
 

 

Technical efficiency of European metro systems: 

The effects of operational management and socioeconomic environment 

 

 

 

 

 

 

 

 

 

António Lobo* 

 

António Couto 

 

 

Faculty of Engineering 

University of Porto 

Rua Dr. Roberto Frias, s/n 

4200-465 Porto – Portugal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Corresponding author 

E-mail address: lobo@fe.up.pt 

Phone: +351 22 508 2161



1 

 

Abstract 

 

This study focuses on the relationship between the operational performance of metro systems and their 

socioeconomic contexts. We use a two-stage methodology applied to a sample of 17 European metro systems. 

First, we apply a stochastic frontier approach to establish the optimal production function and to evaluate the 

efficiency and effectiveness levels of each firm through offer and demand-characterizing indicators, respectively. 

Only internal production factors are included in the first stage of this analysis. In a second stage, we use a similar 

modeling approach, but considering an additional set of variables characterizing the socioeconomic environment 

of the urban areas in which metro systems operate. This method allows observing the effects on operational 

performance measurements due to the inclusion of external factors, and consequently, drawing some conclusions 

on the technical efficiency of metro systems and their operations in beneficial or adverse surrounding 

environments. Different scores resulting from both perspectives evidence the contributions of the socioeconomic 

factors to improve the reliability of performance measurements and to reduce false inefficiencies. The results 

show that 12 of the analyzed systems are being affected by an unfavourable socioeconomic environment and/or 

their network suffers from some adequacy problems with regard to demand. The remaining 5 systems should 

improve their management strategies, since their results are being supported by a favourable surrounding 

environment. 

 
Keywords: metro systems; efficiency; effectiveness; internal production factors; socioeconomic environment. 
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1. Introduction 

 

Many public transport systems are managed by the state. State-owned firms do not usually see financial 

profit as their main objective; rather, they prioritize the social and environmental benefits that a rapid, reliable 

and eco-friendly transport system can represent in a community. Nevertheless, such systems should not disregard 

the improvement of their operational performance in order to become less of a burden on public finances 

(Dodgson 1985; Nash 2000). This has been a matter of concern across the decades for the governments, transport 

authorities and researchers, which have established policies and directives and developed evaluation and action 

tools to improve the operational performance of transport systems. 

Under the scope of the Horizon 2020, the ongoing EU Framework Programme for Research and 

Innovation, the European Commission (EC) stresses the need for new strategic planning approaches at the local 

level to achieve sustainable urban mobility, since few transport authorities currently perform a reliable analysis 

of trends and develop scenarios to support long term policies. Therefore, the EC is promoting actions to enhance 

the capabilities of local authorities and other stakeholders to plan and implement sustainable mobility measures 

on the basis of reliable data and analysis, regarding the take-up of the innovative concept of Sustainable Urban 

Mobility Plans (SUMPs) at the European scale (European Commission 2014). 

Our study aims to contribute to this goal, providing a tool for the analysis of the operational performance 

of urban rail transit systems, regarding the evaluation of production efficiency and its main drivers. We apply a 

stochastic frontier modeling approach to evaluate the technical efficiency of 17 European metro systems and the 

effects of internal and external production factors on the production. The analysis is based on historical data 

covering the period from 1990 to 2011, and composed of capital and labor inputs, socioeconomic indicators for 

the urban areas served by the systems, an output characterizing the service supply (car-kilometers), and an output 

reflecting the demand (number of passengers). We use a stochastic frontier regression model to process the 

outputs and the internal production factors, estimating the elasticities of each input. Two separate regressions are 

performed to establish an optimal production function for each output, from which the technical efficiency of 

each firm is estimated. Because we are dealing with two outputs separately, we adopt different terms for the 

technical efficiency. Thus, the technical efficiency associated with the supply-oriented output is simply referred 

to as efficiency, and is mainly dependent on the strategies applied to operational management. Similarly, the 

technical efficiency related to the demand characterizing output is termed effectiveness. Effectiveness reflects a 

transport system’s capability to attract users, relying not only on the characteristics of the transport service but 

also on the surrounding socioeconomic environment. For this reason, a similar stochastic approach is used in a 

second stage to perform a regression between the set of both internal and socioeconomic indicators and the 

number of transported passengers. Ultimately, we are able to compare the efficiency and effectiveness levels of 

each firm considering the internal production factors, and also to compare the effectiveness scores with and 

without consideration of the external indicators. 

The developed models aim to improve the knowledge on the production of European metro systems in 

terms of its main drivers, efficiency scores achieved by the systems, and also the extent to which the systems are 

operating in favorable or adverse socioeconomic contexts. Therefore, the outcomes of this study may support the 

development of policies and actions by the practitioners to promote sustainability in urban transit. 

 

2. Literature review 

 

The operational performance of transport networks has been studied by numerous authors; comprehensive 

reviews of these studies can be found in Dodgson (1985), Oum et al. (1992), De Borger et al. (2002), Brons et al. 

(2005), and Karlaftis (2008). In spite of many previous studies on the operational performance of bus firms (Pina 

and Torres 2001; Boame 2004; Odeck 2008; Sampaio et al. 2008; von Hirschhausen and Cullmann 2010; 

Karlaftis and Tsamboulas 2012) and long-distance railway firms (Caves et al. 1980; Tretheway et al. 1997; 

Cantos et al. 1999; Casson 2009; Merkert et al. 2010; Couto 2011; Wheat and Smith 2014), there has been less 

research on urban rail networks, and particularly on metro systems and the extent to which their productivity is 

affected by the internal management and socioeconomic environment, which is the scope of the current study. 

Some authors have characterized public transport networks according to their topology and spatial 

structure. Gattuso and Miriello (2005) performed a comparative analysis of metro networks based on graph and 

geographic level indicators, assessing their influence on two performance indicators: commercial speed and 

service frequency. Nationwide transport networks were also characterized using concepts of graph theory in 

studies such as Erath et al. (2009), for rail and road transport, and Blumenfeld-Lieberthal (2009), for rail and air 

transport. Other studies have focused on the relations between the spatial structure of networks and their 

vulnerability and resilience under critical situations (Cats and Jenelius 2014; Jonkeren et al. 2014; Modica and 
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Reggiani 2014). Ducruet and Beauguitte (2013) provides a review on how the spatial approach to network 

analysis has evolved and integrated multidisciplinary players such as geographers, sociologists, and physicists. 

