are known to be NP-Hard.

In network flow problems, demand nodes are usually the onasilsoting to the complexity of
a problem because transshipment nodes represent a nutirctzgt between demand nodes. In
addition, problems with several source nodes can be tramsfibinto problems with a single
source node (Zangwill, 1968). Therefore, the size of a mmwbhland consequently one of the
many aspects contributing to the difficulty in solving itusually related with the number of
demand vertices.

3 Solution Methods for MCNFPs

Most of the works developed around concave MCNFPs consiged-tharge costs, that is
cost functions having a fixed start-up component and a lirmgimg component. Other works
considering nonlinear concave routing costs (GuisewiteRardalos, 1991a; Horst and Thoai,
1998; Smith and Walters, 2000) do not include a fixed compbnen

As far as we are aware of, only a few works consider concaviefenstions made of nonlinear
concave routing costs and fixed costs simultaneously, wdrielthose of Burkard et al (2001),
Fontes et al (2003, 2006b,a), Fontes and Gongalves (280@)Dang et al (2011). This is the
main reason why the review of previous works is mainly on tixed~Charge problem.

Exact solution methods are usually not very efficient in thsecof NP-hard problems, because
they make use of implicit or explicit enumeration of the ie$ (local optima) of the convex



polyhedron defined by the flow conservation constraints. éffugless, exact methods are very
important in the sense that they provide us with optimal @sjweven if it is only for small
problem instances, and due to the theoretical advancesitirayel.

The most popular methods to solve NP-Hard problems are dteumethods. Low usage of
computational memory and computational time are their mtbsdctive characteristics although
they may provide only a local optimum. Heuristic methods reayclassified, regarding the
number of solutions evaluated, into single-point or mptint algorithms. Generally speak-
ing, a single-point algorithm evaluates a single solutioreach phase of the search. These
algorithms are usually coupled with a local search proaedtuorder to improve the solution.
Examples of such heuristics are Simulated Annealing and Baarch. Multi-point heuris-
tics, in opposition, analyse a set of solutions in each phasgtion and usually combine the
best parts of the solutions in order to create new soluti@gxamples of these are Evolution-
ary Algorithms, such as Genetic Algorithms, and Ant basgodrthms. Furthermore, hybrid
algorithms are also very popular because they usually jmicek between methods focused
in the exploration of the search space and methods, sucltalsskearch, more focused in the
exploitation of the search space.

This section is divided into three parts accordingly to tfetof concave cost function consid-
ered: nonlinear routing costs with and without a fixed congmdpand linear routing costs with
a fixed charge component.

3.1 Nonlinear concave routing costs with fixed charge comp@mts

Burkard et al (2001) develop a Dynamic Programming algorjtto solve the SSU concave
MCNFP, based on linear approximations of the cost functidmgre concave costs are given
by ¢ + bx;; + axf;, with d € [0,1] and wherea, b, ¢, andd might or might not depend on
the arc(i, 7). The authors develop a DP algorithm to solve it and prove whtht the use of
approximated linear cost functions the method convergesrtis an optimal solution. The
method is only adequate to networks where nodes have sngallele Therefore, although they

are able to solve problems with 1103 nodes they may only hate 2203 arcs.

Upper Bounds (UBs) based on local search are calculated img§et al (2003) to solve SSU
concave MCNFPs. The local search is based on swaps of arés pedormed repeatedly with
different initial solutions, this way avoiding getting p@ed into a local optimum. Given an
initial feasible solution, and for every subtrég in the solution, the Local Search procedure
tries to put7; “under” another nodé that does not belong to that subtree. If a new solution,
thus constructed, has a better cost, the UB is updated amatdbedure continues to the next
subtree. When no more reductions in the cost can be foundgbethm stops. The initial
feasible solution is provided by a Lower Bound (LB), founddyelaxation of the state space
of a DP recursion (Fontes et al, 2006c), and it consists ofwaark supplying a set of demand
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nodes. Supplied nodes are added to the set of fixed-nodebkanest are added to a temporary
nodes list. Then, the temporary nodes are appended to thigosoiree. Each temporary node
k is selected, one at the time, and the arc linking it to the Ld® tis identified as the one
representing the lowest cost for the path linking the somm#e and nodé. This action is
performed until the set of temporary nodes is empty, and aimgroved solution is found.

