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Abstract

Investigation of the carotid artery plays an important role in the diagnosis of

cerebrovascular events. Segmentation of the lumen and vessel wall in Magnetic

Resonance (MR) images is the first step towards evaluating any possible car-

diovascular diseases like atherosclerosis. However, the automatic segmentation

of the lumen is still a challenge due to the low quality of the images and the

presence of other elements such as stenosis and malformations that compromise

the accuracy of the results. In this article, a method to identify the location

of the lumen without user interaction is presented. The proposed method uses

the modified mean roundness to calculate the circularity index of the regions

identified by the K-means algorithm and return the one with the maximum

value, i.e. the potential lumen region. Then, an active contour is employed to

refine the boundary of this region. The method achieved an average Dice coef-

ficient of 0.78 ± 0.14 and 0.61 ± 0.21 in 181 3D-T1-weighted and 181 proton

density-weighted MR images, respectively. The results show that this method is

promising for the correct identification and location of the lumen even in images
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corrupted by noise.

Keywords: Magnetic Resonance Imaging, K-means algorithm, Deformable

model, Subtractive clustering, Circularity index

1. Introduction

The segmentation of medical images is an important diagnostic tool to detect

and/or to follow-up various diseases. An examination of the arterial system

allows the identification of pathologies associated to cardiovascular diseases [1,

2]. One of the main cardiovascular diseases is atherosclerosis, which is when fatty5

components, calcium, cholesterol and fibrous tissues form plaques on the artery

walls. Consequently, atherosclerosis reduces or blocks the blood flow through the

artery, which can cause amaurosis fugax and strokes [3, 4, 5]. Several imaging

modalities are able to identify atherosclerosis in a non-invasive way, allowing

treatment planning before the onset or recurrence of symptoms.10

Magnetic Resonance Imaging (MRI) of the carotid artery has been widely

used in studies to identify the atherosclerotic plaques and their main compo-

nents in order to analyze the progression of the disease [6]. However, the correct

identification of the lumen and vessel boundaries is an important step before

segmenting the atherosclerotic plaque components, since atherosclerosis is lo-15

cated between those boundaries. The automatic/semi-automatic segmentation

of the lumen and vessel wall has been proposed in several studies and in most

cases it is considered as the first step to identify and evaluate atherosclerosis

[7, 8, 9, 10, 11, 12]. However, this task is not always performed automatically

and therefore, in several studies, the boundaries of the lumen and vessel wall20

in the images have to be delineated manually [9, 13]. Typically, the lumen

boundary is located inside the vessel wall. Hence, the lumen boundary can be

extended until it reaches the vessel wall boundary [8].

Three-dimensional ultrasound (3D-US) is also an interesting imaging modal-

ity to envisage the anatomy of the carotid artery [14, 15, 16]. However, the25

segmentation of lumen and wall boundaries in 3D-US images is a challenge be-
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cause of the poor contrast and weak boundaries caused by shadows that are due

to calcifications; however, several studies have been proposed to overcome such

difficulties [17, 18].

The segmentation of the lumen and wall of the carotid artery is a strong focus30

of research due to the lack of automation. Although the refinement of the lumen

boundary can be easily achieved by deformable models [19, 20, 21], finding the

region corresponding to the lumen is the most important step towards a fully

automatic segmentation.

The semiautomatic segmentation of the lumen and wall of the carotid artery35

was tackled by Adame et al. [22, 23]. In those studies, ellipse fitting was used to

detect the vessel wall boundary, while fuzzy clustering was applied to identify

the lumen and carotid plaques. Although the segmentation results had high

correlation with the manual segmentations, the method requires user interaction

to determine the centre point of the lumen.40

Another study carried out by Saba et al. [8] proposed the segmentation of

the lumen and wall of the carotid artery based on the level set algorithm. The

radial expansion from a specific point is used to define the initial contour of the

lumen. The final contour of the lumen, which is expanded by two pixels, is then

used to initialize the contour of the carotid wall.45

An attempt to automatically segment the lumen in transverse ultrasound

images of the carotid artery was undertaken by Yang et al. [24]. The proposed

method used the Canny algorithm to find the edges in the input image and the

morphological closing operation was used to find and fill the region correspond-

ing to the lumen.50

Gao et al. [25] proposed a method to identify the media-adventitia and lu-

men regions on intravascular ultrasound (IVUS) images by applying an adaptive

region growing algorithm and the combination of the K-means and 2D Otsu

algorithms to identify the lumen inside the media-adventitia region. The al-

gorithms were applied individually and the minimization of the curvature was55

used to obtain the region with the least curvature variation, which is the best

representation of the lumen.
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Santos et al. [26, 27] addressed the segmentation of the lumen and bifur-

