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Abstract. This work reports on the experimental and numerical study of the bending behaviour of 
two-dimensional adhesively-bonded scarf repairs of carbon-epoxy laminates, bonded with the 
ductile adhesive Araldite 2015®. Scarf angles varying from 2 to 45º were tested. The experimental 
work performed was used to validate a numerical Finite Element analysis using ABAQUS® and a 
methodology developed by the authors to predict the strength of bonded assemblies. This 
methodology consists on replacing the adhesive layer by cohesive elements, including mixed-mode 
criteria to deal with the mixed-mode behaviour usually observed in structures. Trapezoidal laws in 
pure modes I and II were used to account for the ductility of the adhesive used. The cohesive laws 
in pure modes I and II were determined with Double Cantilever Beam and End-Notched Flexure 
tests, respectively, using an inverse method. Since in the experiments interlaminar and transverse 
intralaminar failures of the carbon-epoxy components also occurred in some regions, cohesive laws 
to simulate these failure modes were also obtained experimentally with a similar procedure. A good 
correlation with the experiments was found on the elastic stiffness, maximum load and failure mode 
of the repairs, showing that this methodology simulates accurately the mechanical behaviour of 
bonded assemblies. 

Introduction 
Carbon-Fibre Reinforced Plastic (CFRP) composites are often used in structures requiring high 
specific strength and stiffness. However, these materials are highly susceptible to suffer 
delamination damage, due to their low interlaminar strength. Adhesively-bonded repairs of 
structures with these materials are increasing in engineering applications, compared to the 
traditional repair techniques, such as riveting or mechanical fastening. Adhesively-bonded repairs 
benefit from a reduction of weight, easy conformance to complex shapes, less stress concentrations, 
preservation of the fibres continuity, amongst other advantages. There are mainly two repair 
techniques for composite structures: strap (single or double) and scarf repairs. The larger bond areas 
and the reduction of stress concentrations at the bond edges due to the adherend tapering effect 
justify the higher efficiency of the scarf repairs, compared to the easy-execution strap repairs. 
The majority of the works on the strength of scarf joints or repairs focus on their tensile behaviour. 
Li et al. [1] proposed a technique based on relative strain measurements, using Bragg grating 
sensors, to identify debonding onset in scarf joints under tension. Debonding onset was detected by 
a differential strain approach, using two sensors whose strain differential increased with the debond 
length. A two-dimensional stress and failure Finite Element Method (FEM) numerical analysis of 



 

tensile loaded CFRP scarf repairs was carried out by Odi and Friend [2], for scarf angles varying 
from 1.1 to 9.2º. The repairs strength was predicted using the Tsai-Wu and maximum stress failure 
criteria for the adherend and the average shear stress failure criterion for the adhesive. Kumar et al. 
[3] presented an experimental and FEM study regarding the tensile strength of CFRP scarf joints. 
The numerical failure loads as a function of the scarf angle were obtained using the FEM and the 
Hashin-Lee criterion for the adherends, and agreed with the experimental ones. 
This work addresses an experimental and numerical study of CFRP adhesively-bonded scarf repairs 
under bending. Scarf angles (α) varying from 2 to 45º are considered. The experimental results 
were used to validate a developed numerical methodology using the FEM and a mixed-mode 
cohesive damage model implemented in ABAQUS®. The behaviour of the adhesive layer was 
modelled using cohesive elements with trapezoidal traction-separation laws in pure modes I and II. 
This shape was selected to account for the ductility of the adhesive used in this work (Araldite® 
2015). The respective cohesive laws in pure modes I and II were determined with Double 
Cantilever Beam (DCB) and End-Notched Flexure (ENF) tests, respectively, using an inverse 
method. Since in the experiments interlaminar and transverse intralaminar failures also occurred, 
cohesive laws to simulate these failure modes were also obtained experimentally with an identical 
procedure. 

Cohesive Damage Model 

Model Description. A mixed-mode (I+II) cohesive damage model implemented within zero 
thickness interface finite elements was used to simulate a thin adhesive layer of Araldite® 2015. A 
trapezoidal law between stresses (σ) and relative displacements (δr) between homologous points of 
the interface finite elements was used (Fig. 1). 
 

 
Fig. 1 – Trapezoidal softening law in pure mode and mixed mode. 

