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Abstract—Dynamically reconfigurable SRAM-based field-pro-
grammable gate arrays (FPGAs) enable the implementation of
reconfigurable computing systems where several applications may
be run simultaneously, sharing the available resources according
to their own immediate functional requirements. To exclude
malfunctioning due to faulty elements, the reliability of all FPGA
resources must be guaranteed. Since resource allocation takes
place asynchronously, an online structural test scheme is the only
way of ensuring reliable system operation. On the other hand, this
test scheme should not disturb the operation of the circuit, oth-
erwise availability would be compromised. System performance
is also influenced by the efficiency of the management strategies
that must be able to dynamically allocate enough resources when
requested by each application. As those resources are allocated
and later released, many small free resource blocks are created,
which are left unused due to performance and routing restrictions.
To avoid wasting logic resources, the FPGA logic space must
be defragmented regularly. This paper presents a non-intrusive
active replication procedure that supports the proposed test
methodology and the implementation of defragmentation strate-
gies, assuring both the availability of resources and their perfect
working condition, without disturbing system operation.

Index Terms—Active replication, availability, field-pro-
grammable gate array (FPGA), online structural testing,
reliability.

I. INTRODUCTION

R ECONFIGURABLE logic devices, namely field-pro-
grammable gate arrays (FPGAs), experienced a con-

siderable expansion in the last few years due in part to an
increase in their size and complexity, with advantages in terms
of board space and flexibility. The availability of SRAM-based
FPGAs supporting fast runtime partial reconfiguration (e.g., the
Virtex family from Xilinx used to validate this work, the only
family of FPGAs that supports dynamic reconfiguration so far)
considerably reinforced these advantages, wide-spreading their
usage as a base for reconfigurable computing platforms.
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Dynamically reconfigurable FPGAs enable the implementa-
tion of virtual hardware as defined in [1] in the beginning of the
1990’s, by using temporal partitioning to implement those ap-
plications whose area requirements exceed the available logic
space (as if there were unlimited hardware resources). This ap-
proach is viable because each application comprises a set of
functions, predominantly executed sequentially or with a low
degree of parallelism, making simultaneous availability hardly
ever required. The static implementation of an application is
separated in two or more independent hardware contexts, which
may be swapped during runtime [2]. Extensive work was done
to improve the multi-context handling capability of these de-
vices, by storing several configurations and enabling quick con-
text switching [3], [4]. The main goal was to improve the exe-
cution time by minimizing external memory transfers, assuming
that some amount of on-chip data storage was available in the re-
configurable architecture. However, this solution was only fea-
sible if the functions implemented on hardware were mutually
exclusive on the temporal domain, e.g., context-switching be-
tween coding/decoding schemes in communication, video or
audio systems; otherwise, the length of the reconfiguration in-
tervals would lead to unacceptable delays in most applications.

The reduction of manufacturing scales contributed sig-
nificantly to eliminate these restrictions, by enabling higher
levels of integration and higher frequencies of operation. The
increasing amount of logic available in FPGAs and the smaller
reconfiguration times, partly owing to the possibility of partial
reconfiguration [5], extended the concept of virtual hardware to
the implementation of multiple applications sharing the same
logic resources in the spatial and temporal domains. However,
if the functions required by the different applications cannot
be scheduled in advance, all resource allocation decisions will
have to be made at runtime, preventing a long term resource al-
location strategy. In this case, fragmentation of the logic space
is inevitable, leading to poor resource utilization. Since the
type and amount of resources required by different functions
varies greatly, as resources are allocated to functions and later
released, many “islands” of free resources are created. These
areas tend to become so small that they are left unused due
to performance and routing restrictions. To avoid wasting re-
sources and degrading system availability, the defragmentation
of the FPGA logic space must be performed systematically.

Smaller submicrometer scales also have disadvantages, such
as the higher electronic current densities in metal traces—which
increase the threat of electromigration—and the lower threshold
voltages. As scale goes down the number of defects related to
small manufacturing imperfections that are not detected by pro-
duction testing goes up. These defects are especially prone to
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electromigration phenomena and lead to permanent faults after
long operation periods [6]. On the other hand, the exponential
growth in the number of configuration memory cells, and their
lower threshold voltages, make these components more suscep-
tible to gamma particle radiation and to the appearance of tran-
sient faults, such as single event upsets (SEU) and multi-bit up-
sets (MBU) [7]–[9]. These faults do not physically damage the
chip, but their effects are permanent, since the functionality of
the circuits mapped into the device is modified [10], [11]. Yet,
and since the cause of the failure is actually transient, online re-
configuration is sufficient to restore the original functionality.

In the case of permanent faults, and after the faulty elements
are located—either configurable logic blocks (CLBs) or routing
resources—they must be excluded and replaced by previously
unused fault-free resources. A non-intrusive online concurrent
test strategy, performing a structural test of all FPGA resources
is required to detect and diagnose any emerging permanent fault.
This solution involves the periodic release of all resources from
their active functions for the system to be able to perform their
structural test.

Previous considerations about the advantages and disadvan-
tages of new FPGA features show that to increase the availability
and reliability of reconfigurable computing systems, transparent
online FPGA logic space defragmentation and transparent online
test operations must be run simultaneously [12], [13]. Both pro-
cedures require resource reallocation strategies that do not inter-
fere with any currently running functions. This article presents a
non-intrusive procedure for concurrent replication of active logic
blocks and resource interconnections (i.e., logic resources and
interconnections that are currently being used to implement run-
ning functions from one or more applications). This procedure
is able to support the implementation of the proposed structural
test methodology and also to serve as a basis for the implemen-
tation of defragmentation strategies.

This paper is organized as follows. Section II presents a survey
of FPGA test strategies proposed in the literature. A detailed
account of the proposed procedure for the active replication of
logic resources is presented on Section III, while Section IV
describes the online structural concurrent test methodology. A
brief introduction to the defragmentation issue and an overview
of how the implementation of defragmentation strategies may
benefit from the proposed active replication procedure are
provided in Section V. Section VI presents the software tool de-
veloped to support the active replication procedure and the test
methodology. Finally, conclusions are drawn in Section VII.

