
0-7803-9402-X/05/$20.00 © 2005 IEEE

1039

A Self-Healing Real-Time System Based on Run-Time Self-Reconfiguration

Manuel G. Gericota, Gustavo R. Alves
Department of Electrical Engineering — ISEP

Rua Dr. Antonio Bernardino de Almeida
4200-072 Porto - PORTUGAL
{mgg, galves}@dee.isep.ipp.pt

José M. Ferreira
Dep. of Electrical and Comp. Eng. — FEUP

Rua Dr. Roberto Frias
4200-465 Porto - PORTUGAL

jmf@fe.up.pt

Abstract♦

The new generations of SRAM-based FPGA (Field
Programmable Gate Array) devices are the preferred
choice for the implementation of reconfigurable
computing platforms intended to accelerate processing
in real-time systems. However, FPGA’s vulnerability to
hard and soft errors is a major weakness to robust
configurable system design.

In this paper, a novel Built-In Self-Healing (BISH)
methodology, based on run-time self-reconfiguration, is
proposed. A soft microprocessor core implemented in the
FPGA is responsible for the management and execution
of all the BISH procedures. Fault detection and
diagnosis is followed by repairing actions, taking
advantage of the dynamic reconfiguration features
offered by new FPGA families. Meanwhile, modular
redundancy assures that the system still works correctly.

1. Introduction

The use of reconfigurable computing platforms in
real-time systems enabled a significant speedup in
performance over traditional, non-reconfigurable,
implementations. New and more flexible systems are
achieved using soft microprocessor cores implemented
in SRAM-based FPGAs, and by mapping compute-
-intensive sections of an application to reconfigurable
hardware. This enables a quicker response to changes in
the system’s environment, which is an important feature
when very stringent response intervals are imposed to
the system.

This degree of integration and flexibility was made
possible by the reduction in the size of transistors in each
new generation of semiconductor technology, which led
to a greater integration and to a per unit power reduction,
enabling chips to grow in size and complexity. However,
new submicron scales also brought some negative
aspects, namely the vulnerability to soft errors, also
called single-event upsets (SEUs), which are radiation-
-induced transient errors caused by neutrons from

♦ This work is supported by an FCT program under contract

POSC/EEA-ESE/55680/2004

cosmic rays and alpha particles from packaging material.
Until now, they used to be a major concern only for
space applications. But, for designs manufactured at
advanced technology nodes – such as 90 nm, 65 nm, and
downward – system-level soft errors became an issue
also at ground level. They are now much more frequent
than in previous generations [1]. By this reason, the use
of fault tolerance techniques, once confined only to
specific applications requiring high levels of security or
operating on harsh environments, became mandatory,
especially when dealing with hard real-time systems
where a system failure may lead to catastrophic
consequences.

Soft errors do not physically damage the chip, but the
values stored in memory cells may be affected, causing
incorrect data to be transmitted or an improper
instruction to be retrieved by a processor. This problem
has a particular impact on the reliability of SRAM-based
FPGAs, currently the preferred choice for the
implementation of reconfigurable computing platforms,
because the structural definition of the configured
functions relies on memory cells, which makes them
especially vulnerable to soft errors. Additionally, the
amount of embedded memory blocks available for user’s
applications is also increasing.

Another negative aspect due to the smaller
technological scales is the increased threat of
electromigration, which may result in permanent
physical damages to the chip. The number of defects
related to small manufacturing imperfections that are not
detected by production testing has been growing as scale
goes down. These defects are especially prone to
electromigration phenomena, resulting, after large
periods of operation, in the emergence of permanent
faults.

The recent addition of new features to FPGAs, such
as dynamic reconfiguration and self-reconfiguration,
may help to cope with the problems mentioned above, in
particular when dealing with hard real-time systems that
require a high reliability level.

Dynamic reconfiguration involves the reconfiguration
of a fraction of the configurable resources, without
disturbing the operation of those functions that are not
modified, while self-reconfiguration [2] enables
currently configured functions to control the dynamic

1040

reconfiguration of other areas of the same FPGA. Their
combined use makes feasible the implementation of the
autonomous recovering mechanism proposed here. The
mechanism has the ability to restore the fault-free
operation of the system when a faulty condition is
detected.

