

"OCD-FI, On-Chip Debugging and Fault Injection for
validating microprocessor based dependable systems”

André V. Fidalgo1,2, Gustavo R. Alves1, José M. Ferreira2

 anf@ isep.ipp.pt gca@isep.ipp.p jmf@fe.up.pt
1Instituto Superior de Engenharia do Porto

2Faculdade de Engenharia da Universidade do Porto

Abstract

This paper proposes a set of modifications to the
on-chip debugging infrastructures present in many
actual microprocessor cores, with the objective of
supporting the validation and verification steps of
fault-tolerant mechanisms through fault injection
campaigns. A synthesisable microprocessor core for
programmable components was used as a target
system an. a debugging infrastructure compliant
with the NEXUS 5001 proposed standard for on-
chip debugging was implemented on this target. To
improve the process of real-time memory fault
injection, an upgraded infrastructure designated as
On-Chip Debugging and Fault Injection (OCD-FI)
was developed. The complete system was analysed
in terms of area overhead and fault injection
capabilities and performance. All elements were
designed as synthesizable VHDL modules and
evaluated in simulation.

1. Introduction

In recent years, there has been a rapid increase in
the use of microprocessor-based systems in critical
areas where failures imply risks to human lives, the
environment or expensive equipment. One solution
for avoiding a possible disaster lays in the use of
dependable systems, able to tolerate and eventually
correct faults, requiring high quality validation &
verification in their development cycle.

Most recent microprocessors include an on-chip
debugging (OCD) infrastructure to facilitate
common debug operations. Although these vary
considerably from case to case, they usually include
a similar set of features like memory read and write,
instruction single-stepping, program trace and some
type of breakpoint support.

The motivation behind the work described in this
paper is the belief that it is possible to develop a
efficient fault injection methodology using a
modified debugging infrastructure. The objective is
to provide additional capabilities and an increase in
performance of the fault injection process.

2. State of the Art

In safety critical computer based applications
dependability is of utmost importance. Dependable
systems are designed to detect errors that originate
from software or hardware faults and recover from
them maintaining acceptable operating conditions.
The verification and validation of these systems is
an important and hard to handle problem, although
benefiting from some proposed solutions such as:
analytical modeling, experimental techniques and
fault injection [1]. Fault injection is recognized as a
powerful solution, particularly to measure the
effectiveness of the error detection mechanisms. It
consists of injecting faults in the system
components, while functional applications are being
executed, and then observing the system response.

The hardest part of this approach is the
methodology for actually injecting the fault, namely
how to access those elements of the microprocessor
where faults are more probable, generally the
memory elements and communication buses.

The efficiency of a fault injection technique
depends on the controllability and observability
level of each microprocessor. Nowadays, almost
every microprocessor comes with a debug & test
infrastructure which provides a reasonable mean to
access its core. However, such infrastructures are
generally based on different architectures and access
ports, normally requiring specific hardware and
often with proprietary parts.

IEEE-ISTO 5001-1999, the NEXUS 5001 Forum
Standard for a Global Embedded Processor Debug
Interface [2] is an open industry standard that
provides a general-purpose interface for the software
development and debug of embedded processors.
This proposed standard is an interesting possibility
for the development of a common fault injection
methodology for the verification and validation of
critical microprocessor-based systems.

Most fault injection techniques that use on-chip
debugging infrastructures rely on halting the
processor, either by the use of control signals or
using breakpoints, and subsequently modify the
targeted registers or memory locations to emulate a
fault. The usual approach involves the use of a host

machine running the fault injection campaign and a
debugger to access the target infrastructure.

The NEXUS proposed standard offers some
interesting possibilities, as it allows real time access
to memory and trace information. Work on this area
has confirmed the importance of these capabilities
[3] for fault injection purposes, and allowed the
identification of some shortcomings in
synchronization and performance.

 As all the available NEXUS compliant
debuggers communicate with the outside world
through either Ethernet or USB cables, this imposes
a critical limitation on real time fault injection in
high performance systems. Depending on the
memory position targeted, it may prove difficult or
even impossible to read its contents and write back a
modified value before it is actually written by the
running application.

Fault Triggering is also a problem as even using
a debugger [4] that outputs trace data without halting
the processor, this information is not readily
available as it must reach the host machine before it
can be acted upon, and this delay can be measured in
milliseconds or more, which effectively prevents its
use as a triggering solution.

3. Target System

The choice of target system was made with some
key features in mind. It had to be freely available as
a fully synthesizable VHDL (or Verilog) model. The
possibility of using different processor
configurations and the ease of modification were
important selection factors. The actual
implementations of the device and the available
documentation were also considered.

The final choice fell on a publicly available
opencores [5] project, namely the cpugenerator [6]
building tool. This tool allows for the automatic
creation of 4, 8, 16 or 32 bit microprocessor cores.

In cpugenerator, data and address buses can be
configured and several RAM and ROM types can be
used, including the possibility of implementing a
single RAM block for data and program storage. The
instruction set is pre-defined, but it is possible to add
new instructions. Interrupt support and stack
configuration are also configurable.

