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Abstract! 
 

To boost logic density and reduce per unit power 
consumption SRAM-based FPGAs manufacturers 
adopted nanometric technologies. However, this 
technology is highly vulnerable to radiation-induced 
faults, which affect values stored in memory cells, and to 
manufacturing imperfections.  

Fault tolerant implementations, based on Triple 
Modular Redundancy (TMR) infrastructures, help to keep 
the correct operation of the circuit. However, TMR is not 
sufficient to guarantee the safe operation of a circuit. 
Other issues like module placement, the effects of Multi-
Bit Upsets (MBU) or fault accumulation, have also to be 
addressed. In case of a fault occurrence the correct 
operation of the affected module must be restored and/or 
the current state of the circuit coherently re-established.  

A solution that enables the autonomous restoration of 
the functional definition of the affected module, avoiding 
fault accumulation, re-establishing the correct circuit 
state in real-time, while keeping the normal operation of 
the circuit, is presented in this paper. 

 
 

1. Introduction 
 

The reduction in transistors size experimented by new 
generation of semiconductor technology lead to a greater 
integration and to a per unit power reduction, enabling 
chips to grow in size and complexity. But new nanometer 
scales also bring some negative aspects, such as the 
vulnerability to soft errors, due to Single Event Upsets 
(SEU) having its origin in background radiation, and to 
electromigration. Despite soft errors do not physically 
damage chips, values stored in memory cells may be 
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modified, causing incorrect data to be transmitted or an 
improper instruction to be retrieved by a processor. 
Furthermore, after large periods of operation, defects 
related to small manufacturing imperfections, not detected 
by production tests, may become exposed, due to, for 
example, electromigration phenomena, emerging as 
permanent faults. 

These problems have a particular impact on the 
reliability of SRAM-based Field Programmable Gate 
Arrays (FPGAs). They have been enduring a considerable 
evolution in the last few years, both in terms of density 
and complexity, with nanometer technology being 
currently used in their manufacturing. Unfortunately, the 
related exponential growth in the amount of memory 
cells, needed for configuration purposes, has turned them 
especially vulnerable not only to physical imperfections 
but also to radiation-induced faults, such as SEU and 
Multi-Bit Upsets (MBU) [1-4]. Although these last set of 
faults do not physically damage the chip, their effects are 
permanent, since the functionality of the circuits mapped 
into the device is permanently altered.  

Another problem are the transients (glitches) induced 
in combinatorial logic paths by the incidence of heavy 
ions (a phenomenon known as Single Event Transients 
(SETs)), which may be propagated to flip-flop inputs, 
where, as system clock speeds increase, they have a high 
probability to be registered, causing soft-errors in the user 
data. Besides, if a SET strikes a clock line, double-
clocking may occur, leading to an extemporaneous update 
of part or all the flip-flops driven by that line (depending 
on the charge value and on line attenuation). 

Full module redundancy, namely Triple Modular 
Redundancy (TMR), has been the preferred choice to 
improve the reliability of highly critical applications 
based on FPGAs since it does not require any 
architectural innovation and it is function-independent 
[4-10]. In a discrete implementation of a TMR system, if 
a defect affects the functionality of a single module the 
system will continue to work correctly. However, a 
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second failure in one of the remaining modules will lead 
to a system failure. Ideally, when a module fails, it should 
be replaced to restore the initial redundancy, but this 
action may not be possible immediately (or may even be 
impossible, like in space applications). In FPGA-based 
systems, in the event of a module failure, the initial 
redundancy may be restored by reconfiguration of the 
affected module. No physical replacement is therefore 
necessary, resulting in a significant improvement in 
reliability without a comparable rise in costs. 
Occasionally, even physical defects may be overturned by 
reconfiguration. 

A framework for implementing self-healing circuits in 
FPGAs, making them immune to radiation-induced faults 
and, within limits, also to structural defects, is herein 
explored. Its aim is to fully automate the procedure of 
confining, detecting, locating and mitigating structural 
and radiation-induced faults in the TMR modules, 
creating a self-healing mechanism fully contained in the 
same FPGA. The full proposal was implemented on a 
XC2V1500 from Xilinx. 

 
2. Literature survey 

 
The results of several radiation campaigns in SRAM-

based FPGAs, carried out with the objective of 
understanding the effects of radiation-induced faults, 
were reported by several authors [2, 3, 7]. In general, 
these authors observed that radiation changes the correct 
functionality of the circuits, an effect defined as a Single 
Event Functional Interrupt (SEFI). A classification of 
SEFIs was proposed in [1-2]. 