The implementation of online structural test and fault
tolerance strategies were largely explored in previous
works [3-4]. However, those previous approaches relied
on a rotate and test methodology, whose primary aim
was the structural test of the FPGA. Moreover, only a
small fraction of the resources were configured to be
tested at a time. These solutions create a test latency that
must be taken into account since it degrades the
performance of the test strategy. If a defect affects the
functionality of a given function, the resulting fault will
be propagated until the test function reaches the
defective resource. By then, the fault may already have
had catastrophic consequences.

This paper presents a new methodology that aims to
increase the reliability of real-time systems based on
reconfigurable platforms implemented in dynamically
reconfigurable FPGAs. The drawback associated to
previous approaches is avoided by the introduction of
fault tolerance techniques.

In the next section traditional hardware redundancy
techniques are briefly analyzed, followed by the
presentation of the proposed methodology. Several
aspects related to its practical implementation are then
discussed, and future research lines are presented in the
concluding section.

2. Hardware redundancy techniques

Traditionally, highly critical applications relied on
hardware redundancy to increase their reliability. One of
the best known of such approaches is Triple Modular
Redundancy (TMR), a static redundancy technique that
achieves fault tolerance without actually detecting any
fault. In this method, each module, which may be a
complete system, such as a computer, or a less complex
unit, like a microprocessor or even an adder or a gate, is
replicated three times. The voting element collects the
outputs from the three sources and delivers the majority
vote at its output. In this case, it is assumed that the
majority voter does not fail, which is an unrealistic
principle. When this assumption is not verified, the
reliability of the voter element will determine the
reliability of the circuit, since it will fail if the voter fails.
However, the reliability of a voter in a redundant system
can be improved by replicating this element as well, in a
scheme that is called T-TMR [5].

In new nanometre technology, the use of fault
tolerance mechanisms is essential, not only due to soft
errors, but because it is unrealistic to expect that a
manufacturing test will cover all possible faults. In
particular, delay faults emerging from defects of resistive

type, or due to crosstalk or ground bounce, are almost
impossible to foresee [6].

Hardware redundancy is also a preferred choice to
improve the reliability of highly critical applications
based on FPGAs [7-8]. Due to their inherent
configurability, FPGAs are especially suitable for the
implementation of modular redundancy, since it does not
require any new architectural feature and it is function
independent.

If it is clear that hardware redundancy increases the
reliability of a system, it is also obvious that any
proposed methodology has also to take into
consideration the cumulative impact of single errors, as
their added effect may lead to the quick disruption of a
system. The great advantage of using reconfigurability is
that in the event of a module failure a diagnose-and-
-repair mechanism may be activated and the initial
redundancy re-established. This may be done
transparently and without human intervention, since
physical component replacement is not needed. This
means that a higher level of maintainability is achieved,
without even implying the inoperability of the affected
circuit, since it is protected by TMR. This is both true to
hard and soft errors, despite the different repair
mechanisms that must be adopted to overcome them.

3. The Built-In Self-Healing methodology

In a TMR implementation, if a module fails it should
be promptly replaced to keep the reliability level.
However, it is not easy to detect a fault in a TMR
implementation using traditional online test strategies,
due to the inherent masking properties of redundancy.

In our approach we propose the implementation of a
Built-In Self-Healing (BISH) methodology, which can
be divided into three tasks: detection, diagnosis and
repair. These tasks are controlled by a soft
microprocessor core implemented in the same FPGA,
and having a compatible reliability index. Due to the
usual long time interval between module failures [9], a
generic soft microprocessor core that carries on other
tasks related to the operation of the real-time system may
be used for this purpose. At the moment, this
methodology is being applied only to soft-errors, but we
plan to extend its usage to hard errors, making use of
active replication techniques [10].

The detection of faults is done through a scan chain
that regularly captures the values at the outputs of all the
modules and voters, including those of the soft
microprocessor core, as shown in figure 1.

Upsets may also affect the values shifted through the
scan chain, thus leading to wrong fault diagnosis and
consequently to the extemporaneous activation of a
repairing mechanism. However, despite representing an
additional unnecessary task for the reconfiguration
mechanism, it does not affect system operation. If the
structural configuration of the scan chain is affected by a

1041

fault, either due to a hard or soft error, several
neighbouring bits in the scan chain will be disturbed,
indicating that a simultaneous general failure in all
modules of one or more functions is taking place. If this
happens, and since the probability of a general failure is
very low, the scan chain must be checked first. The
Boundary Scan (BS) chain may also be used to capture
each FPGA output [11]. As a hard-wired
implementation, this scan chain is less prone to soft
errors.