Urban socioeconomic trends and their relation to the operations of transit systems have also been studied 

by the researchers. Babalik-Sutcliffe (2002) analyzed the two-way interactions between eight urban rail networks 

and their corresponding cities located in the US, Canada, and the UK. Using a set of predefined criteria, the 

author reported on the effects of introducing this mode of transport in the cities, as well as the external factors 

that enhanced or hindered systems’ success since the beginning of their operations. Baum-Snow and Khan 

(2005) evaluated the extent to which urban rail network expansions in US cities have spurred new ridership and 

accounted for welfare gains in terms of commuting time savings and car ownership. The developed models 

incorporate potentially heterogeneous responses of public transport use to new rail infrastructure as a function of 

the year the system was built, distance to the city center, and physical structure of the metropolitan area as a 

whole. Some socioeconomic indicators, such as population density, household income, gender, age, race and 

schooling were used as control variables, with the first two indicators showing the most relevant influences on 

the location and use of rail transit systems. The authors also found that network expansions have been more 

successful in luring bus users than car users. Nevertheless, significant travel time savings have been induced by 

new rail lines. In the same vein, De Grange et al. (2012) performed an empirical evaluation of the impact of three 

specific policies on urban rail transit use: network expansion, fare subsidies, and regulation of private car use. 

The developed regression models included additional variables of control capturing socioeconomic trends. The 

authors found positive effects on transit ridership produced by network expansions, car use regulation, and 

population density. In turn, the GDP per capita induces a negative effect, while fare subsidies have no relevant 

effects on transit use. Taylor et al. (2009) analyzed the determinants of the total and per capita transit ridership 

in 265 US urban areas. This study is focused on the internal and external factors influencing the use of public 

transport without discerning between different modes. A two-stage regression methodology accounted for the 

influence of service supply on transit ridership, as well as of a wide set of policy-oriented (internal) variables and 

socioeconomic (external) variables. This methodology allowed overcoming the consideration of capital and labor 

inputs of many heterogeneous transport systems to evaluate the determinants of the overall transit ridership. The 

study found that service supply and transit fares are the most important factors influencing transit use. In terms 

of external effects, the total transit ridership is mainly affected by the population density and car ownership, 

while the transit ridership per capita mainly depends on the household income and percentage of non-transit and 

non-single occupancy vehicle commutes.  

In terms of modelling procedures to evaluate the efficiency of urban railways and its main drivers, both 

parametric and non-parametric approaches were used in the existing studies. Graham et al. (2003) created a 

parametric model based on the Cobb-Douglas production function to estimate the elasticities of capital and labor 

inputs, using a cross-sectional database with 99 observations distributed by 17 networks of suburban rail and 

metro. These estimates were applied to the time-series data of each system to decompose the output and the 

productivity growth, regarding the study of scale economies. In a more recent study, Graham (2008) provides a 

comparison between the application of non-parametric and parametric models in the estimation of productivity 

and efficiency for the same modes of transport. Jain et al. (2008) used a non-parametric methodology – data 

envelopment analysis (DEA) – to estimate the technical and scale efficiencies of metro systems, using a 165 

observation panel data sample. Only inward production factors were included in the analysis, and the results 

compared between public, corporatized, and private ownership systems. Tsai et al. (2014) applied a two-stage 

procedure using DEA and Tobit models to explore the determinants of technical, allocative and cost efficiency in 

20 international urban rail systems, ranking the systems in terms of efficiency and identifying economies of 

scale.  

The parametric approach followed in our study allows evaluating the effects of both internal and external 

production factors, which is the major focus of the analysis and would not be possible through a non-parametric 

method. In addition, technical efficiency estimates resulting from a parametric modeling approach are less 

sensitive to the presence of outliers. 

Our study aims to contribute to the state of the art in urban transport research by conducting a production 

analysis exclusively developed for metro systems operating in Europe. The outcomes include tools for: (i) 

establishing optimal production frontiers, either for service supply or demand characterizing outputs, (ii) 

evaluating the effects of internal production factors and socioeconomic indicators on the production, and (iii) 

estimating the efficiency and effectiveness levels of each firm. 
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3. Model description 

 

3.1. Background model 

 

We use a stochastic frontier production modeling approach to evaluate the technical efficiency of metro 

firms and the extent to which the socioeconomic context impacts firms’ effectiveness. This approach, introduced 

by Aigner et al. (1977) and Meeusen and van den Broeck (1977), is a widespread concept in the econometric 

analysis (Coelli et al. 2005; Greene 2008) and consists of a parametric approach to evaluate a firm’s efficiency in 

the production process, i.e., in the use of available resources (inputs) to obtain a new product or service (output). 

The functional form of the model is represented in Eq. (1). 

 

uvXYln  

 

 (1) 

 

where Y is the output produced, X is the vector containing the logarithms of inputs, β is the vector of input 

coefficients, v is the noise term, and u is the one-sided distribution error. 

The model is formed by one deterministic component, βX, and two disturbance components, the one-

sided distribution error and the noise term. The noise term is the random error related to the model specification 

or the inadvertent omission of relevant inputs and errors in data collection (Coelli et al. 2005). The probability of 

the noise term being favorable to production is assumed to be equal to the probability of it being unfavorable, so 

it takes the form of a normal and symmetric distribution, giving the random (i.e., stochastic) nature to the 

production frontier exp (βX + v). Therefore, depending on the noise term, the stochastic frontier output can lie 

above or below the deterministic component exp (βX). The stochastic frontier bounds the output from above, and 

the firms sitting below that frontier fail to achieve the ideal production rate. Thus, because the data are in log 

terms, the error u measures the percent deviation from the stochastic frontier, i.e., the production inefficiency, 

being always positive and taking the form of an asymmetric distribution. The half-normal, truncated normal, 

exponential, and gamma distributions have been suggested as possible distributions for this error (Aigner et al. 