Several fault injection approaches, proposed as 
alternatives to (expensive) radiation campaigns, may also 
be found in the literature [9-11]. The greatest advantage 
of these methods is the higher controllability of the 
experiments, in contrast to the unpredictability of 
radiation injection, which enables a better diagnostic of 
the effects of each SEU. A combination of both 
techniques, not only to increase the controllability of the 
experiments, but also to verify the accuracy of the 
emulation fault injection techniques used, may be found 
in [4, 5, 12, 13]. 

Lately, several hardening techniques have been 
proposed to avoid SEU effects on the functional behavior 
of circuits. Correcting techniques based on dynamic 
reconfiguration, known as scrubbing, like those presented 
on [14-16], periodically read back the configuration 
memory to detect bit flips caused by SEUs. If a bit flip is 
detected, the affected frame is reconfigured and the 
system is reset. However, the same authors recognized 
that a fault-free read-back of the configuration bitstream 
does not guarantee that a SEU did not occur. In fact, 
radiation-induced bit-flips in flip-flops occur without 

upsetting the bitstream. Another drawback is fault 
detection latency. The read-back operation of the whole 
configuration memory may take from several 
milliseconds to a few hundred milliseconds depending on 
the size of the FPGA and on the interface used to perform 
it. By then, the fault propagation may already have caused 
a system operation failure. Furthermore, those techniques 
do not cover emergent structural defects. 

Alternative techniques based on hardware redundancy 
were proposed without the aim of identifying and 
correcting faults, but just to mask its existence. After 
extensive testing, several authors proved that SEU-
induced failures can be properly controlled for the Virtex 
family of FPGA devices using TMR associated to a 
careful placement and routing [6, 7, 9, 10, 13, 17]. Fault 
tolerance is achieved using extra components to 
instantaneously mask the effect of a faulty component, 
meaning that no fault propagation will occur. Still, as no 
fault detection occurs, the faulty module is not replaced 
and therefore the initial redundancy (and reliability level) 
is not restored. Consequently, over time, cumulative 
faults will increase the probability of a system failure. 

It is also important to take account of the results 
achieved during radiation campaigns concerning MBUs 
due to single charged particles, since they may potentially 
affect multiple redundant modules and produce incorrect 
values. These effects are intrinsically related to the 
architecture of the configuration memory. In earlier 
Virtex generations, configuration memory is divided into 
one bit wide vertical frames that span from the top to the 
bottom of the array. Each column of Configurable Logic 
Blocks (CLBs) comprises multiple frames, which 
combine internal CLB configuration and state 
information, with column routing and interconnection 
information. In [5] it is reported that MBUs in Virtex 
devices occurred all in the same configuration frame, 
while in the Virtex-II family, the percentage of MBUs 
that occurred in the same configuration frame decreases 
to 88%. However, no MBUs struck configuration frames 
from two different CLB columns [4]. Configuration 
memory organization changed in more recent generations 
of Virtex devices. Instead of spanning the array from top 
to bottom frames are now restricted to a fixed number of 
CLB rows, defining a grid of configuration regions. 

In summary, although the association between 
dynamic reconfiguration and TMR seems to be the most 
effective way to mitigate the effects of radiation, extra 
care is required during the mapping of the circuits into the 
FPGA and a particular attention is required concerning 
the coherent re-establishment of the module state after 
reconfiguration or after the occurrence of bit-flips in flip-
flops. Furthermore, none of these techniques is sufficient 
to re-establish the correct operation of a module if the 
FPGA is itself affected by a structural defect. 
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The experimental results and conclusions reviewed 
above were taken into account when developing our 
proposed framework for the design and implementation 
of self-healing FPGA-based circuits. 

 
3. The proposed framework 

 
In a classic TMR implementation [18], the correct 

circuit output values are settled by voting elements that 
accept the outputs from three redundant sources and 
deliver the majority vote at their outputs. To ensure a 
consistent reliability index, voters have also to be 
replicated, in a schema known as T-TMR [18]. Only 
single faults are usually covered by T-TMR, but multiple 
faults may also be masked, providing that i) they affect 
only one of the redundant modules or voters, ii) if 
affecting different modules, they involve different signals 
and bitwise comparison is used. In these cases, faults are 
confined to the module or voter where they emerged, and 
are not visible from its outside.  