II. TESTING DYNAMICALLY RECONFIGURABLE FPGAS

To achieve higher reliability in reconfigurable computing sys-
tems, the structure of all FPGA resources has to be continuously
tested and error correction/fault tolerance has to be introduced.
These requirements will ensure that any function will perform
correctly independently of its type. For SRAM-based FPGAs,
they translate into the following features:

1) to be non-intrusive;
2) to be able to detect any permanent structural fault emerging

during system lifetime;
3) to be able to correct transient faults affecting function

functionality.

Several offline and online strategies have been proposed to test
and diagnose FPGA faults. An offline built-in self-test (BIST)
technique that uses reprogrammability to set up the BIST logic is
presented in [14]–[16]. Some of the logic blocks are configured
as test pattern generators or response analyzers, while testing the
other blocks, and vice versa. Since the test sequences are a func-
tion of the FPGA architecture and independent of its function-
ality, this approach is applicable at all levels (wafer, packaged de-
vice, board, and system). This technique requires a fixed number
of reconfiguration sessions and presents no area overhead or per-
formance penalty, since the BIST logic is eliminated when the
circuit is reconfigured for normal operation.

A slightly different BIST technique, involving a structural
modification of the original configuration memory, is proposed
in [17]. This technique enables the automation of the test process
while reducing test time and off-chip memory. However, the
modification required to the FPGA hardware is a major disad-
vantage, implying the non-universality of the solution.

An offline test methodology based on a non-BIST approach,
targeting the FPGA CLBs, is presented in [18] and [19]. After
setting up a specific test configuration, the FPGA input/output
blocks (IOBs) are used to support the external application of
test vectors and to capture the test responses. In order to achieve
100% fault coverage at CLB level, different test configurations
must be programmed and specific sets of test vectors applied
in each case. Based on the same principles, a fault diagnosis
method is presented in [20]. Extensive work on the structural
testing of FPGA lookup tables (LUT) and interconnections is
also presented in [21] and [22].

The previous approaches require the device to be offline, in-
creasing fault-detection latency, and as such are not admissible
in highly fault-sensitive, mission-critical applications. In order
to overcome these limitations, online testing and diagnosis
methods based on a scanning strategy were presented in [6] and
[12]. The idea underlying these methods is to have a relatively
small portion of the chip being tested offline (instead of the
whole chip, as considered in previous proposals), while the rest
continues its normal online operation. Testing is accomplished
by sweeping the test functions across the entire FPGA. If the
functionality of a small number of FPGA elements can be
relocated on another portion of the device, then those elements
may be taken offline and tested in a completely transparent
way. This fault scanning procedure moves on to copy and test
another set of elements, systematically testing the whole FPGA.
However, the replication procedure of the first approach [6]
requires a modified cell structured, while the second approach
[12] halts the whole system to relocate an entire CLB column.
Since reconfiguration is performed through the boundary scan
(BS) infrastructure (IEEE 1149.1 Standard) [23], reconfigura-
tion time is long, and it seems likely that repeatedly halting the
system will severely disturb its operation.

The design for test features proposed in [24] are essentially
concerned with fault detection, instead of carrying out any struc-
tural or functional test functions (the FPGA logic structure is
not taken into account). Their main goal consists of detecting
the presence of faults in the current application, and therefore,
a physical defect may escape detection if that particular appli-
cation is not using the damaged resource.
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A new application-oriented method that generates a func-
tional test for the configured circuit, taking into account the logic
structure of the FPGA where it is implemented, was proposed in
[25]. However, this method corresponds to an offline field-ori-
ented test to be used with a given application, thus presenting
the same drawbacks of the previous method.

The online test approach proposed in this article reuses some
of the previous ideas, but eliminates their disadvantages by
using a novel concept herein referred as active replication,
which enables the functionality of a given set of resources to be
relocated without halting the system. This approach is feasible
even when the resources are active, i.e., when they are being
used by a function that is currently running [26], [27].

Conceptually, an FPGA may be visualized as an array of un-
committed CLBs, surrounded by a periphery of IOBs, which
are interconnectable by configurable routing resources. A set of
memory cells that lies beneath controls the configuration of the
whole structure.

Complete (100%) usage of the FPGA resources is hardly ever
achieved, even when independent hardware blocks, from dif-
ferent applications, dynamically share the same device. The dy-
namic and partially reconfigurable features that are offered by
some FPGAs make it possible to test all free CLBs and inter-
connection resources, without disturbing system operation.

After being tested, defect-free CLBs and interconnection re-
sources remain available as spare blocks, ready to replace others
that are found defective. The CLBs and routing resources cur-
rently being used are released for test following a dynamic ro-
tation mechanism, after having their current functionality re-
located into other areas already tested. That dynamic rotation
mechanism ensures that all FPGA resources are released and
tested within a given latency.

The active replication of the FPGA resources is therefore at
the core of this proposed non-intrusive online structural test ap-
proach, which can be carried out concurrently with system oper-
ation. Since all FPGA resources are released and tested using the
BS test infrastructure, there is no overhead at board level. Being
application-independent, and oriented to test the FPGA struc-
ture, the proposed strategy guarantees FPGA reliability after
many reconfigurations, and helps to ensure correct operation
throughout the system lifetime.

III. CONCURRENT REPLICATION OF ACTIVE LOGIC BLOCKS

The replication of CLBs and interconnections is required to
release any active resources for testing. However, it is not trivial
to do it non-intrusively due to two major issues: 1) configuration
memory organization and 2) internal state information.

The configuration memory may be visualized as a rectan-
gular array of bits, which are grouped into one-bit wide ver-
tical frames, extending from the top to the bottom of the array.
The atomic unit of configuration is one frame—it is the smallest
portion of the configuration memory that can be written to or
read from. These frames are grouped together into larger units
called columns. Each CLB column has an associated configura-
tion column, with multiple frames, which mixes internal CLB
configuration and state information, and column routing and in-
terconnecting information. The organization of the entire con-

Fig. 1. Two-phase CLB replication process.

figuration memory into frames enables the online concurrent
partial reconfiguration of the FPGA.