1977; Meeusen and van den Broeck 1977; Greene 2007). The model estimation is performed using the maximum 

likelihood method, which is more efficient in dealing with asymmetric distribution disturbances than the least 

squares estimator (Greene 2008). Fig. 1 provides a graphic explanation of the stochastic production frontier 

approach for the cases of the stochastic frontier output sitting above (firm A) or below (firm B) the deterministic 

frontier. 

 

 
Fig. 1 Stochastic production frontier (based on work by Coelli et al. (2005) 
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3.2. Production analysis considering internal production factors 

 

In a first stage, we evaluate the input elasticities and technical efficiencies of metro systems. For that, we 

propose a stochastic production frontier based on the translog function, which is a more versatile form of the 

Cobb-Douglas production function, to improve the model’s goodness-of-fit. Only internal production factors are 

included in the model, which can be written as follows: 

 

      uvINTlnINTlncINTlnbalnYln
n

i

n

ij

jiij

n

i

ii  
  11

 (2) 

 

where INTi are the capital and labor inputs , a, bi, and cij are regression coefficients, and i,j ϵ {1,…,n}.  

The stochastic frontier regression in Eq. (2) is run separately for a supply-oriented output and for a 

demand characterizing output, allowing us to estimate the input elasticities for the observed set of metro systems, 

as well as the annual efficiency and effectiveness scores achieved by each system. The technical efficiency (TE) 

is given by: 

 

  |uEexpTE   (3) 

 

where ε is the composed error, such that ε = v – u, and E(u|ε) corresponds to the mean of the conditional 

distribution f(u|ε), estimated through the approach proposed by Jondrow et al. (1982). 

 

3.3. Production analysis considering internal production factors and socioeconomic indicators 

 

To evaluate the effects of socioeconomic context on the effectiveness of metro systems, we use a similar 

stochastic frontier modeling approach, but this time we account for the effects of selected socioeconomic factors 

that characterize the various urban areas. The resulting model is described as follows: 

 

        uvEXTlndINTlnINTlncINTlnbalnYln
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 (4) 

 

where EXTk are the observed external factors, dk are regression coefficients, and k ϵ {1,…,p}.  

In this stage, the model is exclusively applied to the demand characterizing output, which is the most 

sensitive to the socioeconomic changes. The effectiveness is then recalculated using Eq. (3), which allows 

comparing between the results of both stochastic models (Eq. (2) and (4)) and drawing some conclusions about 

the favorable or unfavorable effects of socioeconomic factors on metro systems’ operational performance. 

 

4. Model application 

 

4.1. Data collection 

 

The first step for the application of the stochastic frontier modeling approach described in section 3 was 

to build a database covering the main indicators on the operation of European metro systems, as well as some 

socioeconomic features with potential influence on the demand for public transport in urban areas. Hence, we 

collected the input and output data from annual reports and/or other official information released by metro firms 

or transport authorities. The socioeconomic factors were assessed in the Urban Audit database (Eurostat, 2013). 

Our final database included 17 European metro systems operating in the period from 1990 to 2011. The selected 

systems are: Barcelona (TMB), Berlin (BVG), Brussels (STIB), Budapest (BKV), Glasgow (SPT), Hamburg 

(HVV), Helsinki (HKL), Lisbon (ML), London (TfL), Madrid (MM), Milan (ATM), Munich (MVG), Paris 

(RATP), Porto (MP), Prague (DPP), Rome (ATAC), and Turin (GTT).1 Although the Porto and Turin metros use 

light rail vehicles, they have rights-of-way separated from the road traffic, and so are included in this analysis. 

We consider the following internal inputs in this study: network length (NL), the number of stations (NS), 

the number of cars (NC), and the number of employees (NE).2 NL, NS, and NC characterize the firms’ capital, 

                                                 
1 Other metro systems were initially considered but subsequently discarded from the database due to inconsistent and/or missing data. 
2 For some companies operating the metro and other transit systems, the published number of employees refers to the total labor force. In 
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while NE represents the labor force. We found scarce information on materials and energy consumption. 

Therefore, we do not consider such indicators for this application. Nevertheless, it is expected that firm 

consumptions be proportional to their capital; hence, we assume that the effects of consumptions may be 

captured by the capital variables. 

As mentioned in section 1, we perform two measurements of technical efficiency using different outputs: 

the number of car-kilometers produced (CRKM) for efficiency estimation, and the number of transported 

passengers (PASS) for effectiveness estimation. Because output data were not available for the entire period 

under consideration, the car-kilometers panel data have 167 observations and the passengers panel data have 186 

observations. In Table 1, we present the generic features of the observed metro systems. 

 
Table 1 Internal inputs and outputs (mean values) 

System Internal inputs      Outputs    

 Period NL 
(km) 

NS NC NE  Period CRKM 
(millions) 

Period PASS 
(millions) 

Barcelona 1999-2011 88 112 665 3,091  1999-2011 70.2 1999-2011 342.8 

Berlin 2002-2011 145 171 1,326 4,927  2002-2007 125.6 2006-2011 482.7 
Brussels 2003-2011 48 64 253 1,274  2005-2006 11.5 2003-2011 124.3 

Budapest 1996-2011 31 40 394 1,752  1996-2003 and 

2008-2010 

30.1 1996-2011 296.8 

Glasgow 1997-1998 10 15 41 326  1997-1998 3.4 1997-1998 14.4 
Hamburg 2003-2011 101 89 764 3,087  2003-2011 75.8 2003-2011 187.0 

Helsinki 2001-2011 21 16 108 216  ― ― 2001-2011 56.5 

Lisbon 1993-2011 30 38 293 1,806  1993-2011 18.7 1993-2011 164.7 

London 1994-1998, 
2002-2006, and 

2010-2011 

421 292 4,034 15,185  1994-1998, 
2002-2006, and 

2010-2011 

465.0 1994-1998, 
2002-2006, and 

2010-2011 

949.2 

Madrid 1997-1998 and 
2000-2011 

222 235 1,736 5,993  1997-1998 and 
2000-2010 

150.4 1997-1998 and 
2000-2011 

592.7 

Milan 1990-2005 69 79 705 2,914  1990-2005 51.4 1990-2005 302.7 

Munich 2003-2011 91 94 583 2,475  2003-2011 61.4 2004-2011 340.6 

Paris 1992-2011 212 297 3,510 11,971  1992-2011 216.8 1992-2011 1,282.1 

Porto 2003-2011 48 58 186 371  2003-2011 15.4 2003-2011 37.2 

Prague 2002-2011 56 53 710 2,678  2002-2011 47.5 2002-2011 524.6 

Rome 2001-2011 37 48 466 2,566  2001-2011 33.5 2001-2011 300.3 

Turin 2006 and 

2008-2011 

10 15 103 153  2006 and 

2008-2011 

8.1 2006 9.0 

 

