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ABSTRACT: In this paper a numerical model to study the vibro-acoustic behavior of a laminated plate backed by a poroelastic

foam layer is developed. Such approach consists on a coupled mitigation strategy aiming either mechanical vibration suppression

or acoustic attenuation as well. The laminated plate model consists of fiber laminae with interleaved viscoelastic layers in standard

constrained or integrated layer damping schemes, whereas surface mounted poroelastic foam materials are included. Mechanical

and acoustic excitations in terms of incident plane waves are considered in this study. For the plate modeling, the finite element

method considering a layerwise kinematic assumption is used. On the other hand, poroelastic treatments are developed based on

the Biot’s theory of poroelasticity. As a result, using the capabilities of the multi-layered model, different vibro-acoustic indicators

characterizing the vibro-acoustic behavior of panels vibrating in an acoustic fluid are computed, namely, mean square velocity,

radiation sound power, radiation efficiency and transmission loss of the coupled fluid-plate system. In addition, a study addressing

the coupling between both solid and fluid phases of the poroelastic material in the plate-foam coupled design is performed aiming

to study about the energy dissipation and sound mitigation performance of the poroelastic treatment.

KEY WORDS: Vibro-acoustics; Biot’s theory; Poroelastic; Viscoelastic; Damping; Composite.

1 INTRODUCTION

Lightweight composite panels used in automotive and aerospace

constructions suffer from low acoustic performance when sub-

jected to mechanical and/or acoustic excitations. Many research

efforts have been done towards to develop passive damping

technologies to control vibrations and acoustic problems by ex-

ploring damping properties of polymer-based materials embed-

ded onto laminated components. Therewith, for an accurately

prediction of the behavior of laminated components several fi-

nite element models have been developed. In general, the equiv-

alent single layer model or the layerwise model are employed.

In the equivalent single layer model the multi-layer structure is

considered as a unique homogeneous layer for which equivalent

mechanical properties are derived. On the other hand, a lay-

erwise model takes each layer separately which allows for an

effective modeling of the deformation process in multi-material

laminated structures [1].

Regarding the vibration control through passive damping tech-

nologies, those using viscoelastic materials interleaved with stiff

isotropic elastic layers have been extensively applied to suppress

resonant mechanical behavior [2–4] and sound radiation prob-

lems [5–8]. The open literature regarding vibrations and sound

radiation from fiber composite structures is less abundant. How-

ever, the anisotropic characteristics of the laminae allows for a

well-suited design in terms of damping treatments [9, 10] with

respect to vibro-acoustic performance. In the present work the

constrained damping treatment consisting of a thin viscoelastic

layer embedded into the main vibrating component and covered

with a stiffer elastic layer is studied, which constitutes, in gen-

eral, the most effective damping configuration owing to higher

amount of energy dissipated caused by high transverse shear de-

formations developed within viscoelastic layer due to the trans-

lation of the neutral plane caused by the constraining layer.

In conjunction with viscoelastic materials further control so-

lutions by using porous materials are increasingly applied for

noise control purposes owing to their sound absorption fea-

tures due to its porous and filamentous microstructure being

frequently used in a structure-lined design, bonded, unbounded

or mounted closed to the main vibrating component. A certain

class of porous foams with flexible skeleton exhibits viscoelas-

tic behavior contributing either for airborne noise mitigation or

further structural damping [11]. The porous materials consid-

ered in this work are those consisting of an elastic frame (solid

phase) saturated by an acoustic fluid (fluid phase). The behav-

ior of such materials can effectively be predicted by using the

Biot’s theory of poroelasticity [12, 13] for which various for-

mulations were developed in the last decade and half. In the

present work, the mixed-displacement pressure formulation [14]

is used, which is an exact formulation with respect to the Biot

model.

The sound radiation from non-porous structures has been in-

vestigated along the past decades. However, the literature fo-

cusing the radiation behavior of porous foams is still scarce.

In a recent paper, Atalla et al. [15] presented an extended in-

tegral weak formulation for Biot’s equations considering fur-

ther virtual work contributions of the radiated pressure using

Rayleigh integral. The authors show that the proposed radiation

impedance approach allows for an improved accounting of the
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radiation damping near to resonance frequencies. In addition,

they also concluded that porous foams have small radiation effi-

ciency what constitutes a motivation to use such foams as free-

layer sound absorbing treatments mounted in efficient radiators.