To fully prevent functional problems caused by 
configuration upsets, each signal should enter the FPGA 
in triplicate, using three input pins [17]. Otherwise, a 
failure at the single input would cause the error to 
propagate through all the redundant modules, and thus it 
would not be masked. This same principle applies to 
clock signals. Each of the triplicate circuit modules 
should receive its own clock to avoid that spurious 
signals induced by SETs on a single clock line lead to an 
extemporaneous update of all the three-module registers. 

Output signals should also leave the FPGA in 
triplicate, with minority voters monitoring each output 
[17], converging to a same node outside. When one 
output is different from the others, the correspondent pin 
is driven to high impedance avoiding contention. 

Some of these implementation aspects were already 
addressed by a Xilinx tool called TMRTool [19]. 
However, the simple implementation of TMR is not 
sufficient to guarantee complete immunity to radiation 
effects or to emerging structural defects. Other issues, 
like the effects of MBUs or fault accumulation, have also 
to be addressed to guarantee the correct long term 
operation of the circuits implemented in the FPGA. 
Placement and routing considerations presented in [10] 
were also taken into account when developing the present 
framework, in conjunction with the results produced by 
the fault injection campaigns reported in [2-4, 7]. 

Our proposed framework divides the FPGA vertically 
into four areas: three for the user’s circuit modules and a 
fourth area for placing a detection-and-fix controller. 

The interconnections between a module and its own 
Input/Output Blocks (IOBs) should not cross other 
modules’area minimizing route networking share. The 

overall implementation schema proposed is illustrated in 
figure 1. 

 
Figure 1. Proposed framework overview 

When one or more faults appear in one of the modules 
or voters, the T-TMR implementation confines the fault 
and masks its existence, avoiding its propagation to the 
rest of the circuit. However, the cumulative effects of two 
or more faults induced over time may suppress the 
effectiveness of the confinement and masking 
mechanism, allowing fault propagation. With the aim of 
detecting data incoherencies, locating the faulty module 
and restoring its correct operation a detection-and-fix 
controller was implemented in the fourth area defined on 
the FPGA logic space. This repair procedure is done 
transparently, through partial reconfiguration of the 
affected module, without human intervention, since 
physical component replacement is not needed. As a 
result, a higher level of maintainability is achieved 
without implying the inoperability of the circuit. An 
overview of the controller structure is shown in figure 2. 
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Figure 2. Structure of the detection-and-fix controller  
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4. Fault detection, location and mitigation 
 
It is very hard to detect the emergence of a fault in a 

T-TMR implementation using traditional online test 
strategies, since the redundancy of the circuit masks its 
effect. Therefore, fault detection has to occur before its 
masking. In our approach, this is done via three scan 
chains that regularly capture the values at the outputs of 
modules and voters. 

A Boundary-Scan (BS)-like register [20] is used to 
implement the scan chains, composed of simpler cells 
comprising only a capture / shift stage. The absence of the 
latch stage means that no delay is introduced in the 
signal’s path by the scan chain. To avoid capturing 
undefined values, the scan chain is updated 
synchronously with the system clock (assuring that 
modules or voters outputs will be in a steady state when 
they are captured).  

The scan chain control signals are generated by the 
detection-and-fix controller. This controller regularly 
updates the scan chains and shifts their contents, 
comparing the output values. Three parallel scan chains 
are used, each covering a different user’s module, with 
comparisons executed “on-the-fly”. Thus, there is no need 
to hold the shifted values. This approach makes it easier 
for the controller to accurately diagnose which of the 
three module areas is affected by a fault, and to trigger its 
reconfiguration. Since the shifting time is divided by the 
number of parallel chains more frequent capture 
operations are enabled, contributing to decrease fault 
detection latency. 

The problem with this approach is that if a fault affects 
the content of a flip-flop, the output of its module will 
exhibit a wrong value, which will be captured by the scan 
chain, triggering the reconfiguration procedure of the 
module. However, reconfiguration will not correct the 
value stored in the flip-flop, and so, the error will persist. 
A feedback schema to correct faults in flip-flops, based 
on a majority voter that compares the outputs of the three 
replicated flip-flops and returns the correct value to the 
inputs is proposed in [17]. Furthermore, this approach 
results in the partition of the module in smaller logic 
blocks with voters in-between, which increases the 
robustness of the TMR in the presence of routing upsets 
without being of concern to floorplanning [9]. Yet, if a 
fault affects one of the majority voters, this voter will 
return to the input of its flip-flop a faulty value. This fault 
will be permanent and will be propagated to the inputs of 
the remaining voters, increasing the risk of fault 
accumulation and consequent circuit failure. A detection 
mechanism placed only at the outputs of the circuit may 
fail the detection of these faults if a fault occurs deep in 
the module logic.  