 
It is thus necessary to know the local strength at the crack tip (σu,i, i=I, II) and the fracture 
toughness (Jic, i=I, II) in each mode. Damage initiation is predicted using the following quadratic 
stress criterion 
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where σi, (i=I, II) corresponds to the stress in a given integration point of an interface element in the 
respective pure mode. Stress softening onset is predicted by a quadratic displacements criterion 
similar to Eq. 1: 

σu,i 

σum,i 

σ i 

δ1m,i δ1,i δum,i 
δu,i δ i 

Pure mode model 

Mixed mode 
model 

Jic (i = I, II) 
 

Ji (i = I, II) 

δ2,i δ2m,i 



 

 

 
2 2

2m,I 2m,II

2,I 2,II

1
δ δ
δ δ

   
+ =      

   
. (2) 

 
δ2,i (i=I, II) represent the relative displacements in each pure mode at the initiation of stress 
softening and δ2m,i (i=I, II) the corresponding mixed-mode displacements. Damage growth is 
predicted using the linear energetic criterion 
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The area under the minor trapezoid of Fig. 1 represents the energy released in each mode, while the 
bigger trapezoid area corresponds to the respective Jic. When Eq. 3 is satisfied, damage propagation 
occurs and stresses are completely released, with the exception of normal compressive ones. A 
detailed description of the model used is presented in the work of Campilho et al. [4]. 
 
Cohesive Parameters. The adhesive layer was modelled numerically using the interface finite 
elements with the trapezoidal shape traction-separation laws described previously, instead of the 
solid finite elements typically employed to this end. The initial relationships between σ and δr in 
pure mode I and II, for δ<δ1,i (Fig. 1), are defined by the stiffness parameters (ei, i=I, II), to simulate 
the elastic behaviour of the adhesive layer. Thus, these parameters are obtained by the ratio between 
the longitudinal or shear modulus (E or G, respectively) and the adhesive layer thickness (tA). The 
values of E and G were determined experimentally [5] with bulk tensile tests and Thick Adherend 
Shear Tests (TAST), respectively (E=1850 MPa, G=650 MPa). To completely characterize the 
trapezoidal laws in pure modes I and II, the values of σu,i, δ2,i and Jic must also be determined. Jic 
was obtained by conventional fracture characterization tests using the same value of tA of the 
specimens to be simulated, using DCB and ENF tests for pure mode I and II, by the respective 
order. The two other parameters were calculated by an inverse method with these same tests. Using 
this methodology, the value of Jic is used as an input parameter in numerical DCB or ENF models. 
These models, having the individual dimensions of each tested specimen, include the respective 
pure mode cohesive law with the value of Jic previously determined for the respective specimen and 
typical values for σu,i and δ2,i. These properties are determined performing a few iterations until a 
good accuracy between the experimental and numerical load-displacement (P-δ) curves is achieved. 
In these repairs, regions of composite interlaminar and intralaminar fractures were also detected. 
Consequently, the cohesive properties in pure modes I and II for these failures were also determined 
by a similar technique. However, in these situations, a penalty function method was used for the 
initial ascending part of the pure mode I and II cohesive laws, since the interface finite elements 
simulate a zero thickness interface instead of a finite thickness layer. Moreover, triangular traction-
separation laws were used, due to the brittle nature of these interfaces. Failure of the composite 
plies in the fibres direction was also taken into account, even though this was not detected 
experimentally. The detailed explanation of the inverse methodology and the determination of the 
adhesive layer, composite interlaminar, intralaminar and fibre cohesive parameters are presented in 
a previous work [6]. For the adhesive layer laws, it is emphasized that cohesive failures were 
always obtained in the DCB and ENF specimens, which is essential to characterize the adhesive 
layer accurately. 
 
 



 

Experimental Work 
The geometry of the scarf repairs is presented in Fig. 2 (a) (a=270 mm, b=15 mm, tP=2.4 mm, 
tA=0.2 mm and d=10 mm). Values of α of 2, 3, 6, 9, 15, 25 and 45º were evaluated. Smaller scarf 
angles were not tested, since the repair lengths needed were not compatible with the chosen value 
of α. Fig. 2 (b) shows the test setup, with S=250 mm, S’=150 mm, dc=5 mm and e=10 mm. The 
laminates and patches were fabricated using carbon/epoxy prepreg (Texipreg HS160RM from 
SEAL®) with 0.15 mm of ply thickness and a [02,902,02,902]S lay-up. The orthotropic elastic 
properties of a unidirectional lamina are presented in [7]. A detailed description of the specimens 
fabrication procedure is given in the work of Campilho et al. [6].The bending tests were performed 
with an electro-mechanical Instron® 5848 Microtester equipped with a 2kN load cell. A constant 
velocity was applied (2 mm/min) during the experimental tests, accomplished at room temperature. 
A sample rate of 5 points per second was used. Six specimens were tested for each value of α and at 
least four valid results were always obtained. 
 

