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Abstract. A Biased Random Key Genetic Algorithm (BRKGA) is proposed to
find solutions for the unit commitment problem. In this pesb] one wishes to
schedule energy production on a given set of thermal geiograinits in order

to meet energy demands at minimum cost, while satisfyingaf sechnological
and spinning reserve constraints. In the BRKGA, solutiarseacoded by using
random keys, which are represented as vectors of real nusnibethe interval
[0,1]. The GA proposed is a variant of the random key genetic algori since
bias is introduced in the parent selection procedure, ad a&in the crossover
strategy. Tests have been performed on benchmark larde-poaver systems
of up to 100 units for &4 hours period. The results obtained have shown the
proposed methodology to be an effective and efficient tadirfding solutions

to large-scale unit commitment problems. Furthermoremfithe comparisons
made it can be concluded that the results produced improes ome of the
best known solutions.

Keywords: Unit Commitment, Genetic Algorithm, Optimization, Electl Power
Generation.

1 INTRODUCTION

The Unit Commitment (UC) is a complex optimization problerslmknown in the
power industry and adequate solutions for it have potetdigle economic benefits
that could result from the improvement in unit schedulinenefore, the UC problem
plays a key role in planning and operating power systems.tfiGienal UC problem
involves scheduling the turn-on and turn-off of the thermaherating units, as well
as the dispatch for each on-line unit that minimizes the ajpeg cost for a specific
time generation horizon. In addition, there are multiplehteological constraints, as
well as system demand and spinning reserve constraintasitbe satisfied. Due to
its combinatorial nature, multi-period characterist@sd nonlinearities, this problem
is highly computational demanding and, thus, it is a haréhaightion task solving the
UC problem, specially for real-sized systems.
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The methodology proposed to find solutions for this problemGenetic Algorithm
where the solutions are encoded using random keys. A Biasaaeddn Key Genetic
Algorithm (BRKGA) is proposed to find the on/off state of thengrating units for
every time period as well as the amount of production of eaxhat each time period.

In the past, several traditional heuristic approachesdageexact methods have
been used such as dynamic programming, mixed-integergmogimg and benders de-
composition, see e.g. [15, 6, 16]. However, more recentlgtrabthe developed meth-
ods are metaheuristics, evolutionary algorithms, anditiglof the them, see e.g. [2, 27,
11,7,23,4,28, 1]. These latter types have, in general lebdtter results than the ones
obtained with the traditional heuristics. The most usecdatmetiristic methods are sim-
ulated annealing (SA) [20, 23], evolutionary programmiidp) [12, 19], memetic al-
gorithm (MA)[27], particle swarm optimization (PSO) [24)]3and genetic algorithms
(GA), see e.g. [14,25]. Comprehensive and detailed surgagse found in [17, 21,
18].

In this paper we focus on applying Genetic Algorithms (GAsjind good quality
solutions for the UC problem. The majority of the reported @Glementations to ad-
dress the UC problem are based on the binary encoding. Hoystudies have shown
that other encoding schemes such as real valued random3eges be efficient when
accompanied with suitable GA operators, specially for faoils where the relative or-
der of tasks is important. In the proposed algorithm a sofuis encoded as a vector
of N real random keys in the intervf, 1], whereN is the number of generation units.
The Biased Random Key Genetic Algorithm (BRKGA) proposethia paper is based
on the framework provided by Resende and Gongcalves in RKBAs are a variation
of the Random key Genetic Algorithms (RKGAS), first introdddoy Bean [3]. The
bias is introduced at two different stages of the GA. On thelwend, when parents are
selected we get a higher change of good solutions being chsigee one of the par-
ents is always taken from a subset including the best salsition the other hand, the
crossover strategy is more likely to choose alleles frombist parent to be inherited
by offspring. The work [9] provides a tutorial on the implem&tion and use of biased
random key genetic algorithms for solving combinatorialimjzation problems and
many successful applications are reported in the refesathegein.