Another BB procedure is proposed by Fontes et al (2006a) timafly solve SSU concave
MCNFPs considering fixed-charge and nonlinear concavensecmler complete polynomial
cost functions. At each node of the BB procedure, a lower ddanthe cost of the solution is
found by making use of a modified relaxation of the state spatiee DP developed by Fontes
et al (2006b). The relaxation only guarantees that the numibesed arcs is the correct, i.e.
n — 1 wheren is the number of nodes. However, any arc may be used severas.ti The
BB procedure is as follows. Given an LB solution, a branchang(s, j) is chosen, and two
branches are identified and analysed, one where the arcegeddtom the solution and the
other where it is forced to be in the solution. If, wh@nj) is deleted from the solution, any
demand node is disconnected from the solution tree, therbthach is discarded, otherwise
lower and upper bounds are obtained. After analysing thaatdtr, the algorithm steps into the
other branch, wherg, j) is fixed as part of the solution and again upper and lower boanel
calculated. The choice of the BB tree node to go to next is nbgdlecting the node with the
largest gap between the corresponding LB and the best uppadkavailable. An upper bound
is computed as explained above and given by Fontes et al Y2003

Fontes et al (2006b) use an exact method involving DP to @iynsolve SSU concave MC-
NFPs with four cost functions: linear, fixed-charge, andoséeorder polynomials both with
and without a fixed-charge component. The state space gsaphdually expanded by using a
procedure working in a backward-forward manner on the sigaee graph. The dynamic part
of the algorithm is related to the identification of only thates needed for each problem being
solved. The DP procedure has as many stages as the numbetesing 1 in the problem to
be solved, and each stage is made up a set of stateg.S, x) such that each state considers a
subsetS (of the set of node$l’) to be supplied and some root nadewith = € S. Therefore

a stage is given by the cardinality 8 The algorithm starts from the final state where all de-
mand nodes are considered along with the root riptlé’, ). Then, it moves backwards, until
some state already computed is reached, identifying pesstifites in the way. Then, it moves
forward, through already computed states, until a not yetmded stat€S, ) is reached. The
algorithm continues this backward-forward procedureluhé last stag¢lV, ¢) is reached and
No more moves can improve its cost, and thus the optimaliealbias been found.

Lower bounds for SSU concave MCNFPs, derived from stateespelaxations, are given by
Fontes et al (2006c¢). The State Space Relaxation assouvdted DP recursion can be trans-
lated into a reduction on the number of states, by forcingtamts in the linear programming
formulation to appear as variables of the DP. The authorgigeca new relaxation adding a



new constraint to the g-set relaxation forcing the solytadra problem with: 4 1 arcs, to have
exactlyn nodes. The solution is a LB since tharcs used are not necessarily all different. The
bound obtained is further improved by penalizing demandesaobt fully supplied. These LBs
are later on used in the bounding phase of a Branch-and-Baangdure given by Fontes et al
(20064a).

Kim et al (2006) introduced Tabu Search strategies into #wchDSS having improved upon
the results of the basic DSS developed by Kim and Pardal@®§19he new algorithmis called
Enhanced DSS and has three phases. The first phase runsitie $&svith an addition, when-
ever the best solution to the moment is updated, the arcstiéthargest changes on the flow,
when compared to the previous iteration, are added to a Betl ¢the inspiration sef. Also,

a record of the frequency of appearance of each arc with aiy8#ow is incremented. After
reaching one of the DSS stopping criteria, the intensificgphase follows. In it, some arcs are
chosen to be tabu, according to the frequency of their appearin previous solutions. Other
arcs, including the ones ) are added to a candidate arcs diswhich will be the ones allowed
to enter new solutions. Once these sets are identified, tBgdb&se is run again. The initial lin-
earisation factors used for those arcs natjmn the DSS phase that follows the intensification
phase, are the same linear factors associated with the fatite most recently improved best
solution. At the end of the intensification phase, the thindge, the diversification phase takes
place in order to explore new regions of the search spaces dppearing not so frequently are
added to the candidate list based on information about the reduced costs, i.e. the @inbyu
which¢;; has to be improved in order for aft j) to enter the solution. Tabu and non-tabu lists
are also maintained during this phase. The DSS phase is ain gt now using the reduced
costs as the initial linearisation factors. Both the iniecegtion and the diversification are run
a fixed number of times. The tabu mechanisms introduced $rBiS were inspired by the TS
heuristic previously developed by Sun et al (1998) to soixed~Charge Transportation Prob-
lems which, to the moment, and along with the one of Glovet €@05), and more recently
of Aguado (2009), is still one of the most efficient heuristiethods to solve such an NP-hard
problem.

