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Abstract. A Biased Random Key Genetic Algorithm (BRKGA) is proposed to
find solutions for the unit commitment problem. In this problem, one wishes to
schedule energy production on a given set of thermal generation units in order
to meet energy demands at minimum cost, while satisfying a set of technological
and spinning reserve constraints. In the BRKGA, solutions are encoded by using
random keys, which are represented as vectors of real numbers in the interval
[0,1]. The GA proposed is a variant of the random key genetic algorithm, since
bias is introduced in the parent selection procedure, as well as in the crossover
strategy. Tests have been performed on benchmark large-scale power systems
of up to 100 units for a24 hours period. The results obtained have shown the
proposed methodology to be an effective and efficient tool for finding solutions
to large-scale unit commitment problems. Furthermore, from the comparisons
made it can be concluded that the results produced improve upon some of the
best known solutions.

Keywords: Unit Commitment, Genetic Algorithm, Optimization, Electrical Power
Generation.

1 INTRODUCTION

The Unit Commitment (UC) is a complex optimization problem well known in the
power industry and adequate solutions for it have potentiallarge economic benefits
that could result from the improvement in unit scheduling. Therefore, the UC problem
plays a key role in planning and operating power systems. Thethermal UC problem
involves scheduling the turn-on and turn-off of the thermalgenerating units, as well
as the dispatch for each on-line unit that minimizes the operating cost for a specific
time generation horizon. In addition, there are multiple technological constraints, as
well as system demand and spinning reserve constraints thatmust be satisfied. Due to
its combinatorial nature, multi-period characteristics,and nonlinearities, this problem
is highly computational demanding and, thus, it is a hard optimization task solving the
UC problem, specially for real-sized systems.
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The methodology proposed to find solutions for this problem is a Genetic Algorithm
where the solutions are encoded using random keys. A Biased Random Key Genetic
Algorithm (BRKGA) is proposed to find the on/off state of the generating units for
every time period as well as the amount of production of each unit at each time period.

In the past, several traditional heuristic approaches based on exact methods have
been used such as dynamic programming, mixed-integer programming and benders de-
composition, see e.g. [15, 6, 16]. However, more recently most of the developed meth-
ods are metaheuristics, evolutionary algorithms, and hybrids of the them, see e.g. [2, 27,
11, 7, 23, 4, 28, 1]. These latter types have, in general lead to better results than the ones
obtained with the traditional heuristics. The most used metaheuristic methods are sim-
ulated annealing (SA) [20, 23], evolutionary programming (EP) [12, 19], memetic al-
gorithm (MA)[27], particle swarm optimization (PSO) [24, 30] and genetic algorithms
(GA), see e.g. [14, 25]. Comprehensive and detailed surveyscan be found in [17, 21,
18].

In this paper we focus on applying Genetic Algorithms (GAs) to find good quality
solutions for the UC problem. The majority of the reported GAimplementations to ad-
dress the UC problem are based on the binary encoding. However, studies have shown
that other encoding schemes such as real valued random keys [3] can be efficient when
accompanied with suitable GA operators, specially for problems where the relative or-
der of tasks is important. In the proposed algorithm a solution is encoded as a vector
of N real random keys in the interval[0,1], whereN is the number of generation units.
The Biased Random Key Genetic Algorithm (BRKGA) proposed inthis paper is based
on the framework provided by Resende and Gonçalves in [9]. BRKGAs are a variation
of the Random key Genetic Algorithms (RKGAs), first introduced by Bean [3]. The
bias is introduced at two different stages of the GA. On the one hand, when parents are
selected we get a higher change of good solutions being chosen, since one of the par-
ents is always taken from a subset including the best solutions. On the other hand, the
crossover strategy is more likely to choose alleles from thebest parent to be inherited
by offspring. The work [9] provides a tutorial on the implementation and use of biased
random key genetic algorithms for solving combinatorial optimization problems and
many successful applications are reported in the references therein.