cation of the common carotid artery in B-mode ultrasound images. After a

limiarization process, the binary image containing the region corresponding to60

the lumen was used to generate the masks that were applied in the segmen-

tation of the lumen and bifurcation boundaries. The Chan-Vese segmentation

algorithm correctly detected the inferior and superior lumen walls. Although the

segmentation was fully automatic, the method is only for longitudinal B-mode

ultrasound images.65

This study proposes a fully automatic method to identify the location of the

lumen in MR images of the carotid artery. This method relies on the analysis of

the regions in the input image to identify the ones corresponding to the potential

lumen. We hypothesized that, since the lumen is a low intensity region with an

approximately circular shape on axial MR images, the use of the mean roundness70

index would allow the identification of the region with the maximum circularity

that may represent the potential lumen. In addition, an active contour method

is applied to refine the region boundaries. In order to evaluate the method,

a comparison between the computer and manual segmentations was made to

attain a quantitative analysis.75

The article is organized as follows: the steps of the proposed method are de-

scribed in Section 2. The results of the segmentation, as well as the comparison

with the manual segmentation, are presented in Section 3. Section 4 points out

the advantages and limitations of the proposed method. Finally, the conclusions

are drawn in Section 5.80

2. Materials and Methods

2.1. Image acquisition

The MR images of the carotid artery selected for this study were used in

research by van Engelen et al. [9] and kindly provided by the authors on request.

The proposed method was performed on images that are the regions of inter-85

est surrounding the carotid arteries. A registration procedure was previously
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performed to match the original MR images with the corresponding histology

images, which only contained the region of the artery under study [9]. Once

the matching was completed, the MR images were cropped to obtain only the

part that matched the histology images [9]. The original dataset was composed90

of five MRI scans acquired from thirteen patients: T1-weighted (T1W), Proton

Density Weighted (PDW), Time-of-Flight (TOF) and two 3D-T1W scans. The

first three MRI scans were acquired without administration of intravenous (IV)

contrast media, whereas the 3D-T1W scan was acquired with and without con-

trast media. The post-contrast 3D-T1W scan was performed 4.6 ± 3.4 minutes95

after the administration of the contrast media. Each MRI scan is composed

of approximately 17.7 ± 4.8 slices per patient; each slice has a pixel size of

0.25 mm x 0.25 mm. Computer Tomography Angiography (CTA) images were

also acquired to provide details for the registration with the histology images

and to facilitate the manual segmentation of the lumen, vessel wall and plaque100

components. Manually drawn contours of the lumen and arterial wall were also

provided for many of the MR slices. The manual delineations of the lumen and

vessel wall were performed by one expert based on the combination of the CTA,

PDW and post-contrast 3D-T1W scans with visual assessment of additional in

vivo MRI scans [9]. More details about the MRI scans are available in van105

Engelen et al. [9].

From the original image dataset, we used all MR images with their corre-

sponding ground truth, i.e. one reference contour of the lumen and another one

for the vessel wall manually delineated in the slice under analysis; hence, 181

3D-T1W and 181 PDW MR images were used in the experiments.110

2.2. Methodology

The proposed method is made up of three main stages, as shown in Figure

1.

The pre-processing stage is necessary to minimize noise and improve the

quality of the input images. Then, the enhanced images are submitted to the115

segmentation stage in order to separate the regions with low pixel values, which
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Figure 1: : Diagram of the proposed segmentation method.

include the background and the lumen regions. The lumen identification stage

uses three classification indexes to identify the region corresponding to the lumen

of the artery, which is then inputted to an active contour algorithm for further

refinement of the boundary.120

2.2.1. Pre-processing

The first step of the pre-processing stage is the use of a median filter with

a mask of 5x5 to minimize the noise effects in the original images. The median

filter was chosen due to its ability to remove noise without compromising the

boundaries of the regions of interest.125

The contrast enhancement step improves the brightness of the dark regions

of the input images. The transformed-based gamma correction algorithm used
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here is a contrast enhancement algorithm belonging to the group of histogram

modification-based algorithms [28]. In order to overcome the under- and over-

estimation problems of the common gamma correction and histogram equaliza-130

tion algorithms, Huang et al. [28] proposed a gamma correction-based method

to avoid the overestimation of regions with low-level intensities. The method

relies on the probability density function (PDF) and the cumulative density

function (CDF) of the intensity values:

T (l) = lmax × (l/lmax)1−CDF (l), (1)

where CDF(l) is the cumulative density function of the intensity value l and lmax135

is the highest possible intensity value. The output intensity T(l) progressively

increases as the CDF increases. Also, a weighting distribution is used to avoid

an overestimation of low-level intensities. The weighting PDF is proposed as:

pdfw(l) = pdfmax ×
(
pdf(l)− pdfmin
pdfmax − pdfmin

)α
, (2)

where l is the intensity value, pdfmin is the minimum probability of the PDF

function, pdfmax is the maximum probability and α is a parameter. The weight-140

ing CDF is defined as:

cdfw(l) =

lmax∑
l=0

pdfw(l)∑
pdfw

, (3)

where lmax is the highest possible intensity value and
∑
pdfw =

∑lmax

l=0 pdfw(l).