To characterize the urban areas, we consider the following variables: area (AREA), population density of 

the core city (PDCC), average household size (AHS), unemployment rate (UR), gross domestic product per 

capita (GDP), and diesel pump price (DPP).3 These indicators were collected for the Larger Urban Zones 

(LUZ), except PDCC, which was collected for the core city due to data availability. The concept of LUZ defines 

functional urban zones surrounding the core cities, and both territorial units allow for comparable measurements 

on different characteristics of the Urban Audit cities. The mean values of the socioeconomic factors for the 

periods considered for each urban area are presented in Table 2. 

 

                                                                                                                                                         
these cases, aiming to remove the number of employees associated with other transport modes, we estimated NE through a linear regression 

between the labor force and the metro rolling stock, using specific dummy variables for each company. 
3 GDP and DPP were converted at 2000 constant prices. 
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Table 2 Socioeconomic characteristics of the urban areas (mean values) 

System Period Socioeconomic factors     

  AREA 

(km2) 

PDCC 

(inh./km2) 

AHS 

(inh./household) 

UR 

(%) 

GDP 

(EUR/inh.) 

DPP 

(EUR) 

Barcelona 1999-2011 1,797 15,973 2.9 11.3 19,841 0.72 

Berlin 2006-2011 17,385 3,854 1.8 13.5 22,502 1.11 
Brussels 2003-2011 1,620 6,434 2.3 15.4 32,889 0.89 

Budapest 1996-2011 2,542 3,354 2.4 5.3 11,138 0.72 

Glasgow 1997-1998 3,346 3,376 2.2 12.6 27,101 0.98 
Hamburg 2003-2011 7,304 2,331 2.0 7.3 34,155 1.04 

Helsinki 2001-2011 2,970 3,054 2.1 7.2 38,783 0.92 

Lisbon 1993-2011 1,433 6,571 2.6 9.0 16,668 0.73 

London 1994-1998, 

2002-2006, and 

2010-2011 

8,920 4,645 2.4 7.3 32,427 1.02 

Madrid 1997-1998 and 

2000-2011 

8,023 5,105 2.9 15.9 21,747 0.71 

Milan 1990-2005 1,608 7,138 2.4 6.0 26,724 0.84 

Munich 2004-2011 5,529 4,219 1.9 4.8 35,414 1.07 
Paris 1992-2011 12,080 20,469 2.4 11.7 36,814 0.80 

Porto 2003-2011 562 5,408 2.8 15.0 12,977 0.86 

Prague 2002-2011 6,982 2,439 2.4 4.1 15,340 0.87 
Rome 2001-2011 3,667 2,033 2.4 8.6 23,882 0.93 

Turin 2006 1,879 6,833 2.2 5.3 19,018 0.99 

 

We also consider the presence of other urban rail transit systems in the same urban area as an external 

factor, using the dummy variable OUR. This variable reflects the existence of tramways, light rail or metro-like 

systems,4 being set to 1 if one or more of these systems exist or to 0 otherwise. The variable OUR aims to 

provide some information on the complementary or competitive relationship between systems. Because bus and 

commuter rail networks are present in all of the analyzed cities, dummy variables for these transport modes are 

not considered. 

 

4.2. Estimating input elasticities, efficiency and effectiveness  

 

Using the stochastic frontier regression in Eq. (2), we developed two individual models for the outputs 

car-kilometers (CRKM model) and number of passengers (PASS model A).5 We divided the capital and labor 

inputs by the network extension due to the great variability in the dimension of the metro systems under 

consideration, ranging from almost 10 km in Glasgow to more than 400 km in London. The mean values of the 

first order factors were transformed into a value of 0 in order to compare their mean elasticities. We included a 

time trend variable YR aiming to capture the effect of gaining production expertise throughout time. In the 

modeling process, we considered that the error u assumes an exponential distribution, and we followed a 

stepwise approach. First, we calibrated both models including only the first order factors. Then, to avoid possible 

multicollinearity issues that may affect the parameter estimates, the second order factors were gradually 

introduced in the models until a good solution was obtained, according to two criteria: (i) the estimates of the 

first order factors should reflect a plausible interpretation and should not vary significantly from the original 

estimates, and (ii) the models should include as much second order factors as possible without compromising the 

previous criterion. Therefore, only four second order factors – NL.NC, NL.NE, NS.NC, and NS.NE – were 

included in the final models, presenting correlations with the first order factors of around 0.6 in two cases and 

less than 0.3 in the remaining cases. The variables NL.NS, NC.NE, NL2, NS2, NC2, and NE2 were dropped from 

this analysis. We opted to provide both CRKM model and PASS model A with similar specifications, 

maintaining the variable NS.NC in the latter model despite its lack of statistical significance at the 10% level 

(P[|Z|>z] = 0.256). The modeling results are presented in Table 3. 

 

                                                 
4 By metro-like systems we intend urban rail systems which combine features of metro and commuter rail notwithstanding the existence of 

these latter systems in the same urban area (e.g. the RER in Paris is a suburban rail that operates similarly to a metro system within the core 

city limits, coexisting with the RATP metro and the SNCF Transilien commuter rail service). 
5 Modeling estimations were performed using the econometric software Limdep (Greene 2007). 



