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Abstract There is a growing interest in the systematic and consistent collection of disaster
loss data for different applications. Therefore, the collected data must follow a set of
technical requirements to guarantee its usefulness. One of those requirements is the
availability of a measure of the uncertainty in the collected data to express its quality for a
given purpose. Many of the existing disaster loss databases do not provide such uncer-
tainty/quality measures due to the lack of a simple and consistent approach to express
uncertainty. After reviewing existing literature on the subject, a framework to express the
uncertainty in disaster loss data is proposed. This framework builds on an existing
uncertainty classification that was updated and combined with an existing method for data
characterization. The proposed approach is able to establish a global score that reflects the
overall uncertainty in a certain loss indicator and provides a measure of its quality.

Keywords Loss data - Disaster - Uncertainty - Qualitative method

1 Introduction

In recent years, disaster impact analysis methodologies have grown and their importance
has gained worldwide recognition (Okuyama and Santos 2014). Among other aspects of
disaster analysis, the importance of estimating economic losses resulting from natural or
man-made disasters is well known (De Groeve et al. 2013). Adequate accounts of disaster
losses yield valuable information for governments and international organizations to make
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decisions about providing disaster relief assistance (e.g., how much, when, to whom and in
what form). Reliable disaster loss accounts are also fundamental to establish loss trends
and spatial patterns. These are then used to measure the success and failure of global
policies related to public health and safety. Disaster loss data are also particularly
important for defining priorities on what scientific research fields to fund and for evaluating
the contribution and effectiveness of scientific advances for disaster mitigation. Further-
more, insurance companies also require reliable disaster loss accounts in their portfolios.
Disaster loss data will enable them to guarantee their solvency or to undertake additional
measures to alleviate the risk they may face in case of a disaster (by issuing catastrophe
bonds, for example).

Even though the importance of disaster loss analyses is unquestionable, the range of
economic costs resulting from natural disasters is still difficult to estimate, both in concept
and in practice. For example, difficulties are usually found when trying to define objective
spatial and temporal boundaries for a given loss analysis. Moreover, some of the more
complex aspects of estimating disaster costs are related to the type and definition of losses
in itself. Losses are conventionally classified as either direct or indirect losses. These
categories can then be further subdivided into tangibles and intangibles losses, according to
whether or not such losses can be valued in monetary terms. Quantifying these loss
components is a challenge, especially those of indirect and intangible nature. However, the
fact that multiple procedures are available to estimate some of these loss components (e.g.,
see EMA 2002; ECLAC 2003; Hiete et al. 2012; Koedam 2012) also complicates their
unbiased quantification. Other difficulties also arise when trying to obtain damage and loss
data from publicly available sources that were not designed for this purpose. In this case,
reliable and accurate data are difficult to achieve (Dilley et al. 2005; Gall et al. 2009; Wirtz
et al. 2014), and contradictory data for the same event can sometimes be found when
different sources of information are used (Serje 2012).

Standardized approaches are therefore required for loss quantification methodologies
and loss data collection systems (i.e., databases) (De Groeve et al. 2014; Johansson 2015).
The purpose of these standards is to obtain more reliable loss estimates that will provide
adequate support for the higher-level strategic objectives of disaster loss analyses.
Achieving a high level of reliability in disaster loss estimates is seen to depend on two
essential factors. One is the reliability of the procedure that quantifies a given loss com-
ponent, and the second is the availability of adequate and sufficient data to perform such
quantification. Both factors can be associated with a characteristic generally termed as
quality. There are no specific criteria that data or processes must possess to have quality.
Instead, quality is measured according to the ability of that datum or process to fulfill a
certain need or objective (ISO 14040 2006; ASQ 2014). This lack of ability to fulfill needs
or objectives is found to be the result of the existing uncertainty of the data or processes
that are used. Uncertainty in these components is therefore a source of inaccuracy, errors,
subjectivity and leads to failure in achieving a high level of quality. Hence, before grading
the quality of a certain component of a disaster loss assessment framework, the sources of
uncertainty that are involved must first be characterized.

In light of this discussion, the growing importance of disaster loss data becomes clear.
However, the collection of such data also requires processes to characterize their reliability
and quality, as highlighted by Smith and Katz (2013) or De Groeve et al. (2014). Currently
there are no standardized processes for the specific characterization of uncertainty in
disaster loss data. Although some database providers identify factors that need to be
accounted for (Wirtz et al. 2014), no standard approach exists so far addressing all the
necessary aspects and formalizing a methodology to quantify the level of uncertainty. The
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present article therefore proposes a comprehensive approach to characterize different types
of uncertainty in disaster loss data according to their sources and occurrence in the data
management process. Furthermore, in order to establish a measure of the overall uncer-
tainty in a certain datum, an uncertainty quantification procedure is also proposed. The
proposed approaches are based on existing methods of uncertainty analysis and charac-
terization that are adapted to the specificities of disaster loss data. To illustrate the
application of the proposed uncertainty classification framework, two case studies are also
presented and discussed in detail.

2 Uncertainty: what is it?

Although the importance of uncertainty has been acknowledged throughout human history,
its systematic analysis only started in the twentieth century. Numerous research studies
across various fields and disciplines have addressed the issue of uncertainty over the years
(Van Asselt 2000). As such, uncertainty can be seen to be a term used to account for many
concepts (Morgan and Henrion 1990). However, a simple and unified definition of what is
uncertainty was never established. Epistemological differences between research fields
added to this difficulty. Therefore, several definitions of uncertainty have been proposed
that bear some relation to the field where it has been analyzed. To further complicate this
scenario, different lexicons use different names for the same thing, and, in some cases,
even the same name for different things. As such, scientific literature contains many
definitions, descriptions, and typologies of uncertainty. Existing classifications and their
(sometimes) confusing nomenclature reflect the differences between research fields which
are inevitably driven by their different objectives and their differences in terms of data
availability.

