

Improving the dependability of dynamically reconfigurable
hardware by concurrent replication of active resources

José M. M. Ferreira, Manuel G. Gericota

FEUP / DEEC, R. Roberto Frias, 4200-465 Porto PORTUGAL jmf@fe.up.pt
ISEP / DEE, R. Ant. Bern. Almeida, 4200-072 Porto PORTUGAL mgg@dee.isep.ipp.pt

Abstract - This presentation describes a low-level technique to replicate active
resources (i.e. resources that are being used by functions that are currently
running) in dynamically reconfigurable FPGAs, with the main objective of
releasing them to be tested in a non-intrusive way. This technique may be used
to support i) Online concurrent testing to detect any faults that emerge during
system operation, ii) Enhanced fault tolerance1 (restoring the reliability index by
replacing a defective resource), and iii) Reallocation of the FPGA logic space to
prevent excessive delays or wasting resources due to fragmentation. All
solutions proposed reuse the IEEE 1149.1 (JTAG) test access port and
boundary-scan architecture to ensure a low-cost / low overhead implementation.

1 Introduction

SRAM-based field-programmable gate arrays (FPGAs) comprise an array of
uncommitted configurable logic blocks (CLBs) and input / output blocks (IOBs),
which are interconnectable via configurable routing resources. A large number of
SRAM cells define the operation of all such blocks and interconnections.
Dynamically reconfigurable FPGAs (DR-FPGAs) that support partial reconfiguration
enable the device logic space to be reconfigured selectively, i.e. the redefinition of
logic functions will only address the required subset of the device logic space. Any
function implemented on the remaining logic space will continue to operate
undisturbed while the reconfiguration process takes place. Due to some discrepancies
in terminology among various authors, it is useful to state that the expression
dynamically reconfigurable FPGA will be used throughout this work to refer to those
devices that support partial reconfiguration. DR-FPGAs enable the implementation of
virtual hardware by appropriate scheduling of applications. Efficient time and space
management enable the implementation of applications which in total may exceed
100% of the logic space available.
Technological improvements enabled the recent introduction of self-reconfigurable
FPGAs (SR-FPGAs), where an internal function may control the reconfiguration of
the device logic space. SR-FPGAs are able to further reduce the cost and size of
adaptive systems, by implementing online management tasks within the FPGA itself.

1 The extension of this technique to enhance fault-tolerant architectures has just started in May

2005 and is being financed by the Fundação para a Ciência e a Tecnologia (FCT contract
number POSC/EEA-ESE/55680/2004).

The increasing amount of logic available in FPGAs and the reduction of the
reconfiguration time, partly due to the possibility of partial reconfiguration, extended
the concept of virtual hardware to the implementation of multiple applications sharing
the same logic resources in the spatial and temporal domains. However, higher
complexity comes hand-in-hand with higher vulnerability. Transient phenomena e.g.
single-event upsets (SEUs) or single-event transients (SETs), may lead to
modifications in the configuration memory or to state modifications, particularly for
larger die sizes [1, 2]. This problem is non-negligible at ground level, and it is further
aggravated when these devices are used in space applications, where the cosmic
radiation causing SEUs and SETs is far more important. On the other hand, the threat
of electromigration also increases with smaller technological scales, and may lead to
permanent physical damage. Even when the cause of the problem is not permanent
(i.e. modifications in the configuration memory due to an SEU), the circuit may fail if
corrective action is not taken in due time. Altogether, these factors indicate that good
production tests are no longer enough to guarantee fault-free operation. Error
conditions or physical defects may (and will) emerge in the field, and the only way to
ensure reliability is to implement online concurrent fault detection and mitigation
solutions. The concurrent replication of active resources herein presented enables an
effective framework to ensure dependable system design, comprising the following
components:
� Online concurrent testing: Active replication is used as the basis of a non-

intrusive concurrent testing strategy, whereby each resource is replicated
(functional and state information) and released for testing. Fault detection latency
is related to the size of the FPGA — an emerging defect will only be detected
when the affected resource is again under test. Error conditions may eventually
cause system malfunction, if the fault latency is higher than the system inertia.