8 

 

Table 3 Results of the stochastic frontier models considering internal production factors 

Variable CRKM model    PASS model A   

 Coefficient Standard error P[|Z|>z]  Coefficient Standard error P[|Z|>z] 

Constant 10.984 0.033 0.000  12.538 0.056 0.000 

YR 0.007 0.002 0.000  0.021 0.003 0.000 

NL 1.127 0.015 0.000  0.809 0.026 0.000 
NS -0.209 0.063 0.001  -0.279 0.137 0.042 

NC 0.233 0.062 0.000  0.621 0.075 0.000 

NE 0.410 0.047 0.000  0.760 0.072 0.000 
NL.NC -0.396 0.050 0.000  -0.519 0.069 0.000 

NL.NE 0.411 0.064 0.000  0.262 0.058 0.000 

NS.NC -0.965 0.379 0.011  -0.435 0.383 0.256 
NS.NE 0.883 0.443 0.046  0.840 0.305 0.006 

 No. of observations = 167  No. of observations = 186 

 Log-likelihood = 133.929  Log-likelihood = 10.689 
 σu = 0.089  σu = 0.284 

 σv = 0.072  σv = 0.067 

 

From the analysis of Table 3 we can draw some conclusions about each input’s influence on the final 

outputs. The coefficient of YR reveals that the passing of time slightly increases output production, reflecting 

positive technological changes. Even if all production resources hold constant, firms tend to produce more by 

improving their expertise in the production process. 

Because all capital and labor inputs were divided by NL, the elasticity of NL is given by bNL - (bNS + bNC 

+ bNE), i.e., 0.693 in the CRKM model and -0.294 in the PASS model A. An increase in NL, holding the 

remaining factors constant, represents a theoretical scenario in which the same rolling stock would be operating 

in a larger network, thus increasing the output CRKM. However, because the frequency would be lower, the 

system would become less attractive to users, which is reflected by the decrease in the output PASS. Future 

network expansions should be carefully considered to avoid oversized metro systems that may negatively impact 

their production. 

Increasing NS has negative effects on both service supply and demand (elasticities of -0.209 and-0.279, 

respectively), probably because it would imply more stops, and consequently less fluidity in the system and a 

greater difficulty in adjusting the train schedules. In other words, despite the potential increase in the population 

served by metro systems, the introduction of new stations can affect their production because passengers may opt 

for other transport services, especially in longer journeys, due to the increase in the metro travel time and the 

decrease in the service frequency. 

The elasticity values of NC (0.233 for CRKM and 0.621 for PASS) indicate that increasing the rolling 

stock raises the production. In this sense, a greater number of cars would allow firms to put more trains on the 

tracks and/or to use longer trains, thus increasing CRKM. Also, by reducing users’ waiting time and by offering 

more space and comfort on board, metro systems become more appealing to the public. 

Because we are dealing with production, and the results of a cost analysis would eventually be different, 

an increase in NE has a positive effect on the figures of CRKM and PASS (elasticities of 0.410 and 0.760, 

respectively).  In addition, users may be more attracted to more humanized systems, which generally achieve 

better results in areas such as security and user support. 

At this stage we were also able to estimate the technical efficiency for each observation using Eq. (3). The 

graph in Fig. 2 presents the comparison between the average scores of production efficiency and effectiveness for 

each system, considering the available observations in the period from 2002 to 2011.6 7 

 

                                                 
6 The results for the Glasgow metro correspond to the operational years of 1997 and 1998 (the only available data). 
7 The Helsinki metro is not represented in Fig. 2 because its efficiency was not estimated due to the lack of data about CRKM. 
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Fig. 2 Efficiency and effectiveness scores 

 

We divided the graph in Fig. 2 into quadrants to simplify the comparisons among metro systems. It is 

possible to observe that the great majority of the systems fall in the first quadrant, showing efficiency and 

effectiveness scores greater than 50%. These results reflect good trade-offs between operational management and 

attractiveness to the general public. With a 94% efficiency score and a 95% effectiveness score, the Munich 

metro achieves the best trade-off between both technical efficiency measures. This system, together with the 

systems of Helsinki,7 Paris, and Prague are the most effective in attracting users, sitting above the 90% barrier.  

In terms of efficiency results, Fig. 2 shows a rather satisfactory panorama, denoting an adoption of good 

operational management strategies by European metro firms, with 13 out of 16 systems scoring above 90%. 

These systems are Barcelona, Berlin, Budapest, Glasgow, Hamburg, London, Madrid, Milan, Munich, Paris, 

Porto, Rome, and Turin. The average efficiency and effectiveness scores for the studied metro systems are of 

90% and 74%, respectively.  

The Brussels metro (efficiency of 48% and effectiveness of 86%) is placed in the second quadrant. 

Despite being attractive to the public, the system needs an improvement in operational management strategies in 

order to bring its efficiency to the average level of the industry. The Turin metro (efficiency of 91% and 

effectiveness of 17%) and the Hamburg metro (efficiency of 93% and effectiveness of 41%) are located in the 

fourth quadrant, revealing that a good service supply has not been accompanied by the capture of passengers. 

Generically, systems in this quadrant may be facing an inadequate network size or design, or an unfavorable 

socioeconomic context. While network reconfigurations are difficult to implement in the short term and the 

evolution of the external environment is frequently uncertain, firms may try to attract more passengers by 

adopting policies such as increasing advertising investment or improving the safety and cleanliness of trains and 

stations. However, in the particular case of the Turin metro, the low effectiveness score may be related to the fact 

that it reports only to the opening year (2006), when citizens were still adapting their daily routines to the 

introduction of the new transport system. No data on the number of transported passengers were available for the 

following operational years. 

In this study, efficiency scores vary from 48% to 97% and effectiveness scores from 17% to 95%, 

denoting that the technical efficiency of urban transport systems may vary widely. However, the systems of 

Brussels and Turin may be regarded as outliers in relation to efficiency and effectiveness, respectively. Without 

considering these systems, efficiency varies from 86% to 97% and effectiveness from 41% to 95% within the 

sample of metro systems. The results obtained are consistent with those from previous research. Great variations 

in the technical efficiency of urban transit systems were reported in the review study by De Borger et al. (2002), 

where diverse authors’ results vary from 24% to 100%. That study highlights the results obtained by Gathon 

(1989), who performed a parametric frontier model (translog production function) and found technical 
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efficiencies between 58% and 100%. In terms of the adoption of non-parametric methods, Wunsch (1994; 1996) 

found average technical efficiencies between 43% and 100%, using a free disposal hull (FDH) model, and 

between 26% and 100% using a DEA model for urban bus and rail transport systems. Other applications of DEA 

models to measure the performance of urban rail systems have been performed in studies such as Jain et al. 