Despite the referred complexities, proposals, such as those in the following, have been
made in pursuit of an ideal unified definition of uncertainty:

e A state of incomplete knowledge (Cullen and Frey 1999)

e Any deviation from the unachievable ideal of completely deterministic knowledge of
the relevant system (Walker et al. 2003)

e Incomplete information about a particular subject (Ascough et al. 2008)

e Lack of confidence in knowledge related to a specific question (Sigel et al. 2010)

These definitions can be seen to associate uncertainty with a certain state of knowledge
or lack thereof. But uncertainty is not simply the absence of knowledge since it can occur
in scenarios where there is no shortage of information (Van Asselt 2000). One can picture
scenarios where having additional information can either decrease or increase the uncer-
tainty level. Additional knowledge regarding a certain process can reveal the presence of
uncertainties that were previously unknown or disregarded. Therefore, having additional
knowledge can point out the limitations in our understanding of a given process and
increase the uncertainty about it. Nevertheless, knowledge and knowledge-related issues
are decisive concepts that must be involved when defining a type of uncertainty which is
often termed epistemic uncertainty. In different research fields, this type of uncertainty has
also been addressed using terms such as incertitude (Carey and Burgman 2008) or epis-
temological uncertainty (Gillund et al. 2008), or even simply as “uncertainty” (Frey and
Burmaster 1999; McCann et al. 2006). More simply, the concept of epistemic uncertainty
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can be illustrated by recognizing that, for a given person with a certain level of knowledge
at a given time, a statement about a fact can either be true, false, or uncertain.

Aside from the referred knowledge-related aspects, uncertainty can also result from
another category of factors which are generally found to be associated with randomness.
This type of uncertainty, often termed aleatoric uncertainty, represents the intrinsic ran-
dom nature of a certain phenomenon. In different research fields, this type of uncertainty
has also been addressed using terms such as irreducible uncertainty (Tucker and Ferson
2003), random variability (Bolker 2008), or ontological uncertainty (Gillund et al. 2008).
The time between the consecutive occurrence of disasters such as earthquakes and storms
of a given intensity is an example of a random phenomenon. However, when estimating the
economic losses of disasters, such randomness is no longer important since losses are
assessed after the actual occurrence of this particular random phenomenon. Nevertheless,
there are other sources of aleatoric uncertainty that can affect disaster loss accounts. The
variation in the number of people in a certain area over a certain period of time is often
referred as an example of aleatoric uncertainty (Aven 2008). Therefore, accounting for
such uncertainty is fundamental when estimating the size and characteristics of population
affected by a disaster. Another source of aleatoric uncertainty is related with observation
and/or evaluation errors that may occur when collecting loss data (Gardi et al. 2011). These
errors fall within the general category of human errors which have been found to be
inherently random (Cuschieri 2006; Der Kiureghian and Ditlevsen 2009).

Most contexts where the scientific research analysis and treatment of uncertainty is
addressed assume that uncertainty can be expressed using numerically quantifiable metrics
(e.g., see Beck 1987; Smith and Shugart 1994; Paté-Cornell 1996; Charles 1998; Walker
et al. 2003). However, there are cases where such numerical quantification of uncertainty is
not possible, namely when problems are ill-defined, when information is only partial or not
quantifiable. Under such conditions, only qualitative descriptions can be established to
express uncertainty. Qualitative descriptions involve language-based terminology which,
in many cases, is imprecise such as our use of it. For example, vague and context-
dependent terms or expressions can impair our understanding about what is being
described. As a result of this lack of accuracy, an additional type of uncertainty then arises,
termed linguistic uncertainty. Linguistic uncertainty differs from aleatoric and epistemic
uncertainties since it is not a property of the data under analysis, and it is not created by
processing available data. Instead, linguistic uncertainty is created when attempting to
express information using non-quantitative metrics.

For completeness, a final category of uncertainty is also briefly addressed herein. This
fourth category of uncertainty occurs in a decision-making process based on the inter-
pretation of results that were expressed and communicated following a given analysis. In
this process, different individuals can have different interpretations of the same data due to
subjective judgment or differences in values, beliefs and preferences. Therefore, the variety
of interpretation outcomes is an additional source of uncertainty. This type of uncertainty
has been defined by Finkel (1990) who termed it decision uncertainty. However, it has also
been addressed using terms such as value uncertainty (Morgan and Henrion 1990), voli-
tional uncertainty (Bedford and Cooke 2001), decision-making uncertainty (Ascough et al.
2008), human uncertainty (Maier et al. 2008), or human decision uncertainty (Kujala et al.
2013). This type of uncertainty was also termed ambiguity by Kwakkel et al. (2010),
following the terminology introduced by Brugnach et al. (2008) when addressing the fact
that different individuals may use different frames of reference to interpret the same data.
The term ambiguity in this context must not be mistaken with the same term being used to
define one of the components of linguistic uncertainty, following the terminology of
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Regan et al. (2002). As referred, decision uncertainty only appears in the context of
decision-making processes after data have been analyzed and results have been expressed.
Therefore, additional details regarding its treatment and representation are not addressed
herein as it falls outside the scope of the current article.

3 Classifying uncertainty

The quality of results obtained from a disaster loss assessment depends on the uncertainty
related with the available data and with data processing operations. Based on the previ-
ously described types of uncertainty, epistemic and aleatoric uncertainties are the general
categories found to be the more significant. Still, if these uncertainties need to be expressed
in qualitative terms, linguistic uncertainty must also be considered relevant. From a
practical standpoint, it is also important to categorize these uncertainties according to their
potential for being reduced or eliminated. Given its random nature, eliminating aleatoric
uncertainty is not feasible (although in some cases it can be reduced in the statistical sense
of obtaining a lower variance). At best, this type of uncertainty can be described by a
statistical model. On the contrary, since epistemic uncertainty is presumably caused by
having an inadequate level of knowledge, it can be reduced or even eliminated by
improving the existing knowledge. With respect to linguistic uncertainty, Regan et al.
(2002) suggest several ways to reduce this type of uncertainty. Options involve providing
precise numerical definitions for vague terms and carefully specifying the context of terms
and their meaning when these terms are ambiguous. Establishing precise numerical defi-
nitions for terms such as “low,” “medium,” and “high” is a popular form of reducing
vagueness when expressing uncertainty. This approach, however, may impose a level of
precision that analysts find difficult to work with. Patt and Dessai (2005) and Budescu et al.
(2009), for example, have shown that scientists and policy makers interpret terms such as
“likely” or “very unlikely” in very different ways and continue to do so even after they
have read a set of numerical definitions for these terms.