The porous materials are often acoustically characterized con-

sidering airborne excitations with porous sample mounted over

a rigid surface. Under these conditions, porous performance in-

dicators may only be valid for acoustic excitations, disregarding

the radiation behavior arising from low-frequency mechanical

excitations provided from vibrations of host components. A

few research has been conducted to consider the influence of

the base motion on absorption performance of porous materials

[16–18]. In the present study, this issue is studied considering

orthotropic components as the base which constitute an enlarge-

ment of the state-of-the-art in this field.

This paper presents a numerical approach based on a cou-

pled Finite Element - Rayleigh Integral strategy to study vibro-

acoustic response from fiber composite panels embedding vis-

coelastic layers and lined with a sound absorbing poroelastic

foam. The present approach is used to predict the dynamics of

such a panel immersed in an acoustic domain in which both me-

chanical and acoustic excitations are applied to the panel. To

the author’s knowledge, studies devoted on the sound radiation

from viscoelastically damped fiber composite structures lined

with poroelastic foams was not properly explored regarding the

sound radiation process from the porous foam mounted over a

vibrating orthotropic panel.

2 THEORETICAL FORMULATION

2.1 Description of mathematical model

The problem under analysis is shown in Fig. 1.
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Figure 1. Geometry of the composite plate structure covered by

a poroelastic foam. Global reference (x,y,z) and material refer-

ence (1,2,3).

A rectangular plate is comprised of an elastic plate (a×b×he)
covered by a poroelastic foam (a× b× hp). The elastic plate

may be simply isotropic or an anisotropic structure with a

generic stacking of isotropic/orthotropic layers. In addition, a

viscoelastic layer may be considered embedded to the elastic

structure. The entire coupled elasto-visco-porous structure is

assumed to be in the reference plane (x,y) located at the middle

surface of the elastic plate and placed between two infinite rigid

baffles. One of the baffle separates a semi-infinite acoustic do-

main for z< 0 and the other one for z> hp. Therefore, the entire

structure can interact with surrounding acoustic medium on its

lower and upper surfaces. The plate may be subjected to har-

monic forces provided from mechanical loads and/or acoustic

sources.

2.1.1 Composite plate modelling

The displacement field in each layer k of the elastic plate is writ-

ten as [1],

uk = u0 +
h1

2
βx

1 +
k−1

∑
j=2

h jβx
j +

hk

2
βx

k + zkβx
k

vk = v0 +
h1

2
βy

1 +
k−1

∑
j=2

h jβy
j +

hk

2
βy

k + zkβy
k (1)

wk = w0

where u0, v0 are the in-plane displacements in the x and y di-

rections and w0 is the out-of-plane displacement in the trans-

verse direction z of the first layer of the generalized multilay-

ered model. βx
k and βy

k are the rotations in the xz and yz planes

around the y and x axes, respectively. For each layer the kine-

matics based on the first-order shear deformation theory (FSDT)

is assumed. According to (1) the continuity of interlayer dis-

placements is assured. The model is used here to modelling

multilayered composite panels including fiber composite lami-

nates, viscoelastic materials and isotropic laminae.

The governing equations of motion of the plate vibration can be

derived using the Hamilton’s principle,

δ
∫ t2

t1
(V −U +W )dt = 0, (2)

where V , U and W are the kinetic energy, the potential (strain)

energy and the work done by the external applied loads, respec-

tively. The kinetic and potential energies of a laminated with N
layers are given by the summation of the contributions of each

layer k,

V =
N

∑
k=1

1

2

∫
A

u̇TJku̇dA, U =
N

∑
k=1

1

2

∫
A

uTBT
k DkBkudA, (3)

where u and u̇ are, respectively, the displacement and the ve-

locity vectors, Bk is the deformation matrix and Jk is the inertia

matrix. The constitutive matrix Dk for each lamina is given by,

Dk =

⎡
⎢⎣hkCk 0 0

0 h3
k

12 Ck 0
0 0 hkGk

⎤
⎥⎦ , (4)