(2008), with technical efficiencies ranging from 35% to 100%, and Tsai et al. (2014), in which efficiency scores 

were corrected by a bootstrapping procedure, varying from 43% to 88%. 

 

4.3. Evaluating the impacts of the socioeconomic factors  

 

The stochastic frontier regression in Eq. (4) allowed us to develop a new model for the output number of 

passengers (PASS model B), including the first and second order variables considered in PASS model A 

presented in Table 3 and the socioeconomic factors described in Table 2. The maximum correlation coefficient 

between variables from the previous models was not affected by the introduction of the external factors. Once 

again, we considered an exponential distribution for the error u. The results are shown in Table 4. 

 
Table 4 Results of stochastic frontier model considering internal production factors and socioeconomic indicators 

Variable PASS model B   

 Coefficient Standard error P[|Z|>z] 

Constant 4.433 0.011 0.000 

YR 0.006 0.000 0.000 

NL 0.241 0.001 0.000 
NS -0.312 0.002 0.000 

NC 0.986 0.001 0.000 

NE 0.040 0.001 0.000 
NL.NC -0.668 0.001 0.000 

NL.NE -0.008 0.001 0.000 

NS.NC -1.501 0.007 0.000 
NS.NE 0.062 0.005 0.000 

AREA 0.441 0.000 0.000 

PDCC 0.445 0.000 0.000 

AHS 0.042 0.002 0.000 

UR -0.087 0.001 0.000 

GDP 0.067 0.001 0.000 
DPP 0.103 0.001 0.000 

OUR -0.032 0.000 0.000 

 No. of observations = 186   
 Log-likelihood = 114.017   

 σu = 0.197   

 σv = 1×10-5   

 

In PASS model B, the variance of the noise term v decreases to an almost null value in comparison to 

PASS model A (see Table 3). Therefore, the random effects among observations are being captured by the 

external factors, meaning that the optimal production function is defined by an almost deterministic frontier. 

From PASS model A to PASS model B, the introduction of the external factors affects the elasticities of the 

internal production factors in terms of magnitude, but not in terms of sign, and for this reason, we will only 

comment the results in Table 4 related to the effects of the external factors on the output production. 

The positive coefficient of the variable AREA reflects that operating in more extensive urban areas tends 

to increase the output production. In fact, larger metropolitan areas generally include a wider set of suburban and 

satellite cities that have strong socioeconomic relationships with the core city, representing a greater number of 

multimodal commuters and potential users of metro systems. However, metro networks should not cover all the 

satellite cities if it implies crossing less populated areas, leaving that purpose for the commuter rail; the positive 

impact of the variable PDCC on the output production strengthens the benefits of metro systems covering the 

most highly populated areas. These results are consistent with other studies such as Baum-Snow and Khan 

(2005), Taylor et al. (2009), and De Grange et al. (2012). The increase of AHS, holding the remaining factors 

constant, increases the number of passengers using the metro. Large households have a traditionally higher ratio 

of non-drivers (e.g., children), and even some of the drivers tend to share the same car, reducing the car 

availability for the use of a single person. Then, mobility needs may be fulfilled by public transport. The 

unemployment growth affects the metro production because as more people lose their jobs, less commuting trips 

are taken per day. The growth of the GDP per capita has a positive effect on metro production. This result is 

consistent with the findings of Baum-Snow and Khan (2005) and Taylor et al. (2009), but an opposite effect was 

reported by De Grange et al. (2012). The GDP per capita reflects the population income and the wealth of an 
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urban area, thus we believe that its growth denotes a more prosperous economic environment which intensifies 

mobility needs. Also in this scenario, transport firms have more financial resources to invest in the upgrade of 

their productive process. The positive coefficient of DPP confirms that increases in fuel prices may persuade 

private car users to change their traveling behavior and shift to public transport. The existence of trams, light 

rails, or other metro systems operating in the same urban area slightly decreases the production of the main metro 

system (negative coefficient of OUR). The competition between multiple systems seems to prevail over the 

perspective of an intermodal complementarity that would enhance the public transport productivity. This result 

suggests that additional efforts should be made to promote integrated strategies of network planning and 

management involving all modes of urban public transport, avoiding route overlapping and defining the most 

adequate service for each zone. 

In terms of the effectiveness levels, the scores from the application of PASS model B (internal and 

external factors) were estimated using Eq. (3), and are shown in Fig. 3 along with the scores from the application 

of PASS model A (internal factors). 

 

 
Fig. 3 Effectiveness scores from PASS model A and PASS model B 

 

In Fig. 3 we can see that the inclusion of the socioeconomic indicators in PASS model B produces some 

variations in the effectiveness scores of metro systems, confirming the influence of external factors on the 

technical efficiency of the productive process. Compared to PASS model A, the application of PASS model B 

results in an increase in the effectiveness scores of 12 metro systems: Barcelona, Brussels, Budapest, Hamburg, 

Helsinki, Lisbon, London, Madrid, Milan, Munich, Paris, and Rome. This fact indicates that the higher 

inefficiencies returned by PASS model A account not only for faults in management policies but also for some 

inadequacies of metro systems with regard to demand. Possible causes for these inadequacies include the 

network size and configuration (usually defined by politics), socioeconomic turnarounds, and even cultural 

influences on the modal choice. In other words, the effectiveness scores obtained with PASS model A are 

penalized by unfavorable surrounding environments that are not the firms’ responsibility. The Turin metro 

reveals the greatest effectiveness variation, which is consistent with the fact that the results correspond to its 

opening year, reflecting a small network and a non-consolidated demand for metro service. 

