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Abstract - This presentation describes a low-level technique to replicate active 
resources (i.e. resources that are being used by functions that are currently 
running) in dynamically reconfigurable FPGAs, with the main objective of 
releasing them to be tested in a non-intrusive way. This technique may be used 
to support i) Online concurrent testing to detect any faults that emerge during 
system operation, ii) Enhanced fault tolerance1 (restoring the reliability index by 
replacing a defective resource), and iii) Reallocation of the FPGA logic space to 
prevent excessive delays or wasting resources due to fragmentation. All 
solutions proposed reuse the IEEE 1149.1 (JTAG) test access port and 
boundary-scan architecture to ensure a low-cost / low overhead implementation.  

1 Introduction 

SRAM-based field-programmable gate arrays (FPGAs) comprise an array of 
uncommitted configurable logic blocks (CLBs) and input / output blocks (IOBs), 
which are interconnectable via configurable routing resources. A large number of 
SRAM cells define the operation of all such blocks and interconnections. 
Dynamically reconfigurable FPGAs (DR-FPGAs) that support partial reconfiguration 
enable the device logic space to be reconfigured selectively, i.e. the redefinition of 
logic functions will only address the required subset of the device logic space. Any 
function implemented on the remaining logic space will continue to operate 
undisturbed while the reconfiguration process takes place. Due to some discrepancies 
in terminology among various authors, it is useful to state that the expression 
dynamically reconfigurable FPGA will be used throughout this work to refer to those 
devices that support partial reconfiguration. DR-FPGAs enable the implementation of 
virtual hardware by appropriate scheduling of applications. Efficient time and space 
management enable the implementation of applications which in total may exceed 
100% of the logic space available.   
Technological improvements enabled the recent introduction of self-reconfigurable 
FPGAs (SR-FPGAs), where an internal function may control the reconfiguration of 
the device logic space. SR-FPGAs are able to further reduce the cost and size of 
adaptive systems, by implementing online management tasks within the FPGA itself.  

                                                           
1 The extension of this technique to enhance fault-tolerant architectures has just started in May 

2005 and is being financed by the Fundação para a Ciência e a Tecnologia (FCT contract 
number POSC/EEA-ESE/55680/2004). 



The increasing amount of logic available in FPGAs and the reduction of the 
reconfiguration time, partly due to the possibility of partial reconfiguration, extended 
the concept of virtual hardware to the implementation of multiple applications sharing 
the same logic resources in the spatial and temporal domains. However, higher 
complexity comes hand-in-hand with higher vulnerability. Transient phenomena e.g. 
single-event upsets (SEUs) or single-event transients (SETs), may lead to 
modifications in the configuration memory or to state modifications, particularly for 
larger die sizes [1, 2]. This problem is non-negligible at ground level, and it is further 
aggravated when these devices are used in space applications, where the cosmic 
radiation causing SEUs and SETs is far more important. On the other hand, the threat 
of electromigration also increases with smaller technological scales, and may lead to 
permanent physical damage. Even when the cause of the problem is not permanent 
(i.e. modifications in the configuration memory due to an SEU), the circuit may fail if 
corrective action is not taken in due time. Altogether, these factors indicate that good 
production tests are no longer enough to guarantee fault-free operation. Error 
conditions or physical defects may (and will) emerge in the field, and the only way to 
ensure reliability is to implement online concurrent fault detection and mitigation 
solutions. The concurrent replication of active resources herein presented enables an 
effective framework to ensure dependable system design, comprising the following 
components: 
� Online concurrent testing: Active replication is used as the basis of a non-

intrusive concurrent testing strategy, whereby each resource is replicated 
(functional and state information) and released for testing. Fault detection latency 
is related to the size of the FPGA — an emerging defect will only be detected 
when the affected resource is again under test. Error conditions may eventually 
cause system malfunction, if the fault latency is higher than the system inertia.   