EINT3

3.1 Existing frameworks to classify uncertainty

Even though a general division between aleatoric and epistemic uncertainties can be
conceptually useful, a greater refinement is sometimes necessary (Morgan et al. 2009). To
express aleatoric and epistemic uncertainties using quantitative or qualitative approaches,
it is helpful to subdivide these categories of uncertainties into more detailed classes.
Several research studies attempted to establish such classes over the years. For example,
MacEachren et al. (2005) published a review of models of information uncertainty and
imperfect knowledge in the field of geography, while Thomson et al. (2005) proposed a
typology of categories of uncertainty for intelligence information analysis. Another tax-
onomy for the treatment of uncertainty was also proposed by Regan et al. (2002) for
ecology and conservation biology. In the field of health care, Han et al. (2011) proposed a
three-dimensional taxonomy that characterizes uncertainty according to its fundamental
sources, issues, and locus. Another example can be found in the domain of decision support
and policy making for which Walker et al. (2003) proposed a framework to express the
uncertainty in a model for decision makers. Following some concerns expressed by Norton
et al. (2006) about this framework, Kwakkel et al. (2010) proposed a revised and extended
version of this uncertainty classification system. With respect to attempts to express
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uncertainty in a common way across several domains, reference is made to the taxonomy
proposed by Smithson (1989), and later reviewed by Bammer and Smithson (2008). This
taxonomy is useful for distinguishing between different kinds of uncertainty and for
demonstrating how different disciplines and practice areas focus on different aspects of
uncertainty. Reference is also made to the taxonomy of imperfect information developed
by Gershon (1998) and also to the empirical classification proposed by Skeels et al. (2010)
for the purpose of information visualization. With respect to linguistic uncertainty,
although it has been addressed and analyzed by many different researchers (e.g., see
(Cleaves 1995; Burgman 2005; Auger and Roy 2008; Carey and Burgman 2008)), the
taxonomy proposed by Regan et al. (2002) remains a standard reference.

3.2 A classification framework for expressing the uncertainty of disaster loss
data

Given the characteristics of the cross-domain approach proposed by Skeels et al. (2010), it
is adopted herein to define an uncertainty classification framework suitable for disaster loss
data. Still, this classification is adapted and extended in order to include a particular
uncertainty component that is not covered by the original proposal. Furthermore, this
classification framework is not developed using the general categories of aleatoric and
epistemic uncertainties as a basis. Instead, it establishes a hierarchy and connectivity
between five types of uncertainty that can be related to factors that are aleatoric and/or
epistemic in nature. The five uncertainty types that Skeels et al. (2010) propose are:

Measurement Precision
Completeness
Inference
Disagreement
Credibility

Based on the description of the “Measurement Precision” uncertainty type provided in
(Skeels et al. 2010), it is found that a more adequate designation would be “Measurement”
since this category is supposed to cover aspects related to both precision and accuracy.
Therefore, the first category is termed Measurement hereon. The Skeels et al. (2010)
classification also establishes that, in a given process (e.g., a disaster loss assessment),
uncertainty can exist in different stages of that process. In this context, this framework
characterizes a process using three stages, where each one is associated with a more
advanced state of data processing. The three stages can be generally defined as:

e Stage 1—Gathering and collecting data
e Stage 2—Sorting and manipulating data
e Stage 3—Transforming data to reach the objectives of the process

According to the framework of Skeels et al. (2010), each stage is associated with one of
the five types of uncertainty. Stage 1 is associated with Measurement, Stage 2 is associated
with Completeness, and Stage 3 is associated with Inference. The remaining two types of
uncertainty (Disagreement and Credibility) are said to span across all three stages. In
addition, it is also found that Disagreement sometimes increases the Credibility uncertainty
(Skeels et al. 2010). After a detailed analysis of this classification, it is possible to detect its
inability to account for certain mechanisms related to human error. Therefore, the clas-
sification framework adopted herein includes a sixth type of uncertainty termed Human
Error that is added to the original framework proposed by Skeels et al. (2010). As
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Disagreement and Credibility, Human Error also spans across all three previously referred
stages. Furthermore, in some occasions, Human Error also leads to an increase in Dis-
agreement and/or Credibility uncertainties. The hierarchy and connectivity between the
types of uncertainty covered by the framework adopted herein are illustrated in Fig. 1. To
clarify the role of each component of this framework in the global uncertainty of a process,
a detailed description of each type of uncertainty is presented in the following. It is noted
that such framework assumes that, in a given process, data will need to go through the three
stages before being suitable to meet a certain objective (e.g., a subsequent decision-making
procedure). However, certain processes may only require Stage 1 (i.e., the collected data
are the exact data required for decision-making), or only Stage 1 and Stage 2 (i.e., the
collected data needs some manipulation after which it is suitable for decision-making).
Further comments on these situations are provided in Sect. 4.

3.2.1 Measurement: Stage 1

This category covers variations, imperfections and limitations in measurements that pro-
duce quantitative data. However, the initial category proposed by Skeels et al. (2010) is
modified in order to account for two subcategories of uncertainty that were not differen-
tiated originally: accuracy and precision. Accuracy accounts for the closeness between the
measurement of a quantity and its true value (JCGM 2008). Hence, accuracy uncertainty
addresses the weaknesses of the measurement technique being used and accounts for
factors of epistemic nature. Precision is related to the closeness of agreement between
independent measurements of a quantity under the same conditions. In disaster loss data
collection, lack of precision might be due to limitations in the data measurement technique
or to random variations found when different persons measure the same data. Based on this
description, this type of uncertainty is seen to account for factors of aleatoric and/or
epistemic nature. Both subcategories of uncertainty can, sometimes, be explicitly expressed
by a statistical model or a range where the true value is probably in (e.g., using a confi-
dence interval). However, this uncertainty is often not able to be represented since only the
measured data that are known to be imprecise are available.

3.2.2 Completeness: Stage 2
This category addresses the uncertainties related to having incomplete data. According to

the description from Skeels et al. (2010), this category is represented by three subcate-
gories of uncertainty: sampling, missing values, and aggregation. Sampling is a strategy

Fig. 1 Hierarchy and
connectivity between types of
uncertainty
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where a subset of individuals from a statistical population is selected in order to estimate
characteristics of the whole population. Therefore, completeness uncertainty will inevi-
tably exist when generalizing these estimates to the whole population. Such uncertainty is
aleatoric if the sample (i.e., the subset of the whole population) is randomly selected.
However, if a specific sample is selected instead (e.g., based on a set of pre-defined
criteria) the selection procedure may introduce epistemic uncertainty due to the potential
inadequacy of the criteria. For example, this particular issue can occur when selecting
parameters or variables to measure a particular phenomenon that will later be used for
analysis (i.e., inference). If the selected parameters are inadequate, an incomplete sample
of data will be obtained that will introduce epistemic uncertainty into the later analyses.
Furthermore, it is noted that, sometimes, the available data represent the entire population.
In this case, the data are fully adequate with respect to the completeness uncertainty.