where hk is the layer thickness and Ck and Gk are the constitu-

tive matrices in the global reference given by,

Ck = TfCTT
f , Gk = TsSTT

s , (5)

where Tf and Ts are the transformation matrix from local to

global reference for bending and shear elasticity matrices,

Tf =

⎡
⎣c2 s2 −2cs

s2 c2 2cs
cs −cs c2 − s2

⎤
⎦ , Ts =

[
c −s
s c

]
, (6)
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where c = cos(θ), s = sin(θ) and θ is the angle between the ma-

terial axis 1 and the global direction x. For an orthotropic lamina

the constitutive matrices in the material reference one writes,

C =

⎡
⎣C11 C12 0

C12 C22 0

0 0 C44

⎤
⎦ , S =

[
C55 0

0 C66

]
, (7)

in which the elasticity coefficients are given by,

C11 =
E1

1−ν12ν21
, C44 = G12, (8)

C12 =
ν21E1

1−ν12ν21
, C55 = G13, (9)

C22 =
E2

1−ν12ν21
, C66 = G23. (10)

For an isotropic layer, the constitutive matrix is defined as,

Ck =
Ek

1−ν2
k

⎡
⎣ 1 νk 0

νk 1 0

0 0 1−νk
2

⎤
⎦ , Gk =

Ek

2(1+νk)

[
1 0

0 1

]
,

(11)

where Ek and νk are the Young’s modulus and Poisson’s ratio of

the material. The virtual work done by an external distributed

loading applied to the plate surface one writes,

δW =
∫

S
δuTqdS, (12)

where q is the distributed load and S is the plate area. Applying

the Hamilton’s principle and assuming a steady harmonic time-

dependence ejωt the weak form of the composite plate problem

can be expressed as follows,

N

∑
k=1

(∫
A

δuTBT
k DkBkudA−ω2

∫
A

δuTJkudA
)

=
∫

S
δuTqdS. ∀(δu) (13)

2.1.2 Poroelastic material modeling

The fundamental equations of the Biot’s theory of the poroelas-

ticity [12, 13] in conjunction with the frequency-domain mixed

displacement-pressure formulation (u, p) [14] are considered

here to modeling an isotropic poroelastic foam saturated by an

acoustic fluid. The Biot model applied to the poroelastic foam

comprises two homogeneous and continuum mediums (a solid

phase and fluid phase) which are coupled by inertial and viscous

forces developed into the porous medium owing to the relative

motion of the solid and fluid particles. In the case of the mixed

formulation the primary variables are the fluid pressure p and

the solid phase displacements us = [ux,uy,uz]
T; the poroelas-

tic model thus requires only four degrees of freedom instead of

six ones of the displacement-displacement formulation primar-

ily derived.

Considering the Biot equations and using the principle of the

virtual work, the weak form for the poroelastic material yields

in the form,
∫

Ωp

ε(δus)
TD̃εdΩp −ω2ρ̃

∫
Ωp

δuT
s us dΩp

+
φ2

ω2ρ̃22

∫
Ωp

∇δpT ·∇pdΩp − φ2

R̃

∫
Ωp

δp · pdΩp

− γ̃
∫

Ωp

∇δpT ·us dΩp

− γ̃
∫

Ωp

δuT
s ·∇pdΩp −

∫
∂Ωp

φ(u f −us)nδpdΓ

−
∫

∂Ωp

δuT
s σ̂pndΓ = 0, ∀(δus,δp) (14)

where σ̂p and ε are, respectively, the total stress tensor and the

strain tensor of the solid phase, D̃ is the elasticity matrix of the

solid phase which may accounts for damping in the solid skele-

ton, us and u f are the macroscopic displacements of the solid

and fluid phases, respectively, R̃ is the bulk modulus of the air

within a fraction φ of the volume of the porous material and ρ̃
and ρ̃22 are the effective densities of the solid phase and the fluid

phase, respectively. n is the unit normal vector outwards from

the boundary, σ̂p ·n stands for external surface forces per unit

area along the normal direction at the boundary surface ∂Ωp.

The parameter γ̃ is defined as follows,

γ̃ = φ
(

ρ̃12

ρ̃22
− Q̃

R̃

)
, (15)

where Q̃ is the elastic coupling coefficient between the solid and

fluid phases. Ωp and ∂Ωp denote, respectively, the poroelastic

domain and its boundary and ω is the angular frequency.