This paper is organized as follows. In Section 2, the UC problem is described and
formulated, while in Section 3 the solution methodology proposed is explained. Section
4 describes the set of benchmark systems used in the computational experiments and
reports on the results obtained. Finally, in Section 5 some conclusions are drawn.

2 UC PROBLEM FORMULATION

In the UC problem one needs to determine at each time period the turn-on and turn-off
times of the power generation units, as well as the generation output subject to opera-
tional constraints, while satisfying load demands at minimum cost. Therefore, we have
two types of decision variables. The binary variables, which indicate the status of each
unit at each time period and the real variables, which provide the information on the
amount of energy produced by each unit at each time period. The choices made must
satisfy two sets of constraints: the demand constraints (regarding the load requirements
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and the spinning reserve requirements) and the technical constraints (regarding gen-
eration unit constraints). The costs are made up two components: the fuel costs, i.e.
production costs, and the start-up costs.

Let us now introduce the parameters and variables notation.
Decision Variables:
Yt,j : Thermal generation of unitj at time periodt, in [MW];
ut,j : Status of unitj at time periodt (1 if the unit is on; 0 other-
wise);
Auxiliary Variables :

Ton/off
j (t): Time periods for which unitj has been continuously

on-line/off-line until time periodt, in [hours];
Parameters:
T: Number of time periods (hours) of the scheduling time horizon; t: Time period index;
N: Number of generation units; j : Generation unit index;
Rt : System spinning reserve requirements at time periodt, in
[MW];

Dt : Load demand at time periodt, in [MW];

Ymin j : Minimum generation limit of unitj, in [MW]; Ymaxj : Maximum generation limit of unitj, in [MW];

Nb: Number of the base units; Ton/off
min,j : Minimum uptime/downtime of unitj, in [hours];

Tc,j : Cold start time of unitj, in [hours]; SH/C,j : Hot/Cold start-up cost of unitj, in [$];

∆dn/up
j : Maximum allowed output level decrease/increase in con-

secutive periods for unitj, in [MW];

2.1 Objective Function

As already said, there are two cost components: generation costs and start-up costs.
The generation costs, i.e. the fuel costs, are conventionally given by a quadratic cost
function as in equation (1), while the start-up costs, that depend on the number of time
periods during which the unit has been off, are given as in equation (2).

Fj(Yt, j ) = a j · (Yt, j)
2 +b j ·Yt, j +c j , (1)

wherea j ,b j ,c j are the cost coefficients of unitj.

St, j =

{

SH, j if To f f
min, j ≤ To f f

j (t) ≤ To f f
min, j +Tc, j

SC, j if To f f
j (t) > To f f

min, j +Tc, j
, (2)

whereSH, j andSC, j are the hot and cold start-up costs of unitj, respectively.
Therefore, the cost incurred with an optimal scheduling is given by the minimization

of the total costs for the whole planning period, as in equation (3).

Minimize
T

∑
t=1

(

N

∑
j=1

{

Fj(Yt, j ) ·ut, j +St, j · (1−ut−1, j) ·ut, j
}

)

. (3)

2.2 Constraints

The constraints can be divided into two sets: the demand constraints and the technical
constraints. Regarding the first set of constraints it can befurther divided into load
requirements and spinning reserve requirements, which canbe written as follows:
1) Power Balance Constraints
The total power generated must meet the load demand, for eachtime period.

N

∑
j=1

Yt, j ·ut, j ≥ Dt ,t ∈ {1,2, ...,T} . (4)



4 BRKGA approach for Unit Commitment

2) Spinning Reserve Constraints
The spinning reserve is the total amount of real power generation available from on-line
units net of their current production level.

N

∑
j=1

Ymaxj ·ut, j ≥ Rt +Dt ,t ∈ {1,2, ...,T} . (5)

The second set of constrains includes unit output range, minimum number of time
periods that the unit must be in each status (on-line and off-line), and the maximum
output variation allowed for each unit.
3) Unit Output Range Constraints
Each unit has a maximum and minimum production capacity.