The configuration process is a sequential mechanism that
spans through some (or eventually all) CLB configuration
columns. More than one column may be affected during the
replication of an active CLB, since its input and output signals
(as well as those in its replica) may cross several columns before
reaching its source or destination. Any partial reconfiguration
procedure must ensure that the signals from the replicated
CLB are not broken before being totally reestablished from
its replica. It is also important to ensure that the functionality
of the CLB replica is perfectly stable before its outputs are
connected to the system, to avoid output glitches.

A set of experiments performed with Virtex FPGAs from
Xilinx demonstrated that the replication process has to be di-
vided into two phases, as illustrated in Fig. 1.

In the first phase, the internal configuration of the CLB is
copied and the inputs of both CLBs are placed in parallel. Due
to the low-speed characteristics of the configuration interface
used (the BS infrastructure), the reconfiguration time is rela-
tively long when compared to the system speed. Therefore, the
outputs of the CLB replica will be perfectly stable before being
connected to the circuit, in the second phase. Both CLBs must
remain in parallel for at least one system clock cycle, to avoid
output glitches. Notice that rewriting the same configuration
data does not generate any transient signals. Therefore, the re-
maining resources covered during this process by the rewritten
configuration frames are not affected, even if in an active state.

The correct transference of state information is another major
requirement for the success of the replication process. If the
current CLB function is purely combinational, a simple read-
modify-write procedure will suffice to accomplish a successful
replication. However, in the case of a sequential function, the in-
ternal state information must be preserved and no write-opera-
tions may be lost while this process goes on. In the Virtex FPGA
family, each CLB slice comprises two storage elements, which
can be individually configured as a latch or flip-flop (FF). Al-
though a read back operation of the configuration memory may
be performed to read the value of a storage element, it is not
possible to perform a direct write operation. In addition, when
dealing with active CLBs during a replication procedure, if state
information changes between read and write operations, a co-
herency problem will occur. For this reason, no time gap is al-
lowed between the two operations.

The solution to this problem depends on the type of imple-
mentation. The following three cases are considered:

1) synchronous free-running clock circuits;
2) synchronous gated-clock circuits, and;
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Fig. 2. Implementation of the synchronous gated-clock FF replication scheme.

3) asynchronous circuits.
When dealing with synchronous free-running clock circuits,

the two-phase replication process that was previously described
solves the state transfer problem. Between the first and the
second phase, the CLB replica has the same inputs as the
replicated CLB, and all its storage elements acquire the state
information, even if the system clock frequency is an order of
magnitude lower than the clock frequency (of the BS infrastruc-
ture) used for reconfiguration purposes. Several experiments
were carried out and showed the effectiveness of this method
to replicate active CLBs. No loss of state information and no
output glitches were observed. Notice that this procedure is
valid even when dealing with asynchronous circuits. If the
longest interval between consecutive update operations of
asynchronous latches is lower than the interval between the
first and the second phases, the replicated latch always acquires
the correct state information.

Despite the effectiveness of this solution, its usefulness is
very restricted. A broad range of applications use synchronous
gated-clock circuits, where input acquisition is controlled by a
clock enable signal. In such cases, it is not possible to ensure
that this signal will be active during the replication process, and
that the value at the input of the replica FFs will be captured.
On the other hand, it is not feasible to set this signal as part of
the replication process because the value present at the input of
the replica FFs may differ from the one captured by the repli-
cated FFs, resulting in a coherency problem. Furthermore, the
FFs could be updated during the replication process, since this
procedure is asynchronous in relation to system operation.

A replication aid block is used to solve this problem. This
block manages the transfer of state information from the repli-
cated FFs to their replicas. State information may also be up-
dated by the circuit at any moment, without losing information
or delaying the replication process. The replication scheme is
represented in Fig. 2 for a single CLB logic cell (for this pur-
pose each CLB logic cell in the Virtex FPGA family can be con-
sidered individually). Fig. 3 represents the flow diagram of the
replication process.

One input of the 2:1 multiplexer in the replication aid block
is connected to one temporary transfer path from the output
of the replicated FF (FF OUT). The other one is connected
to the output of the combinational logic block in the replica
cell (LOGIC OUT), which is normally applied to the input
of the FF. If the clock enable (CE) signal—controlling the

Fig. 3. Replication process flow.

multiplexer—is not active, the output of the replicated FF
(FF OUT) is applied to the input of the replica FF. A clock
enable signal, coming from the replication aid block (capture
control signal—CC), forces the replica FF to store the trans-
ferred value. If the CE signal is active or is activated during this
process, the multiplexer selects the LOGIC OUT signal and
applies it to the input of the replica FF. This FF is, therefore,
updated simultaneously with the replicated FF, and captures the
same value, guaranteeing state coherency. Neither simulations,
nor the ensuing practical experiments, have shown any loss of
information.

The control signals CC and BY C are driven by configura-
tion memory bits. BY C directs the state signal to the input of
the replica FF, while CC enables its acquisition. It is, therefore,
possible to control the whole replication process through the
BS infrastructure, and as such no extra pins are required. Fig. 4
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Fig. 4. Simplified representation of the replication aid block implemented on
a CLB slice.

shows a schematic implementation of the replication aid block
in a CLB slice. To enable all signals to be controlled through
the configuration memory, the CC net includes the FF shown in
Figs. 2 and 4. However, it is there simply as a consequence of
the structure of the CLB slice, and does not play any role in this
process.

After the transference of state information BY C is driven
low, disconnecting the replica FF from the replication aid block.
The state transfer ends and the replica FF may now be directly
updated by the circuit. The CE signal of both CLBs is placed in
parallel, all the signals to/from the replication aid block are dis-
connected, and the outputs are also placed in parallel. After at
least one clock cycle, the replicated block is disconnected, and
the resources used in its implementation are released. Each of
these steps (corresponding to a rectangle in the flow diagram
shown in Fig. 3) requires a new reconfiguration file. A total
of nine files are therefore needed to complete the replication
process, instead of four, as would be necessary when dealing
with synchronous free-running clock circuits. However, in most
cases, their size is much smaller (to change the value of CC
and BY C only one configuration frame is needed). Table I de-
tails the average sizes of the partial reconfiguration files and
their respective reconfiguration times, when using a 20-MHz
test clock [the TestClock (TCK) signal of the BS infrastruc-
ture] [23]. Replication of synchronous free-running clock cir-
cuits takes roughly 18 ms, as steps 2–6 are not necessary.