Fig. 1. Example of a T-TMR implementation
with a scan chain

The captured bitstream is shifted to the internal
microprocessor where it is analyzed. Since the scan
chain cells completely wrap the modules and voters, it is
possible to confine the origin of an error to the space
between them, corresponding to the module or voter
where the value was captured, and to the
interconnections in-between [12].

Three possible causes for a fault to appear may be
considered:

1. the faulty value is due to a soft error affecting one
of the circuit registers;

2. the faulty value is due to a soft error affecting a
configuration memory cell, which leads to a change
in the functionality of the module or voter or in the
routing of signals;

3. the faulty value is due to a permanent physical
defect affecting the structure of the FPGA.

The first case may be immediately excluded if the
error is captured at the output of a voter, since voters are
typically implemented using combinational logic only. If
it has its origin in a module, one can expect that the fault
will be automatically corrected at the next register
update. A new scan chain capture operation may show
that the error has already been fixed and no further
action is needed. If not, the second situation may have
occurred.

In this case, a background task is launched to
readback part of the configuration bitstream of the area
where the affected module is implemented. Comparison
with the original bitstream may be done by bit
comparison or Cyclic Redundancy Check (CRC). If an
incoherency is found, the microprocessor performs a
partial reconfiguration of the area where the supposedly
affected module is implemented, restoring the original
configuration and eliminating the cause of the failure.

The output of the module is captured again and its
correctness verified. This technique is known as
scrubbing, and defined as the process of re-writing the
configuration memory during (and without disturbing)
normal FPGA operation [13].

If no error on the configuration bitstream is detected,
but the fault persists, the most probable reason is the
existence of a physical defect in the array. To restore the
reliability index, the affected module has to be relocated
to a fault-free area and its input and output connections
re-established releasing the faulty area to be tested [4].
This procedure is controlled by the microprocessor.
When the defect location is identified, the defective
resource is “marked down”, to avoid its use in case of
future reconfigurations. A list of faulty resources is
maintained in memory by the microprocessor. This
memory must also be protected against upsets using
error checking and correction techniques based on
Hamming or Hsiao codes [6].

The remaining resources that are tested OK can be
reused in later replacements of any other faulty module.
In this way, the available spare resources are almost
entirely restored for future replacements. Figure 2 shows
the diagram flow of the proposed methodology.

Fig. 2. Flowchart of the proposed BISH
methodology

This methodology extends the reliability of each
function and enables a smoother degradation of the
global reliability index. Despite being a static T-TMR
implementation, a faulty module or voter is dynamically
repairable n times, where n depends on the cause of the
failure. If the origin is not a permanent physical defect,
then n is infinite. Otherwise, n depends on the initial
amount of spare resources and on the location of the
defects that affect the structure of the FPGA.

The microprocessor is also implemented using
T-TMR to ensure a reliability index compatible with the
remaining blocks. The microprocessor is divided in
small functional modules, facilitating replacement in

A1 V1

V2

V3

A2

A3

B1

B2

B3

Error detection

Recapture

Transient fault - no
further action needed

N

Partial readback

Error persists ?

Configuration
error ?

Y
Partial reconfiguration

Module replacement

Test of released area

Diagnosis and signalling
of defect

Layout rearrangement

Y

N

1042

case of fault detection, and reducing the spare space
needed for relocation in case of fault detection. If the
defective module is part of one of the three implemented
processors, the remaining two will be responsible for the
replication of the malfunctioning module. Subsequent
test procedures will already be assumed by the whole
three.

Self-reconfiguration is necessary to embed the whole
system in a single FPGA, including the BISH features.
The Virtex-II and Virtex-II Pro families have an Internal
Configuration Access Port (ICAP), which enables a soft
microprocessor core to control its own dynamic
reconfiguration or the reconfiguration of any external
modules, without stopping or disturbing the operation of
the whole system.

To be able to implement the proposed methodology
the soft microprocessor core shall be able to manipulate
directly the FPGA configuration bitstream. This is
necessary to create partial reconfiguration files for
scrubbing and replication procedures. To support this
feature, a software tool is being developed, based on the
JBits software – a set of Java classes that provide an
Application Programming Interface (API) to access the
Xilinx FPGA bitstream [14]. This tool will create the
partial configuration files and will carry out the partial
and dynamic reconfiguration of the FPGA through the
ICAP interface. Consequently, the microprocessor shall
be prepared to run this software. Two solutions are being
considered: the use of a generic microprocessor; or the
use of a Java processor. In the first case, a generic soft
processor core will run a Java Virtual Machine (Java
VM) developed specifically for that microprocessor and
to support the set of Java classes used by the
reconfiguration tools. The disadvantage of this solution
is the amount of memory needed to hold the JAVA VM.