Missing values in the data under analysis also lead to completeness uncertainty, but
their effect must be distinguished from those arising from sampling. Missing values are
intended to be included but are not present in the data. On the other hand, sampling implies
deliberate extrapolation from a few values to cover a larger set of possible values. Datasets
with information that is known to be erroneous should be considered incomplete since one
obtains a subset of data with missing values after removing the incorrect values. Since this
type of uncertainty is related to having inadequate data to perform a given analysis, it is
categorized as being of epistemic nature.

Aggregating (i.e., summarizing) data is an irreversible procedure also causing uncer-
tainty. Once data have been aggregated, part of the information is lost and data are no
longer complete (Skeels et al. 2010). As for the previous case, this type of uncertainty is
also related to having inadequate data to perform a given analysis. Therefore, it is cate-
gorized as being of epistemic nature.

3.2.3 Inference: Stage 3

In a general three-stage process, inference assigns a meaning to the data. Therefore,
outcomes of inference are inputs for a decision-making procedure that may follow.
Inference is a broad category and may involve fitting the data into a model or transforming
the data using a model to estimate new data. According to the description in (Skeels et al.
2010), inference also includes three subcategories of uncertainty: modeling, prediction, and
extrapolation into the past.

Modeling uncertainty is introduced when the model being considered is not an adequate
representation of the data properties under analysis, i.e., if the model does not reflect the
causal relations that produce the phenomenon being examined. This includes models of
any kind such as physical models, probabilistic models, hypothesis-testing, diagnostic
models, or expert opinions. Prediction involves inferring future events by creating a model
for the causal relationship between current or past data and future occurrences. As for the
previous case, uncertainty is introduced when the model being considered is not able to
represent future outcomes of the phenomenon under analysis. Likewise, uncertainty from
extrapolation into the past involves the use of data to reproduce or make inferences about
past events. Again, uncertainty is introduced when the model being considered is not able
to represent past outcomes of the phenomenon under analysis.

As can be seen, all three categories of uncertainty are directly related to the adequacy of
the model being used to establish the required results. The difference between the three
types of uncertainty is only at the level of what kind of inference is being performed with
the model. Modeling uncertainty occurs when the inference being made is about the
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present (i.e., the model is used to reproduce the phenomenon under analysis using the
existing data). On the other hand, prediction or extrapolation into the past uncertainties
occur when inference is about future or past outcomes of the phenomenon under analysis,
respectively, for which there is inadequate data. Since these types of uncertainty reflect the
inability to reproduce a phenomenon by lack of capacity or knowledge, there are all found
to be of epistemic nature.

3.2.4 Human Error: all stages

Human error is a critical element of human activity and professional practice. As previ-
ously noted, human errors are considered as a source of aleatoric uncertainty and can occur
in any activity of the previous three stages that involves people. Even though this
uncertainty may be difficult to quantify (Kim and Bishu 2006), its classification and
analysis has been addressed using several different approaches (e.g., see reviews by
Whittingham (2004) and Rausand (2011)). In order to express more clearly the uncertainty
associated with human errors, it is helpful to describe them using a more detailed and
categorized approach. Within the scope of the present framework, human errors are con-
sidered to be random events that are either unintentional or deliberate. In this context, the
taxonomy proposed by Reason (1990) is found to be the more adequate approach to
categorize human errors for the proposed uncertainty classification. According to Reason
(1990), there are four categories of human errors. The first three categories reflect unin-
tentional events while the last one reflects a deliberate event. These four categories are:

e Slip—An action that is carried out with the correct intention but a faulty execution.

e Lapse—A failure to execute an action because of a distraction or a lapse of memory.

e Mistake—A correct execution of an incorrect intention. A person may believe an action
being carried out is correct when, in fact, it is wrong.

e Violation—A person intentionally applies a rule or a procedure that is different than
what is known to be required. A violation may be executed with good or bad intention.

3.2.5 Disagreement: all stages

Disagreement can create uncertainty in any of the previously defined three stages. At Stage
1, disagreement happens when a parameter is measured multiple times or is obtained from
different sources and the measurements are not the same (as a result of human error or any
other cause). At Stage 2, disagreement may occur, for example, when several non-identical
but partially overlapping datasets representing the same phenomenon are available. At
Stage 3, disagreement can occur when two (or more) different conclusions are drawn from
the same data. This can happen when two (or more) experts analyze a certain dataset and
come to different conclusions (again, as a result of human error or other causes). In other
scenarios, it can happen when different mathematical models are applied to a certain
dataset to perform an inference. The aleatoric or epistemic nature of the disagreement
uncertainty depends on the nature of the factors leading to such uncertainty. For example,
if the source is related to human error uncertainty, which is aleatoric, the resulting dis-
agreement uncertainty will also be of aleatoric nature. A similar reasoning can be estab-
lished for the precision uncertainty of Stage 1 which can be aleatoric and/or epistemic, thus
leading to disagreement uncertainty of the same nature. A similar conclusion can be drawn
with respect to the sampling uncertainty of Stage 2. On the other hand, since the remaining
uncertainties of Stage 2 (missing values and aggregation), the Stage 1 accuracy uncertainty
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and the Stage 3 uncertainties are all epistemic, the consequent disagreement uncertainty
that may follow is also epistemic.

3.2.6 Credibility: all stages

Credibility can also lead to uncertainty in any of the previously defined three stages. This
type of uncertainty can be the result of a source of information that produces data in
conflict with other data or that produced unreliable data in the past. For example, data with
errors can lead to concerns about the correctness of other datasets coming from the same
source. Sources of information can be human (e.g., individuals or institutions) or non-
human (e.g., machines, measurement tools, models), and credibility issues can be cast on
both of them in different forms. For example, credibility could be questioned due to the
methods used to get the data or due to concerns involving biases or conflicts of interest
with the data creators. A human source may also be considered untrustworthy based on
past behavior. Likewise, machines or measurement tools can also be considered untrust-
worthy based on past behavior. In this case the credibility appears to be similar to mea-
surement uncertainty. However, the difference is that credibility is a judgment made by the
information user about the information source, rather than a known accuracy/precision
limitation mathematically expressible. As for the previous case, the aleatoric or epistemic
nature of the credibility uncertainty depends on the nature of the factors that lead to such
uncertainty. Furthermore, it is also noted that credibility and disagreement are often
associated. When disagreement occurs, whether among people or among measurements,
credibility is often called into question. Likewise, when human error occurs, credibility
issues are also usually cast.