The adaptive gamma correction with weighting distribution (AGCWD) [28] is:

T (l) = lmax × (l/lmax)1−cdfw(l). (4)

The amount of contrast enhancement depends on the value of the α param-

eter. The larger α is, the greater the enhancement will be.145

Since the correct contrast enhancement plays an important role in the seg-

mentation accuracy, the AGCWD is used in this study to avoid overestimating
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the brightness of the input images. However, a potential loss of important in-

formation can occur due to this image processing. Therefore, the analysis of the

grayscale intensity is important to automatically determine whether the contrast150

correction is necessary or not. Hence, an automatic determination technique of

the contrast enhancement of images based on the PDF of the grayscale intensi-

ties is proposed here. The PDF of the grayscale intensities is partitioned into two

halves: the first halve represents the low intensity pixels of the image, whereas

the second one represents the high intensity pixels. The difference between the155

accumulated probabilities of both halves is calculated. If the difference is low,

the input image has a good contrast. The Otsu threshold is used to separate

the probability density function. The following equation represents the basis of

the automatic contrast correction:

D =

t∑
i=1

PDFmini
−

N∑
j=t+1

PDFmaxj
, (5)

where PDFmin and PDFmax represent the probabilities of the low and high160

intensities of the input image, respectively, t is the value obtained by the Otsu

threshold algorithm and N is the highest possible intensity value. If D is equal or

less than a threshold, the contrast correction is not necessary. Here, a threshold

value of 0.1 was found to be the one that led to good contrast enhancements

without compromising the structures under analysis.165

2.2.2. Segmentation

The K-means clustering algorithm is a well-known method to separate re-

gions with similar characteristics (of intensity, for instance) in images. However,

the correct use of the cluster centroids used in the K-means algorithm is a chal-

lenging task because different images have different cluster centroids. Addition-170

ally, trial and error is not an adequate approach because it is time consuming.

Therefore, an automatic method to determine the cluster centroids is necessary.

The inconsistency results of the Fuzzy C-means algorithms are caused by

different membership values generated by several executions. Thus, different
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cluster centroids can be generated because they are calculated from the mem-175

bership values.

Subtractive clustering [29] has been proposed as an alternative approach to

avoid the instability of the Fuzzy C-means algorithms. The adequate number

of cluster centroids is calculated from the potential of each pixel in the neigh-

bourhood as:180

Pi =

n∑
j=1

e
−4‖xi−xj‖2

r2a , (6)

where ||xi−xj || represents the distance between pixels xi and xj, ra is the radius

representing the neighbourhood and n is the number of pixels in the input image.

Equation 6 gives the initial potential of each pixel; then, the pixel having the

highest potential is selected as the first cluster centroid. The next centroids are

found according to:185

Pi = Pi − Pj × e
−4‖xi−xj‖2

r2
b , (7)

where Pj represents the highest potential, xj is the pixel with highest potential

and rb is the radius representing the neighbourhood. Equation 7 reduces the

potential of the neighbouring pixels; then, the next pixel with the highest po-

tential is selected as the next cluster centroid and the process is repeated until

all the centroids have been found.190

The advantage of the subtractive clustering algorithm is that the cluster

centroids do not change in different runs. This is due to the fact that the

potential function relies on the pixel values only (or another feature calculated

from the pixels of the input image).

After the cluster centroids have been found, a clustering algorithm may be195

applied. The combination of the K-means algorithm with the subtractive clus-

tering proposed by Dhanachandra et al. [30] was used in this study. Considering

the fact that regions having similar grayscale intensities can be merged into one

cluster, the choice of the number of clusters plays an important role to deter-

mine the correct segmentation of the lumen. The merging of the lumen region200
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with pixels of the background can occur in arteries with a thin and low inten-

sity wall. The lower the number of clusters, the higher the probability that

the lumen and the background regions become one cluster. Based on several

experiments, four clusters were found to be a stable choice to correctly identify

the region corresponding to the lumen in the images tested.205

Because the lumen and the background usually have low intensities in MR

images, the next step selects the regions belonging to the cluster with low in-

tensity. An image with such regions is returned as a binary image, in which

the regions are represented as white and the background as black. The image is

then submitted to the region growing algorithm in order to obtain all regions of210

the image separately. Here, the region growing is performed on the image corre-

sponding to the cluster with low intensity values to obtain a set with all regions

of interest. The white pixels have been chosen as the seed of the region growing

algorithm, and the regions are merged when the pixels in the neighbourhood do

not belong to another region previous identified and have the same intensity as215

the seed. When a region is found, another pixel not belonging to the identified

region is chosen as the seed and the process continues until all regions have been

found. Although the region growing algorithm has been chosen to separate the

regions, the connected component labelling algorithm could also be used to per-

form the same task without loss of performance. Examples of the segmentation220

stage with and without previous contrast enhancement are depicted in Figures

2 and 3.