A compiler tool is also provided to translate
assembler (text) files into object files, readable by
VHDL memory simulation modules. The tool output
is a set of VHDL files that compose the
microprocessor core and some additional (non-
synthesizable) files that allow RAM and ROM
emulation. It is also possible to use synthesizable
memory definitions, but in this case the memory
contents must be created manually.

The target applications used were two
specifically designed programs. The first, designated
as iset_test, consists of a test program that executes

all instructions present in the original cpugenerator
instruction set. A second program is the
matrix_addFT which is a matrix adding application
with fault tolerant characteristics. These consist of
duplicating each arithmetic operation and then
comparing the results, with any difference triggering
an error detection routine. Although not as powerful
as hardware fault tolerance, this solution allows for
some degree of fault tolerance without modifications
to the hardware, at the cost of some ROM memory
space.

4. Debugging Infrastructure

The implemented debugging infrastructure was

designed from the beginning to be compliant with
the NEXUS 5001 proposed standard. This option
was taken with so that the subsequent modifications
could be applied to all compliant infrastructures.

As there is no mandatory implementation, the
OCD design was based on the infrastructure present
on the MPC565 microcontroller, which is a well
documented NEXUS compliant device. The
objective was to implement a Class-2 compliant
infrastructure as configurable as the target system. It
should be compatible with the different CPU
configurations and also automatically generated.

The NEXUS proposed standard defines the
minimum set of features and the communication port
to be used on a compliant infrastructure. For a class
2 compliant device the required features are:

• Read/Write User Registers in Debug Mode
• Read/Write User Memory in Real Time
• Enter a Debug Mode from Reset / User Mode
• Exit Debug Mode to User Mode
• Single step instruction in User Mode and re-enter

Debug Mode
• Stop Program execution on instruction/data

breakpoint and enter Debug Mode (minimum 2
breakpoints)

• Ability to send out an event occurrence when
watchpoint matches

• Ability to set breakpoint or watchpoint conditions
• Device identification Message

The communication protocol is defined in the
standard and is message based. Each message
consists of a code defining the message type and
additional data packets if required. The
infrastructure accepts command messages in this
form and outputs result messages

As to the NEXUS port, it must include the
following signals:

• Two clocks for messaging input and output
control.

• Message Data Buses (Output and Input) for data
communication. Depending upon bandwidth

requirements, one, two, four, eight, or more pins
may be implemented for each bus.

• Message Start/End (Output and Input) indicate
when a message on the respective data bus has
started, when a variable-length packet has ended,
and when the message has ended.

• Two event pins (Output and Input) with the input
pin allowing halting the processor and the output
pin indicating exact timing for a single breakpoint
status indication.

• A Reset pin for resetting the Nexus infrastructure.

The implemented OCD infrastructure is divided
in three modules as seen on Figure 1.

Figure 1- OCD Infrastructure

The RCT (Run Control & Trace) module is
responsible for CPU run control and bus snooping. It
receives commands both from the MSG module and
the RW module and outputs trace data and
watchpoint hit signals.

The RW (Read & Write) module is used both to
access debug specific registers and CPU resources
(memory and registers). This module uses a special
register (RAW) where data and access information is
stored so that a single triggering signal may order
the execution of a single read/write operation.

The MMQ (Message Management and Queuing)
module is the NEXUS message handler that
translates all debugging operations into messages
and vice versa and manages the message queues.

Some additional logic is required to deal with
signal multiplexing, collision handling and timing
issues.

All required NEXUS features were implemented,
being possible to insert up to two program and one
data breakpoint. Both types of breakpoints can be
activated at the N occurrence of their trigger
condition. Additionally a watchpoint may be
generated in the same manner as either type of
breakpoint. Program trace is performed by sending
out messages at program branch or exception
occurrences. If enabled, data trace can be performed
by messaging out data values and addresses at
memory write instants.

5. On-Chip Fault Injection

Any NEXUS compliant OCD infrastructure
already has both triggering and data access
capabilities, in the form of watchpoint support and
read/write access to microprocessor registers and
memory.

On-Chip Fault Injection (OCD-FI) can be
described as a hardware module implemented on the
microprocessor chip that uses the available
debugging functions to automatically inject faults.

The proposed solution was developed with three
objectives: Simplicity, adaptability and efficiency. It
has to be simple to imply the least logic overhead, it
should be adaptable so that it can be configured for
different microprocessor architectures and it has to
be efficient to justify its use.

OCD-FI consists off adding an additional Fault
Injection (FI) module to a (NEXUS compliant) OCD
infrastructure. This module, when enabled, monitors
the watchpoint signal(s) so that it can activate a
memory write operation to inject a bit-flip fault on a
given address.

Figure 2 – Fault Injection Module

This approach requires that both the data value to
be written and the respective address be determined
beforehand and preloaded in the RAW register. To
do this it is necessary a previous analysis of the
running application to determine the target memory
position contents at the injection instant. In this
manner it is possible to determine the value that
should be stored so that a single bit-flip is caused on
the target.