 
Fig. 2 – Scarf repair geometry (a) and test setup (b). 

Numerical Work 
The numerical analysis, including the interface finite elements with different cohesive laws for 
damage onset propagation, was performed in ABAQUS®, including geometrical and material non-
linearities. The laminates and patches were modelled with plane-stress 8-node rectangular and 6-
node triangular solid finite elements. Fig. 3 (a) shows a detail of the mesh at the lower scarf tip 
(region B in Fig. 2 (a)), for the α=25º repair. Eighty solid finite elements were used along the bond 
length near the adhesive layer, due to the high stress gradients in this region. Due to the symmetry 
of these repairs, only half the specimen was considered, applying symmetry conditions at the 
middle of the repair (line A-A in Fig. 2). The placement of the interface finite elements is presented 
in Fig. 3 (b). The adhesive layer elements were placed along the bond length replacing the adhesive 
layer, the interlaminar elements were positioned between differently oriented plies, the transverse 
intralaminar elements were used vertically in the 90º plies to simulate the intralaminar matrix 
cracking and the fibre elements were placed vertically in the 0º plies to simulate fibre cracking. 
 

 
Fig. 3 – Scarf repair mesh for the α=25º repair (a) and interface finite elements loci (b). 
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Results 

An identical failure mode of the repairs was found experimentally for all values of α, consisting on 
a mixed cohesive and interlaminar/intralaminar failure of the laminate at the scarf region. Fig. 4 (a) 
and (b) correspond to the experimental and numerical failures, respectively, for the α=25º repair. 
This failure can be described as a cohesive failure along the bond length, except at the two sets of 
90º plies nearest the lower scarf tip (region B in Fig. 2 (a)). For these, a mixed 
interlaminar/intralaminar failure of the laminate occurred. This behaviour was captured by the 
numerical simulations. Fig. 5 (a) and (b) compare the experimental and numerical P-δ curves for 
the α=6º and α=25º repairs, respectively. The numerical simulation predicted accurately the 
stiffness (K) and maximum load (Pm) for these repairs. A slight difference was observed on Pm for 
the bigger values of α (including the α=25º repair, Fig. 5 (b)). 
 

 
Fig. 4 – Experimental (a) and numerical (b) fractures for a α=25º repair. 

 

Fig. 5 – Experimental and numerical P-δ curves comparison for the α =6º (a) and α=25º (b) repairs. 
 
The average results of the tests and respective FEM predictions are summarized in terms of K (Fig. 
6 (a)) and Pm (Fig. 6 (b)). The standard deviation of the experiments is also included. A small 
increasing trend of K was observed with the reduction of α. This tendency was also obtained 
numerically, although a non-negligible difference was detected for the α=3º repair. Small variations 
of tA are the probable explanation for this inconsistency. The values of Pm showed an exponential 
increase with the reduction of α. This is explained by the corresponding reduction of the adhesive 
layer stresses magnitude, due to the laminates and patches higher flexibility at the scarf region. Also 
in this situation the numerical simulations reproduced the experiments accurately. Based on the 
results presented here, the α=2º and α=3º repairs are recommended, since they lead to the bigger 
values of Pm. The good overall agreement between the experimental and numerical results allows 
emphasizing the suitability of the proposed methodology to predict the fracture behaviour of these 
bonded assemblies. 
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Fig. 6 – K as a function of α (a) and Pm as a function of α (b). 

Summary 
In this work, a numerical methodology was presented to predict the mechanical behaviour of 
bonded assemblies. A mixed-mode (I+II) cohesive damage model with trapezoidal shape laws was 
employed to simulate the adhesive layer behaviour. The methodology was extended to simulate the 
interlaminar, intralaminar and fibre fracture of the composite laminates and patches, to fully 
reproduce the experimental failure modes. The different traction-separation laws were determined 
using an inverse method, which consisted in obtaining the fracture toughness in pure modes I and II 
with Double-Cantilever Beam and End-Notched Flexure tests, respectively, and estimating the other 
parameters of the pure mode laws using a fitting iterative procedure between the experimental and 
numerical load-displacement curves. The mixed-mode behaviour of the adhesive layer or within the 
composite, typical in these assemblies, was simulated with appropriate criteria. This numerical 
methodology was validated experimentally with carbon-epoxy scarf repairs under bending, for 
different scarf angles. The comparison was performed in terms of the repairs elastic stiffness, the 
maximum load, as well as the failure path until complete failure. The results obtained allowed 
concluding that the methodology presented in this work is adequate to simulate the mechanical 
behaviour of bonded assemblies. 
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