� Enhanced fault tolerance: Spatial redundancy architectures may be a solution 
when fault detection latency is not acceptable. However, if more than one module 
fails, the system may also fail (a triple redundancy system can only tolerate single 
module failures). Concurrent testing will identify the defective resource, which will 
be replaced to reestablish the reliability index. A simpler form of replication 
suffices in this case, since state information does not have to be transferred.  

Concurrent testing and fault tolerance are necessary, but may not be sufficient to 
guarantee sustainable performance after many reconfiguration sessions. Increasing 
propagation delays due to poor rerouting and excessive fragmentation of the FPGA 
logic space are two major reasons of concern in this context. A dependable 
framework for dependable system design must therefore also support concurrent 
defragmentation, to enable the activation / deactivation of functions as needed at any 
given moment. The research work done so far is not divided equally among 
concurrent testing, enhancement of fault-tolerance, and concurrent defragmentation. 
Online concurrent testing concentrated most of our efforts, and has been validated via 
practical experimentation using a DR-FPGA from Xilinx. Extensive experimental 
data is available in this case, and an extract will be presented to validate the solutions 
presented. Experimental data is not yet available for the two other areas. Fault 
tolerance strategies are the main focus of current research, particularly in what 
concerns the implementation of self-repair methods using SR-FPGAs. Logic space 
defragmentation is an area that waits for the opportunity to develop appropriate higher 
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level management solutions that are able to exploit the replication technique 
proposed. Those areas will be therefore presented in less detail, but may lead to 
stimulating discussions and also to possible cooperation efforts in the near future. 

2 Concurrent replication of active resources 

Several off-line and online strategies have been proposed to test and diagnose FPGA 
faults [3-16]. The concurrent test approach herein presented reuses some of the ideas 
described in the literature, but eliminates their drawbacks by using active 
replication, which enables the relocation of the functionality allocated to each CLB, 
without halting the system. This approach is feasible even when the CLB is active, i.e. 
when it is part of an implemented function that is actually being executed [16]. A 
dynamic rotation mechanism ensures that all FPGA CLBs are released and tested 
within a given latency.  The exclusive (re)use of the Boundary Scan (BS) test 
infrastructure to release and test the CLBs brings the additional benefit of reduced 
overhead at board level, since no other resources (other than those of the FPGA itself) 
are used. 
Releasing active CLBs for testing requires their replication into CLBs already tested 
and available, in a way that is completely transparent to the application(s) that are 
currently running. This task is not trivial due to two major issues: i) configuration 
memory organization, and ii) internal state information. 
The configuration memory may be visualized as a rectangular array of bits, which are 
grouped into one-bit wide vertical frames, extending from the top to the bottom of the 
array. The atomic unit of configuration is one frame — it is the smallest portion of the 
configuration memory that can be written to or read from. These frames are grouped 
together into larger units called columns. Each CLB column has an associated 
configuration column, with multiple frames, which mixes internal CLB configuration 
and state information, and column routing and interconnect information. The 
organization of the entire configuration memory into frames enables the online 
concurrent partial reconfiguration of the FPGA. 
The configuration process is a sequential mechanism that spans through some (or 
eventually all) CLB configuration columns. More than one column may be affected 
during the replication of an active CLB, since its input and output signals (as well as 
those in its replica) may cross several columns before reaching its source or 
destination. Any partial reconfiguration procedure must ensure that the signals from 
the replicated CLB are not broken before being totally re-established from its replica. 
It is also important to ensure that the functionality of the CLB replica must be 
perfectly stable before its outputs are connected to the system, so as to avoid output 
glitches. The replication of CLBs is divided into two phases, as illustrated in figure 1. 
In the first phase, the internal configuration of the CLB is copied and the inputs of 
both CLBs are placed in parallel. Due to the low-speed characteristics of the 
configuration interface used (the BS interface), the reconfiguration time is relatively 
long when compared with the system speed of operation. Therefore, the outputs of the 
CLB replica will be perfectly stable before being connected to the circuit, in the 
second phase. Both CLBs must remain in parallel for at least one system clock cycle, 
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to avoid output glitches. Notice that rewriting the same configuration data does not 
generate any transient signals, so the remaining resources addressed by the 
configuration frames are not affected. Another major requirement for the success of 
the replication process is the correct transferal of state information. If the current CLB 
function is purely combinational, a simple read-modify-write procedure will suffice to 
accomplish the replication process. However, in the case of a sequential function, the 
internal state information must be preserved and no write-operations may be lost 
while this process goes on.  
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Fig. 1. Two-phase CLB replication process 