� Enhanced fault tolerance: Spatial redundancy architectures may be a solution
when fault detection latency is not acceptable. However, if more than one module
fails, the system may also fail (a triple redundancy system can only tolerate single
module failures). Concurrent testing will identify the defective resource, which will
be replaced to reestablish the reliability index. A simpler form of replication
suffices in this case, since state information does not have to be transferred.

Concurrent testing and fault tolerance are necessary, but may not be sufficient to
guarantee sustainable performance after many reconfiguration sessions. Increasing
propagation delays due to poor rerouting and excessive fragmentation of the FPGA
logic space are two major reasons of concern in this context. A dependable
framework for dependable system design must therefore also support concurrent
defragmentation, to enable the activation / deactivation of functions as needed at any
given moment. The research work done so far is not divided equally among
concurrent testing, enhancement of fault-tolerance, and concurrent defragmentation.
Online concurrent testing concentrated most of our efforts, and has been validated via
practical experimentation using a DR-FPGA from Xilinx. Extensive experimental
data is available in this case, and an extract will be presented to validate the solutions
presented. Experimental data is not yet available for the two other areas. Fault
tolerance strategies are the main focus of current research, particularly in what
concerns the implementation of self-repair methods using SR-FPGAs. Logic space
defragmentation is an area that waits for the opportunity to develop appropriate higher

4

level management solutions that are able to exploit the replication technique
proposed. Those areas will be therefore presented in less detail, but may lead to
stimulating discussions and also to possible cooperation efforts in the near future.

2 Concurrent replication of active resources

Several off-line and online strategies have been proposed to test and diagnose FPGA
faults [3-16]. The concurrent test approach herein presented reuses some of the ideas
described in the literature, but eliminates their drawbacks by using active
replication, which enables the relocation of the functionality allocated to each CLB,
without halting the system. This approach is feasible even when the CLB is active, i.e.
when it is part of an implemented function that is actually being executed [16]. A
dynamic rotation mechanism ensures that all FPGA CLBs are released and tested
within a given latency. The exclusive (re)use of the Boundary Scan (BS) test
infrastructure to release and test the CLBs brings the additional benefit of reduced
overhead at board level, since no other resources (other than those of the FPGA itself)
are used.
Releasing active CLBs for testing requires their replication into CLBs already tested
and available, in a way that is completely transparent to the application(s) that are
currently running. This task is not trivial due to two major issues: i) configuration
memory organization, and ii) internal state information.
The configuration memory may be visualized as a rectangular array of bits, which are
grouped into one-bit wide vertical frames, extending from the top to the bottom of the
array. The atomic unit of configuration is one frame — it is the smallest portion of the
configuration memory that can be written to or read from. These frames are grouped
together into larger units called columns. Each CLB column has an associated
configuration column, with multiple frames, which mixes internal CLB configuration
and state information, and column routing and interconnect information. The
organization of the entire configuration memory into frames enables the online
concurrent partial reconfiguration of the FPGA.
The configuration process is a sequential mechanism that spans through some (or
eventually all) CLB configuration columns. More than one column may be affected
during the replication of an active CLB, since its input and output signals (as well as
those in its replica) may cross several columns before reaching its source or
destination. Any partial reconfiguration procedure must ensure that the signals from
the replicated CLB are not broken before being totally re-established from its replica.
It is also important to ensure that the functionality of the CLB replica must be
perfectly stable before its outputs are connected to the system, so as to avoid output
glitches. The replication of CLBs is divided into two phases, as illustrated in figure 1.
In the first phase, the internal configuration of the CLB is copied and the inputs of
both CLBs are placed in parallel. Due to the low-speed characteristics of the
configuration interface used (the BS interface), the reconfiguration time is relatively
long when compared with the system speed of operation. Therefore, the outputs of the
CLB replica will be perfectly stable before being connected to the circuit, in the
second phase. Both CLBs must remain in parallel for at least one system clock cycle,

5

to avoid output glitches. Notice that rewriting the same configuration data does not
generate any transient signals, so the remaining resources addressed by the
configuration frames are not affected. Another major requirement for the success of
the replication process is the correct transferal of state information. If the current CLB
function is purely combinational, a simple read-modify-write procedure will suffice to
accomplish the replication process. However, in the case of a sequential function, the
internal state information must be preserved and no write-operations may be lost
while this process goes on.