4 Aspects related to the application of the proposed uncertainty
classification framework to disaster loss data

As previously noted, the proposed framework assumes that, in a given process, data go
through three stages before being suitable to meet a certain objective. However, for the
particular case of characterizing disaster losses, the data being collected in Stage 1 can
have two roles. It can represent the actual loss indicator or it can be an auxiliary parameter
that will serve as a proxy for the required loss data indicator. For example, when referring
to human losses (e.g., the number of deaths), the loss indicator corresponds in many cases
to the data being collected (De Groeve et al. 2014). Therefore, the existing uncertainty in
the data for this case is only that which comes from Stage 1. Another example of a situation
also related to human losses can be defined for the case where the loss indicator now
represents the number of affected people (De Groeve et al. 2014). In this case, the final
value of the loss indicator can be obtained after Stage 1 (e.g., if the data collection process
is rigorous enough) or after Stage 2 if some data manipulation is required, e.g., see
(ACAPS 2012; Koedam 2012). In this latter case, the existing uncertainty in the data
comes from both Stage 1 and Stage 2.

In another example, if the loss indicator corresponds to the (direct) monetary losses
resulting from damaged properties (De Groeve et al. 2014), two possible scenarios can be
foreseen. In the first scenario, the total loss data are directly obtained from available
sources (e.g., insurance companies) that provide the true monetary losses (e.g., based on
insurance claims). In the second scenario, only part of the loss data are obtained as in the
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first scenario and the remaining monetary losses must be estimated. In this second scenario,
part of the collected data that are available are not the actual loss indicator but a proxy
(e.g., damage levels of properties) that needs to be transformed into an estimate in the unit
of the required loss indicator (the monetary value). Therefore, in this scenario, part of the
loss indicator value will be established in Stage 3 and the uncertainty will come from
Stages 1, 2 and 3. In this scenario, it is assumed that some data manipulation in Stage 2 is
required before Stage 3; otherwise, only the Stage 1 and Stage 3 uncertainties are involved.
Models developed to estimate monetary losses resulting from disasters can be found, for
example, for the case of floods (Pistrika 2010; Pistrika et al. 2014; Vozinaki et al. 2015),
for the case of earthquakes (Wu et al. 2012; Jaiswal and Wald 2013), or for the case of
hurricanes (Hallegatte 2008; Pan 2015; Smith and Matthews 2015).

5 Expressing the uncertainty of disaster loss data

Most standard statistical techniques that have been developed to handle uncertainty assume
that it is due to variations in phenomena that can be precisely (i.e., numerically) measured.
Such techniques usually consider that a data distribution reflecting this uncertainty is
available to allow the use of numerical simulation methods for uncertainty quantification
and propagation. For this category of uncertainty analysis, it is, therefore, possible to use
methods such as those based on Monte Carlo analysis, Latin Hypercube sampling,
importance sampling, variance reduction techniques, perturbation analysis, sensitivity
analysis, response surface-based approaches, the Fourier amplitude sensitivity test, the
Sobol’ variance decomposition, or fast probability integration (e.g., see (Helton and Davis
2003; Saltelli et al. 2004; Sudret 2007; Lemaire 2009; Smith 2014)). In addition, methods
using non-probabilistic approaches such as those based on interval analysis or fuzzy
analysis (e.g., Ayyub and Klir 2006; Hayes 2011) are also available for this category of
problems.

The power and validity of these numerical methodologies is unquestionable. However,
they are, usually, only suitable for traditional science fields where sufficient hard data are
available for numerical treatment. On the contrary, disaster loss data are often coarse and
scattered, thus precluding the use of such refined mathematical manipulations. In other
words, available data are frequently insufficient, thus unable to support the meaningful
definition of adequate statistical descriptors suitable for mathematical treatment. In such
cases, defining qualitative expressions of uncertainty is often the only available option.
Qualitative expressions of uncertainty are more difficult to define unequivocally, as well as
more difficult to use in a numerical uncertainty propagation analysis. However, they have
the potential to be more informative than statistical descriptors since they can include a
large number of attributes (Norton et al. 2006).

A suitable methodology to express the uncertainty in disaster loss data must, therefore,
be able to accommodate both quantitative and qualitative measures of the uncertainty in a
certain datum. To determine how reliable the datum is for a given purpose (i.e., to reflect
the quality of the datum), the methodology must be able to express this uncertainty in a
clear and meaningful way. Potentially fitting methodologies of this type have been ana-
lyzed, for example, by van der Sluijs et al. (2004) and Refsgaard et al. (2007). Based on
their descriptions and reviews, the Numeral Unit Spread Assessment Pedigree (NUSAP)
method is found to be suitable to characterize the uncertainty in disaster loss data. The
NUSAP method has the ability to capture both quantitative and qualitative dimensions of
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uncertainty and to represent them in a standardized and self-explanatory way. This method
was originally proposed by Funtowicz and Ravetz (1990) to characterize and assess the
multidimensional uncertainty in science for policy. Nevertheless, it has also been suc-
cessfully used and adapted in other research and science fields (van der Sluijs et al. 2005;
Costanza 2007; Boone et al. 2009; Colli et al. 2009; Boone et al. 2010; Durugbo et al.
2010; Matschewsky 2013; Henriksson et al. 2014; Lorenz et al. 2015).

The NUSAP method involves five parameters that are used to characterize a certain
datum. The five parameters are Numeral, Unit, Spread, Assessment, and Pedigree.
According to Funtowicz and Ravetz (1990), Numeral, Unit, and Spread address the
quantitative aspects of the datum, while Assessment and Pedigree are assigned to describe
its more qualitative components. Numeral and Unit characterize the value of the datum,
while Spread, Assessment, and Pedigree characterize its uncertainty and quality.
Depending on the datum under analysis, Numeral can be defined using an ordinary number
representing a mean value or a best estimate. Alternatively, it can also be defined using a
more general quantity such as an expression of a number (e.g., a million). Parameter Unit
usually expresses the scale of Numeral by defining its unit of measurement, but it can also
contain additional information such as the date of the evaluation. According to Funtowicz
and Ravetz (1990), Spread is expected to represent the more quantifiable component of the
uncertainty of the datum under analysis. Therefore, if sufficient data are available, Spread
can be defined by the variance of the data, which could be determined by adequate
statistical methods. However, data may often be insufficient to establish a meaningful
statistic representing the variability of the datum. In some cases, only an interval or a range
of variation of the datum can be defined. In this case, the variability can be established
using mathematical procedures or expert elicitation.