When dealing with synchronous free-running clock circuits, the two-phase replication 
process that was previously described solves this problem. Between the first and the 
second phase, the CLB replica has the same inputs as the replicated CLB and all its 
four flip-flops acquire the state information, even if the system clock frequency is an 
order of magnitude lower than the clock frequency of the BS infrastructure, which is 
used for reconfiguration purposes. Several experiments made using this class of 
circuits have shown the effectiveness of this method in the replication of active CLBs. 
No loss of state information or the presence of output glitches was observed.  
A different situation is present in the case of synchronous gated-clock circuits, where 
input acquisition by the flip-flop is controlled by a clock enable signal. In such cases, 
it is not possible to ensure that this signal will be active during the replication process, 
and that the value at the input of the replica flip-flops will be captured. On the other 
hand, it is not feasible to set this signal as part of the replication process, because the 
value present at the input of the replica flip-flops might differ from the one captured 
by the replicated flip-flops, in which case a coherency problem will occur. 
Furthermore, the state of the flip-flops could be updated during the replication 
process. A replication aid block is used to solve this problem. This block manages the 
transferal of state information from the replicated flip-flops to the replica flip-flops, 
while enabling its update by the circuit, at any moment, without losing new state 
information or delaying the replication process.  
Practical experiments performed using a Virtex XCV200 over the ITC’99 Benchmark 
Circuits from the Politecnico di Torino [17], demonstrated the effectiveness of the 
proposed approach. These circuits are purely synchronous with only one single-phase 
clock signal present. However, the procedures presented are also applicable to 
multiple clock / multiple phase circuits, since only one clock signal is involved in the 
replication process at each time, provided that the slowest “clock” period is higher 
than the duration of the replication process. The proposed method is also effective 
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when dealing with asynchronous circuits (using D latches instead of flip-flops), where 
the same replication aid block and the same replication sequence may be used.  
A further remark must be made concerning the relocation of routing resources. Since 
different paths are used while paralleling the original and replica interconnections, 
each of them will have a different propagation delay. This means that if the signal 
level at the output of the CLB source changes, the signal at the input of the CLB 
destination will show an interval of fuzziness. However, the impedance of the routing 
switches will limit the current flow in the interconnection, and hence this behaviour 
does not damage the FPGA. Nevertheless, and for transient analysis, the propagation 
delay associated to the parallel interconnections, shall be the longer of the two paths. 
The LUTs in the CLB can also be configured as memory modules (RAMs) for user 
applications. However, the extension of this concept to the replication of LUT/RAMs 
is not feasible. The content of the LUT/RAMs may be read and written through the 
configuration memory, but there is no mechanism, other than to stop the system, 
capable of ensuring the coherency of the values, if there is a write attempt during the 
replication interval, as stated in [2]. Furthermore, since frames span an entire column 
of CLB slices, a given bit in all slices is written with the same command. Therefore, it 
is necessary to ensure that either all the remaining data in the slice is constant, or it is 
also changed externally through partial reconfiguration. Even not being replicated, 
LUT/RAMs should not lie in any column that could be affected by the replication 
process. 
Depending on the method used to create the reconfiguration files, the replication 
procedure can also recover from errors caused by transient faults in the on-chip 
configuration memory cells. A typical example of such errors are SEUs in space 
environments, which modify the logic function originally implemented in the FPGA. 
Since Virtex FPGAs enable readback operations, a completely automatic read-
-modify-write procedure could be implemented to replicate the CLBs using local 
processing resources. In this case, any transient fault in the configuration memory is 
propagated and will affect the functionality of the CLB replica. On the other hand, if 
the reconfiguration files are generated from the initial configuration file stored in an 
external memory, any error due to SEUs is corrected when the affected blocks are 
replicated.  