This paper is organized as follows. In Section 2, the UC mwbis described and
formulated, while in Section 3 the solution methodologypmreed is explained. Section
4 describes the set of benchmark systems used in the conopalagxperiments and
reports on the results obtained. Finally, in Section 5 soomeltisions are drawn.

2 UC PROBLEM FORMULATION

In the UC problem one needs to determine at each time perétith-on and turn-off

times of the power generation units, as well as the generatitput subject to opera-
tional constraints, while satisfying load demands at munimcost. Therefore, we have
two types of decision variables. The binary variables, Whintlicate the status of each
unit at each time period and the real variables, which pmtie information on the

amount of energy produced by each unit at each time periog chbices made must
satisfy two sets of constraints: the demand constraings(téng the load requirements
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and the spinning reserve requirements) and the technicastreints (regarding gen-
eration unit constraints). The costs are made up two comysnthe fuel costs, i.e.
production costs, and the start-up costs.

Let us now introduce the parameters and variables notation.

Decision Variables

Yt;: Thermal generation of unijtat time period, in [MW];

ugj: Status of unitj at time periodt (1 if the unit is on; 0 other-
wise);

Auxiliary Variables :

Tf’”/Uﬁ(t): Time periods for which unif has been continuously
on-line/off-line until time period, in [hours;

Parameters
T: Number of time periods (hours) of the scheduling time faniz: Time period index;
N: Number of generation units; j: Generation unit index;

Ri: System spinning reserve requirements at time petjoith D;: Load demand at time peridglin [MW];
[MW];

Ymin;: Minimum generation limit of unif, in [MW]; Ymax;: Maximum generation limit of unif, in [MW];
Np: Number of the base units; Tf’n’:{f’f Minimum uptime/downtime of unif, in [hours;
Tc;: Cold start time of unifj, in [hours; Si/cj: Hot/Cold start-up cost of unit, in [$];

A?"/”p: Maximum allowed output level decrease/increase in con-
secutive periods for unit, in [MW];

2.1 Objective Function

As already said, there are two cost components: generatists @nd start-up costs.
The generation costs, i.e. the fuel costs, are conventjogalen by a quadratic cost
function as in equation (1), while the start-up costs, tlegteshd on the number of time
periods during which the unit has been off, are given as iragguo (2).

Fi (i) =2y (%)% +bj - Y +cj, (1)
whereaj, bj,c; are the cost coefficients of unjit
: ff ff ff
Sij if Toing ST () < Tinj + Tej
; ff ff ;
& if Tjo (t) >Tmoin,j +Te,j

whereS, j andS:j are the hot and cold start-up costs of unitespectively.
Therefore, the costincurred with an optimal schedulingvsmgby the minimization
of the total costs for the whole planning period, as in eaquedB).

= (2)

T N
Minimize 21 S {Fi0%]) Ui+ S (L= teg) U} - (3)
t= =1

2.2 Constraints

The constraints can be divided into two sets: the demandreamis and the technical
constraints. Regarding the first set of constraints it carfiubiner divided into load
requirements and spinning reserve requirements, whicheavritten as follows:

1) Power Balance Constraints

The total power generated must meet the load demand, fortimaelperiod.

N
Y Yoi-Wj>Dpte{1,2,..,T}. (4)
=
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2) Spinning Reserve Constraints
The spinning reserve is the total amount of real power géioeravailable from on-line
units net of their current production level.

N
ZYmax-um-zR(+Dt,te{1,2,...7T}. (5)
=1

The second set of constrains includes unit output rangdammim number of time
periods that the unit must be in each status (on-line andiraj; and the maximum
output variation allowed for each unit.

3) Unit Output Range Constraints
Each unit has a maximum and minimum production capacity.