Practical experiments performed using a Virtex device to im-
plement the ITC’99 Benchmark Circuits from the Politecnico
di Torino [28], demonstrated the effectiveness of the proposed
approach. These circuits are purely synchronous with only one
single-phase clock. However, the procedures presented are also
applicable to multiple clock/multiple phase circuits, since only
one clock signal is involved in the replication process at a time.
Still, the slowest “clock” period must be shorter than the dura-
tion of the replication process, thus enabling the FFs to be up-
dated meanwhile.

The proposed method is also effective when dealing with
asynchronous circuits, where storage elements are configured

TABLE I
COST OF EACH PARTIAL RECONFIGURATION FILE DURING REPLICATION

Fig. 5. Relocation of routing resources.

Fig. 6. Propagation delay during the relocation of routing resources.

as latches instead of FFs. In this case, the CE signal is replaced
by an input control signal. Data present in the D input is stored
in the gated D latch when the control input signal changes from
“1” to “0”. The same replication aid block and the same repli-
cation sequence are used. The register present in the replication
aid block may be configured as a latch, instead of as a FF, if this
is preferred or if no adequate clock signal is available.

The replication of routing resources does not pose any spe-
cial problems, since the same two-phase replication procedure
is also effective to relocate local and global interconnections.
The interconnections involved are first duplicated in order to
establish an alternative path, and then disconnected, becoming
available to be reused, as illustrated in Fig. 5.

A last remark must be made about the replication of routing
resources. The different paths used while paralleling the original
and replica interconnections will likely have different propaga-
tion delays. This means that if the logic level at the output of the
source CLB changes, there will be an interval of fuzziness at the
input of the destination CLB, as shown in Fig. 6. However, the
impedance of the routing switches will limit the current flow in
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the interconnection, and hence this behavior does not damage
the FPGA. Nevertheless, and for transient analysis, the propa-
gation delay associated to parallel interconnections shall be the
longer of the two paths [29].

The LUTs in the CLB can also be configured as memory mod-
ules (RAMs) for user applications. However, the extension of
this concept to the replication of LUT/RAMs is not feasible. The
content of the LUT/RAMs may be read and written through the
configuration memory, but there is no mechanism, other than
to stop the system, capable of ensuring the coherency of the
values if there is a write attempt during the replication interval
[30]. Furthermore, since frames span an entire column of CLB
slices, a given bit in all slices is written with the same command.
Therefore, it is necessary to ensure that all the remaining data
in the slice is constant, or else it must also be changed exter-
nally through partial reconfiguration. Even if not being repli-
cated, LUT/RAMs should not lie in any column that could be
affected by the replication process.

According to the overall test (and/or defragmentation)
strategy, this method could be used to replicate more than one
CLB simultaneously, improving scalability aspects. Consid-
ering that the smallest configuration unity is a frame, and that
frames span the FPGA from top to bottom, it takes exactly the
same time to replicate one CLB or the whole CLB column
(the number of reconfiguration frames involved is the same
in both situations). Scalability is therefore not an issue. The
time required increases proportionally to the number of CLB
columns in the FPGA and is independent of the number of CLB
rows.

IV. ONLINE STRUCTURAL CONCURRENT TEST

Our online structural concurrent test method is divided in the
following three parts:

1) the replication procedure;
2) the test strategy;
3) the dynamic rotation mechanism.
The replication procedure has already been presented. A de-

tailed presentation of the proposed test strategy and of the dy-
namic rotation mechanism used to release resources for test will
follow.

A. Fault Detection and Error Recovery

The replication procedure used with synchronous free-run-
ning clock circuits did not perform a true state transfer opera-
tion, but rather an acquisition of the values present at the inputs
of the replica CLB FFs. For this reason, the acquired state infor-
mation is correct, despite any permanent or transient fault that
may affect the content of the replicated CLB FFs. As a con-
sequence, and after the replication process, the outputs of the
CLB replica always display the correct values, automatically
correcting any faulty behavior. On the other hand, when repli-
cating synchronous gated-clock circuits (or asynchronous cir-
cuits), a true state transfer operation is performed. In this case,
the replica CLB FFs (or latches) will acquire exactly the same
value held by the replicated FFs (or latches). Erroneous state
information may therefore be propagated to the replica CLB,
and will survive until an update occurs. A permanent fault in
the replicated CLB will be detected during the subsequent test

phase and the CLB will be flagged as defective, meaning that it
will not be used again in a later reconfiguration.

Depending on the method used to create the reconfiguration
files, the replication procedure can also recover from errors
caused by transient faults in the on-chip configuration memory.
Typical examples of such errors are SEUs, which modify the
logic function originally implemented in the FPGA. Until
now, they used to be a major concern only for space applica-
tions. Yet for designs manufactured at advanced technology
nodes—such as 90, 65 nm, and downward—system-level soft
errors become an issue also at ground level. They are now much
more frequent than in previous generations [31]. Since Virtex
FPGAs enable read back operations, a completely automatic
read-modify-write procedure may be implemented to replicate
the CLBs using local processing resources. In this case, any
transient fault in the configuration memory is propagated and
will affect the functionality of the CLB replica. On the other
hand, if the reconfiguration files are generated from the initial
configuration file stored in an external memory, any error due
to SEUs is corrected when the affected blocks are replicated.

B. Interconnection Resources and I/O Blocks

Successful structural testing of the CLB replica ensures its
good functionality, but the replicated CLB may be faulty. When
the inputs and outputs of both CLBs are placed in parallel, nodes
with different voltage levels may be interconnected. Due to the
impedance of the routing switches, this apparent “short-circuit”
behaves as a voltage divider, limiting the current flow in the
interconnection. Therefore, no damage results to the FPGA, as
proven by extensive experimental essays. Since we are dealing
with digital circuits, the analog value resulting from the voltage
divider leads to a well defined value (logic “0” or logic “1”)
when it propagates through a routing buffer, or at the input of
the next CLB or IOB. No logic value instability was observed
in our experiments [26].