3 Online concurrent testing 

The configurable structure of the CLB requires the use of a minimum number of test 
configurations to perform a complete test of its structure, with a specific set of test 
vectors applied to each test configuration. Since the implementation structure of the 
CLB primitives (LUTs, multiplexers, flip-flops) is not known, a hybrid fault model 
was considered [7] (see also [10, 11] for an extensive study concerning FPGA fault 
models). The BS infrastructure is reused to apply the 40 test vectors required to test 
each CLB, and to capture the test responses. Since the application of test vectors via 
the BS register would be intrusive, a user test register must be used (the Virtex family 
enables two BS user registers). The register created for this purpose comprises 13 
cells, corresponding to the maximum number of CLB inputs, and is fully compliant 
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with the IEEE 1149.1 standard. The seven CLBs occupied by this register and the two 
CLBs occupied by the replication aid block, are the only FPGA hardware overhead 
that is implied by our test methodology. It accounts for less than 1% of the CLB 
resources of the Xilinx Virtex XCV200 device (array size = 28x42 CLBs). Each 
Virtex CLB comprises two slices that are exactly equal. In total, each CLB has 13 
inputs (test vectors are applied to both slices of all CLBs under test simultaneously) 
and 12 outputs (6 from each slice). Since the outputs of each slice are captured 
independently, fault location can be resolved to a single slice. 
The dynamic rotation mechanism used for releasing CLBs to be tested should have a 
minimum influence in the system operation, as well as reduced reconfiguration cost 
overhead. This cost depends on the number of reconfiguration frames needed to 
replicate and release each CLB, since a great number of frames would imply a longer 
test time. The impact of this process in the overall system operation is mainly related 
to the delays imposed by re-routed paths, which may now be longer (reducing the 
maximum frequency of operation). Two strategies were considered to rotate a free 
CLB across the FPGA logic space: horizontal and vertical. In the horizontal rotation 
strategy the free CLB rotates along a horizontal path covering all the CLBs in the 
array. The replication is performed between neighbouring CLBs, due to scarcity of 
routing resources, and to avoid higher path delays. The same principle applies to the 
vertical rotation strategy, where the free CLB is rotated along a vertical path.  
The results of practical experiments performed over a subset of the ITC’99 
benchmarks using these two strategies are presented in table 1. Generally, the vertical 
rotation scheme is seen to perform much better, be it in terms of the reduction in the 
maximum frequency of operation (7% in the average for vertical rotation, against 
18% average for horizontal rotation) or in what concerns the size of the partial 
reconfiguration files. The vertical organization of the reconfiguration vectors explains 
why the size of the reconfiguration files is in the average 20% higher for horizontal 
rotation, which always involves two columns.  
The influence over the maximum frequency of operation is explained by the pair of 
dedicated paths per CLB that propagate carry signals vertically between adjacent 
CLBs. When the rotation process breaks a dedicated carry path, due to the insertion of 
the free CLB, the propagation of this carry signal between the nearest adjacent CLBs 
(above and below the free CLB) is re-established through generic routing resources, 
increasing the path delay. If the implemented circuit has one or more of these carry 
signals, the horizontal rotation would break all the carry nets, increasing path delays, 
but the vertical rotation would break only one of them at a time. In this case, the 
vertical strategy becomes preferable. When no carry signals are used, two other 
factors must be considered: i) the number of signals with high fanout, and ii) the 
placement shape (rectangular, square, circular, etc.) and orientation (horizontal, 
vertical) of the circuits implemented in the FPGA. In rectangular / horizontal 
implementations, and when many high fanout signals are present, the horizontal 
strategy is preferable, since the maximum frequency of operation is less degraded 
(this could be more important than the size of reconfiguration files, when dealing with 
high-speed applications).  
If we look into the mean size of the reconfiguration files per CLB, table 1 shows that 
the vertical rotation scheme also performs better (nearly 10% in average). This table 
shows that the mean size of the reconfiguration files per CLB increases as the number 
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of CLBs used in the implementation also increases, because it becomes more difficult 
to find good routing alternatives to those signals involved in the replication process. 