Yming-uj <Yj<Ymax-u,forte{1,2,.. Ttandje {1,2,...,N}. (6)

4) Ramp rate Constraints
Due to the thermal stress limitations and mechanical cleniatics the output variation,
levels of each online unit in two consecutive periods argicted by ramp rate limits.

"<V —Yaj<APforte {12, T}tandje {1,2,..,N}. 7)

5) Minimum Uptime/Downtime Constraints
The unit cannot be turned on or off instantaneously oncecbmmitted or uncommit-
ted. The minimum uptime/downtime constraints indicaté thare will be a minimum
time before it is shut-down or started-up, respectively.

TN() > Tom; andT (1) > Torl fort € {1,2,.... T}andj € {1,2,..,N}.  (8)

= "min,j>

3 METHODOLOGY

Genetic Algorithms are a global optimization techniquedolsn natural genetics and
evolution mechanisms such as survival of the fittest lawetjemecombination and se-
lection [10, 8]. GAs provide great modeling flexibility andrceasily be implemented
to search for solutions of combinatorial optimization desbs. Several GAs have been
proposed for the unit commitment problem, see e.g. [14,2.28, 7, 1], the main dif-
ferences being the representation scheme, the decodigdune, and the solution
evaluation procedure (i.e. fitness function).

Many GA operators have been used; the most common being ca®gover, and
mutation. Copy consists of simply copying the best solgifsom the previous genera-
tion into the next one, with the intention of preserving theaenosomes corresponding
to best solutions in the population. Crossover producesongoreoffspringby com-
bining the genes of solutions chosen to act as their par€hésmutation operator ran-
domly changes one or more genes of a given chromosome in twrdt@roduce some
extra variability into the population and thus, preventpature convergence.

The GA proposed here, i.e. the BRKGA, uses the frameworkqeepby Goncalves
and Resende in [9]. The algorithm evolves a population abiclusomes that are used
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to assign priorities to the generation units. These chromes are vectors, of si2é
(number of units), of real numbers in the inter{@l1] (called random keys). A new
population is obtained by joining three subsets of soliags follows: the first subset
is obtained by copying the best solutions of the current fadjmn; the second subset is
obtained by using a (biased) parameterized uniform cr@ssthe remaining solutions,
termed mutants, are randomly generated as was the case fioitthl population. The
BRKGA framework is illustrated in Figure 1, which has beemjigd from [9].

!
For each chromosome

7

Compute output level matrix for each unit
and period based to random key value
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Adjust output levels to satisfy the output
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Fig. 1: The BRKGA framework.
Fig. 2: Flow chart of the decoder.

Specific to our problem are the decoding procedure, as wéllesfitness computa-
tion. The decoding procedure, that is how solutions aretcocted once a population
of chromosomes is given, is performed in two main steps, @anitbe seen in Figure 2.
Firstly, a solution satisfying the load demand, for eachqekis obtained. In this solu-
tion, the units production is proportional to their prigritvhich is given by the random
key value. Then, these solutions are checked for consiraatisfaction.

3.1 Decoding Procedure

Given a vector of numbers in the intervl 1], sayRK = (ry,r2,...,rn), percent vec-
torsV' = (v’,v’,... \/Nb), V = (v1,V2,...,vy) and rank vecto© = (01,02, ...,0y) are

computed. Each elemenf is computed asj = zr—r j=12,...N andv’j is given
|
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byv} = —,Qé—,j =12, ...,Ny , whereNy is the number of base units, while eaghs
S 0T

defined téking into account the descending order oRKevalue.