In an opposite scenario, the remaining 5 metro systems – Berlin, Glasgow, Porto, Prague, and Turin – 

have a decrease in their effectiveness scores due to the application of PASS model B. In these cases, the 

effectiveness scores returned by PASS model A benefit from favorable surrounding environments. Still, these 

systems should seek to improve their operational management. 
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5. Conclusions 

 

In this study, we perform an analysis of the operational performance of metro systems, using a database 

containing 17 networks in Europe. Because we intended to estimate both input elasticities and effectiveness 

scores, we opted for a parametric approach. Therefore, we used a stochastic frontier regression based in the 

translog production function to estimate the elasticities of capital and labor inputs and the technical efficiency 

achieved by each firm in the production processes of a supply-oriented output (car-kilometers) and of a demand 

characterizing output (passengers), obtaining an estimation model for each output (CRKM model and PASS 

model A). Afterwards, we reassessed the firms’ effectiveness scores by including a set of selected 

socioeconomic indicators in the stochastic frontier regression modeling, considering only the output related to 

the number of passengers (PASS model B). 

The results confirm the importance of both internal and external production factors on the output 

production of metro systems. The effects of the internal production factors are consistent between PASS models 

A and B, varying in magnitude due to the consideration of external factors, but maintaining the trends of 

benefiting or harming the production numbers. The effects of increasing each internal and external factor on the 

production of each output are summarized in Table 5. 

 
Table 5 Positive and negative effects/elasticities in the production process of the analyzed metro systems 

Production 
factors 

Outputs 

Car-kilometers  Passengers  

Positive effects Negative Effects  Positive effects Negative Effects 

Internal 

production 
factors 

Passing of time Number of stations  Passing of time Network length 

Network length   Number of cars Number of stations 

Number of cars   Number of employees  

Number of employees     

Socioeconomic 

indicators 

   Area Unemployment rate 

   Population density Other urban rail systems 

   Average household size  

   GDP per capita  

   Diesel pump price  

 

With regards to the levels of efficiency estimated by the CRKM model, we may assume that most of the 

systems have a good operational performance, with 13 systems presenting levels above 90%: Barcelona, Berlin, 

Budapest, Glasgow, Hamburg, London, Madrid, Milan, Munich, Paris, Porto, Rome, and Turin. In turn, 

effectiveness estimations given by the PASS model A revealed 4 systems standing out with effectiveness scores 

greater than 90%: Helsinki, Munich, Paris, and Prague. The Munich metro achieves the best trade-off between 

efficiency and effectiveness, while Brussels has the least efficient system and Turin has the least effective 

system. Because the effectiveness is directly dependent on the travel demand, the average effectiveness observed 

is smaller than the average efficiency (74% versus 90%).  

The variations in the effectiveness from PASS model A to PASS model B show the relevance of the 

external factors on the performance of urban rail and reveal the extent to which such factors may help improve 

the reliability of the performance figures by reducing false inefficiencies. Systems whose scores increase due to 

the inclusion of the external factors on the deterministic component of the production function are being affected 

by an unfavorable socioeconomic environment, being the case of Barcelona, Brussels, Budapest, Hamburg, 

Helsinki, Lisbon, London, Madrid, Milan, Munich, Paris, and Rome. Although network reconfigurations may be 

planned to improve the systems’ adequacies based on their urban environments, they can only be implemented in 

the long term, particularly if input cuts are involved. In this case, opposition may be raised by the workers who 

fear losing their jobs, as well as by the community, which is concerned with potential reductions in the quality 

and quantity of the transport service. Nevertheless, some policies to increase users’ attraction and satisfaction, 

such as developing good advertising campaigns and promoting a clean and secure environment in trains and 

stations, are easier for metro firms to implement in the short term. On the other hand, systems presenting a 

decrease in their effectiveness scores have an opportunity to improve their input management, since their 

operational results are being helped by a favorable surrounding environment. This is the case of Berlin, Glasgow, 

Porto, Prague, and Turin. 

This study aims to contribute to the state of the art of urban rail transport research by conducting an 

analysis on the determinants of the production of metro systems. Improved knowledge on the main internal and 

external factors affecting firms’ production will help the practitioners tackle the causes of inefficiency of existing 

systems and adopt good practices at the planning stage of new metro networks or expansions. The outcomes of 

this study may be used as tools for reliable trend analyses and predictions related to urban rail transport 
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production, promoting the development and implementation of sustainable mobility policies and actions, 

particularly in the long term. 

Further research on the development of decision-supporting tools to enhance the capabilities of local 

authorities and other stakeholders to improve the efficiency of all modes of urban transport and mitigate the 

negative effects of inefficiencies is planned in the near future. Such approach requires a strong engagement 

among researchers and practitioners; the envisioned tools should allow stakeholders to prioritize their objectives 

according to the specific transport-related challenges faced by each urban area, and should be flexible enough to 

support the implementation of a wide range of sustainable mobility measures, including newly-emerging 

technologies, low-emission vehicles, alternative transport modes (e.g., car-sharing, cycling, walking), changes to 

network configuration, and policy-based measures. The methodologies undertaken should result in solid 

instruments to assist local authorities in defining quantified targets to prepare and implement SUMPs, meeting 

the most recent European directives. 

 

References 

 
Aigner D, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production functions. Journal of Econometrics 

6:21-37 

Babalik-Sutcliffe E (2002) Urban rail systems: analysis of the factors behind success. Transport Reviews 22:415-447 
Baum-Snow N, Khan, ME (2005) Effects of Urban Rail Transit Expansions: Evidence from Sixteen Cities, 1970–2000. Brookings-Wharton 

Papers on Urban Affairs 2005:1-60 

Blumenfeld-Lieberthal E (2009) The Topology of Transportation Networks: A Comparison Between Different Economies. Networks and 
Spatial Economics 9:427-458 

Boame AK (2004) The technical efficiency of Canadian urban transit systems. Transportation Research Part E 40:401-416 

Brons M, Nijkamp P, Pels E, Rietveld P (2005) Efficiency of urban public transit: A meta analysis. Transportation 32:1-21 
Coelli TJ, Rao DSP, O’Donnell CJ, Battese GE (2005) An Introduction to Efficiency and Productivity Analysis – Second Edition. Springer, 

New York City, NY 

De Borger B, Kerstens K, Costa A (2002) Public transit performance: what does one learn from frontier studies? Transport Reviews 22:1-38 
De Grange L, Troncoso R, González F (2012). An empirical evaluation of the impact of three urban transportation policies on transit use. 