In the FPGA, signals are routed using the global routing
resources, which are located in horizontal and vertical routing
channels between each routing array. The routing resources
may be unidirectional or bidirectional. Besides a pair of
dedicated paths providing high-speed connections between ver-
tically adjacent CLBs (to propagate carry signals), few routing
resources are available to establish direct interconnections with
other CLBs. As such, the majority of interconnections required
by the replication process can only be done through global
routing resources.

To place the inputs in parallel, the interconnection segments
to be used between routing arrays may be unidirectional (from
the replicated CLB inputs towards the CLB replica inputs), or
bidirectional. Concerning the outputs, interconnection segments
between routing arrays may also be unidirectional (from the
CLB replica outputs towards the replicated CLB output), or
bidirectional, as illustrated in Fig. 7. Since signals do not prop-
agate backwards, if propagation direction is not taken into ac-
count, no signals would exist at the inputs of the CLB replica,
and the outputs of both CLBs would not be placed in parallel.
As a result, when the outputs of the replicated CLB were discon-
nected, no signals would be propagated to the rest of the circuit.
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Fig. 7. Replication CLB interconnection.

Fig. 8. Internal architecture of an IOB and associated BS cells.

Local routing, at the inputs (and outputs) of the CLB, is uni-
directional and therefore the logic values present at the inputs
of the replica CLB will not be affected by the interconnection,
even if the replicated CLB is faulty. As such, all CLB replica
inputs will always reflect the correct values, because no fault at
any of the replicated CLB inputs may propagate backward.

This is also true when replicating active interconnections,
with faults in the replicated net being automatically corrected
when the replication takes place. Depending on the location of
the fault in the replicated interconnection, it may be corrected
while the path is duplicated, or only after it is disconnected.

Any FPGA pin could be used as an input, an output, a tristate
output, or a bidirectional pin. The output and tristate signals
may or may not be registered. The IOB circuitry provides an
FF for each of these signals and two multiplexers, controlled
through the configuration memory. The input signal is available
to the internal logic both in registered and nonregistered form.
A generic implementation of an IOB is illustrated in Fig. 8.

In spite of the configuration of each IOB or of its use (or not)
to implement a system function, the number of BS cells of the
BS register remains constant. All IOBs are considered as inde-
pendent tristate bidirectional pins, placed in a single BS chain.
For this reason, BS cells are provided on the input, output, and
tristate signal paths, as required by the IEEE 1149.1 Standard
[23]. Notice that, even when a bidirectional pin is used only as
an input, its tristate and output BS cells are still part of the BS
register, as well as the three BS cells of unused bidirectional
pins.

All IOBs have a pad, as seen in Fig. 8, but not all of them have
an associated output pin. IOBs without a bond wire connecting

the pad to a pin on the package are called unbonded IOBs. These
IOBs may be used on register intensive applications or as tris-
tate buffers in internal bus implementations, with the bus signals
being returned to the internal logic through the input path. Usu-
ally, design tools offer an option that enables the user to pack
registers into IOBs. Despite not being true input/outputs, these
IOBs have BS cells and, therefore, are part of the BS register.

Test vector application to the IOBs and response capturing
should take account the following factors:

1) BS register enables controllability of the input signal path
and observability of the output and tristate signal paths;

2) observability of the input signal paths and controllability of
the output and tristate signal paths are not possible through
the BS register;

3) observability and controllability of the control and clock
signals are not possible through the BS register;

4) not all IOBs have an attached pin; therefore, external access
to improve the controllability/observability of the IOB can
not be assumed; however, since they all have BS cells, this
limitation is not a problem.

These remarks lead to the conclusion that a feasible and re-
liable online test of the IOBs is not possible. The observability
and controllability of all the paths in the IOB implies the direct
access through the external pin (if it exists), or the execution
of intrusive operations through the BS register. An offline test
method for the IOB structure and its interconnections at board
level, which presents no area overhead or performance penalty
(since the logic functionality required to implement it is elimi-
nated when the circuit is reconfigured for its normal operation),
is presented in [32].

C. Test Configurations

The configurable structure of the CLB requires the use of a
minimum number of test configurations to perform a complete
test of its structure, with a specific set of test vectors applied to
each test configuration. Since the implementation structure of
the CLB primitives (LUTs, multiplexers, FFs) is not known, a
hybrid fault model was considered [18] (see also [21] and [22]
for an extensive study concerning FPGA fault models). To test
the SRAM elements of the LUT, each bit is set to both “0” and
“1”. By programming the LUTs to implement XOR and XNOR

functions—which requires at least two test phases—it is easy to
propagate any activated faults to a primary CLB output. Due to
the XOR/XNOR functions, all LUT input stuck-at faults, together
with their respective addressing faults, are also detected. For
test purposes, Virtex CLB multiplexers have to be divided in
two types: conventional and programmable multiplexers (those
where selection lines are controlled through configuration
memory bits). Since the existing maximum number of selection
lines is two (in both cases), at least four test configurations are
needed to exhaustively test each programmable multiplexer.

The CLB structure presents a chain of three configurable
primitives, which requires at least six test configurations to
completely test its combinational part. Notice that the test of
primitives in a chain could not take place simultaneously, be-
cause the controllability and observability of a primitive under
test depends on the configuration of its immediate neighbours
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TABLE II
NUMBER OF TEST VECTORS PER TEST PHASE

TABLE III
COST OF EACH PARTIAL RECONFIGURATION

in the propagation path, except in the case of primitives with
primary inputs and/or outputs. All FFs are tested during these
six phases for data input and hold, clock enable, initialize and
reverse, and stuck-at faults. Since reconfiguration is slower
than test vector application, the small number of test phases is
a good measure of our reduced test time. Notice also that test
reconfiguration time is not constant through all six phases. In
the first test phase the initial test configuration has to be set up.
In the five subsequent test phases, only a few configuration bits
related to the LUT function, to the programmable multiplexers
and to the FFs configuration, are changed. Therefore, test
reconfiguration time is smaller. Table II details the content
of each CLB structural test session. The average values for
the partial reconfiguration file sizes and reconfiguration times
(using a 20-MHz TCK) are shown in Table III.