2.2.3. Lumen identification

The lumen identification stage is the kernel of this study, which uses measures

to evaluate each region of interest obtained in the previous stage. Since the225

lumen is a region similar to a circle, a set of indexes that maximize the function

representing the roundness of the possible region corresponding to the lumen

is calculated. Hence, three indexes are found for each region in the segmented

image:

• Circularity index (MR);230
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Without contrast

With contrast

(a) (b) (c)

Figure 2: Example of the segmentation stage obtained from the 3D-T1W image with and

without previous contrast enhancement; the image obtained from the median filter is shown

in (a); the clustered image is shown in (b); and finally, the clusters of the low intensity pixels

found are shown in (c).

Without contrast

With contrast

(a) (b) (c)

Figure 3: Example of the segmentation stage obtained from the PDW image with and without

previous contrast enhancement; the image obtained from the median filter is shown in (a);

the clustered image is shown in (b); and finally, the clusters of the low intensity pixels found

are shown in (c).

• Irregularity index (Ir);

• Centre index (d).

The process to identify the lumen requires maximizing a function composed

of the above-mentioned indexes. In order to avoid additional processing and

increase the performance of the method, regions with less than 1.5% of the235

total number of pixels of the input image are discarded since they are usually
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associated to noise. The indexes of all remaining regions are calculated.

Circularity indexes have been proposed in several studies [31, 32, 33] to

quantify the roundness of regions in images. Ritter and Cooper [32] proposed a

new index for determining the circularity of objects in images. The new index240

is called mean roundness, which represents the ratio between the average radius

and the distance between the radius of each border pixel and the average radius:

MR =
1

N

N∑
i=1

r̄b
|ri − r̄b|+ r̄b

. (8)

The larger the mean roundness (MR) index is, the more circular the object

under analysis is. The proposed circularity index is independent of the image

resolution [32].245

An additional term was added to the mean roundness index to avoid pixels

at the border of the input image:

MR =
1

N

(
N∑
i=1

r̄b
|ri − r̄b|+ r̄b

)
− nb, (9)

where nb is the number of pixels of the region that are located at the border

of the image. The modified MR index tries to reduce the circularity index of

regions at the border of the input image. Also, since no rotation, translation or250

scaling transforms are performed in the proposed method, the location of the

regions on the input image does not change.

In addition to the mean roundness index, the irregularity index has also been

proposed to avoid regions with irregular contours. The following irregularity

index was used in this study:255

Ir = P ∗
(

1

SD
− 1

GD

)
, (10)

where P is the number of pixels of the contour, SD is the shortest diameter and

the GD is the largest diameter [34]. If the difference between SD and GD is

equal to 0 (zero) or close to it, the Ir index decreases, which means that the

boundary is more regular.
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In addition, a centre index (d) is used to identify the correct location of the260

lumen. In general, the lumen is located close to the centre of the image. Hence,

the distances between the centre of the image and the centre of each region are

calculated and used to maximize the final index function. Hence, the inverse

of the irregularity and centre indexes are then used to maximize the proposed

circularity index for each region accordingly to:265

E = MR+
1

Ir
+

1

d
. (11)

The irregularity and centre indexes are used to penalize the mean roundness

index of regions with irregular borders and those far from the centre of the

input image, respectively. The lower the irregularity index is, the larger its

inverse will be. The same concept is also applied to the inverse of the centre

index. Therefore, regions with high MR, irregularity and centre index values270

have a high probability of being the lumen.

The region that maximizes the circularity index is then submitted to the

Chan-Vese active contour algorithm [20] in order to refine the contours previ-

ously found. The binary image representing the lumen region may not fit the

true boundary of the lumen in the MR image. Hence, the contour of such a275

region is used as the input of the Chan-Vese active contour model, which is

applied to the original image in order to fit the contour to the true boundary.

This refinement step plays an important role to avoid under- or over-estimation

of the contour, leading the contour closer to the true boundary of the lumen

under analysis and, consequently, better results.280

The Chan-Vese active contour was proposed by Chan and Vese [20] to seg-

ment the boundaries of objects in images based on the level set and Mumford-

Shah models. The Chan-Vese active contour model is based on the energy

minimization of the variations inside and outside the region as a level set prob-

lem, which can deal successfully with topological variations. Since the gradient285

of the image is not used in the Chan-Vese model, the method is recommended

for the segmentation of medical images which commonly have weak boundaries
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of the structures under analysis.

2.3. Quantitative analysis

The proposed method was validated by evaluating the contours and the290

areas of the regions found. The following measures were used to compare the

segmentations of the new method and the manual method:

• Dice coefficient;

• Polyline distance;

• Hausdorff distance.295

The Dice coefficient represents the overlap between two regions, which is a

ratio between the intersection and the union of the regions. Here, this metric is

important to assess the under- or over-segmentation of the region identified by

the automatic method with respect to the corresponding manual method.