The second hypothesis, the use of a Java processor,
seems to be the most adequate solution for the inclusion
of the BISH feature, since the software necessary to its
implementation is developed using Java. These will also
speed up its execution, reducing time latency between
detection and correction of any fault. The disadvantage
of this solution is that any other applications concerning
the operation of the system, not related to the BISH
feature, have to be rewritten in JAVA, which, in some
cases, may not be feasible. However, this should not be a
problem when developing a completely new product.

4. Conclusions

In this paper a new methodology aimed to increase
the reliability of real-time systems is presented. Apart
from the presentation of the whole project and of the
detailed description of some of the solutions already
assumed, the proposal presents a set of issues that are
being studied and must be sorted out to ensure its
complete success.

Further research is necessary and several issues

related to the use of TMR in reconfigurable systems
have yet to be considered. Current work is being done
towards their resolution and integration into the project.

References

[1] S. Mitra, N. Seifert, M. Zhang, Q. Shi, K. S. Kim,
“Robust System Design with Built-In Soft-Error
Resilience,” Computer, vol. 38, no. 2, pp. 43-52,
February 2005.

[2] B. J. Blodget, S. P. McMillan, P. Lysaght, “A
lightweight approach for embedded reconfiguration of
FPGAs,” Proc. DATE - Designers' Forum, pp. 399-400,
2003.

[3] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya,
V. Verma, “Using Roving STARs for On-Line Testing
and Diagnosis of FPGAs in Fault-Tolerant
Applications,” Proc. Intl. Test Conf., pp. 973-982, 1999.

[4] M. G. Gericota, G. R. Alves, M. L. Silva, J. M. Ferreira,
“Active Replication: Towards a Truly SRAM-based
FPGA On-Line Concurrent Testing,” Proc. 8th IEEE
Intl. On-Line Testing Workshop, pp. 165-169, 2002.

[5] P. K. Lala, Self-Checking and Fault-Tolerant Digital
Design. San Francisco, CA: Morgan Kaufman
Publishers, 2001.

[6] M. Nicolaidis, L. Anghel, “Concurrent checking for
VLSI,” Microelectronics Journal, Vol. 49, Nos. 1-2, pp.
139-156, November 1999.

[7] C. Carmichael, “Triple Module Redundancy Design
Techniques for Virtex FPGAs,” XAPP 197 Application
Note, Xilinx, Inc., 37 p., 2001.

[8] N. R. Saxena, S. Fernandez-Gomez, Wei-Je Huang, S.
Mitra, Shu-Yi Yu, E. J. McCluskey, “Dependable
Computing and Online Testing in Adaptive and
Configurable Systems,” IEEE Design and Test of
Computers, Vol. 17, No. 1, pp. 29-41, Jan.-March 2000.

[9] P. L. Murray, “Re-Programmable FPGAs in Space
Environments”. Available at: http://www.seakr.com/
data/Unsorted/reprogrammable_fpga_in_space1.doc

[10] M. G. Gericota, G. R. Alves, M. L. Silva, J. M. Ferreira,
“Run-time Defragmentation for Dynamically
Reconfigurable Hardware,” in: New Algorithms,
Architectures and Applications for Reconfigurable
Computing. Springer, 2005. ISBN 1-4020-3127-0.

[11] IEEE Standard Test Access Port and Boundary Scan
Architecture (IEEE Std 1149.1), IEEE Std. Board, 2001.

[12] J. H. Lala; R. E. Harper, “Architectural principles for
safety-critical real-time applications,” Proceedings of the
IEEE, Vol. 82, No. 1, pp. 25-40, January 1994.

[13] C. Carmichael, M. Caffrey, A. Salazar, “Correcting
single-event upsets through Virtex Partial
Configuration,” XAPP 216 Application Note, Xilinx,
Inc., 12 p., 2000.

[14] S. A. Guccione, D. Levi, P. Sundararajan, “JBits Java
based interface for reconfigurable computing,” Proc. 2nd
Military and Aerospace Appl. of Prog. Devices and
Technologies Conf., 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