D. Test Application

The BS infrastructure is also reused to apply the test vectors
and to capture the test responses, with the outputs of the CLB(s)
under test being routed to unused BS register cells associated to
the IOBs. However, the application of test vectors by means of
the BS register would be intrusive, so an alternative User Test
Register is needed (the Virtex family enables the definition of
two user registers controlled through the BS infrastructure). The
User Test Register created for this purpose comprises 13 cells,
corresponding to the maximum number of CLB inputs in the
Virtex family, and is fully compliant with the IEEE 1149.1 Stan-
dard [23]. The schematic representation of a User Test Register
cell is illustrated in Fig. 9.

The seven CLBs occupied by this register and the two CLBs
occupied by the replication aid block, associated to the CLB
needed to perform the replication, are the only FPGA hardware
overhead that is implied by the proposed test methodology. In
total, it accounts for less than 1% of the CLB resources of a
Xilinx Virtex XCV200 device (array size CLBs), one
of the FPGAs used to validate this work. Fig. 10 illustrates the

Fig. 9. User Test Register cell.

Fig. 10. Test of CLBs through the BS infrastructure.

TABLE IV
SHIFTING TIME FOR TEST VECTOR APPLICATION

test infrastructure setup that is required to implement this pro-
cedure. Notice that more than one CLB may be under test at the
same time, provided that enough routing resources and unused
BS register cells are available. Since the same set of test vectors
are applied simultaneously to all CLBs under test, the length of
the User Test Register (13 bits) is fixed. Therefore, scalability
of the test procedure is also possible, although dependent on the
usage of the FPGA resources.

Each Virtex CLB comprises two slices that are exactly equal.
In total, each CLB has 13 inputs (test vectors are applied to both
slices of all CLBs under test simultaneously) and 12 outputs (6
from each slice). Since the outputs of each slice are captured in-
dependently, fault location can be resolved to a single slice. The
same principles apply to Virtex-II CLBs. Experimental results,
obtained using a Virtex XCV200 with a TCK of 20 MHz, are
shown in Table IV—the shifting time for each test vector ap-
plication—and in Table V—the shifting time for the test vector
responses from a CLB under test.

The test of global interconnections is achieved using the same
principles, with the CLB under test being replaced by a set of
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TABLE V
SHIFTING TIME FOR TEST VECTOR RESPONSE

wires under test, limited only by the length of the User Test Reg-
ister. Each wire from the set does not need to be a single wire,
as single wires can be interconnected forming longer wires for
test purposes [22]. This is not only useful, since it improves the
scalability of the procedure, but also desirable, as it may im-
prove the test of the global interconnection array blocks. Notice
that local routing (inside the CLB and in its boundary) and local
routing array blocks are tested over time, simultaneously with
the CLB under test. The same happens, in an implicit way, with
two other types of interconnections: those used to route test ap-
plication vectors from the User Test Register to the CLB under
test; and those used to route test responses from that CLB to the
Boundary Scan Register. However, interconnect faults will not
be recognised as such, being detected instead as CLB faults.

E. Rotation and Release for Test Strategy

A dynamic rotation mechanism assures that all CLBs are re-
leased for test. This mechanism should have a minimum influ-
ence (preferably none) in the system operation, as well as a re-
duced overhead in terms of reconfiguration cost. As seen be-
fore, this cost depends on the number of reconfiguration frames
needed to replicate and release each CLB. The impact of this
process in the overall system operation is mainly related to the
delays imposed by rerouted paths, which may become longer
due to the rotation process, thus degrading the maximum fre-
quency of operation [33].

Assuming that there is only one free CLB, three possibili-
ties were considered to define the rotation rule among the entire
CLB array: random, horizontal, and vertical.

The random strategy was rejected for several reasons. If
the placement algorithm (in an attempt to reduce path delays)
gathers in the same area the logic needed to implement a given
function, it would be unwise to disperse it: firstly, it would
generate longer paths (and hence, an increase in path delays);
secondly, it would put too much stress in the limited routing
resources. Furthermore, a random rotation strategy would
imply an unpredictable fault coverage latency, which it is not
acceptable.

In the horizontal rotation strategy, illustrated in Fig. 11(a), the
free CLB rotates along an horizontal path covering all the CLBs
in the array, and the replication is performed between neigh-
boring CLBs, due to scarcity of routing resources, and to avoid
longer path delays. The same principle applies to the vertical ro-
tation strategy, illustrated in Fig. 11(b), where the free CLB is
rotated along a vertical path.

Practical experiments performed over a subset of the ITC’99
benchmarks using the last two strategies have shown that the
application of the horizontal strategy leads to reconfiguration
files that are in the average approximately 20% larger. This fact
is a consequence of the configuration memory organization.
When the rotation is done vertically, only one column of CLBs

Fig. 11. Dynamic rotation of the free CLB: (a) Horizontal strategy and (b) ver-
tical strategy.

TABLE VI
COST COMPARISON BETWEEN THE TWO ROTATION STRATEGIES

is involved in the process and thus the number of reconfigura-
tion frames is restricted to one configuration column. However,
at least two columns are involved when it is performed hori-
zontally, and therefore, the number of reconfiguration frames is
higher. The total number does not double because other frames
related with the configuration of the interconnections—which
may be established in global routing arrays belonging to
neighbouring CLB columns—must also be reconfigured.
Furthermore, the CLBs located in the top and bottom of the
columns are effectively displaced horizontally, as can be seen in
Fig. 11(b). The experimental results are presented in Table VI.

Concerning the influence over the maximum frequency of op-
eration, there is no clearly defined pattern. The most relevant dif-
ferences are related to the existence of a pair of dedicated paths
that propagate carry signals vertically between adjacent CLBs.
When the rotation process breaks a dedicated carry path, due
to the insertion of the free CLB, the propagation of this carry
signal between the nearest adjacent CLBs (above and below the
free CLB) is reestablished through generic routing resources,
increasing the path delay. If the implemented circuit uses one
or more carry signals, the horizontal rotation would break all
the carry nets, increasing path delays, but the vertical rotation
would break only one of them at a time. As such, in this case,
the vertical strategy becomes preferable [33].
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TABLE VII
AVERAGE DURATION OF A COMPLETE CLB TEST

When no carry signals are used, two other factors must be
considered: 1) the number of signals with high fan-out and 2)
the placement shape (rectangular, square, circular) and orienta-
tion (horizontal, vertical) of the circuits implemented inside the
FPGA. In rectangular/horizontal implementations, and when
many high fan-out signals are present, the horizontal strategy
becomes preferable, since the maximum frequency of operation
is less degraded, as proved by our experiments with a subset
of the ITC’99 benchmarks. This could be a more important
factor than the size of reconfiguration files, when dealing with
high-speed applications.