The polyline distance represents the average minimum distance between two300

sets of points, i.e. image pixels, whereas the Hausdorff distance provides the

maximum between the greatest distances between such points.

Under- and over-estimation of the lumen affect the value of the Dice coef-

ficient, since it represents the ratio between the intersection and union of the

regions under analysis. However, the centroid difference between the manually305

segmented and the automatically segmented lumen is low when the algorithm

finds the correct location of the lumen, even when the Dice coefficient is reduced.

Therefore, the difference between the centroids of the regions corresponding to

the manual segmentation and the automatically segmented lumen is calculated

by using the Euclidean distance. The higher the Euclidean distance, the farthest310

the regions are from each other.

3. Results

The proposed method was performed on each slice of the post-contrast 3D-

T1W and PDW images with the ground truths provided. The following parame-

ters were used to perform the automated segmentation: the mask of the median315
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filter was set to 5x5; when it was necessary to adjust the contrast, the value of

α in Equation 2 was defined as equal to the difference between the probabili-

ties of the low and high intensities, as described by Equation 5; the radius ra

and rb used in the subtractive clustering were set to 1.2 and 1.8, respectively;

the percentage of disregarded regions was set at 1.5%; and the number of it-320

erations of the Chan-Vese active contour algorithm was set to 200. The 5x5

mask was empirically determined as the most suitable template for removing

noise from the images without disturbing the edges of the regions of interest.

The radius values ra and rb of the subtractive clustering were empirically deter-

mined through several tests as the most appropriate parameters for separating325

the regions of the input images. In addition, the percentage of the disregarded

regions was also experimentally found as the most suitable one for the resolu-

tion of the images under evaluation. A higher percentage value could remove

a region corresponding to the lumen, particularly in images where the lumen

is small. The values of all parameters were kept constant in the experiments.330

Examples of the segmentation results and corresponding manual segmentation

are shown in Figure 4.

In Figure 4, the green contours represent the results of the proposed method,

whereas the red contours represent the manual results. The lumen was correctly

identified by the proposed method as shown by the two results. The values of335

the validation measures corresponding to the results shown in this figure (Figure

4) are given in Table 1.

Table 1: Values of the validation measures for the images in Figure 4.

Dice PD(px) HD(px) CD(px)

slice 1 0.75 2.05 5 2.03

slice 2 0.77 1.51 4.12 1.90

slice 3 0.80 1.26 5 3.59

slice 4 0.56 2.56 5 3.75

slice 5 0.78 1.58 4.24 2.82

slice 6 0.51 3.62 9.22 2.72

*PD = Polyline distance; HD = Hausdorff distance

CD = Centroid distance; px = pixels

15



(a) (b) (c) (d) (e) (f)

Figure 4: Examples of segmentation results obtained from the 3D-T1W images: Each column

represents one image belonging to patient 1, which is composed of six slices with ground truth;

the first row contains the input images; the second row represents the results of the K-means

with subtractive clustering; the third row shows the images with the lumen that was identified

by taking into account the modified mean roundness index; and finally, the forth row shows

the refined contour in green and the manual one in red.

The automatic segmentation obtained for slice 6 of patient 1 in Figure 4f,

shows that the result was overestimated compared to the manual one; however,

it should be understood that the centroids of both regions were well matched.340

In order to show the impact of the centre index and the regions on the border

of the input image on the segmentation results, the images obtained with and

without taking this index and these regions into account are shown in Figure 5.

The identified region in Figure 5a does not correspond to the correct location

of the lumen, despite its high value of mean roundness index. The correct lumen345

is represented by the brightest circular area close to the centre of the image. In

this case, the centre index penalizes the value of the mean roundness index of

the region close to the right top of the image, reducing the value of this index.

The result obtained with the centre index activated is shown in Figure 5b. For

the cases with regions that include pixels on the border of the input image, the350
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(a) (b) (c) (d)

Figure 5: Impact of the centre index (a - not taken into account and b - taken into account)

and of the regions on the border of the input image (c - not taken into account and d - taken

into account) on the segmentation of the lumen region.

impact of the number of these pixels on the mean roundness index is illustrated

in Figures 5c and 5d. Here the number of these pixels contributes to reduce the

mean roundness index of such regions, which leads to good segmentation results

(Figure 5d).

Figure 6 illustrates the influence of the refinement process of the segmenta-355

tion contour on the final result. In this figure, the red contour represents the

contour of the binary mask of the lumen identification step, whereas the green

contour is the result of the Chan-Vese active contour, i.e. the result of the re-

finement process from the red contour. In all cases shown in this figure, the

initial contour (in red) underestimated the true boundary of the lumen, which360

was then corrected by the Chan-Vese model (green contour).

(a) (b) (c) (d)

Figure 6: Impact of the Chan-Vese active contour on the final segmentation result: The red

contour is the one obtained in the lumen identification step, and the green contour is the one

obtained by the refinement process of the red one.