1st phase 2nd phase
- Routing array

replicated
CLB

CLB
replica

replicated
CLB

CLB
replica

In

In

In

In Out

Out Out

Out

Fig. 1. Two-phase CLB replication process

When dealing with synchronous free-running clock circuits, the two-phase replication
process that was previously described solves this problem. Between the first and the
second phase, the CLB replica has the same inputs as the replicated CLB and all its
four flip-flops acquire the state information, even if the system clock frequency is an
order of magnitude lower than the clock frequency of the BS infrastructure, which is
used for reconfiguration purposes. Several experiments made using this class of
circuits have shown the effectiveness of this method in the replication of active CLBs.
No loss of state information or the presence of output glitches was observed.
A different situation is present in the case of synchronous gated-clock circuits, where
input acquisition by the flip-flop is controlled by a clock enable signal. In such cases,
it is not possible to ensure that this signal will be active during the replication process,
and that the value at the input of the replica flip-flops will be captured. On the other
hand, it is not feasible to set this signal as part of the replication process, because the
value present at the input of the replica flip-flops might differ from the one captured
by the replicated flip-flops, in which case a coherency problem will occur.
Furthermore, the state of the flip-flops could be updated during the replication
process. A replication aid block is used to solve this problem. This block manages the
transferal of state information from the replicated flip-flops to the replica flip-flops,
while enabling its update by the circuit, at any moment, without losing new state
information or delaying the replication process.
Practical experiments performed using a Virtex XCV200 over the ITC’99 Benchmark
Circuits from the Politecnico di Torino [17], demonstrated the effectiveness of the
proposed approach. These circuits are purely synchronous with only one single-phase
clock signal present. However, the procedures presented are also applicable to
multiple clock / multiple phase circuits, since only one clock signal is involved in the
replication process at each time, provided that the slowest “clock” period is higher
than the duration of the replication process. The proposed method is also effective

6

when dealing with asynchronous circuits (using D latches instead of flip-flops), where
the same replication aid block and the same replication sequence may be used.
A further remark must be made concerning the relocation of routing resources. Since
different paths are used while paralleling the original and replica interconnections,
each of them will have a different propagation delay. This means that if the signal
level at the output of the CLB source changes, the signal at the input of the CLB
destination will show an interval of fuzziness. However, the impedance of the routing
switches will limit the current flow in the interconnection, and hence this behaviour
does not damage the FPGA. Nevertheless, and for transient analysis, the propagation
delay associated to the parallel interconnections, shall be the longer of the two paths.
The LUTs in the CLB can also be configured as memory modules (RAMs) for user
applications. However, the extension of this concept to the replication of LUT/RAMs
is not feasible. The content of the LUT/RAMs may be read and written through the
configuration memory, but there is no mechanism, other than to stop the system,
capable of ensuring the coherency of the values, if there is a write attempt during the
replication interval, as stated in [2]. Furthermore, since frames span an entire column
of CLB slices, a given bit in all slices is written with the same command. Therefore, it
is necessary to ensure that either all the remaining data in the slice is constant, or it is
also changed externally through partial reconfiguration. Even not being replicated,
LUT/RAMs should not lie in any column that could be affected by the replication
process.
Depending on the method used to create the reconfiguration files, the replication
procedure can also recover from errors caused by transient faults in the on-chip
configuration memory cells. A typical example of such errors are SEUs in space
environments, which modify the logic function originally implemented in the FPGA.
Since Virtex FPGAs enable readback operations, a completely automatic read-
-modify-write procedure could be implemented to replicate the CLBs using local
processing resources. In this case, any transient fault in the configuration memory is
propagated and will affect the functionality of the CLB replica. On the other hand, if
the reconfiguration files are generated from the initial configuration file stored in an
external memory, any error due to SEUs is corrected when the affected blocks are
replicated.