Transport Policy 22:11-19 

Cantos P, Pastor JM, Serrano L (1999) Productivity, efficiency and technical change in the European railways: A non-parametric approach. 

Transportation 26:337-357 

Casson M (2009) The Efficiency of the Victorian British Railway Network: A Counterfactual Analysis. Networks and Spatial Economics 

9:339-378 
Cats O, Jenelius E (2014) Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information. 

Networks and Spatial Economics, DOI 10.1007/s11067-014-9237-7, online first. 

Caves DW, Christensen LR, Swanson JA (1980) Productivity in US railroads, 1951-1974. The Bell Journal of Economics 11:166-181 
Couto A (2011) The effect of high-speed technology on European railway productivity growth. Journal of Rail Transport Planning & 

Management 1:80-88 
Dodgson JS (1985) A survey of recent developments in the measurement of rail total factor productivity. In: Button KJ, Pitfield DE (eds) 

International Railway Economics: Studies in Management and Efficiency, Gower, Aldershot, pp 13-48 

Ducruet C, Beauguitte L (2013) Spatial Science and Network Science: Review and Outcomes of a Complex Relationship. Networks and 
Spatial Economics, DOI 10.1007/s11067-013-9222-6, online first. 

Erath A, Löchl M, Axhausen K (2009) Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time. Networks and 

Spatial Economics 9:379-400 
European Commission (2014) Horizon 2020 Work Programme 2014-2015 – Smart, green and integrated transport. Brussels.  

Eurostat (2013) http://ec.europa.eu/eurostat. Accessed 15 May 2013 

Gathon HJ (1989) Indicators of partial productivity and technical efficiency in the European urban transit sector. Annals of Public and 
Cooperative Economics 60:43-59 

Gattuso D, Miriello E (2005) Compared Analysis of Metro Networks Supported by Graph Theory. Networks and Spatial Economics 5:395-

414 
Graham DJ, Couto A, Adeney WE, Glaister S (2003) Economies of scale and density in urban rail transport: effects on productivity. 

Transportation Research Part E 39:443-458 

Graham DJ (2008) Productivity and efficiency in urban railways: Parametric and non-parametric estimates. Transportation Research Part E 
44:84-99 

Greene WH (2007) Limdep Version 9.0 – Econometric Modeling Guide. Econometric Software, Plainview, NY 

Greene WH (2008) Econometric Analysis – Sixth Edition. Pearson International Edition, Upper Saddle River, NJ 
Jain P, Cullinane S, Cullinane K (2008) The impact of governance development models on urban rail efficiency. Transportation Research 

Part A 42:1238-1250 

Jondrow J, Lovell CAK, Materov IS, Schmidt P (1982) On the estimation of technical inefficiency in the stochastic frontier production 
function model. Journal of Econometrics 19:233-238 

Jonkeren O, Azzini I, Galbusera L, Ntalampiras S, Giannopoulos G (2014) Analysis of Critical Infrastructure Network Failure in the 

European Union: A Combined Systems Engineering and Economic Model. Networks and Spatial Economics, DOI 10.1007/s11067-
014-9259-1, online first. 

Karlaftis MG (2008) Privatization, Regulation and Competition: A Thirty-year Retrospective on Transit Efficiency. In: OECD/ITF, 

Privatisation and Regulation of Urban Transit Systems, OECD Publishing, Paris, pp 67-108 
Karlaftis MG, Tsamboulas D (2012) Efficiency measurement in public transport: Are findings specification sensitive? Transportation 

Research Part A 46:392-402 



14 

 

Meeusen W, van den Broeck J (1977) Efficiency Estimation from Cobb-Douglas Production Function with Composed Error. International 
Economic Review 18:435-444 

Merkert R, Smith ASJ, Nash AC (2010) Benchmarking of train operating firms – a transaction cost efficiency analysis. Transportation 

Planning and Technology 33:35-53 
Modica M, Reggiani A (2014) Spatial Economic Resilience: Overview and Perspectives. Networks and Spatial Economics, DOI 

10.1007/s11067-014-9261-7, online first. 

Nash C (2000) Modelling performance: rail. In: Hensher DA, Button KJ (eds) Handbook of Transport Modelling, Pergamon Press/Elsevier, 
Amsterdam, pp 565-574 

Odeck J (2008) The effect of mergers on efficiency and productivity of public transport services. Transportation Research Part A 42:696-708 

Oum TH, Tretheway MW, Walters WG (1992) Concepts, methods and purposes of productivity measurement in transportation. 
Transportation Research Part A 26:493-505 

Pina V, Torres L (2001) Analysis of the efficiency of local government services delivery. An application to urban public transport. 

Transportation Research Part A 35:929-944 
Sampaio BR, Neto OL, Sampaio Y (2008) Efficiency analysis of public transport systems: Lessons for institutional planning. Transportation 

Research Part A 42:445-454 

Taylor BD, Miller D, Iseki H, Fink C (2009). Nature and/or nurture? Analyzing the determinants of transit ridership across US urbanized 
areas. Transportation Research Part A 43:60-77 

Tretheway MW, Waters WG II, Fok AK (1997) The total factor productivity of the Canadian railways, 1956-91. Journal of Transport 

Economics and Policy 31:93-113 
Tsai CH, Mulley C, Merkert R (2014) Measuring the cost efficiency of urban rail systems: An international comparison using DEA and 

Tobit models. Journal of Transport Economics and Policy, forthcoming 

Von Hirschhausen C, Cullmann A (2010) A nonparametric efficiency analysis of German public transport companies. Transportation 
Research Part E 46:436-445 

Wheat P, Smith A (2014) Do the usual results of railway returns to scale and density hold in the case of heterogeneity in outputs: A hedonic 

cost function approach. Journal of Transport Economics and Policy, forthcoming 
Wunsch, P (1994) Costing Busses: Back to the Basics. FUSL (SMASH Cahier 9405), Brussels 

Wunsch, P (1996) Cost and productivity of major urban transit systems in Europe: an exploratory analysis. Journal of Transport Economics 

and Policy 30:171-186 