In order to illustrate the influence of the number of clusters, the images

resulting from the segmentation step taking into account three and four clusters

are shown in Figure 7.
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(a) (b) (c) (d)

Figure 7: Influence of the number of clusters on the final lumen segmentation: The first row

represents the segmentation obtained using three clusters, whereas the second row shows the

segmentation obtained using four clusters.

As shown in Figure 7a-c, the lumen boundary leaked across the vessel wall365

when three clusters were used. This is due to the low intensity and the thinness

of the vessel wall in the regions where the leakage occurred. The segmentation

of the image shown in Figure 7d was not affected by the number of clusters due

to the higher grayscale intensity and thickness of the vessel wall.

The average values of the Dice similarity, polyline distance, Hausdorff dis-370

tance and centroid distance of the automatically segmented lumens in compari-

son to the manual ones are shown in Tables 2 and 3 for each patient, respectively.

For each metric, the average standard deviation was calculated using the pooled

standard deviation formula.

The average measures obtained for the 3D-T1W images were better than375

those obtained for the PDW images, reaching Dice coefficients ranging from

0.67 ± 0.18 to 0.91 ± 0.04 (Table 2). The maximum Dice coefficient for the

PDW images was 0.74 ± 0.16. This not-so-good result is due to the poor quality

of the PDW images when compared to the 3D-T1W images. The polyline and

Hausdorff distances were used to assess the difference between the manual and380

automatic segmentations regarding the contours obtained. For the 3D-T1W

images, the polyline distance ranged from 1.06 ± 0.28 to 4.13 ± 5.69 pixels,
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Table 2: Average measures obtained for the 3D-T1W images.

Dice ± std PD ± std (px) HD ± std (px) CD ± std (px)

Patient 1 0.70 ± 0.13 2.10 ± 0.88 5.43 ± 1.90 2.80 ± 0.77

Patient 2 0.90 ± 0.02 1.33 ± 0.15 2.78 ± 0.37 0.53 ± 0.20

Patient 3 0.68 ± 0.11 1.36 ± 0.48 2.99 ± 1.80 1.79 ± 0.98

Patient 4 0.67 ± 0.18 2.25 ± 2.88 6.98 ± 9.93 3.42 ± 5.14

Patient 5 0.71 ± 0.22 1.98 ± 2.16 4.77 ± 4.41 1.39 ± 1.49

Patient 6 0.76 ± 0.16 2.17 ± 2.16 8.08 ± 9.85 3.83 ± 4.60

Patient 7 0.77 ± 0.20 1.75 ± 1.42 4.42 ± 4.15 1.98 ± 2.24

Patient 8 0.85 ± 0.15 1.07 ± 0.36 2.58 ± 1.02 1.26 ± 0.81

Patient 9 0.82 ± 0.07 1.30 ± 0.27 3.33 ± 1.71 1.39 ± 1.16

Patient 10 0.74 ± 0.11 1.41 ± 0.96 4.00 ± 3.15 1.77 ± 1.78

Patient 11 0.85 ± 0.08 1.39 ± 0.98 3.78 ± 5.04 1.52 ± 2.98

Patient 12 0.73 ± 0.16 4.13 ± 5.69 9.97 ± 9.65 5.52 ± 7.46

Patient 13 0.91 ± 0.04 1.06 ± 0.28 3.17 ± 1.07 1.08 ± 0.60

Average 0.78 ± 0.14 1.79 ± 2.13 4.79 ± 5.42 2.18 ± 3.22

*PD=Polyline distance; HD=Hausdorff distance; CD=Centroid distance; px=pixels;

std=standard deviation.

Table 3: Average measures obtained for the PDW images.

Dice ± std PD ± std (px) HD ± std (px) CD ± std (px)

Patient 1 0.62 ± 0.12 3.14 ± 1.14 7.34 ± 3.52 2.23 ± 1.64

Patient 2 0.65 ± 0.25 3.35 ± 2.48 8.58 ± 5.90 3.89 ± 3.05

Patient 3 0.68 ± 0.10 1.44 ± 0.59 3.74 ± 2.42 2.07 ± 1.21

Patient 4 0.68 ± 0.21 1.64 ± 1.30 4.91 ± 4.11 2.14 ± 1.42

Patient 5 0.66 ± 0.14 1.89 ± 1.34 5.12 ± 2.87 1.81 ± 0.93

Patient 6 0.69 ± 0.15 4.43 ± 5.75 10.64 ± 11.55 5.13 ± 5.72

Patient 7 0.74 ± 0.16 1.52 ± 0.93 3.60 ± 2.07 2.19 ± 1.49

Patient 8 0.71 ± 0.26 1.94 ± 1.63 5.21 ± 4.83 2.66 ± 2.86

Patient 9 0.52 ± 0.23 3.15 ± 1.99 8.61 ± 6.08 3.74 ± 3.03

Patient 10 0.60 ± 0.25 2.81 ± 3.22 7.48 ± 7.78 3.58 ± 4.24

Patient 11 0.20 ± 0.26 6.89 ± 3.76 13.39 ± 6.27 5.21 ± 2.41

Patient 12 0.69 ± 0.24 2.70 ± 3.19 7.78 ± 8.96 3.42 ± 5.00

Patient 13 0.42 ± 0.23 7.01 ± 4.98 14.91 ± 7.62 6.53 ± 4.37

Average 0.61 ±0.21 3.22 ± 3.05 7.79 ± 6.47 3.43 ± 3.35

*PD=Polyline distance; HD=Hausdorff distance; CD=Centroid distance; px=pixels

std=standard deviation.