3 Online concurrent testing

The configurable structure of the CLB requires the use of a minimum number of test
configurations to perform a complete test of its structure, with a specific set of test
vectors applied to each test configuration. Since the implementation structure of the
CLB primitives (LUTs, multiplexers, flip-flops) is not known, a hybrid fault model
was considered [7] (see also [10, 11] for an extensive study concerning FPGA fault
models). The BS infrastructure is reused to apply the 40 test vectors required to test
each CLB, and to capture the test responses. Since the application of test vectors via
the BS register would be intrusive, a user test register must be used (the Virtex family
enables two BS user registers). The register created for this purpose comprises 13
cells, corresponding to the maximum number of CLB inputs, and is fully compliant

7

with the IEEE 1149.1 standard. The seven CLBs occupied by this register and the two
CLBs occupied by the replication aid block, are the only FPGA hardware overhead
that is implied by our test methodology. It accounts for less than 1% of the CLB
resources of the Xilinx Virtex XCV200 device (array size = 28x42 CLBs). Each
Virtex CLB comprises two slices that are exactly equal. In total, each CLB has 13
inputs (test vectors are applied to both slices of all CLBs under test simultaneously)
and 12 outputs (6 from each slice). Since the outputs of each slice are captured
independently, fault location can be resolved to a single slice.
The dynamic rotation mechanism used for releasing CLBs to be tested should have a
minimum influence in the system operation, as well as reduced reconfiguration cost
overhead. This cost depends on the number of reconfiguration frames needed to
replicate and release each CLB, since a great number of frames would imply a longer
test time. The impact of this process in the overall system operation is mainly related
to the delays imposed by re-routed paths, which may now be longer (reducing the
maximum frequency of operation). Two strategies were considered to rotate a free
CLB across the FPGA logic space: horizontal and vertical. In the horizontal rotation
strategy the free CLB rotates along a horizontal path covering all the CLBs in the
array. The replication is performed between neighbouring CLBs, due to scarcity of
routing resources, and to avoid higher path delays. The same principle applies to the
vertical rotation strategy, where the free CLB is rotated along a vertical path.
The results of practical experiments performed over a subset of the ITC’99
benchmarks using these two strategies are presented in table 1. Generally, the vertical
rotation scheme is seen to perform much better, be it in terms of the reduction in the
maximum frequency of operation (7% in the average for vertical rotation, against
18% average for horizontal rotation) or in what concerns the size of the partial
reconfiguration files. The vertical organization of the reconfiguration vectors explains
why the size of the reconfiguration files is in the average 20% higher for horizontal
rotation, which always involves two columns.
The influence over the maximum frequency of operation is explained by the pair of
dedicated paths per CLB that propagate carry signals vertically between adjacent
CLBs. When the rotation process breaks a dedicated carry path, due to the insertion of
the free CLB, the propagation of this carry signal between the nearest adjacent CLBs
(above and below the free CLB) is re-established through generic routing resources,
increasing the path delay. If the implemented circuit has one or more of these carry
signals, the horizontal rotation would break all the carry nets, increasing path delays,
but the vertical rotation would break only one of them at a time. In this case, the
vertical strategy becomes preferable. When no carry signals are used, two other
factors must be considered: i) the number of signals with high fanout, and ii) the
placement shape (rectangular, square, circular, etc.) and orientation (horizontal,
vertical) of the circuits implemented in the FPGA. In rectangular / horizontal
implementations, and when many high fanout signals are present, the horizontal
strategy is preferable, since the maximum frequency of operation is less degraded
(this could be more important than the size of reconfiguration files, when dealing with
high-speed applications).
If we look into the mean size of the reconfiguration files per CLB, table 1 shows that
the vertical rotation scheme also performs better (nearly 10% in average). This table
shows that the mean size of the reconfiguration files per CLB increases as the number

8

of CLBs used in the implementation also increases, because it becomes more difficult
to find good routing alternatives to those signals involved in the replication process.

Table 1. Frequency deviation, reconfiguration file size, and size per CLB

Maximum
frequency
deviation (%)

Size of reconfiguration
files in total
(bytes)

Size of reconfiguration
files per CLB
(bytes)

Circuit
Refer.