2.1.3 Continuity coupling plate-foam

The poroelastic foam is considered perfectly bonded to the com-

posite plate. Therefore, appropriate interface conditions have to

be satisfied at the plate-foam interface to ensure continuity of

normal stresses, the zero relative mass flux between the porous

solid and fluid phases across the interface and the displace-

ment continuity between both solid domains. Those interface

restraints can be conveniently written in the form,

σ̂pn = σen, (16)

φ(u f −us)n = 0, (17)

ûp = ue, (18)

where σe is the elastic (plate) stress tensor, ûp and σ̂p are the

total displacement vector and stress tensor of the porous mate-

rial, respectively, and ue, u f and us are the displacement vectors

of the elastic (plate), porous fluid phase and solid phase, respec-

tively. n is the interface normal vector and φ is the porosity.

Once the coupling between the poroelastic domain and the elas-

tic domain is natural [19] only the kinematic condition (18) has

to be explicitly imposed on the plate-foam interface. To this

end, in this work the Lagrange multipliers method is used to en-

force the normal continuity of both elastic plate and solid phase

displacement fields.
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2.1.4 Viscoelastic damping modelling

The viscoelastic material considered throughout this work is the

ISD-112 of 3M in which the frequency-dependent mechanical

properties are determined using the three-series Anelastic Dis-
placement Field model for a temperature of 27 oC. In terms

of the finite element implementation the complex modulus ap-

proach is considered for which the mechanical properties of the

viscoelastic material are given in terms of the complex shear

modulus,

G(ω) = G′(ω)[1+ jη(ω)], (19)

in which G(ω) stands for the frequency-dependent shear modu-

lus and η(ω) is the loss factor of the material,

η(ω) =
G′′(ω)
G′(ω)

, (20)

where G′(ω) and G′′(ω) are, respectively, the shear storage

modulus and the shear loss modulus, the latter accounting for

energy dissipation effect. In addition, once the Poisson’s ra-

tio can be reasonably taken as frequency-independent the ex-

tensional modulus can be easily taken on the model implemen-

tation. Fig. (2) shows the frequency dependency of the vis-

coelastic properties in terms of the shear storage modulus and

the loss factor of the material ISD-112 over the frequency range

[0−1000] Hz.

10
0

10
1

10
2

10
3

0

1

2

3

Frequency /Hz

Sh
ea

r 
st

or
ag

e 
m

od
ul

us
 [M

Pa
]

10
0

10
1

10
2

10
3
0

0.5

1

1.5

L
os

s 
fa

ct
or

 η

η’(ω)
G’(ω)

Figure 2. Frequency dependency of the viscoelastic properties

of the material 3M ISD-112 at 27 oC, used in this study. Shear

storage modulus G′(ω) and loss factor η(ω).

2.2 Finite element implementation

The variational forms of the elastic plate and poroelastic foam

domains, given respectively in Eqs. (13) and (14), are dis-

cretized using the Galerkin finite element method. In that sense,

for poroelastic problem the following mapping is considered,

us = NsUs, p = N f P, (21)

where Us and P are the vectors of nodal displacements of the

solid phase and nodal pressures, respectively, N are the inter-

polation functions within the finite element and the subscripts

s and f denote the solid and the fluid component, respectively.

The discretization of the variational form given in (14) yields,

∫
Ωp

ε(δus)
TD̃εdΩp =⇒ δUTKsU, (22)

∫
Ωp

δuT
s us dΩp =⇒ δUTMsU, (23)

∫
Ωp

δuT
s ·∇pdΩp =⇒ δUTHs f P, (24)

∫
Ωp

∇δpT ·∇δpdΩp =⇒ δPTK f P, (25)

∫
Ωp

δp · pdΩp =⇒ δPTM f P, (26)

∫
Ωp

∇δpT ·us dΩp =⇒ δPTH f sU, (27)

In addition, δUs and δP as well can be arbitrary (stationarity

condition) leading to the following system of discrete equations,

[
Ks −ω2Ms Hs f

H f s K f /ω2 −M f

]{
Us
P

}
=

{
Fs

F f /ω2

}
, (28)

where Ms and Ks are the equivalent mass and stiffness matrices

for the solid phase, respectively, and M f , K f are the equivalent

kinetic and compression matrices for the fluid phase, respec-

tively. Hs f is the volume coupling matrix between both solid

phase displacement and fluid pressure and H f s =−HT
s f . Fs and

F f are the load vectors of the applied forces on the solid phase

and fluid phase, respectively.