whereas for the Hausdorff distance the differences ranged from 2.58 ± 1.02 to

9.97 ± 9.65 pixels. On the other hand, for the PDW images, the distances
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calculated by the polyline distance ranged from 1.44 ± 0.59 to 7.01 ± 4.98385

pixels, whereas for the Hausdorff distance the differences ranged from 3.60 ±

2.07 to 14.91 ± 7.62 pixels.

As indicated by Table 3, the lower Dice coefficient obtained for patient 11

was due to the fact that the lumen was not well characterized, as shown in

Figure 8.390

(a) (b) (c)

Figure 8: PDW images of patient 11 with the lumen not well characterized (the yellow colour

represents the manual delineation, i.e. the correct region of interest).

Figure 8 shows that the K-means algorithm was not able to correctly separate

the whole region into clusters corresponding to the low intensity value because

the region belonging to the lumen under analysis was corrupted by high intensity

values. As mentioned earlier, the high quality of the 3D-T1W images and

the good lumen characterization contributed to the good performance of the395

proposed method. Some segmentation examples of PDW images with the lumen

properly characterized are shown in Figure 9.

Figure 9: Segmentation of PDW images with the lumen properly characterized (the yellow

colour represents the manual delineation, i.e. the correct region of interest).

4. Discussion

The development of automatic methods to correctly identify and segment the

lumen in MR images is a challenge considering the low quality of input images,400
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the presence of stenosis and malformations of this structure. In this work an

automatic method to segment the lumen in MR images was presented. Since the

lumen is approximately circular in axial MR images, our method automatically

evaluated the circularity of the regions segmented by the K-means algorithm. In

addition, an active contour algorithm was applied to further refine the boundary405

of the identified region.

The proposed method has several advantages compared to the other meth-

ods found in the literature. The main advantages are that the method is easily

implemented and does not need any kind of user interaction. Also, by using

a circularity index, the region corresponding to the lumen is identified without410

the use of complex algorithms. Although the parameters were tuned taking

into account the characteristics of the dataset used in this article, most of these

characteristics are commonly found in other related datasets, making the chosen

parameters also suitable for these datasets without needing to make any signif-

icant changes in their values. In terms of the parameters of the pre-processing415

step, the mask of the median-filter used is a suitable choice to attenuate the

noise usually found in medical images without leading to excessive smoothing

of the borders of the structures of interest, and is commonly adopted in such

studies. The amount of contrast enhancement is determined by the value of the

α parameter in Equation 2, which is automatically calculated by using the PDF420

of the grayscale intensities of the input image. The most important parameters

are the ones related to the segmentation step. The number of clusters that are

defined has an important role in the proposed method. The grayscale inten-

sity of the lumen in carotid MR images is well-defined and distinguishable from

other structures in the images. Hence, the number of clusters proposed here is425

suitable to be used in other image datasets. Moreover, the number of clusters

was defined by taking into account that the thin and low intensity walls of the

carotid arteries can cause the lumen boundary to leak. Moreover, since this is a

common characteristic found in MR images of carotid arteries, the value of this

parameter is appropriate to separate the regions without loss of performance.430

On using the subtractive clustering algorithm, the ra and rb parameters may

21



affect the number of clusters to be generated [35]. However, since the subtrac-

tive clustering is only used to generate the centroids of the expected number

of clusters, the values of these parameters can be used in other related image

datasets to successfully identify the regions presented according to the same435

expected number.

Several difficulties that can affect the segmentation accuracy have been ad-

dressed in this study. Although the mean roundness measure is an easy and

efficient index to identify circular shapes in images, the use of the mean radius

also identifies regions not corresponding to a circular pattern, such as the ones440

that include the border of the input. Hence, additional indexes are employed to

penalize the mean roundness index in such cases. Depending on the imaging ex-

amination angle, two circular regions corresponding to the internal and external

carotid arteries or the jugular vein can appear in the input image, compromising

the segmentation result when the circular pattern of such regions is greater than445

the one of the lumen under study. Therefore, since the lumen is commonly lo-

cated close to the centre of the input image, the centre index is used to penalize

circular regions far from the centre. Consequently, the segmentation results are

improved.