Number
of
CLBs

 Vert. Horiz. Vert. Horiz. Vert. Horiz.

Ratio
(horiz.
/ vert.)

B01 6 -5,5 0,0 48 350 56 102 8 058 9 350 16,0
B02 1 0,0 0,0 7 016 10 623 7 016 10 623 51,4
B03 11 -1,9 -4,9 120 705 138 484 10 973 12 589 14,7
B04 54 -6,1 -29,3 548 595 665 419 10 159 12 322 21,3
B05 103 -17,3 -36,9 1 130 985 1 286 031 10 980 12 485 13,7
B06 5 -2,7 0,0 45 291 53 503 9 058 10 700 18,1
B07 31 -23,6 -37,8 354 367 425 214 11 431 13 716 20,0
B08 17 -5,8 -5,8 150 093 178 339 8 829 10 490 18,8
B09 12 -1,8 -4,9 112 107 129 855 9 342 10 821 15,8
B10 20 -7,5 -7,6 195 571 245 455 9 778 12 272 25,5
B11 39 -10,5 -36,0 500 261 614 093 12 827 15 745 22,8
B12 119 0,0 -1,2 1 275 804 1 631 953 10 721 13 713 27,9
B13 37 -4,3 -42,8 258 827 332954 6 995 8 998 28,6
B14 333 -13,5 -47,8 5 195 444 6 070 485 15 601 18 229 16,8

The back and forth dynamic free-CLB rotation across the chip implies a variable
latency. The time to again reach a given CLB alternates, according to the rotation
direction, between a maximum and a minimum value, depending on the device size
(number of CLB columns and rows). The fault detection latency is bounded by the
following limits:

)(2)1)#((# testreconfcolumnsrowsscan ttCLBCLB
MAX

+××−×=τ

)(2 testreconfscan tt
min

+×=τ

(treconf is time needed to complete a CLB replication and ttest is the time needed to test
a free CLB)
When the rotation process is complete, the initial routing is restored. The whole
process may then be repeated or paused, depending on the overall test strategy. In
order to estimate the worst case fault detection latency, we must take into account the
time needed to carry out each step of the proposed approach. The replication of each
CLB dominates the total time per CLB, in particular in the case of those circuits
requiring a replication aid block (in which case approx. 35 ms are required to
complete the replication process). The various test configurations required to
complete a structural test of each CLB, together with the time required to shift in and
out test data, contribute with approximately 10 ms, leading to a total time per CLB

9

that is close to 45 ms. In a typical scenario, like those that correspond to the ITC’99
benchmark circuits (25% of CLBs requiring a replication aid block, 50% of CLBs not
requiring such blocks, and 25% of empty CLBs), the total test time to cover the 1.176
CLBs in the XVC200 is above 40 seconds.

4 Enhanced fault tolerance

Active replication enables non-intrusive concurrent testing and logic space
defragmentation, but cannot avoid performance degradation due to higher propagation
delays, in the case of signals that are re-routed via longer interconnection paths. On
the other hand, fault detection latency enables the propagation of fault effects, which
may eventually lead to irreversible malfunction of the whole system. These
restrictions may not be important in many application domains, and namely when the
fault detection latency is small compared to system inertia. However, in the case of
mission-critical applications, a higher reliability solution must be devised.
Triple modular redundancy (TMR) is the best known form of spatial redundancy, and
may be represented as shown in figure 2.a. Three identical modules (M) receive the
same inputs and drive a majority-voter that produces the circuit output. When more
than one module fails, the circuit fails. Tolerance to multiple module failures may of
course be achieved at the cost of providing higher redundancy, leading to NMR
architectures. Replication may take place at various hierarchical levels, so each
module may be a simple gate, or a much more complex resource, including mid-range
functional blocks, components (e.g. a microprocessor), or even a complete system. In
the basic configuration shown in figure 2.a, the reliability of the circuit will depend on
the reliability of the voter (if the voter fails, the circuit fails). Special design and
implementation techniques may be used to improve the reliability of the voter circuit.
However, if such solutions are not considered satisfactory, the voting element itself
may be replicated as well, leading to what is known as N-NMR architectures.
Additionally, design diversity may be enforced to further enhance reliability.