Yminj ·ut, j ≤Yt, j ≤Ymaxj ·ut, j , for t ∈ {1,2, ...,T}and j ∈ {1,2, ...,N} . (6)

4) Ramp rate Constraints
Due to the thermal stress limitations and mechanical characteristics the output variation,
levels of each online unit in two consecutive periods are restricted by ramp rate limits.

−∆dn
j ≤Yt, j −Yt−1, j ≤ ∆up

j , for t ∈ {1,2, ...,T}and j ∈ {1,2, ...,N} . (7)

5) Minimum Uptime/Downtime Constraints
The unit cannot be turned on or off instantaneously once it iscommitted or uncommit-
ted. The minimum uptime/downtime constraints indicate that there will be a minimum
time before it is shut-down or started-up, respectively.

Ton
j (t) ≥ Ton

min, j andTo f f
j (t) ≥ To f f

min, j , for t ∈ {1,2, ...,T}and j ∈ {1,2, ...,N} . (8)

3 METHODOLOGY

Genetic Algorithms are a global optimization technique based on natural genetics and
evolution mechanisms such as survival of the fittest law, genetic recombination and se-
lection [10, 8]. GAs provide great modeling flexibility and can easily be implemented
to search for solutions of combinatorial optimization problems. Several GAs have been
proposed for the unit commitment problem, see e.g. [14, 5, 26, 2, 29, 7, 1], the main dif-
ferences being the representation scheme, the decoding procedure, and the solution
evaluation procedure (i.e. fitness function).

Many GA operators have been used; the most common being copy,crossover, and
mutation. Copy consists of simply copying the best solutions from the previous genera-
tion into the next one, with the intention of preserving the chromosomes corresponding
to best solutions in the population. Crossover produces oneor moreoffspringby com-
bining the genes of solutions chosen to act as their parents.The mutation operator ran-
domly changes one or more genes of a given chromosome in orderto introduce some
extra variability into the population and thus, prevent premature convergence.

The GA proposed here, i.e. the BRKGA, uses the framework proposed by Gonçalves
and Resende in [9]. The algorithm evolves a population of chromosomes that are used
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to assign priorities to the generation units. These chromosomes are vectors, of sizeN
(number of units), of real numbers in the interval[0,1] (called random keys). A new
population is obtained by joining three subsets of solutions as follows: the first subset
is obtained by copying the best solutions of the current population; the second subset is
obtained by using a (biased) parameterized uniform crossover; the remaining solutions,
termed mutants, are randomly generated as was the case for the initial population. The
BRKGA framework is illustrated in Figure 1, which has been adapted from [9].

Entry

Generation of
random key vectors

Decoding: Random keys vectors in
terms of the generation  scheduling 

 All 
generations?     Exit

y

Sort chromosomes
by fitness value

Classify chromosomes
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Copy elite
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n

Fig. 1: The BRKGA framework.
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Fig. 2: Flow chart of the decoder.

Specific to our problem are the decoding procedure, as well asthe fitness computa-
tion. The decoding procedure, that is how solutions are constructed once a population
of chromosomes is given, is performed in two main steps, as itcan be seen in Figure 2.
Firstly, a solution satisfying the load demand, for each period is obtained. In this solu-
tion, the units production is proportional to their priority, which is given by the random
key value. Then, these solutions are checked for constraints satisfaction.

3.1 Decoding Procedure

Given a vector of numbers in the interval[0,1] , sayRK = (r1, r2, ..., rN) , percent vec-

torsV ′ =
(

v′1,v
′
2, ...,v

′
Nb

)

, V = (v1,v2, ...,vN) and rank vectorO = (o1,o2, ...,oN) are

computed. Each elementv j is computed asv j =
r j

∑N
i r i

, j = 1,2, ...,N andv′j is given
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by v′j =
r j