Fontes and Goncalves (2007) use a genetic algorithm cowyté a local search procedure,
which was called HGA, to solve the Single-Source UncapgadtaMinimum Cost Network

Flow Problem (SSU MCNFP) with general concave costs. Rarkkys are used to encode the
chromosome, as they allow all solutions generated by cvess$o be feasible solutions. In order
to create a new generation of solutions, the algorithm tetbe top chromosomes, regarding
their fitness value, which are directly copied onto the nexteggation. The mutation operator
used, not a traditional one, generates new random chronessawthout any genetic influence
on the current population. Finally, the remaining chronmoss, to integrate the next generation,
are created by applying a biased probability crossoveradper The crossover between two
parent solutions is performed by considering a gene at the.tiThe algorithm generates a



vector with as many random numbers (in the inteff¢all|) as the genes in a chromosome.
Every random number on that vector is tested and if its val@wver than a certain probability,
say 70%, then the gene of the offspring is drawn from the eestrt, otherwise it is drawn from
the other parent. This way, better parents pass on moreigémetrmation. The local search
procedure, which is applied to all solutions, consists aiswperations between arcs already
in the solution and arcs not in the solution. A(¢s;j) belonging to the solution tree are sorted
and considered in descending order of nodes priority. Tlaeh arc(k, j) outside the solution
tree, is considered in descending order of priority, andfitisé one that does not introduce a
cycle in the solution is the one chosen to substitute thargac (i, j). When compared with
results in literature, the HGA was able to improve upon upgmmemds provided by a heuristic
algorithm based on local search, as well as running times.

Poorzahedy and Rouhani (2007) solve Transportation N&tidesign problems by proposing
seven hybrid algorithms based on a previously developedsfatem (Poorzahedy and Abul-
ghasemi, 2005) and on three improvements with notions b@uorom genetic algorithms,
simulated annealing and tabu search. The first improvenmérdgduced modifies the way
pheromones are updated, allowing only the three best sokitd contribute to the pheromone
update. The second improvement is based on evolutionapyiigns and it allows mutation to
take place under some conditions. The mutation is applieaiirstitution of the construction
phase, and it occurs in the middle of the run of the algoritthvat is to say, in the fifth iteration
since the algorithms are allowed to run only 10 iterationse B best solutions of each of the
previous four iterations, are retained. These solutiorish&iused to calculate the frequency
of appearance of each project. Then, the 2 best solutionseoprtevious iterations are also
retained along with the 2 best solutions of them all, witheapd solutions allowed. Repeated
solutions identify the least, or next least, frequent progad substitute it with the most, or next
most, frequent project provided that the solution is séligible. The solutions thus found are
considered new solutions and the algorithm continues toéxé step, the pheromone update.
The last improvement, applied from the second iterationavde;, is based on Simulated An-
nealing concepts and its purpose is to reduce the compuoghedfort of computing net benefits
by decreasing the probability of solutions with low levefseoergy, as opposite to the usual
simulated annealing. The seven hybrid algorithms are oactstd by incorporating into the
AS different combinations of these three improvements, @l & incorporating each one on
its own. The algorithms were applied to a real-size trafébarork of a city in Iran and the
algorithm incorporating all three improvements achievezlliest results of them all.

More recently, Monteiro et al (2012) address the SSU MCNRR aoncave cost functions by
developing an Ant Colony Optimization (ACO) algorithm tos®it. The ACO algorithm is
hybridized with a local search procedure (HACO) in ordemg@iove its performance. The cost
functions considered are of three types, a fixed-chargditumir;; + ¢;; and two second order
polynomials, one with and another without a fixed charge camept, that iSzxfj + bxij + ¢



andax}; + bx;;, respectively. Also, all arcs have associated nonlinedrcamcave costs. The
ACO algorithm is based on the min-max ant system (StutzteHoos, 1997) in the sense that
it uses pheromone bounds to avoid the fast convergence gite®mone trail. The authors
provide a study on the performance of the algorithm with #gation of the parameters values,
which revealed that some are of vital importance for the goedormance of the algorithm,
while others can be set to almost any reasonable value withiproblem context. Local search
is applied right after all ants have constructed their sofut The algorithm identifies the best
solution found by the ants at the current iteration and Isealrch is performed to it and also
to other four randomly chosen solutions. The gap resultaioet with the ACO algorithm
were always as good or better than the ones reported intliteréFontes and Goncalves, 2007).
Furthermore, the computational time requirements of th&®Adgorithm were much lower,
even when compared with the ones obtained with CPLEX foelargblem instances.