Using similar procedure as for poroelastic problem, the finite

element discretization of the variational form for elastic plate

given in (13) yields in the form,

N

∑
k=1

∫
A

δuTJkudA =⇒ δUT
e MeUe, (29)

N

∑
k=1

∫
A

δuTBT
k DkBkudA =⇒ δUT

e KeUe. (30)

The stationarity condition leads to the following system of dis-

crete equations for elastic composite plate,

[
Ke(ω)−ω2Me

]
Ue = Fe, (31)

where Me is the consistent mass matrix of the composite panel

and Ke(ω) = Kel + Kv(ω) where Kel is the stiffness matrix

of the composite elastic plate and Kv(ω) is the frequency-

dependent stiffness matrix of the viscoelastic layer defined ac-

cording the complex modulus approach. Fe is the load vector

applied to the elastic plate. The fully coupled plate-foam finite

element model yields in the following frequency-domain system

4
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of discrete equations,

⎛
⎜⎜⎝
⎡
⎢⎢⎣

Ke 0 0 L
0 Ks 0 R
0 0 K f 0

LT RT 0 0

⎤
⎥⎥⎦

−ω2

⎡
⎢⎢⎣

Me 0 0 L
0 Ms 0 R
0 0 M f 0

LT RT 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠
⎧⎪⎪⎨
⎪⎪⎩

ue
us
p
λ

⎫⎪⎪⎬
⎪⎪⎭=

⎧⎪⎪⎨
⎪⎪⎩

Fe
Fs
Fp
0

⎫⎪⎪⎬
⎪⎪⎭ , (32)

where L and R accounting for additional constraints involving

the free normal degrees of freedom in both plate and foam mod-

els.

2.3 Acoustic model

The radiation process considered herein comprises two parts,

namely, the radiation describing the transmission from the plate

to the acoustic medium and the fluid loading takes into account

for the effect of the fluid on the structure. This problem may be

accounted by several approaches according to the fluid/structure

impedance ratio. For a light fluid, the fluid mass may be ne-

glected and both acoustic and structural problems can be solved

independently. For heavy fluids, the problem is more complex

owing to strong acoustic radiation damping and added mass ef-

fects which may significantly change the inertia of the coupled

structure. In the present work we are concerned mainly with

radiation involving light fluids such as the air. However, the

fluid loading is also considered in the present approach. Con-

sidering the plate immersed in an acoustic environment as de-

scribed previously, each surface pertains to a plane which is

rather contained in an infinite plane rigid baffle. In this con-

text, the acoustic radiation from the entire plate may be ac-

counted through the boundary Rayleigh integral approach [20].

Let p1(x,y,z) and p2(x,y,z) be the acoustic pressure field in the

half-space Ω1 (z < 0) and Ω2 (z > hp), respectively. Following

the Rayleigh integral procedure and considering the Cartesian

reference the pressure fields in each half-space are given by the

following integral equations,

p1(r) = ρ1ω2
∫

Se
G(r,r0)w(r0)dSe, z < 0 (33)

p2(x) = −ρ2ω2
∫

Sp
G(x,x0)w(x0)dSp, z > hp (34)

where ρ1 and ρ2 are the fluid densities, G = e−jkR/2πR is the

free-field Green’s function which satisfies the condition ∂G/∂n
on the rigid baffle, k = ω/c is the acoustic wave number and R
corresponds to the distance between the surface source points

(r0, x0) (integration points) and the receiver points (r, x) (eval-

uation points) on the acoustic field. The main advantage of the

Finite Element - Rayleigh Integral approach presented in this

work is that no additional unknowns are required beyond the

structural ones arising from the finite element method. In ad-

dition, the weak and strong coupling can suitably be accounted

by an acoustic impedance matrix. The main drawback yields

from the frequency-dependency of the impedance matrix which

usually leads to time-consuming computations. However, in

some cases interpolation procedures can be chosen to improve

time computations without compromising the accuracy of cal-

culations. The vector of applied forces to the plate accounting

for mechanical and fluid forces is given in left-hand side of Eq.