a. TMR with a single voting element b. T-TMR with scan fault detection
Fig. 2. Fault tolerance via spatial redundancy

Particularly in the case of low level modular redundancy, DR-FPGAs bring two
important advantages to the cost x benefit model of NMR implementations: i) since

10

each function may be implemented only when needed (and afterwards removed to
release FPGA floor space), the additional spatial requirements of modular redundancy
solely address those blocks that have to be implemented at any given time; ii) any
defective resource that caused module failure may be identified and replaced,
restoring the reliability index. The occurrence of a fault will be indicated by a
discrepancy at the output of a module or voter. An internal 1149.1 scan chain able to
capture the output of modules and voters, as shown in figure 2.b, enables the
identification of the defective block. The fault masking properties of modular
redundancy will ensure that circuit operation will not be affected, provided that a
second module / voter in the same set does not fail, before the fault correction
procedure is complete. The fault detection procedure launches a background task to
readback the configuration bitstream of the area where the affected module is located.
If an incoherency is found, the test controller restores the original configuration and
eliminates the cause of the failure. If no error in the configuration bitstream is
detected after the readback-and-compare operation, but the fault persists, the most
probable reason is the existence of a physical defect. When the defective resource is
found, it is flagged to avoid further usage and replaced to restore the reliability index.
Notice that this solution confines the fault effect to the defective module (its output is
masked), but does not eliminate the fault detection latency. However, the worst case
fault latency is no longer given by the time taken to test the full CLB matrix, since the
concurrent fault detection procedure is now looking for incoherencies at the module
and voter outputs. The important thing to do is to identify the cause of the
incoherency and to eliminate it. Appropriate action (i.e. correcting the contents of the
reconfiguration memory or replicating the defective CLB) will then reestablish the
reliability index and bring the circuit back to its full fault-tolerance features.

5 Conclusion

The active replication technique described in this presentation enabled the proposal of
a truly non-intrusive online concurrent testing solution that was validated using an
XCV200-based prototyping board. Notice that the structure of the current Xilinx
Virtex II devices is the same as in the older XCV200 that was available when this
project started (the embedded microprocessor cores and the higher number of
reconfigurable resources make no difference from this point of view). When fault
detection latency cannot be tolerated, an enhanced T-TMR architecture enables fault
diagnosis and guarantees fault-free operation and fast recovery of the reliability index.
The same active replication technique may also be used to defragment the FPGA
logic space, ensuring sustainable performance by preventing excessive path delays
and reducing the waiting time imposed on incoming functions [18-21]. The
development of enhanced fault-tolerant T-TMR architectures is the subject of a new
R&D project that has just started in May 2005. The main objective of this new project
is to improve the solution proposed in the previous section, by using SR-FPGAs to
develop self-repair architectures. An embedded T-TMR microprocessor controls the
internal configuration access port (ICAP) of SR-FPGAs and triggers the self-
reconfiguration procedure when a defective resource is identified [22].

11

References

1. R. Baumann, “Soft Errors in Advanced Computer Systems,” IEEE Design and Test of
Computers, Vol. 22, No. 3, pp. 258–266, May-June 2005.

2. W. Huang, E. J. McCluskey, “A Memory Coherence Technique for Online Transient Error
Recovery of FPGA Configurations,” Proc. of the 9th ACM Int. Symposium on Field-
Programmable Gate Arrays, pp. 183-192, February 2001.

3. C. Stroud et al., “Built-In Self-Test of Logic Blocks in FPGAs (Finally, A Free Lunch:
BIST Without Overhead!),” 14th IEEE VLSI Test Symposium, pp. 387-392, April 1996.

4. C. Stroud, E. Lee, M. Abramovici, “BIST-Based Diagnostic of FPGA Logic Blocks,” Proc.
of the International Test Conference, pp. 539-547, Nov. 1997.