3.2 Nonlinear concave routing costs without a fixed cost congment

The most common techniques associated with exact methosisite MCNFPs are usually
Branch-and-Bound (BB) and Dynamic Programming (DP). Betthhiques approach the prob-
lem by dividing it into smaller subproblems which, in turmealivided into smaller subprob-
lems, and so on.

The branch-and-bound procedure developed by Soland (1&74iill very popular and used
by other authors as a basis for their own branch-and-bounidads. The idea is to use linear
underestimation by convex envelopes and to use rectangfesed by the capacity flow con-
straints to partition the search space. In Soland’s algorithe branching procedure starts by
considering the rectangle defined by the capacity flow camtgC. Then, a subset* C C

is partitioned into two subrectanglé® andC* such thatC® U C¢ = C®. This way, a subprob-
lem at a nodé has its domain defined by both the rectangkeand the flow constraints. The
bounding procedure corresponds to the computation of arlbawend on the optimal solution
found in the subrectangle®. This lower bound is obtained by solving a linear relaxatdn
subproblenC*.

Gallo et al (1980) developed a BB algorithm to solve SinglerSe Uncapacitated concave
MCNFPs (SSU MCNFPs). In the problems to be solved the autbansider nonnegative
separable concave cost functions for all arcs, however soye of then nodes are demand
nodes, the others being merely transshipment nodes. ThégBBtam initially starts with only
the source node and the branching part of it is performed Hingdarcs extending the current
subtree. Then, lower bounds are obtained for each BB nodesipg linear underestimation
of the arcs costs for demand nodes not satisfied. Latter oise®ite and Pardalos (1991a)
improve these lower bounds by projecting them on the costteineling the current path.

Horst and Thoai (1998) consider the capacitated versioron€ave MCNFPs where a fixed
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number of arcs have concave flow costs and the other arcs ina@ae tosts. A BB algorithm
based on the work of Soland (1974) is developed leading toawgments of lower bounds.
This algorithm differs from Soland’s in two ways: in the wagctangles are subdivided, turning
them into integral rectangles of approximately the same, simd in the way branching arcs are
chosen, in this case from the set of arcs with nonlinear césssirvey on MCNFPs with a fixed
number of arcs with nonlinear costs can be found at (Tuy, 2000

Genetic algorithms are heuristic algorithms based on tbligan of species and the main idea
is to take a set of solutions, which are called a populatiageoieration, and to combine the best
of them, following the maximéthe survival of the fittest} in order to generate new improved
solutions. A mutation factor is also usually incorporated.

Smith and Walters (2000) provide a heuristic method base@Gemetic Algorithms to find
minimum cost optimal trees on networks and apply it to thatsah of SSU concave MCNFPs.
The cost functions considered are concave given by the sqoat of the flow. Randomly
generated feasible trees are considered for the initialilptipn. The authors stress out the
problematic of generating feasible trees specially in th#ation and the crossing of parents
and propose a technique for each. Accordingly to their fanedue, two parents at a time,
T, andT5, are chosen to reproduce thus creating two new trees. Im todecomplish that,
a bipartite graph is created by overlappifigand7;. The children have a common structure
constituted by the parents common arcs. The number of argaeito each parent is the same.
Therefore, these arcs are chosen in pairs, one from eachtpanel one of them is attributed to
one child and the other to its sibling, with a probability 0% 0If at least one child is not a tree
the crossing process is repeated until both of them are. Tltation operator is applied to a
subset of the population, and is defined so that one arc i®nalycchosen to be substituted by
another one in such a way as to maintain the solutions féi@gikiat is, so that the solution is
still a tree.