∑
Nb
i r i

, j = 1,2, ...,Nb , whereNb is the number of base units, while eachoi is

defined taking into account the descending order of theRK value.
Then an output generation matrixY is obtained, where each elementYt, j gives the

production level of unitj = oi , i = 1, ...,N for time periodt and is computed as the
product of the percentage vectorsV ′ or V by the periods demandDt , as illustrated in
the following pseudocode:

Algorithm 1 Initial matrix generation output

i = 1
d = Dt

while i ≤ N andd > 0 do
j = oi
if j ≤ Nb then

if Dt +Rt ≤ ∑Nb
k=1Ymaxk then

Yt, j = v′j .Dt

d = d−Yt, j

else{Dt +Rt > ∑Nb
k=1Ymaxk}

Yt, j = Y maxj
d = d−Yt, j

end if
else{ j > Nb }

if Dt +Rt ≤ ∑Nb
k=1Ymaxk then

Yt, j = 0

else{Dt +Rt > ∑Nb
k=1Ymaxk}

if d > Ymaxj then
Yt, j = v j .Dt

d = d−Yt, j
else{d < Ymaxj}

Yt, j = d
d = 0

end if
end if

end if
Next i

end while

The production level of unitj for each time periodt however, may not be admissible
and therefore, the solution obtained may be unfeasible. Hence, the decoding procedure
also incorporates a repair mechanism. This mechanism forces constraints satisfaction.

The repair mechanism starts by forcing the output level of each unit to be in its
output range, as given in equation (9).

Yt, j =



















Ymaxj if Yt, j > Ymaxj
Yt, j if Yminj ≤Yt, j ≤Ymaxj
Yminj if χ ·Yminj ≤Yt, j < Yminj

0 otherwise,

(9)
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whereχ ∈ [0,1] is a scaling factor.
At the same time that the ramp constrains are ensured for a specific time periodt,

new output limits (Ymax
t, j andYmin

t, j upper and lower limits, respectively) must be imposed,
for the following periodt +1, since their value depends on the output level of the current
periodt. Equations (10) and (11) show how this is done.

Yt, j =



















Ymax
t, j if Yt, j ≥Ymax

t, j

Yt, j if Ymin
t, j < Yt, j < Ymax

t, j

Ymin
t, j if µ·Ymin

t, j ≤Yt, j ≤Ymin
t, j

0 otherwise

(10)

whereYmax
1, j = Ymaxj , Ymin

1, j = Yminj and

Ymax
t, j = min

{

Ymaxj ,Yt−1, j + ∆up
j

}

,Ymin
t, j = max

{

Yminj ,Yt−1, j −∆dn
j

}

. (11)

After ensuring the unit output range constraints and the ramp rate constraints, it
is still needed to guarantee that minimum up/down time constraints are satisfied. The
adjustment of the unit status can be obtained using the repair mechanism illustrated
in Figure 3. As it can be seen, for two consecutive periods theunit status can only

be changed if theTon/o f f
min is already satisfied, for a previously turned on or off unit,

respectively.
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For each period, it may happen that the spinning reserve requirement is not satisfied.
If the number of on-line units is not enough, some off-line units will be turned on, one
at the time, until the cumulative capacity matches or is larger thanDt +Rt as shown in
Figure 4. In doing so, units are considered in descending order of priority, i.e. random
key value. After ensuring the spinning reserve satisfaction, it may happen that we end up
with excessive spinning reserve. Since this is not desirable due to additional operational
costs involved, we tried to decommit some units. Then units are considered for turning
off-line, in ascending order of priority until their cumulative capacity reaches,Dt +Rt .

At the end of this procedure we have found theu andY matrices specifying which
units are being operated at each time period and how much its one is producing. How-
ever, it may happen that the production matches, is larger than, or lesser than the de-
mand. In order to compute the total cost of the current solution we first must find how
much each unit is producing.