5. C. Stroud et al., “Built-In Self-Test of FPGA Interconnect,” Proc. of the International Test
Conference, pp. 404-411, Nov. 1998.

6. Doumar, T. Ohmameuda, H. Ito, “Design of an automatic testing for FPGAs,” IEEE
European Test Workshop Compendium of Papers, pp. 152-157, May 1999.

7. W. K. Huang, F. J. Meyer, X. Chen, F. Lombardi, “Testing Configurable LUT-Based
FPGA's,” IEEE Trans. on VLSI Systems, Vol. 6, No. 2, pp. 276-283, June 1998.

8. W. K. Huang, F. J. Meyer, F. Lombardi, “An approach for detecting multiple faulty FPGA
logic blocks,” IEEE Trans. on Computers, Vol. 49, No. 1, pp. 48-54, Jan. 2000.

9. T. Inoue, S. Miyazaki, H. Fujiwara, “Universal Fault Diagnosis for Look-up Table
FPGAs,” IEEE D&T of Computers, Vol. 15, No. 1, pp. 39-44, January-March 1998.

10. M. Renovell et al., “RAM-Based FPGA's: A Test Approach for the Configurable Logic,”
IEEE Int. Conference on Design, Automation and Test in Europe, pp. 82-88, Feb. 1998.

11. M. Renovell, J. M. Portal, J. Figueras, Y. Zorian, “Testing the interconnect of RAM-based
FPGAs,” IEEE D&T of Computers, Vol. 15, No. 1, pp. 45-50, January-March 1998.

12. N. R. Shnidman et al., “On-Line Fault Detection for Bus-Based Field Programmable Gate
Arrays,” IEEE Trans. on VLSI Systems, Vol. 6, No. 4, pp. 656-666, December 1998.

13. M. Abramovici et al., “On-Line Testing and Diagnosis of FPGAs with Roving STARs,”
Proc. 5th IEEE Int. On-Line Testing Workshop, pp. 2-7, July 1999.

14. L. Burress, P. K. Lala, “On-Line Testable Logic Design for FPGA Implementation,” Proc.
of the International Test Conference, pp. 471-478, November 1997.

15. M. Renovell et al., “Test Generation Optimization for a FPGA Application-Oriented Test
Procedure,” Proc. of the 15th Design of Circuits and Integrated Systems Conference, pp.
330-336, November 2000.

16. M. G. Gericota, G. R. Alves, M. L. Silva, J. M. Ferreira, “Active Replication: Towards a
Truly SRAM-based FPGA On-Line Concurrent Testing,” Proc. of the 8th IEEE On-Line
Testing Workshop, pp. 165-169, July 2002.

17. Pol. di Torino ITC’99 benchmarks, available at http://www.cad.polito.it/tools/itc99.html
18. M. Gericota, G. Alves, M. Silva, J. Ferreira, “Run-time Defragmentation for Dynamically

Reconfigurable Hardware”, in New Algorithms, Architectures and Applications for
Reconfigurable Computing, pp. 117-129, Springer, 2005, ISBN 1-4020-3127-0.

19. O. Diessel, H. El Gindy, M. Middendorf, H. Schmeck, B. Schmidt, “Dynamic scheduling
of tasks on partially reconfigurable FPGAs,” IEE Proc.-Computer Digital Technology, Vol.
147, No. 3, pp. 181-188, May 2000.

20. M. Vasilko, “DYNASTY: A Temporal Floorplanning Based CAD Framework for
Dynamically Reconfigurable Logic Systems,” Proc. 9th Intl. Workshop on Field-
Programmable Logic and Applications, pp.124-133, Aug.-Sep. 1999.

21. M. Teich, et al., “Compile-time optimization of dynamic hardware reconfigurations,” Proc.
Intl. Conf. on Par. and Distr. Proc. Techniques and Applications, pp. 1097-1103, 1999.

22. M. G. Gericota, G. R. Alves, J. M. Ferreira, “A Self-Healing Real-Time System Based on
Run-Time Self-Reconfiguration," 10th IEEE International Conference on Emerging
Technologies and Factory Automation, Catania, Italy, September 2005.

12