Apart from those specific cases, we concluded that the ver-
tical strategy performs better in the 14 circuits that were consid-
ered, with an average reduction in the maximum frequency of
approximately 7% of its initial value, against 18% found for the
horizontal strategy.

The “come and go” dynamic free-CLB rotation across the
chip implies a variable test latency. The time to reach a given
CLB once again alternates, according to the rotation direction,
between a maximum and a minimum value, depending on the
device size (number of CLB columns and rows

). The maximum fault detection latency is given by

The minimum fault detection latency is in turn given by

where is the time needed to complete a CLB replication
and is the time needed to test a free CLB

When this “come and go” rotation process is complete, the
initial routing is restored. Therefore, no cumulative performance
degradation is implied by the rotation mechanism. The whole
process may be repeated or paused, depending on the overall
test strategy.

It is not possible to give an exact value for the maximum
fault detection latency, because it depends on the FPGA size and
occupancy, and on the nature of the implemented circuits. The
values obtained for the complete test of a CLB (including repli-
cation and release for test, if needed), taking into account the
different CLB configuration types, and considering the replica-
tion of only one CLB at a time, are shown in Table VII.

These values may be used to accurately determine the test
time considering FPGA size and occupancy rate, and the com-
binational or sequential circuits that are present. As an example,
Table VIII shows the maximum test latency for a XCV200
FPGA with 1176 logic blocks, considering an occupancy rate of
75%, and with one third of the occupied CLBs requiring the use
of the replication aid block. The time values shown correspond

TABLE VIII
MAXIMUM TEST LATENCY OF A CLB

to two different TCK frequencies used in our experiments.
These values were obtained considering the replication of only
one CLB at a time and therefore are the worst possible values
obtainable for this FPGA, as no scalability of the process was
considered.

V. DEFRAGMENTATION

While the test of all FPGA resources ensures that the func-
tionality of current and incoming functions will not be affected
by structural faults, the absence of such faults is by no means
able to guarantee a sustainable performance of the reconfig-
urable system as a whole. A good management of logic re-
sources is also necessary to avoid delays due to temporary un-
availability of resources to implement any function required at
a given moment.

The possibility of dynamically reconfigure the FPGA enables
considerable improvements over multiple context switching on
the implementation of the virtual hardware concept [1]. Con-
trary to (static) full reconfiguration, dynamic partial configu-
ration allows multiple applications to share the same logic re-
sources in the spatial and temporal domains. However, the im-
plementation of incoming functions may be disrupted by the
fragmentation of the logic space. Since each function sharing
the same FPGA has different logic requirements, many small
pools of resources are created as those functions cease. These
unallocated areas tend to become so small that they fail to sat-
isfy any request and for that reason remain unused, leading to
the fragmentation of the logic space [34]. This problem is il-
lustrated in Fig. 12 in the form of successive reconfigurations
of the same floorplan [35]. Each shadowed area corresponds to
the optimal space occupied by the implementation of a single
function. Despite the existence of enough free resources in the
configurable logic space, the implementation of the incoming
function on the th partial reconfiguration is not possible. The
free resources are scattered all over the FPGA logic space and
not enough contiguous resources are available for its immediate
implementation.

The fragmentation problem has been studied by some authors
[13], [35]–[38]. Apart from presenting an analysis of the mecha-
nism that leads to the fragmentation of the logic space, some al-
gorithms are also proposed to perform (partial) rearrangements,
in order to increase the allocation rate of waiting functions,
while minimizing disruptions to running functions that have to
be relocated. The problem with those approaches is their ten-
dency to model the FPGA as a regular array structure and to
regard defragmentation as a strictly packing problem. This as-
sertion was true in the first generations of FPGAs, regarding the
CLBs position inside the array, but it was inaccurate when other
resources were considered. The presence of dedicated routing
resources available to enhance specific applications, like coun-
ters and adders, are largely responsible for this irregularity. This
problem became more complex in more recent generations, due
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Fig. 12. Representation of the fragmentation problem.

to the introduction of memory and of dedicated digital signal
processing (DSP) blocks distributed in the FPGA array. These
aspects were taken into account in the work of Koester et al.
[39]. However, to limit the complexity of the problem, the au-
thors restrict the analysis to a 1-D-system approach, where the
atomic unit for a partial reconfiguration is a CLB column and
tasks can only be placed along the horizontal axes of the FPGA.

Suitable arrangements can be designed if the requirements
of each function and their execution schedule are known in ad-
vance, but an increase in the available resources will in most
cases be necessary to cope with the allocation problem [36].
However, when placement decisions have to be made at run-
time, or when the need for extra space is only temporary, an in-
crease in the available resources is a poor solution.

On the other hand, the reconfiguration intervals offered by
new FPGAs are sufficiently small to enable functions to be
swapped in real time. Partial reconfiguration times are in the
order of a few milliseconds, depending on the configuration
interface and on the complexity (and thus on the size) of the
function being implemented. If a proper execution schedule is
devised, it becomes feasible to use a single device to run a set
of applications, which in total might require more than 100%
of the FPGA resources, by swapping functions in and out of
the FPGA as needed.

Furthermore, the reconfiguration time overhead may be virtu-
ally zero, if new functions are swapped in advance with those al-
ready out of use, as illustrated in Fig. 13 (where a number of ap-
plications share the same reconfigurable logic space in the tem-
poral and spatial domains) [35]. After the execution of a given
function, its logic resources may be reused to implement a new
function during the interval , so that it will already be avail-
able when required by the application flow ( should not be
mistaken by the reconfiguration time). Notice that an increase
in the degree of parallelism may retard the reconfiguration of
incoming functions, due to lack of space in the FPGA. Con-
sequently, delays will be introduced in application execution,
systematically or not, depending on the application flow. Be-
sides, an incoming function may require the relocation of other
functions that are already implemented and running, in order

Fig. 13. Temporal scheduling of applications in the temporal and spatial
domains.

to release enough contiguous space for its implementation (see
function C2 in Fig. 13).