To solve this problem the scan chain was extended to 
cover the inputs and outputs of each one of the flip-flops 
in the circuit. Thus, it is not only guaranteed that in case 
of a bit-flip in the flip-flop it will be correctly updated in 
the next clock cycle, but also that any functional fault 
affecting the majority voter will be detected through the 
scan chain, enabling to determine which module should 
be reconfigured. Furthermore, extending the scan chain to 
inside the module and wrapping on it the different 
combinational blocks and registers enables a more precise 
location of the fault. Considering the organization into 
regions of the configuration memory of the Xilinx 
Virtex-4 and -5 families [21], a more precise fault 
location enables the controller to activate the partial 
reconfiguration of smaller areas of the FPGA. 

The original partial configuration files of the four 
defined areas are stored externally. Due to the volatility 
of the FPGA configuration memory, an external memory 
is already necessary to hold the FPGA configuration 
bitstream (to be uploaded during system power up). 

If one of the modules is affected by an emerging 
structural fault the detection and location procedure 
works exactly the same way. However, reconfiguration of 
the affected area using the same partial configuration file 
won’t solve the problem. Ideally, and after locating the 
fault, the system should be able to recreate the placement 
process avoiding the faulty resource. However, the 
amount of processing and the indispensable resources 
needed to implement such procedure are not practical. 

One way of trying to overcome this problem is to use 
design diversity [22], where each module is synthesized 
using different synthesis techniques (which leads to 
different implementations of the same logic circuit), 
associated with placement diversity inside the module 
area. Instead of only one partial configuration file, several 
configurations, implementing exactly the same 
functionality but using different resources, are stored into 
the external memory 

Firstly, when a fault is detected, the controller tries to 
correct it by reconfiguring the area using the original 
partial configuration file. If the fault persists it indicates 
the probable emergence of a structural fault. Therefore, 
the controller reconfigures the area again but using the 
next partial reconfiguration file available for that area. 
The controller also increments the reconfiguration value 
flag of that area, keeping trace of the current partial 
reconfiguration file being in use. 

However, it should be noticed that, being a fairly good 
solution, this is not a perfect one. A structural fault 
located in one of the I/O blocks used by the module has a 
very low probability of being corrected by using an 
alternative placement, because the I/O placement is 
dependent on the pin location which is fixed. The 
effectiveness of this approach decreases with higher 
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occupancy rates, because the number of spare resources is 
obviously smaller, limiting placement diversity. 

Obviously, the controller and the scan chains may also 
be affected by SEUs or structural faults. To ensure their 
correct operation, the controller is equally implemented 
using a T-TMR design and its combinational logic and 
voter output signals are also covered by the scan chains, 
creating a self-verifiable circuit. The option of 
concentrating the controller in only one area, despite 
being implemented in T-TMR, was taken to reduce 
complexity and the number of occupied CLB columns. 
However, since it occupies fewer slices than those 
available in each column, modules are conveniently 
separated. 

The first bits of the scan chain belong to the outputs of 
the controller. If an incoherency is detected in those first 
bits, the controller will be fully reconfigured and reset at 
once. This procedure guarantees that the controller is 
working properly. While not being a critical component 
(concerning the functionality of the system), a fault-free 
controller is mandatory to maintain the reliability level of 
the whole system. 

The algorithm executed by the detection-and-fix 
controller is the following: 

 
While 
 Update scan chains & shift-and-compare each set of bits; 

If an incoherence is detected on the bits belonging to the 
controller then 
 Update scan chains & shift-and-compare each set of 

bits; 
 If incoherence persists then { 

 Reconfigure controller module; 
 Update scan chains & shift-and-compare each set of 

bits } 
  If incoherence persists then 

 Reconfigure controller module using a diverse 
partial configuration file; 

ElseIf an incoherence is detected on the bits belonging to 
one of the user’s module then 

 Update scan chains & shift-and-compare each set of 
bits; 

 If incoherence persists then { 
  Reconfigure user’s module; 

 Update scan chains & shift-and-compare each set of 
bits } 

  If incoherence persists then 
 Reconfigure user’s module using a diverse 

partial configuration file; 
ElseIf an incoherence is detected on multiple bits then 
  Reconfigure all FPGA; 