Then an output generation mathxis obtained, where each eleméfy gives the
production level of unitj = 0;,i = 1,...,N for time periodt and is computed as the
product of the percentage vectdtsor V by the periods demanid;, as illustrated in
the following pseudocode:

Algorithm 1 Initial matrix generation output

i=1
d =Dy
while i <N andd > 0do
j=oi
if j <Ny then
if D+ R < zl’:'ilY max then
Ye,j =V;j.Dt
d=d-Y
else{D;{+R > ZEilY max}
Yi,j =Y may
d=d-Y
end if
else{j >Ny }
if Di+R < inlY max then
Yi,j=0
else{D;+R > ZEilY max}
if d >Y may then
Yi,j = Vj-D¢
d=d-Y
else{d <Ymax}
Yij=d
d=0
end if
end if
end if
Nexti
end while

The production level of unit for each time periotdthowever, may not be admissible
and therefore, the solution obtained may be unfeasiblecéiehe decoding procedure
also incorporates a repair mechanism. This mechanismdearestraints satisfaction.

The repair mechanism starts by forcing the output level chamit to be in its
output range, as given in equation (9).

Ymax if Y;j >Ymay

Y, if Ymin <Y j <Ymay
Yming if X-Ymin <Y <Ymin
0 otherwise

Y, = 9
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wherey <€ [0,1] is a scaling factor.

At the same time that the ramp constrains are ensured fordcifispgene periodt,
new output Iimits((t?j‘axandYttTj“” upper and lower limits, respectively) must be imposed,
for the following period + 1, since their value depends on the output level of the ctrren
periodt. Equations (10) and (11) show how this is done.

YR if Y, > Yy

Yo YN <y < ymax
Y= tr’r]ﬂn oo min o o) min (10)
Yo e YT <Y <Y
0 otherwise
whereY"® =Y max, Y = Y min, and
Ytr.?aX: min{Y max, Yi—1,j —|—A‘j’p} 7Ytl,‘rjjlin — max{Y min, Y1, —A?”} . (11)

After ensuring the unit output range constraints and thepraate constraints, it
is still needed to guarantee that minimum up/down time cairgs are satisfied. The
adjustment of the unit status can be obtained using therrepaghanism illustrated

in Figure 3. As it can be seen, for two consecutive periodsuttie status can only

be changed if thé’nﬁ{:{o” is already satisfied, for a previously turned on or off unit,

respectively.

<

Cem
-

Sort the units in descending order of the
random key value

TON() =Tt — 1)+ 1
TiOff(t) —0

T = TNt — D) + 1
=0

<~
<t

Fig. 3: Minimum up down time repair mach-
anism. Fig. 4: Handling spinning reserve constraint.
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For each period, it may happen that the spinning reservaresgant is not satisfied.
If the number of on-line units is not enough, some off-linésiwill be turned on, one
at the time, until the cumulative capacity matches or isdatbanD; + R as shown in
Figure 4. In doing so, units are considered in descendingrarfipriority, i.e. random
key value. After ensuring the spinning reserve satisfacttonay happen that we end up
with excessive spinning reserve. Since this is not degrdibé to additional operational
costs involved, we tried to decommit some units. Then umgscansidered for turning
off-line, in ascending order of priority until their cumtilge capacity reachef); + R;.

At the end of this procedure we have found thendY matrices specifying which
units are being operated at each time period and how muchétésgproducing. How-
ever, it may happen that the production matches, is larger, tbr lesser than the de-
mand. In order to compute the total cost of the current smhutie first must find how
much each unit is producing.

If there is excessive production, the on-line units proutuncis decreased to its min-
imum allowed value, one at the time, until either all are eghe minimum production
or the production reaches the load demand value. In doingirsts are considered
in descending order of priority, i.e. random key value. lbgld be notice that by re-
ducing production at time periadthe production limits at time periot+ 1 change,
and the new values must be respected. Therefore, the minetiamwed production is
given bymax{Yt',Tj“”,YHlJ —A‘J-Jp}. This is repeated no more thahtimes. If there is
lack of production, the on-line units production is increéso its maximum allowed
value, one at the time, until either all are set to the maxinpuoduction or the pro-
duction reaches the load demand value. In doing so, unitsargidered in ascending
order of priority, i.e. random key value. It should be notidbat by increasing pro-
duction at time period the production limits at time period+ 1 change, and the
new values must be respected. Therefore, the maximum all@reduction is given
by min{\qﬁ?ax,\/t+17j +A‘j’”}. Again, this is repeated no more thirtimes. Once these
repairing stages have been performed, the solutions @utaire feasible and the re-
spective total cost is computed.