A hybrid between Simulated Annealing and Tabu Search withdaptive cooling strategy is
the algorithm proposed by Altiparmak and Karaoglan (200&alve the Concave Cost Trans-
portation Problem, where the cost function is proportidadhe square root of the flowy; , /z7;.
After the generation of an initial feasible solution, swapuas between an arc in the solution
and an arc not in the solution are applied in order to imprbeesblution. An arc is added to
the solution, thus creating a cycle. As in a pivot move on thsvork flow simplex algorithm,
in order to maintain the feasibility of the solution the floftbe arcs in the cycle is increased
or decreased, as needed, accordingly to the flow on the are tivdpped from the solution.
The setD of arcs from the cycle whose flow must be adjusted by beingedesed is identified
and the arck, 1) € D with the least amount of flow is the one to be dropped from thetism.
The tabu procedure is incorporated in the algorithm in tmenfof two tabu lists, one keeping
track of the arcs leaving the solution and another one kgédpatk of the arcs entering the so-
lution. This way, the number of arcs to be tested decreasds;ansequently the computational
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time also decreases. The adaptive cooling schedule is basedatio between the temperature
at the previous iteration and 1 minus the cubic root of thepenature, allowing for a slower
temperature decreasing rate.

Dang et al (2011) developed a deterministic annealing afgorfor the capacitated version of
the concave MCNFP, that can be used to solve both singlesaunrd multiple-source cases.
They use of a Hopfield type barrier function, which is a notimmrowed from the theory of
neural networks, to cope with the lower and upper bounds ercéipacities of the arcs. Each
arc(i, j) is associated to a Hopfield-type barrier field thus allowimg ¢apacity constraints to
be incorporated into the objective function. The barrieapgeter has a behaviour similar to the
temperature on the simulated annealing, decreasing teward, from a large positive number.
The linear constraints, the flow conservation constraars,dealt with the use of Lagrangean
Multipliers, by incorporating them into the objective fuimm. This way, a Lagrange and barrier
function is obtained. Numerical results are provided, fattems with 5 up to 12 nodes, for
both a linear cost functioh; - x;; and a concave second order polynomial functian; - xfj +

bij . -I'ij-

3.3 Linear routing costs with a fixed-charge component

Methods based on the linearisation of the cost function arg popular to solve fixed-charge
problems.

In (Kennington and Unger, 1976) a linear relaxed versiorheffixed-Charge Transportation
problem is used, where the usual fixed-charge objectivetitmes replaced byl;; - z;; with

d;; = ¢ij + fij/uwi;, whereu;; represents the flow capacity of arc j). This relaxation is used
to obtain bounds for the solution of the original problem,icithare later strengthened using
Driebeek penalties (Driebeek, 1966), which are used in taedhing and fathoming phases of
a BB algorithm.

Kim and Pardalos (1999) developed a technique called Dyn&hope Scaling (DSS) in order
to solve the well-known NP-Hard Fixed-charge Network Flomlbtem. Given an objective

function of the typef (z) = Z cijxi; + Si;, wherec;; represents the flow variable cost, ang
(i.9)
represents the fixed cost, the idea behind it is to find a lifaedor that can represent the variable

and fixed costs at the same time. Thus iteratively solvingalimproblems. At each iteration
the cost function is updated by using the information of tbkitson found in the previous

iteration. The algorithm follows these two steps, solving linear problem and updating the
cost function, until two consecutive iterations return #sme solution. Later on, Kim and
Pardalos (2000) extend the use of DSS by incorporating d ss@ach scheme, called Trust
Interval, to solve concave piecewise linear NFPs. An adaptaf the DSS technique, coupled
with a local search procedure, was also used by Monteiro anteB (2006) to solve the problem
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of bank-branch location and sizing with fixed-charge costs.

Ortega and Wolsey (2003) solve the Uncapacitated Fixedgehdetwork Flow problem with

a Branch-and-Cut algorithm by extending the cutting plgresiously used to solve uncapaci-
tated lot sizing problems, and applying them to a commeopémisation routine of software
Xpress. The problem is formulated as a Mixed Integer Prol{i®) where binary variables
y;;, associated to the use of afc j) are considered. Four dicut-inequalities are defined as
follows: simple dicut, mixed dicut, simple inflow-outflownd mixed dicut with outflow in-
equalities. However, only dicut-inequalities and simpl#ow-outflow inequalities are used,
due to their performance in preliminary tests. Anotherdeatherein introduced was the use
of a dynamic set node list for the dicut inequalities. Sipgdenmodity and multicommodity
problems have been solved.