Assessment is the first parameter of NUSAP expressing qualitative judgments about the
datum. Assessment can be used to establish a global measure of expert judgement about the
overall goodness, reliability or level of confidence associated with the value in Numeral or,
if desired, in Spread instead. For example, this qualitative grade can be defined using
qualifiers such as “optimistic/pessimistic”, “reliable/unreliable”, “official/unofficial”, or
“exact/accurate/estimate/guess”. The final parameter of NUSAP, Pedigree, is a concept
first introduced in uncertainty analysis by Funtowicz and Ravetz (1990). Pedigree involves
a set of criteria to assess several aspects related to the information flow and the knowledge
used to characterize the datum under analysis. Pedigree is a matrix where problem-specific
criteria are graded according to a numerical scale with a description assigned to each value
of the scale. Therefore, the Pedigree matrix quantifies qualitative assessments associated
with different components of the uncertainty involved in the process being analyzed. The
structure of the Pedigree matrix has no formal requirements since the rating scale as well
as the number and type of criteria are selected according to the needs of each problem.

6 Pedigree matrices to express the uncertainty in disaster loss data
according to the proposed framework

To express the uncertainty in a certain loss data indicator using the framework proposed in
Sect. 3.2 with the NUSAP method, a set of Pedigree matrices need to be established. Three
Pedigree matrices in agreement with Stages 1, 2 and 3 are presented in Tables 1, 2 and 3,
respectively. For each stage, the corresponding Pedigree matrix addresses the uncertainty
components that were previously defined. Since each loss indicator being considered might
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involve different processes of data collection and processing, the set of Pedigree matrices
that need to be analyzed depend on the indicator. For example, if the value of a loss
indicator is defined directly after Stage 1 or Stage 2, only the Pedigree matrices of these
stages need to be analyzed.

As can be seen, the Pedigree matrix for Stage 1 (Table 1) presents two criteria related to
credibility. One addresses the credibility of the source of the data while the other addresses
the credibility among peers regarding the procedure that is used to collect data. Further-
more, this matrix does not include precision uncertainty in the measurement category.
Although both accuracy and precision contribute to the uncertainty in Stage 1, accuracy
concerns are currently more relevant, namely due to the lack of standardized approaches
for disaster data collection. For example, the issues addressed by Daniell et al. (2013)
regarding the death toll of the 2010 Haiti earthquake are found to be related to accuracy
problems. Similarly, the concerns in (Molinari et al. 2014) regarding the usability of
available flood damage data in Italy for loss assessment purposes are also found to be
related to accuracy issues. Furthermore, even though the development of remote sensing
technologies for disaster damage collection is growing fast, their reliability and accuracy is
still an important factor to consider (e.g., see Joyce et al. 2009; Liou et al. 2012; Zhang
et al. 2013; Wang et al. 2015; Foulser-Piggott et al. 2016). As such, uncertainty related to
measurement accuracy issues is currently expected to have a larger effect on the reliability
of the disaster loss data being collected.

With respect to the aggregation criterion of the Stage 2 Pedigree matrix (Table 2), it is
noted that its meaning in the context of disaster loss data is twofold. In a first situation,
aggregation can represent a procedure where the original data are summarized and
transformed into an equivalent dataset. In this case, a model (statistical or other) can also
be used as a proxy to represent the equivalent dataset. In a second situation, aggregation
can represent the process of transforming data from several sources into a single new
dataset. Regarding Stage 2, it is noted that if the collected dataset does not require
manipulation before entering Stage 3, only the Stage 1 and Stage 3 Pedigree matrices are
required.

As can be seen, these Pedigree matrices combine different uncertainty identification and
criteria specific for loss data and cover the whole process of data collection and recording.
Still, potential sources of linguistic uncertainty need to be addressed since these matrices
express the uncertainty components using qualitative terms. In this case, such sources were
carefully analyzed to minimize the influence of /inguistic uncertainty and to provide a
consistent (e.g., between assessments or even between assessors) and objective approach
for uncertainty analysis.

Fig. 2 Example of a graphical Measurement
plot for the Pedigree grades of precision

the Stage 1 uncertainty 4
components /

Disagreement Human error

Credibility 2 Credibility 1
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Fig. 3 Global average Pedigree
score representing the quality of a
given methodology of loss data
collection

r

Average Pedigree
score = 3.6

After grading each criterion, a graphical representation of the grades of each uncertainty
component can also be established for each Pedigree matrix as presented in Fig. 2. Fur-
thermore, an average score of the Pedigree matrix can be established for each stage of the
process and a global average Pedigree score (i.e., the average of all Pedigree matrices
scores) can be established to reflect the overall quality of the process that lead to the datum
under analysis (Costanza 2007). Currently, the average score of the Pedigree matrix of
each stage is proposed to be obtained without weighting differently the different uncer-
tainty components. Likewise, the global average Pedigree score is also obtained without
weighing differently the contribution of each stage. This approach was selected because,
currently, there is no clear evidence indicating that certain uncertainty components are
more influent than others. Furthermore, there is also no indication that a certain stage has a
different contribution than another to the overall uncertainty of a certain datum. A possible
representation of the global Pedigree score is shown in Fig. 3, following the approach
suggested by De Groeve et al. (2014).

7 Application examples of the proposed framework

To illustrate the application of the proposed framework for uncertainty classification, two
examples are presented in the following. The selected examples are based on recent
disasters and both address the uncertainty in the number of deaths resulting from those
events. Although the two examples address the same indicator (number of deaths), their
uncertainty analysis is considerably different due to the distinct scale of the two disasters.
Details about the classifications assigned to the uncertainty criteria of the analyzed
Pedigree matrices are first presented. The uncertainty of both loss indicators is then also
established using the NUSAP method to clarify the application of the proposed framework.
In this application, the Assessment parameter is rated according to “exact/accurate/esti-
mate/guess”.