If incoherence persists then 
 Reconfigure all FPGA using diverse partial 

configuration files; 
End If 

End While 

Of course, if an upset affects the values shifted through 
the scan chain, this will falsify fault diagnosis and 
consequently trigger an extemporaneous partial 
reconfiguration of the supposedly faulty area. This 
operation, although unnecessary, will not affect the 
operation of the system. In the case of a structural fault 
affecting scan chains several neighboring bits will be 
disturbed, falsely indicating that a general failure in one 
or more modules occurred. Additionally, it won’t be 
possible to locate the place where the fault or faults 
emerged. In this situation, the controller undertakes a full 
dynamic reconfiguration of the FPGA, completely 
restoring the structural integrity of the scan chains. 

 
5. Case study 
 
To evaluate the effectiveness of our approach, we 

developed an experimental circuit based on a 32-bit 
counter and on a cascade of add/subtractor blocks. The 
use of a cascaded configuration enabled the building of a 
large circuit, able to maximize FPGA occupation, with a 
medium level of complexity but where the addition of 
new add/subtractor blocks does not imply a decrease in its 
maximum frequency of operation, which enable to 
confirm the validity of the approach even with high 
performance circuits. This circuit was implemented in a 
XC2V1500-based prototyping board, according to the 
rules defined in our proposed framework. The detection-
and-fix controller used a total of 254 slices, distributed 
across two of the 40 available CLB columns, representing 
an area overhead of 5%. This overhead is constant and 
independent of the size or the complexity of the circuits 
implemented on the FPGA. The maximum speed of 
operation achieved by the detection-and-fix controller 
alone (obtained by simulation) was 221 MHz. 

The remaining 38 columns were divided in three areas 
of 12 columns each, leaving a total of 2304 slices 
available for the implementation of each user’s module. 
Of these, 2184 slices were occupied by the experimental 
circuit. The extra two columns (remainder of the division 
of 38 by 3) were placed among the three areas of 12 
columns, to reinforce protection against (improbable) 
column-spanning MBUs [4]. The overhead introduced by 
the scan chain depends on the number of internal flip-
flops covered by the scan-chain and on the number of 
outputs of the user’s circuit. Our experimental circuit had 
100 cells by scan-chain, running at a frequency of 
125 MHz, given a maximum fault detection latency of 
800 ns. To mention an estimation, in the Cibolla flight 
experiment it has been anticipated that memory cells 
upset at a rate ranging from 0.13 SEUs per hour in a quiet 
sun environment to 4.2 SEUs per hour during the peak 
upset rate [12]. Comparatively, the complete 

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00  © 2007



reconfiguration of the FPGA takes 300 ms. Therefore, 
shifting time is negligible when compared to 
reconfiguration time. Furthermore, our method enables to 
reduce fault latency by, at least, a third, since in most 
cases it will be required to reconfigure only a third of the 
FPGA to correct the fault. In case of fault detection, the 
detection-and-fix controller initiates the partial 
reconfiguration by resolving the location address of the 
partial file to be configured. Our prototyping board uses 
System ACE [23] to keep trace of the partial 
configuration files and to configure the FPGA. 

Tests performed continuously over several days based 
on the insertion of faults through partial reconfiguration 
proved the effectiveness of the proposed concept. This 
process was automated using JBits [24]. Each fault 
insertion takes sixteen seconds. After several thousand 
fault insertions the circuit registered no system failures. It 
was able of autonomously recovered from the inserted 
faults. The occurrence of structural faults was not tested. 

 
6. Conclusion 
 
This paper presented a framework to support the on-

line self-healing of circuits implemented on SRAM-based 
FPGAs. Several issues addressing the effectiveness of 
TMR to cope with radiation-induced faults in FPGAs 
were reviewed and discussed to support the option of 
associating T-TMR to a careful placement and routing 
and to dynamic reconfiguration as the most effective 
approach to mitigate radiation-induced faults in FPGAs. 
To avoid system failure due to fault accumulation a 
complementary detection-and-fix controller mechanism 
was proposed, with the aim of restoring the proper 
operation of the modules when a fault is detected. Doing 
it selectively decreases fault latency and limits power 
consumption comparatively to repetitive blind scrubbing.  

A complementary procedure was used to increase 
module robustness to the emergence of physical defects.  

A practical case-study enabled the partial 
quantification of the overhead of our proposed solution 
and the assessment of its effectiveness. Further work is 
being done to improve the evaluation methodology. 
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