(31). The counterpart due to the acoustic load may be written

as,

Fa =
∫

S
NT pdS. (35)

Substituting Eq. (33) into Eq. (35) yields,

Fa = ω2ρ1ZUe, (36)

where Z(ω) is the geometrical and frequency-dependent radia-

tion impedance matrix written as,

Z =

∫
S

∫
S

NTG(r,r0)NdSdS. (37)

The real part of Z corresponds to the acoustic radiation damping

whereas its imaginary part is a measure of the fluid added mass.

The numerical evaluation of the radiation matrix is time con-

suming particularly for higher frequencies where high integra-

tion orders are required to get accurate results. A comprehensive

review on the evaluation of the radiation impedance matrix cal-

culation is done in [21]. In the present work, the radiation matrix

is calculated for the finite element used considering two differ-

ent numerical integration schemes based on the standard Gauss-

Legendre quadrature. The cross-influence coefficients involving

non-coincident finite elements are calculated using standard nu-

merical integration where each surface integral contributes in a

similar fashion to each matrix coefficient. On the other hand,

the self-influence coefficients involving coincident elements re-

quire an accurate procedure to deal with the weak singularity

appearing in the integrand coming from Green’s function. In the

present work, a technique based on the Lachat-Watson transfor-

mation is used.

The most disadvantage dealing with the radiation matrix Z lies

on its frequency-dependency leading to prohibitive computa-

tional times for frequency response calculations. To avoid the

calculation of the matrix at each frequency point for a given

frequency band of interest, some techniques considering inter-

polation procedures are available in the literature. However, due

to the smoothness of the kernel Green’s function with respect to

the frequency a simple interpolation can be chosen [5]. In this

work, a simple quadratic interpolation is considered. The ma-

trix is calculated at the frequency points ωi, ω j and ωi j (with

ωi < ωi j < ω j) and the matrix values between those frequency

points are simply interpolated with the following relation,

Z(ω) = qi(ω)Z(ωi)+qi j(ω)Z(ωi j)+q j(ω)Z(ω j), (38)

where the frequency coefficients q(ω) are the well-known La-
grange basis functions written as,

qi(ω) =
(ω−ωi j)(ω−ω j)

(ωi −ωi j)(ωi −ω j)
, (39)

qi j(ω) =
(ω−ωi)(ω−ω j)

(ωi j −ωi)(ωi j −ω j)
, (40)

q j(ω) =
(ω−ωi)(ω−ωi j)

(ω j −ωi)(ω j −ωi j)
. (41)
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2.4 Plate loading

In the present model both acoustic and mechanical loads may

be applied on to plate surface. In terms of mechanical loads

only point force excitations are of interest here. On the other

hand, regarding the acoustic external loads only incident pres-

sure fields by plane waves are considered. For the plate under

acoustic loading the total pressure pt developed on the plate sur-

face is given by,

pt = pr1 − pr2 + pb, (42)

where pr1 and pr2 are the radiated pressure fields on the loaded

side and free side, respectively, and pb is the fluid pressure that

occurs on the incident side if the plate is perfectly rigid. Con-

sidering the plate fully immersed in a light fluid, the pressure

caused by the radiation impedances of the fluid medium can rea-

sonably be neglected to the plate loading. Moreover, the pres-

sure radiated on the loaded side may also be disregarded when

compared with the blocked pressure pb. Thus, the pressure load

may be given by the blocked pressure which may be approxi-

mated by twice the incident pressure [22],

pi(x,y,ω) = 2p̄i e-j(kxξ+kyη), (43)

where pi is the frequency-domain incident pressure field gener-

ated by an incident plane wave, p̄i is the amplitude of the inci-

dent pressure field and ξ = x−a/2 and η = y−b/2, according

to the global reference considered in Fig. (1). The components

of the wave vector k = {kx ky} in the incident acoustic medium

are given by,

kx = k sin(θ)cos(φ), ky = k sin(θ)sin(φ), (44)

where k = ω/c is the wave number and c is the speed of sound

in the incident acoustic medium, θ is the incident angle (mea-

sured from z axis) and φ is the azimuthal angle. Consequently,

the force vector due to the incident pressure field one writes,

Fa = 2p̄i

∫
S

NTpi(ω)dS. (45)

2.5 Vibration and acoustic indicators

The most useful vibration and acoustic indicators used in this

work to study the dynamics of composite plate lined with the

poroelastic foam are given in the following.