Table 1. Frequency deviation, reconfiguration file size, and size per CLB 

Maximum 
frequency 
deviation   (%)

Size of reconfiguration 
files in total  
(bytes) 

Size of reconfiguration 
files per CLB  
(bytes) 

Circuit  
Refer. 

Number 
of
CLBs 

     Vert. Horiz.         Vert. Horiz.         Vert. Horiz. 

Ratio 
(horiz.
/ vert.) 

B01 6 -5,5 0,0 48 350 56 102 8 058 9 350 16,0 
B02 1 0,0 0,0 7 016 10 623 7 016 10 623 51,4 
B03 11 -1,9 -4,9 120 705 138 484 10 973 12 589 14,7 
B04 54 -6,1 -29,3 548 595 665 419 10 159 12 322 21,3 
B05 103 -17,3 -36,9 1 130 985 1 286 031 10 980 12 485 13,7 
B06 5 -2,7 0,0 45 291 53 503 9 058 10 700 18,1 
B07 31 -23,6 -37,8 354 367 425 214 11 431 13 716 20,0 
B08 17 -5,8 -5,8 150 093 178 339 8 829 10 490 18,8 
B09 12 -1,8 -4,9 112 107 129 855 9 342 10 821 15,8 
B10 20 -7,5 -7,6 195 571 245 455 9 778 12 272 25,5 
B11 39 -10,5 -36,0 500 261 614 093 12 827 15 745 22,8 
B12 119 0,0 -1,2 1 275 804 1 631 953 10 721 13 713 27,9 
B13 37 -4,3 -42,8 258 827 332954 6 995 8 998 28,6 
B14 333 -13,5 -47,8 5 195 444 6 070 485 15 601 18 229 16,8 

The back and forth dynamic free-CLB rotation across the chip implies a variable 
latency. The time to again reach a given CLB alternates, according to the rotation 
direction, between a maximum and a minimum value, depending on the device size 
(number of CLB columns and rows). The fault detection latency is bounded by the 
following limits: 

)(2)1)#((# testreconfcolumnsrowsscan ttCLBCLB
MAX

+××−×=τ

)(2 testreconfscan tt
min

+×=τ

(treconf is time needed to complete a CLB replication and ttest is the time needed to test 
a free CLB)  
When the rotation process is complete, the initial routing is restored. The whole 
process may then be repeated or paused, depending on the overall test strategy. In 
order to estimate the worst case fault detection latency, we must take into account the 
time needed to carry out each step of the proposed approach. The replication of each 
CLB dominates the total time per CLB, in particular in the case of those circuits 
requiring a replication aid block (in which case approx. 35 ms are required to 
complete the replication process). The various test configurations required to 
complete a structural test of each CLB, together with the time required to shift in and 
out test data, contribute with approximately 10 ms, leading to a total time per CLB 
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that is close to 45 ms. In a typical scenario, like those that correspond to the ITC’99 
benchmark circuits (25% of CLBs requiring a replication aid block, 50% of CLBs not 
requiring such blocks, and 25% of empty CLBs), the total test time to cover the 1.176 
CLBs in the XVC200 is above 40 seconds. 