The results of the quantitative analysis show the superior quality of the 3D-450

T1W images which produced better results compared to the PDW images. The

centroid distance showed that the location of the segmented lumen corresponds

well to the location of the associated manual segmentation, even when there is an

under- or over-estimation of the segmented lumen. The maximum average Dice

coefficient was 0.91±0.04 for the 181 3D-T1W images, whereas for the 181 PDW455

images, the maximum average was 0.74±0.16 . On the other hand, the minimum

average Dice was 0.67± 0.18 and 0.20± 0.26 for the same images, respectively.

It should be pointed out that the segmentation errors relating to patient 11

contributed to the minimum Dice calculated from the PDW images. The poor

quality of the PDW images and the malformation of the lumen contributed460

to the majority of the segmentation errors found. In addition, the incorrect

adjustment of the manual segmentations with respect to the real location of the
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lumen could distort the quantitative analysis. Since the manual segmentations

were based on a combination of several imaging modalities, a misalignment

can exist between such images and the images evaluated here (3D-T1W and465

PDW MR images). A new set of manual segmentations should be built in

order to measure the accuracy of the proposed method against improved manual

delineations. Nevertheless, the proposed method was able to identify the correct

location of the lumen even in noisy images and in images of only reasonable

quality.470

The proposed method achieved a total average Dice similarity of 0.78 ±

0.14 for the 181 3D-T1W images and of 0.61 ± 0.21 for the 181 PDW images.

Although the validation measures and the type of images used in the majority

of related studies are different from the ones presented here, our method is

in accordance with the works that have been published. According to Pratt’s475

Figure of Merit (FOM), the method proposed by Yang et al. [24] achieved a

similarity of 0.705 between the manually delineated and the segmented lumen

contours. Although a complete and simple automatic method to segment the

lumen has been proposed by Yang et al. [24], an analysis of the regions in

the input images and the application of deformable models may improve the480

segmentation accuracy. Also, this method presents the following limitations:

the applied morphological operations can distort the region corresponding to

the lumen, the used gradient based method is not efficient to identify the desired

edges on homogeneous regions, and additional algorithms should be employed to

refine the boundary found. On the other hand, the method proposed by Adame485

et al. [22] achieved a correlation coefficient r of 0.94 between the manually

delineated and the segmented lumen contours. However, all regions of the input

image are processed to find the correct lumen, instead of evaluating only the

regions limited by the wall boundary. In addition, the method proposed by Gao

et al. [25] achieved a correlation coefficient r equal to 0.99 in the segmentation of490

the lumen in IVUS images. However, the lumen segmentation is performed after

the identification of the region corresponding to the media-adventitia layer.

Manual editing could be considered to improve the results of the proposed
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method by manually adjusting the detected contour towards the real boundary

of the lumen, leading to lower segmentation errors and, consequently, higher495

Dice coefficients. However, this would lead to a more time-consuming and sub-

jective solution.

In spite of the potential offered by the proposed method, some limitations

exist. Since the images showed regions of interest (ROI) acquired from the

MRI exam, no additional pre-processing or delineation to limit the ROI was500

performed in the input images. However, the cropping of medical images rep-

resents an important step to generate the regions surrounding the structures

of interest. Since the MRI scan of carotid arteries is performed using a large

field of view, covering the whole region of the neck, the cropping of the images

becomes necessary to remove undesirable structures. Centerline tracking algo-505

rithms [36, 37] represent an alternative to find the centre of the artery in each

slice and crop the image in order to obtain the region surrounding that artery.

The success of the segmentation depends on correctly setting up the parameters

of the proposed method, mainly the percentage of disregarded regions, which

depends on the resolution of the input image. Since small regions corresponding510

to noisy artifacts can also appear as circular regions in some cases, the proposed

method can fail to identify the correct lumen in these cases. The higher the im-

age resolution is, the higher the percentage of disregarded regions should be.

However, special attention must be taken when the lumen appears as a small

region in the input image since it can also be discarded when a high percentage515

of disregarded regions is adopted. Although morphological operations could be

effective to remove noisy regions from the input image, the choice of the shape

and size of the structuring element is relevant to remove any noise efficiently and

avoid the distortion of the region corresponding to the lumen. A more efficient

approach will be considered in the future in order to correctly identify regions520

corresponding to noise without having to use ‘disregarding percentages’.
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5. Conclusions

The development of a fully automatic segmentation method of the lumen

and vessel wall is an-ongoing and intensive focus of research. In this article

a novel method was presented for the automatic lumen segmentation in MR525

images of the carotid artery without user interaction. The proposed method

proved to be promising to identify the correct location of the lumen.

The low quality of the input images and the malformation of the lumen, as

well as the misalignment and lack of manual interventions, contributed to the

majority of the segmentation errors found. Nevertheless, the results showed that530

a good overlap and low point distances between the automatically segmented lu-

men and the associated manual results can be achieved by the proposed method

even in the presence of noise.

Future studies will be conducted to reduce the number of parameters used in

the proposed method and to tune automatically their values based on features535

of the input image. In addition, the segmentation of the vessel wall is going to

be addressed in the next step of our research.
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