The required data must be downloaded to the
OCD infrastructure prior to the watchpoint
occurrence, and the RW module must not be used
until the actual fault activation.

Once the fault is inserted the FI module disables
itself and the OCD resources can then be used
normally. It should be noted that the trace features
are not affected by this and operate normally before,
during and after the fault injection process, reacting
exactly as if a “real” fault was injected.

As the NEXUS proposed standard has support
for additional (configurable) messages, it is possible
to use these to control the fault injection module. In
fact, the watchpoint configuration messages are
already used for debugging purposes and it is only
required to add support for messages to enable and
disable the FI module and for the setting up of the
address and data values for the actual fault injection.
In this manner it should be very simple to add fault

injection support to any NEXUS compliant
debugging system.

The fault model considered for this case derives
from the most common fault scenarios for critical
systems [7] and is defined as:

Fault Type Bit-Flip
Fault Location RAM memory space
Fault Trigger Instruction Execution
Fault Duration Transient

Table 1 – Fault Model

The fault type and duration were chosen to
mirror the expected effects of radiation on the target
system. The fault location is limited to RAM
memory because it is in this area that the OCD-FI is
most advantageous as fault injection can be
performed in real-time. The fault trigger can be any
instruction occurrence of the running application,
covering the entire execution time.

A fault campaign defines a set of fault injection
runs where in each case a specific fault location and
trigger is selected. In each such fault operation the
processor is reset and the application runs from the
beginning. The FI module can be programmed prior
to this or even in runtime. The actual faulty value to
be written depends on the target memory value at the
moment of the injection. To determine this value
beforehand it is possible to either use the knowledge
of the running application code or perform a prior
faultless application execution up to the fault
triggering instant and use the OCD to read the
relevant memory contents. The fault trigger is also
selected beforehand from the executed application
code. A complete fault campaign is generated
externally and stored in memory as a sequence of
commands for the OCD-FI infrastructure. Fault
campaign management is performed using specific
VHDL modules that use RAM memory blocks for
reading the fault injection campaign data and storing
the relevant results. This allows the use of a single
programmable device (FPGA) for the entire fault
injection process.

6. Results

The target system, the debugger, the fault
injection module and the different memories were
designed as VHDL models using the Xilinx ISE 7.1i
[8] development environment and simulated using
the Modelsim 6.0a simulation engine. The number
of equivalent gate count for each module is given in
Table 2 for two different CPU configurations.

Fault campaigns were executed on both
configurations and using both target applications.
Each campaign was performed twice, one using the
initial OCD version and other using also the FI
module. Table 3 presents the timing for each fault
injection operation in clock cycles. Set up represents

the delay due to fault injection related activities
performed before each fault injection run is started
and writing represents the time interval between the
fault activation condition being met and the actual
insertion of the faulty value.

8 bit CPU 32 bit CPU

Module # Equivalent
Gates % # Equivalent

Gates %

CPU core 9166 N/A 53717 N/A

RCT 2391 34 5113 27

RW 369 5 643 3

MMQ 4225 60 13045 69

FI 75 1,1 75 0,4

OCD-FI 7060 100 18876 100
Debugger

(except
RAM)

766 N/A 1079 N/A

Table 2 – Synthesis Results

 OCD OCD-FI
CPU Set up Writing Set up Writing
8 bit 13 14 28 2

32 bit 14 21 36 2

Table 3 – Fault Injection Timings

The obtained results show that the FI module
allows the injection of bit-flip faults with minimum
delay and requiring a very low logic overhead. As
such, the proposed OCD-FI infrastructure should
provide an efficient fault injection mechanism in
terms of reusability, coverage, performance and cost.
The downside is the need of an adequate OCD
infrastructure and the required availability of both
the OCD and the target CPU in some type of HDL
description.

Actually, different applications and fault
injection scenarios are being used to further validate
the OCD-FI infrastructure. Its applicability to other
microprocessor and OCD architectures is also being
studied.

References
[1] Ghani A. Kanawati et al, “FERRARI: A Flexible

Software-Based Fault and Error Injection System”,
IEEE transactions on computers 44, 1995.

[2] IEEE-ISTO 5001 [www.nexus5001.org], “The Nexus
5001 Forum Standard for a Global Embedded
Processor Interface version 2.0”, 2003.

[3] Pedro Yuste, David de Andrés, Lenin Lemus, Juan J.
Serrano, Pedro J. Gil; “INERTE: Integrated NExus-
Based Real-Time Fault Injection Tool for Embedded
Systems”; DSN 2003

[4] www.isystem.com/Products/Emulators/iC3000/
[5] www.opencores.org
[6] Giovanni Ferrante, “CPUGEN 2.00”, 2003
[7] A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr;

“Basic concepts and taxonomy of dependable and
secure computing”; IEEE Transactions on Dependable
and Secure Computing, Volume 1, Issue 1; Jan 2004

[8] www.xilinx.com

	Abstract
	1. Introduction
	2. State of the Art
	3. Target System
	4. Debugging Infrastructure