If there is excessive production, the on-line units production is decreased to its min-
imum allowed value, one at the time, until either all are set to the minimum production
or the production reaches the load demand value. In doing so,units are considered
in descending order of priority, i.e. random key value. It should be notice that by re-
ducing production at time periodt the production limits at time periodt + 1 change,
and the new values must be respected. Therefore, the minimumallowed production is

given bymax
{

Ymin
t, j ,Yt+1, j −∆up

j

}

. This is repeated no more thanN times. If there is

lack of production, the on-line units production is increased to its maximum allowed
value, one at the time, until either all are set to the maximumproduction or the pro-
duction reaches the load demand value. In doing so, units areconsidered in ascending
order of priority, i.e. random key value. It should be noticed that by increasing pro-
duction at time periodt the production limits at time periodt + 1 change, and the
new values must be respected. Therefore, the maximum allowed production is given

by min
{

Ymax
t, j ,Yt+1, j + ∆dn

j

}

. Again, this is repeated no more thanN times. Once these

repairing stages have been performed, the solutions obtained are feasible and the re-
spective total cost is computed.

3.2 GA Configuration

The current population of solutions is evolved by the GA operators onto a new popula-
tion as follows:

– 20% of the best solutions (elite set) of the current population are copied;
– 20% of the new population is obtained by introducing mutants, that is by randomly

generating new sequences of random keys, which are then decoded to obtain mu-
tant solutions. Since they are generated using the same distribution as the original
population, no genetic material of the current population is brought in;

– Finally, the remaining 60% of the population is obtained by biased reproduction,
which is accomplished by having both a biased selection and abiased crossover.

The selection is biased since, one of the parents is randomlyselected from the elite
set of solutions (of the current population), while the other is randomly selected from
the remainder solutions. This way, elite solutions are given a higher chance of mating,
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and therefore of passing on their characteristics to futurepopulations. Genes are chosen
by using a biased uniform crossover, that is, for each gene a biased coin is tossed to
decide on which parent the gene is taken from. This way, the offspring inherits the
genes from the elite parent with higher probability (0.7 in our case).

4 NUMERICAL RESULTS

A set of benchmark systems has been used for the evaluation ofthe proposed algorithm.
Each of the problems in the set considers a scheduling periodof 24 hours. The set of
systems comprises six systems with 10 up to 100 units. A base case with 10 units was
initially defined, and the others have been obtained by considering copies of these units.
The base 10 units system and corresponding 24 hours load demand are given in [14]. To
generate the 20 units problem, the 10 original units have been duplicated and the load
demand doubled. An analogous procedure was used to obtain the problems with 40, 60,
80, and 100 units. In all cases, the spinning reserve requirements were set to 10% of the
load demand.

Several computational experiments were made in order to choose the parameter val-
ues. The BRKGA was implemented with biased crossover probability as main control
parameter. The parameter ranges used in our experiments were 0.5≤ Pc ≤ 0.8 with step
size 0.1 which gives 4 possible values for biased crossover probability. The results ob-
tained have shown no major differences. Nevertheless, the results reported here refer to
the best obtained ones, for which the number of generations was set to 10N, the popu-
lation size was set tomin{2N,60}, the biased crossover probability was set to 0.7, and
the scaling factorχ = 0.4. Due to the stochastic nature of the BRKGA, each problem
was solved 20 times. We compare the results obtained with thebest results reported
in literature. In tables 1, 2, and 3, we compare the best, average, and worst results ob-
tained, for each of the six problems, with the best of each available in literature. As it
can be seen, for two out of the six problems solved our best results improve upon the
best known results, while for the other four it is within 0.02% and 0.18% of the best
known solutions. Moreover when our algorithm is not the best, it is the second best.

Table 1: Comparison between best results obtained by the BRKGA and the best ones reported in
literature.

Size GA SA LRGA EP IPSOBRKGA RatioBRKGA rank
10 563977 565828 564800 564551563954 563977 100 2nd
20 1125516 112625111226221125494 11252791124470 100.16 2nd
40 2249715 225006322421782249093 22481632246287 100.18 2nd
60 3375065 – 3371079 337161133709793368542 99.93 1st
80 4505614 4498076 4501844 449847944950324493658 99.97 1st
100 5626514 561787656131275623885 56192845614522 100.02 2nd

For each type of solution presented (best, average, and worst) we compare each
single result with the best respective one (given in bold) that we were able to find in
the literature. The results used have been taken from a number of works as follows: SA
[23], LRGA [5], SM[27], GA [22], EP[13] and IPSO[30].
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Table 2: Comparison between average results obtained by theBRKGA and the best averages
reported in literature.