7.1 The 2010 Xynthia storm: uncertainty classification for the death toll
in France

Xynthia was a storm that hit Western Europe between February 27, 2010 and March 1,

2010. The storm reached the west coast of France on February 28 and led to large floods in
the coastal areas. In Europe, the storm caused dozens of casualties as well as significant
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damage along the Iberian Peninsula, France, Germany, and the Benelux countries. In
France, the overall impacts of the storm were 47 deaths, 79 injured, material damage to
close to 500,000 people and a total damage cost estimated to be around 2500 million Euros.
Detailed analyses and surveys of the impacts of the Xynthia storm can be found, for
example, in (Anziani 2010; Bersani et al. 2010; Vinet et al. 2012; Kolen et al. 2013).

The uncertainty analysis of the death toll in France presented herein is mostly based on
the data available in (Anziani 2010; Vinet et al. 2012). As referred, 47 people lost their
lives in France as a result of the storm: 41 died due to the coastal flooding, while six died
from direct or indirect wind effects. Given the scale of the death toll of the Xynthia storm,
the number of victims was directly obtained based on the analysis of the corpses.
Therefore, as previously referred, the existing uncertainty in the data is only that which
comes from Stage 1. Therefore, only the criteria presented in the Pedigree matrix of
Table 1 are necessary for the uncertainty analysis. The grading of each criterion of the
Stage 1 matrix and the corresponding justification is as follows:

e Measurement/Accuracy—Grade 5—Since the Xynthia storm was declared a national
disaster by the French authorities, the number of deaths determined by forensic reports
is expected to have been established using standard disaster victim identification (DVI)
procedures (e.g., see Graham 2006).

e Human error—Grade 5—The use of standard DVI procedures to establish the deaths
attributed to the storm complemented by the statements obtained from the fire services
(Vinet et al. 2012) are considered sufficient to assign this grade.

e Credibility 1—Grade 5—The official number of deaths is found in a report from the
French government (Anziani 2010). Furthermore, the same number of victims was
verified during the field survey carried out by Vinet et al. (2012).

e Credibility 2—Grade 5—Collecting the number of deaths based on the report from the
French government (Anziani 2010), complemented by the statements obtained from the
fire services (Vinet et al. 2012), is considered to be sufficient to assign this grade.

e Disagreement—Grade 5—The statements obtained from the fire services during the
field survey carried out by Vinet et al. (2012) are in agreement with the number of
deaths determined by forensic reports. As such, it is considered that agreement was
found between all possible data comparisons when determining whether the victims
could be attributed to the Xynthia storm.

Given the grades assigned to each criterion of the Stage 1 Pedigree matrix, the average
score that is obtained for Stage 1 is 5. Since only the Stage 1 matrix needs to be analyzed,
this score is also the global average Pedigree score of the data. Finally, the results of the
uncertainty classification according to the NUSAP method are then:

e N=47

e U = number of people

e S = 0 (there is no spread since the value of the loss indicator is the exact value)
e A = exact

e P=5

To further illustrate the application of the framework, a second uncertainty analysis is
carried out using this example but considering alternative conditions that reflect a common
situation in disaster data analysis. In this new analysis, it is assumed that only the number
of deaths determined by forensic reports and provided in the report from the French
government (Anziani 2010) is available for the uncertainty analysis. In this case, since no
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other source of data is available to validate the number of deaths, the classification of the
Stage 1 criteria would be as follows:

e Measurement/Accuracy—Grade 5—Since the Xynthia storm was declared a national
disaster by the French authorities, the number of deaths determined by forensic reports
is expected to have been established using standard disaster victim identification (DVI)
procedures (e.g., see Graham 2006).

e Human error—Grade 5—The use of standard DVI procedures to establish the deaths
attributed to the storm is still considered to be sufficient to assign this grade.

e Credibility 1—Grade 4—This classification was considered since the number of deaths
is only based in the French government report (Anziani 2010) and was not verified.

e Credibility 2—Grade 4—This classification was considered since the number of deaths
is only based on the report from the French government (Anziani 2010). According to
Kron et al. (2012), every data should be validated for quality assurance purposes.

e Disagreement—Grade 1—The lowest classification is assigned since no data compar-
ison is able to be performed.

Given these new grades assigned to the criteria of the Stage 1 Pedigree matrix, the
average score that is obtained for Stage 1 is 3.8. As for the previous case, the global
average Pedigree score of the data is also 3.8. With respect to the results of the uncertainty
classification according to the NUSAP method, only the value of P changes to 3.8.

7.2 The 2005 Katrina hurricane: uncertainty classification for the Louisiana
death toll

In the morning of August 29, 2005, Hurricane Katrina made landfall along the United
States Central Gulf Coast region. The storm was a category 3 hurricane on the Saffir—
Simpson scale that caused significant damage. However, the Hurricane Katrina disaster is
mostly the result of the cascading effects of the windstorm (Knabb et al. 2005). In par-
ticular, numerous failures in the levee infrastructure caused massive flooding of a large
urban area (e.g., see (Seed et al. 2006; IPET 2006a; Sills et al. 2008)). As a result of the
Hurricane Katrina impact, the Louisiana, Mississippi, Alabama, and Florida states were
declared Major Disaster areas (Boyd 2011). The impacts over the greater New Orleans
region were particularly severe due to the flooding of approximately 80 % of New Orleans.
More than 304,000 houses were damaged in the Greater New Orleans (DHS 2006) and
about 1.2 million people were under evacuation orders (Boyd 2011). According to IPET
(2006b), flood damage to residential property in New Orleans was estimated at US$16
billion and damage to public structures, infrastructure, and utilities at US$7 billion. With
respect to the Louisiana death toll, several estimates varying from 986 (Brunkard et al.
2008) to 3000 (Mutter and Barnard 2009) have been referred across several sources. The
death toll established by Boyd (2011) is 1572. Although this number is not the true death
toll (Boyd 2011), the process that was used to establish this value is considered herein for
the application of the uncertainty classification framework.

Although the loss indicator being analyzed is the number of deaths, the value obtained
by Boyd (2011) is the result of a process that is more complex than the one of the previous
example. The analysis carried out by Boyd (2011) to establish a more reliable number of
deaths caused by Hurricane Katrina started by collecting several data records with potential
victims that might be attributed to Hurricane Katrina along with other metadata (e.g.,
victim attributes, victim recovery location, field survey data). These records were obtained
from several sources and are considered herein as sets of raw data with more than just
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mortality data. These data were then analyzed, manipulated, and aggregated into a rep-
resentative dataset that was ultimately used to make inferences about a reliable value for
the number of deaths. Given this approach, the number of deaths is considered to have been
obtained by a procedure that involves the three stages of the proposed uncertainty clas-
sification. Therefore, the Pedigree matrices of the three stages are considered for the
uncertainty analysis of the Louisiana death toll presented herein. The classification of those
Pedigree matrices is based on the detailed analysis presented in (Boyd 2011).