3.2 GA Configuration

The current population of solutions is evolved by the GA apens onto a new popula-
tion as follows:

— 20% of the best solutions (elite set) of the current popaitedire copied;

— 20% of the new population is obtained by introducing mutathiat is by randomly
generating new sequences of random keys, which are theel@to obtain mu-
tant solutions. Since they are generated using the samdigin as the original
population, no genetic material of the current populat®brought in;

— Finally, the remaining 60% of the population is obtained sbd reproduction,
which is accomplished by having both a biased selection dndsed crossover.

The selection is biased since, one of the parents is randestdgted from the elite
set of solutions (of the current population), while the otiserandomly selected from
the remainder solutions. This way, elite solutions aregadiigher chance of mating,
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and therefore of passing on their characteristics to fytopulations. Genes are chosen
by using a biased uniform crossover, that is, for each geniaset coin is tossed to
decide on which parent the gene is taken from. This way, tfspifg inherits the
genes from the elite parent with higher probability (0.7 um case).

4 NUMERICAL RESULTS

A set of benchmark systems has been used for the evaluatibe pfoposed algorithm.
Each of the problems in the set considers a scheduling pefi@d hours. The set of
systems comprises six systems with 10 up to 100 units. A kesewith 10 units was
initially defined, and the others have been obtained by denisig copies of these units.
The base 10 units system and corresponding 24 hours loachdearagiven in [14]. To
generate the 20 units problem, the 10 original units have degplicated and the load
demand doubled. An analogous procedure was used to obégimdblems with 40, 60,
80, and 100 units. In all cases, the spinning reserve regeimés were set to 10% of the
load demand.

Several computational experiments were made in order tosghilve parameter val-
ues. The BRKGA was implemented with biased crossover piitityeds main control
parameter. The parameter ranges used in our experimergf\Wwet P, < 0.8 with step
size 01 which gives 4 possible values for biased crossover préityafihe results ob-
tained have shown no major differences. Neverthelessethdts reported here refer to
the best obtained ones, for which the number of generatiasssat to 18, the popu-
lation size was set tmin{2N, 60}, the biased crossover probability was set 6, @nd
the scaling factog = 0.4. Due to the stochastic nature of the BRKGA, each problem
was solved 20 times. We compare the results obtained witlhékeresults reported
in literature. In tables 1, 2, and 3, we compare the bestagestand worst results ob-
tained, for each of the six problems, with the best of eacliaa in literature. As it
can be seen, for two out of the six problems solved our besttsdsnprove upon the
best known results, while for the other four it is within 0%2nd 0.18% of the best
known solutions. Moreover when our algorithm is not the pies the second best.

Table 1: Comparison between best results obtained by the@R&nd the best ones reported in
literature.

Siz¢ GA SA LRGA EP IPSCPBRKGA Ratio BRKGA rank

10 | 563977 565828 564800 56455563954 563977 100 2nd
20 1125516 11262511226221125494 1125279124470 100.16 2nd
40 (2249715 22500622421782249093 2248162246287 100.18 2nd
60 (3375065 — 3371079 3371618B709793368542 99.93 1st
80 |4505614 4498076 4501844 44984449950324493658 99.97 1st
1005626514 56178766131275623885 5619288614522 100.02 2nd

For each type of solution presented (best, average, and)weescompare each
single result with the best respective one (given in bold} the were able to find in
the literature. The results used have been taken from a muohberks as follows: SA
[23], LRGA [5], SM[27], GA [22], EP[13] and IPSO[30].
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Table 2: Comparison between average results obtained bBRIGA and the best averages
reported in literature.