• Mean Square Velocity

The mean square velocity relating the overall behavior of the

plate vibration is defined as,

v2 =
1

2S

∫
S
|v|2dS, (46)

where v is the plate velocity and S is the plate surface.

• Radiated Sound Power

The radiated sound power characterizes the acoustic radiation

from the plate and is defined as,

Πr =
1

2

∫
S

Re(pv∗)dS, (47)

where p is the radiated sound pressure and v∗ is the complex

conjugate plate velocity.

• Radiation Efficiency

The non-dimensional radiation efficiency of the plate-acoustic

system characterizing the acoustic radiation is defined as the ra-

tio of the acoustic energy radiated by the structure to its potential

energy,

σ =
Πr

ρcSv2
. (48)

• Transmission Loss

The transmission loss (TL) on the plate is defined by,

TL = 10log

(
Πi

Πr

)
, (49)

where Πr is the radiated sound power given by Eq. (47) and

Πi is the incident power due to an incident acoustic pressure

field. For an incident plane wave excitation the incident power

is given by,

Πi =
|p̃i|2cos(θ)S

2ρ f c f
, (50)

where p̃i and θ are the incident pressure field amplitude and the

incident angle measured from z axis, respectively, and ρ f and

c f are the mass density and the speed of sound of the excited

acoustic medium, respectively.

• Absorption coefficient

The absorption coefficient of the panel when subjected to an in-

cident acoustic pressure field may be defined as follows,

α(θ,ϕ) =
Πi

Πd
, (51)

where Πd stands for the dissipated power on the plate.

3 NUMERICAL APPLICATION

In this section a simply supported plate-foam example is con-

sidered to assess the proposed numerical approach. Table 1

presents the material properties for an isotropic plate and a

poroelastic foam material.

Table 1. Aluminum plate and foam properties.

Plate Al

Lateral dimensions 0.48 × 0.42 m2

Thickness 1 mm

Mass density 2680 kgm−3

Young�s modulus 66 GPa

Poisson�s ratio 0.33

Loss factor 0.0

Foam

Thickness 3 cm

Porosity 0.98

Flow resistivity 13500 Nsm−4

Tortuosity 1.70

Viscous charac. length 20 μm

Thermal charac. length 160 μm

Mass density 30.0 kgm−3

Young�s modulus 540 kPa

Poisson�s ratio 0.35

Loss factor 0.01
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The effect fluid loading on the panel vibrations was firstly

evaluated considering the plate immersed into two different flu-

ids (air and water) as shown in Fig. 3. In the presence of a

heavy fluid the plate response can be significantly modified due

to the fluid coupling. On the other hand, the light fluid intro-

duces small variations on the plate vibrations which may justi-

fies the use of simplified acoustic models to compute the vibro-

acoustic coupled response of those damped structures immersed

in air. In order to firstly validate the presented poroelastic ma-

terial model, a comparison of real and imaginary parts of the

surface impedance of the poroelastic foam layer with the ones

of [14] is shown in Fig. 4.
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Figure 3. Effect of fluid impedance on the mechanical response

of the isotropic plate.
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Figure 4. Comparision of surface impedance of laterally infinite

poroelastic layer with reference [14].

4 CONCLUSION

In this paper a numerical approach based on the finite element

method and Rayleigh integral is developed to simulate vibro-

acoustic response of fiber composite materials treated with vis-

coelastic materials and lined with poroelastic sound absorbing

foams. The model allows for taking the fluid loading into con-

sideration by an acoustic impedance matrix. For a plate im-

mersed into a light fluid such air the fluid loading slightly mod-

ifies the plate response by a small added mass effect. A par-

tial model validation concerning the poroelastic foam material

model is performed.
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