For the case of the Stage 1 Pedigree matrix, the grading of each criterion and the
corresponding justification is as follows:

e Measurement/Accuracy—Grade 4—The raw data that were used to establish the
number of deaths were collected from a number of official and unofficial sources (the
Louisiana Department of Health and Hospitals (DHH), the State Medical Examiner’s
Office (SMEO), field surveys, newspaper listings and other media accounts).

e Human error—Grade 5—An independent field survey was carried out to verify cases
listed by the SMEO and investigate their characteristics.

e Credibility 1—Grade 4—Most of the data sources are found to be reliable but the field
survey was only able to cover part of the data. The field survey was limited to residents,
businesses and public places located in the impacted regions of the Orleans and St.
Bernard parishes and obtained data from approximately 400 victims.

e Credibility 2—Grade 4—The majority of the data were collected from official sources
and the field survey. Still, some data were obtained from unofficial sources.

e Disagreement—Grade 4—According to (Boyd 2011), some of the data obtained from
the field survey did not agree with the data from the SMEO (seventeen locations listed
did not have markings to indicate a victim had been recovered from that location, and
two listed locations had an address that did not exist).

For the case of the Stage 2 Pedigree matrix, the grading of each criterion and the
corresponding justification is as follows:

e Completeness/Sampling—Grade 4—Data representing the victims and its metadata
obtained from the collected records was used to form a global dataset (Boyd 2011). The
number of records that was considered is assumed to be sufficient but not large.

e Completeness/Missing values—Grade 3—According to Boyd (2011), the global
dataset has missing data for many records. Approximately 200 victims lacked basic
information (e.g., cause of death) and detailed victim recovery information is only
available for around 800 victims. Nevertheless, the dataset is considered fit for use.

e Completeness/Aggregation—Grade 4—The aggregated dataset is considered to be fit to
assess the number of deaths. Even though there are missing data, the dataset represents
the most complete listing of Hurricane Katrina victims and corresponding metadata
currently available (Boyd 2011).

e Human error—Grade 2—Boyd (2011) refers some of the procedures that were used to
compile the global dataset and to identify errors/discrepancies in the data. Since there is
no reference to the fact that different people were involved in this compilation, it is
considered that only a weak and very indirect validation of the procedures was carried
out.

e Credibility—Grade 3—Since the dataset does not include only direct victims of the
storm, the criteria to include or not to include certain victims in the dataset were, in
some cases, found to be subjective.
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e Disagreement—Grade 3—As referred before, this dataset represents the most complete
listing of Hurricane Katrina victims currently available. According to Boyd (2011),
previous analyses were based on data that only includes victims recovered and
processed by the SMEQ. Since this dataset includes the SMEO data, it is considered
that there is some agreement with other records.

For the case of the Stage 3 Pedigree matrix, the grading of each criterion and the
corresponding justification is as follows:

e Inference—Grade 2—Boyd (2011) describes the steps used to classify each case
according to the circumstances of death established based on the available information.
The classification considered three categories: direct flood death, emergency circum-
stances death, and evacuation/displacement death. Based on the description of the
classification process, simple correlations and causal mechanisms were considered for
the inference.

e Human error—Grade 3—There is no reference to the fact that different people were
involved in the process of defining the value of the final death toll. However, since this
study was performed in the context of a PhD research, it is assumed that the
supervisor(s) of the research cross-checked some of the results.

e Credibility—Grade 2—Boyd (2011) refers that the death classification process
involved some uncertainties and ambiguities.

e Disagreement—Grade 1—As referred before, previous studies were based on data that
only includes part of the victims. As such, it is impossible to make a comparison of the
results obtained.

Given the grades assigned to each criterion of the Stages 1, 2 and 3 Pedigree matrices,
the average score that is obtained for each stage is 4.2, 3.2 and 2, respectively. Given these
scores, the global average Pedigree score of the data is 3.1. Finally, the results of the
uncertainty classification according to the NUSAP method are then:

e N=1572

e U = number of people
e S=49%

e A = accurate

e P=31

With respect to this classification, it is noted that the Spread value (S) is set to 9 %
based on the fact that a number of people remain missing and several victims were
recovered from unknown locations. According to Boyd (2011), the number of direct flood
deaths could be revised to about 9 % more than 1572. Even though the number of deaths
established by Boyd (2011) is not the true value, it is still considered accurate.

8 Conclusion

There is a growing interest in the collection of disaster loss data for applications in fields
such as disaster loss accounting, disaster forensics or risk modeling (De Groeve et al.
2013). However, the collected data must also follow a set of technical requirements to
guarantee its usefulness. One of those requirements is the availability of a measure of the
uncertainty in the collected data to express its quality for a given purpose (De Groeve et al.
2014).
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Many of the existing disaster loss databases do not provide such uncertainty/quality
measures about the data they hold (De Groeve et al. 2013, 2014). The unavailability of a
simple and consistent approach to express uncertainty in this field is believed to be one of
the reasons for this. After reviewing existing literature on the subjects of uncertainty
classification and characterization, a framework to express the uncertainty in disaster loss
data was proposed. This framework builds on an existing uncertainty classification (Skeels
et al. 2010) that was updated and combined with an existing method for data characteri-
zation. This method, the NUSAP method (Funtowicz and Ravetz 1990), includes quanti-
tative and qualitative factors to express the uncertainty of data. These factors were adapted
for the case of disaster loss data following the proposed uncertainty classification.

The proposed uncertainty classification aims to be as general and flexible as possible in
order to include all possible scenarios of data handling. It includes six types of uncertainty
(measurement, completeness, human error, disagreement, and credibility) which can affect
the different stages of data collection and processing of a given loss indicator. The
uncertainty coming from each stage can then be expressed by one of the components of the
NUSAP method: the Pedigree matrix. A global average Pedigree score can then be
obtained to reflect the overall uncertainty in a certain loss indicator and to provide a
measure of its quality. To illustrate the application of the proposed uncertainty classifi-
cation framework, two case studies are also presented and discussed in detail.
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