4 Enhanced fault tolerance  

Active replication enables non-intrusive concurrent testing and logic space 
defragmentation, but cannot avoid performance degradation due to higher propagation 
delays, in the case of signals that are re-routed via longer interconnection paths. On 
the other hand, fault detection latency enables the propagation of fault effects, which 
may eventually lead to irreversible malfunction of the whole system. These 
restrictions may not be important in many application domains, and namely when the 
fault detection latency is small compared to system inertia. However, in the case of 
mission-critical applications, a higher reliability solution must be devised. 
Triple modular redundancy (TMR) is the best known form of spatial redundancy, and 
may be represented as shown in figure 2.a. Three identical modules (M) receive the 
same inputs and drive a majority-voter that produces the circuit output. When more 
than one module fails, the circuit fails. Tolerance to multiple module failures may of 
course be achieved at the cost of providing higher redundancy, leading to NMR 
architectures. Replication may take place at various hierarchical levels, so each 
module may be a simple gate, or a much more complex resource, including mid-range 
functional blocks, components (e.g. a microprocessor), or even a complete system. In 
the basic configuration shown in figure 2.a, the reliability of the circuit will depend on 
the reliability of the voter (if the voter fails, the circuit fails). Special design and 
implementation techniques may be used to improve the reliability of the voter circuit. 
However, if such solutions are not considered satisfactory, the voting element itself 
may be replicated as well, leading to what is known as N-NMR architectures. 
Additionally, design diversity may be enforced to further enhance reliability. 

a. TMR with a single voting element  b. T-TMR with scan fault detection  
Fig. 2. Fault tolerance via spatial redundancy 

Particularly in the case of low level modular redundancy, DR-FPGAs bring two 
important advantages to the cost x benefit model of NMR implementations: i) since 
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each function may be implemented only when needed (and afterwards removed to 
release FPGA floor space), the additional spatial requirements of modular redundancy 
solely address those blocks that have to be implemented at any given time; ii) any 
defective resource that caused module failure may be identified and replaced, 
restoring the reliability index. The occurrence of a fault will be indicated by a 
discrepancy at the output of a module or voter. An internal 1149.1 scan chain able to 
capture the output of modules and voters, as shown in figure 2.b, enables the 
identification of the defective block. The fault masking properties of modular 
redundancy will ensure that circuit operation will not be affected, provided that a 
second module / voter in the same set does not fail, before the fault correction 
procedure is complete. The fault detection procedure launches a background task to 
readback the configuration bitstream of the area where the affected module is located. 
If an incoherency is found, the test controller restores the original configuration and 
eliminates the cause of the failure. If no error in the configuration bitstream is 
detected after the readback-and-compare operation, but the fault persists, the most 
probable reason is the existence of a physical defect. When the defective resource is 
found, it is flagged to avoid further usage and replaced to restore the reliability index. 
Notice that this solution confines the fault effect to the defective module (its output is 
masked), but does not eliminate the fault detection latency. However, the worst case 
fault latency is no longer given by the time taken to test the full CLB matrix, since the 
concurrent fault detection procedure is now looking for incoherencies at the module 
and voter outputs. The important thing to do is to identify the cause of the 
incoherency and to eliminate it. Appropriate action (i.e. correcting the contents of the 
reconfiguration memory or replicating the defective CLB) will then reestablish the 
reliability index and bring the circuit back to its full fault-tolerance features. 

5 Conclusion 

The active replication technique described in this presentation enabled the proposal of 
a truly non-intrusive online concurrent testing solution that was validated using an 
XCV200-based prototyping board. Notice that the structure of the current Xilinx 
Virtex II devices is the same as in the older XCV200 that was available when this 
project started (the embedded microprocessor cores and the higher number of 
reconfigurable resources make no difference from this point of view). When fault 
detection latency cannot be tolerated, an enhanced T-TMR architecture enables fault 
diagnosis and guarantees fault-free operation and fast recovery of the reliability index. 
The same active replication technique may also be used to defragment the FPGA 
logic space, ensuring sustainable performance by preventing excessive path delays 
and reducing the waiting time imposed on incoming functions [18-21]. The 
development of enhanced fault-tolerant T-TMR architectures is the subject of a new 
R&D project that has just started in May 2005. The main objective of this new project 
is to improve the solution proposed in the previous section, by using SR-FPGAs to 
develop self-repair architectures. An embedded T-TMR microprocessor controls the 
internal configuration access port (ICAP) of SR-FPGAs and triggers the self-
reconfiguration procedure when a defective resource is identified [22].  
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