A recent work on MCNFPs is the one of Nahapetyan and Parda@/§ where the authors
consider a concave piecewise linear cost function. Thel@noks transformed into a continuous
one with a bilinear cost function, through the use of a nadnrelaxation technique. First, the
problem is formulated as a mixed integer program, by intcoayithe usual binary variabl@éj
associated to the fixed costs, wheér&lentifies the linear segment of the cost function. Then,
the binary nature of}; and constraini}; < My, are replaced withy}; > 0 andz}; = z;1%,
respectively, where;; is the flow in arc(s, j). The relaxed problem is then solved with a
dynamic slope scaling method, based on the one proposedmyid Pardalos (1999, 2000)
and explained above. Nahapetyan and Pardalos (2008) ieppmon the results of the original
DSS (Kim and Pardalos, 1999) by approximating the fixed-gdaost function by a concave
piecewise linear function. The problem is transformed mtoontinuous one with a bilinear
cost function. This approach is considered a novelty bechxsd-charge functions are usually
approximated to linear functions. One of the cost functimmesents a line connecting the
origin and some pointz;;, f(e;;)), and is defined ag; " (x;;) = ¢,z if 2;; € [0,e;[. The
other one is defined a§," (x;;) = c;jx;; + s for 2 € [e55, Ay;], where);; is the capacity of
arc (i, j) andcf;j = ¢ij + sij/ei; With ¢;; as the flow cost and;; the fixed cost. Although the
arcs are capacitated, this problem can be transformed mimeapacitated one by substituting
the capacities with a sufficiently largel (constant). The problem thus formulated, a value
for e;; € [0, \;;] is chosen and the problem is then solved by the DSS algoritweldped by
Nahapetyan and Pardalos (2007). At the end of each iteraemy flow variabler;; is tested

in order to verify if its value is withir0, ¢;;]. If so,;; is decreased by a constant]0, 1], such
thate,; <— ae;;, otherwise the algorithm stops and the best found solusioeturned.

Rebennack et al (2009) propose a continuous bilinear fatiou from which an exact algo-
rithm, based on the algorithm developed earlier by Nahameand Pardalos (2007, 2008), is
derived to solve fixed-charge MCNFPs. The fixed-charge fands modified by introducing
binary variablesy;;, defined for all arcs, that take the value Ljf, the flow on ard(s, j), is
between a given small valug; and the capacity of ar@, j), and O ifz;; is between 0 and,;.
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The relaxation of these variables results on a continudumehlr network flow problem with the
following cost function

€ij Sij
flz,y) = Z (cijjxij + <3ij - 6—3%) yij) ; (5)
(i.j)€A K
where A is the set of all available arcs,; is the variable cost of ar@, j),ands;; is the fixed

cost of arc(i, j). The algorithm defined for this new formulation proved towenge in a finite
number of steps.

Another work on Fixed-Charge (FC) problems is the one of Riddaet al (2010), where the
authors make use of the relaxation of the binary restriaiothey;; value, which was initially
proposed by Balinski (1961).The optimal solution of thikaxation, has the property that the
value per unit flow in each arc becomes

i
Cyj = ey + —0
Ak min(s;, d;)

(6)

The relaxed problem becomes a linear one. The objectiveiumealue of the optimum solu-
tion for this new problem provides the FC with a lower bounthte total flow costs, while the
objective function value for the FC provides an upper bodrten, based on the differential of
the fixed costs for the FC and for the relaxed problem, therdhgo iteratively chooses demand
nodes to be provided with all their demand by a single sugaljysting the rest of the network
by eliminating the most expensive arc. The bounds are tigéetned until an optimum value
is reached and both bounds have the same value. Althougluthera provide a numerical
example to illustrate the branching procedure, they do rmtige computational results.

4 Conclusion

Concave cost functions are usually associated to econarhgsale, thus they are very inter-
esting and important from the point of view of logisticsnsaortation, and supply-chains, just
to mention but a few areas. Nevertheless, although theyuartglly, present in practical ap-
plications, surprisingly not much has been done in acadstoidies regarding network flow
problems with cost functions. In fact, in recent years thearen has been a slow down in re-
search for this class of problems, when compared to otheseta The main reason for this to
happen may have to do with the complexity concave cost fonstbring to the solvability of

the problem. In this work, we have mainly reviewed works omMNeear concave Minimum

Cost Network Flow Problems. In recent years some of thedelgmes have been solved with
heuristic methods that, although not guaranteeing a glmitahal solution,0 are usually able to
find a good solution rapidly, perhaps a local optimum. Themill much to improve regarding
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the results that have been obtained, either because extmasecannot cope with the size of
the problem or because solutions found by heuristics canrles improved. With the recent
boom of nature based heuristic algorithms, such as, for pkgrthe Bees Algorithm (Pham
et al, 2005) or the Water Drops Algorithm (Shah-Hosseind@0it is expectable to have some
of the existing results improved.
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