Size SA SM BRKGA RatioBRKGA rank
10 565988 566787 563996 99.65 1st
20 112795511282131124753 99.72 1st
40 225212522495892247534 99.91 1st
60 – 33948303372104 99.33 1st
80 450115644943784495632 100.03 2nd
100 562430156166995616734 100.00 2nd

Table 3: Comparison between worst results obtained by the BRKGA and the best worst ones
reported in literature.

Size GA SA SM EP IPSOBRKGA RatioBRKGA rank
10 565606 566260 567022 566231564579 564028 99.90 1st
20 1128790 1129112 1128403 112979311276431125671 99.83 1st
40 2256824 225453922495892256085 22521172248510 99.95 1st
60 3382886 – 3408275 338101233791253379915 100.02 2nd
80 4527847 450398744944394512739 45089434499207 100.11 2nd
100 5646529 562850656169005639148 56330215619581 100.05 2nd

Another important feature of the proposed algorithm is that, as it can be seen in
Table 4, the variability of the results is very small. The difference between the worst
and best solutions found for each problem is always below 0.3%, while if the best and
the average solutions are compared this difference is neverlarger than 0.11%. This
allows for inferring the robustness of the solution since the gaps between the best and
the worst solutions are very small. Furthermore our worst solutions, when worse than
the best worst solutions reported are always within 0.11% ofthe latter, see Table 3. This
is very important since the industry is reluctant to use methods with high variability as
this may lead to poor solutions being used.

Table 4: Analysis of the variability of the results and execution time.
Size Best Average Worst Av−Best

Best % Worst−Best
Best % St. deviation(%)Av.Time(s)

10 563977 563996 564028 0.003 0.09 0.003 5.1
20 1124470 1124753 1125671 0.03 0.11 0.03 19.8
40 2246287 2247534 2248510 0.06 0.1 0.08 86.6
60 3368542 3372104 3379915 0.11 0.3 0.12 198.0
80 4493658 4495632 4499207 0.04 0.12 0.06 343.8
100 5614522 5616734 5619581 0.04 0.09 0.05 534.3

The BRKGA has been implemented on Matlab and executed on a Pentium IV Core
Duo personal computer T 5200, 1.60GHz and 2.0GB RAM. In table4 we can see the
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scaling of the execution time with the system size for the proposed BRKGA. Regarding
the computational time no exact comparisons may be done since the values are obtained
on different hardware, and on the other hand, some authors only report their computa-
tional times graphically, as is the case in [30]1. However, in Figure 5 it can easily be
seen that ours are about the same magnitude of the best execution times as in SA [23].

5 CONCLUSION

A methodology based on a Biased Random Key Genetic Algorithm, following the ideas
presented in [9], for finding solutions to the unit commitment problem has been pre-
sented. In the solution methodology proposed real valued random keys are used to en-
code solutions, since they have been proven to perform well in problems where the
relative order of tasks is important.

The proposed algorithm was applied to systems with 10, 20, 40, 60, 80, and 100
units with a scheduling horizon of 24 hours. The numerical results have shown the pro-
posed method to improve upon current state of the art, since only for three problems it
was not capable of finding better solutions. Furthermore, the results show a further very
important feature, lower variability. It should be notice that the difference between the
worst and best solutions is always below 0.30%, while the difference between the best
and the average solutions is always below 0.11%. This is veryimportant since methods
to be used in industrial applications are required to be robust, therefore preventing the
use of very low quality solutions.
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1 The computational times of the IPSO in Figure 5 are estimatedfrom the results reported graph-
ically.
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