Sizeg SA SM |BRKGA RatioBRKGA rank

10 | 565988 566787 563996 99.65 1st
20 |112795511282131124753 99.72 1st
40 |225212522495892247534 99.91 1st
60 — 33948303372104 99.33 1st
80 |450115644943784495632 100.03 2nd
100(562430156166995616734 100.00 2nd

Table 3: Comparison between worst results obtained by thk@®Rand the best worst ones
reported in literature.

Sizg GA SA SM EP IPSUBRKGA Ratio BRKGA rank

10 | 565606 566260 567022 56623564579 564028 99.90 1st
20 (1128790 1129112 1128403 1129798276431125671 99.83 1st
40 (2256824 22545322495892256085 2252112248510 99.95 1st
60 |3382886 — 3408275 33810B379125%3379915 100.02 2nd
80 (4527847 45039844944394512739 4508943499207 100.11 2nd
1005646529 56285066169005639148 5633025619581 100.05 2nd

Another important feature of the proposed algorithm is,thatit can be seen in
Table 4, the variability of the results is very small. Thefgi€énce between the worst
and best solutions found for each problem is always belo$Ovghile if the best and
the average solutions are compared this difference is fawger than 0.11%. This
allows for inferring the robustness of the solution since glaps between the best and
the worst solutions are very small. Furthermore our workitsms, when worse than
the best worst solutions reported are always within 0.11%efatter, see Table 3. This
is very important since the industry is reluctant to use méshwith high variability as
this may lead to poor solutions being used.

Table 4: Analysis of the variability of the results and ex@mutime.

Sizd Best Average Wors{Ay Besly, Worst Beslos St deviation(9g)Av. Time(s)
10 | 563977 563996 564028 0.003 0.09 0.00 51
20 (1124470 1124753 1125671 0.03 0.11] 0.0 19.8
40 2246287 2247534 22485[110 0.06 0.1 0.0 86.6
60 |3368542 3372104 3379915 0.11 0.3 0.1 198.0
80 (4493658 4495632 4499207 0.04 0.12 0.0 343.8
100(5614522 5616734 5619581 0.04 0.09 0.0 534.3

The BRKGA has been implemented on Matlab and executed ontauRetvy Core
Duo personal computer T 5200, 1.60GHz and 2.0GB RAM. In tdblee can see the
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scaling of the execution time with the system size for thgppeed BRKGA. Regarding
the computational time no exact comparisons may be done giec/alues are obtained
on different hardware, and on the other hand, some authdyseport their computa-
tional times graphically, as is the case in [30However, in Figure 5 it can easily be
seen that ours are about the same magnitude of the bestiexdimes as in SA [23].

5 CONCLUSION

A methodology based on a Biased Random Key Genetic Algoritbitowing the ideas
presented in [9], for finding solutions to the unit commitmproblem has been pre-
sented. In the solution methodology proposed real valuediaia keys are used to en-
code solutions, since they have been proven to perform walkdblems where the
relative order of tasks is important.

The proposed algorithm was applied to systems with 10, 206@080, and 100
units with a scheduling horizon of 24 hours. The numericsiitts have shown the pro-
posed method to improve upon current state of the art, sinlyefor three problems it
was not capable of finding better solutions. Furthermoeereisults show a further very
important feature, lower variability. It should be notitet the difference between the
worst and best solutions is always below 0.30%, while thiedihce between the best
and the average solutions is always below 0.11%. This isingpgrtant since methods
to be used in industrial applications are required to be spltherefore preventing the
use of very low quality solutions.

6000

5000

4000

3000

Average Tinme (sec)

2000

1000

L L L
0 0 30 40 70 80 90 100

50 60
Nurmber of Units

Fig. 5: Average execution time of the different methods.

1 The computational times of the IPSO in Figure 5 are estimiated the results reported graph-
ically.
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