Although being a good solution, some relocation problems re-
main unsolved. In all the methods presented so far to perform de-
fragmentation, the function to be relocated will be halted while
partial reconfiguration is performed. This means that some or all
the currently running functions are stopped regularly, erasing the
gains obtained by running computing intensive functions in hard-
ware rather than in software. Another issue is state preservation,
related to the possibility of reading and writing register contents.
Reading is straightforward, but writing is a different problem. In
current Virtex FPGAs it is possible to read the content of FFs
by a partial or full readback of the configuration memory. How-
ever, writing is not possible. A solution exists to get around this
problem, but coherency problems can only be avoided if run-
ning functions are halted [39].

The same active replication procedure used to replicate the
functionality of a CLB or an interconnection may also be used to
defragment the FPGA logic space, by rearranging the placement
of currently running functions. This procedure has the following
two advantages:

1) defragmentation is performed concurrently with all run-
ning functions, without needing to halt their execution (no
execution delay is introduced);

2) coherency of the register contents is guaranteed, preserving
function state information.

As mentioned before, the placement algorithms (in an attempt
to reduce path delays) gather in the same area the logic resources
that are needed to implement a given function. Dispersing these
resources, even if only during the relocation procedure, would
generate longer paths (and hence, an increase in path delays),
besides putting too much stress upon the limited routing re-
sources. Therefore, the relocation process should take place be-
tween neighboring CLBs. If necessary, the relocation of a com-
plete function may be carried out in several stages, to avoid an
excessive increase in path delays during the relocation interval.
A methodology to evaluate the impact of relocation over dif-
ferent functions is presented in [33].

Due to the scarcity of routing resources, it may be necessary
to perform a rearrangement of the existing interconnections, to
optimize their occupancy after the relocation of one or more
CLBs, and to increase the availability of routing paths to in-
coming functions.

Since the access to the reconfiguration mechanism and the
replication procedure are independent from the operation of the
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Fig. 14. Interface of the FPGA rearrangement and programming tool.

running functions, defragmentation may be implemented as a
concurrent background process. A metric to determine when to
perform defragmentation is proposed in [37]. Therefore, defrag-
mentation may be run in advance and not only when a new in-
coming function is claiming area to be implemented. Waiting
times will in this case be reduced improving the overall system
performance.

The scalability of the proposed approach is guaranteed by the
replication procedure (as seen before), but the defragmentation
algorithm will dictate the end result. As an example, the defrag-
mentation time in the methodology proposed by Koester et al.
[39] increases proportionally with the number of columns in-
volved.

VI. REPLICATION, REROUTING, TEST MANAGEMENT, AND

PROGRAMMING TOOL

The tool shown in Fig. 14 was developed to support the im-
plementation of the active replication procedure. This tool is
based on the JBits software—a set of Java classes that pro-
vide an application programming interface (API) to access the
Xilinx FPGA bitstream [40]. This tool automatically produces
the partial configuration files for the active replication proce-
dure, greatly simplifying the task of the designer. The input in-
formation may be provided in the form of a complete config-
uration file (generated by the Xilinx design environment [41])
or by providing the coordinates (source and destination) of the
CLB to be relocated.

This tool retains a complete copy of the current configuration,
knowing exactly which resources are being used and which are
free. Furthermore, it enables system recovery in case of a gen-
eral failure.

The configuration of the CLB replica and of the replication
aid block (when needed) is exclusively based on functions avail-
able on the JBits set. The configuration of the interconnections is
based on a mix of functions from the JBits set, and on other func-

tions that were specially developed to implement the proposed
active replication procedure. Routing is based on the A algo-
rithm, first described in 1968 by Hart et al. [42]. A incremen-
tally builds paths leading from the starting point until it finds
one that reaches the final point. Still, as an informed search al-
gorithm, it only builds paths that appear to lead towards the final
point, employing a heuristic estimation of the distance from any
given point to the final one. Additionally, considering the speci-
ficities of the application, the search space was limited to the
currently available interconnection resources. A is complete
and optimal, i.e., A will always find the shortest path inside
the search space, if it exists, since it takes into account the dis-
tance already travelled.

Another problem had yet to be solved. During the replication
of the CLBs, their outputs have to be placed in parallel, meaning
that the new path will have to intersect the old path somewhere.
This is not a usual procedure since it “short-circuits” two signals
coming from two outputs, and as such it was not supported by
JBits. An algorithm was therefore developed to perform an ex-
haustive search along the original output path until finding an in-
terconnection where the signal may be intersected. Due to Virtex
architectural restrictions, only those points located in the far
end of single-length lines may be intersected. After the original
placement of a subset of circuits from the ITC’99 Benchmark
Circuits [28] using the Xilinx design environment [41], many
signals did not satisfy this condition. A Java based tool was de-
veloped to edit the original configuration and analyze all paths
between CLBs, changing those that did not use a single-length
line. All functions implemented in the FPGA should adhere to
this constraint to be replicable.

Another module of this tool addresses test application and re-
sponse capturing and comparison, fully implementing the pro-
posed test solution. All the interaction between the FPGA and
the outside world is carried out via the BS interface [23].

VII. CONCLUSION

This paper describes an active replication procedure that en-
ables a non-intrusive online relocation of active functions im-
plemented in dynamically reconfigurable FPGAs. The proposed
procedure:

1) releases currently occupied resources for test, allowing the
implementation of a truly online concurrent structural test
of the FPGA; additionally, transient faults in the configura-
tion memory and—to some extent—in function registers,
may also be corrected;

2) enables the online management of FPGA resources, sup-
porting the rearrangement of active functions and the de-
fragmentation of the FPGA logic space, aiming to facilitate
the allocation of incoming functions.

Based on this procedure an online concurrent test method-
ology for the structural test of dynamically reconfigurable
FPGAs was presented. The tool developed to support the
implementation of the replication procedure also automates the
test of Xilinx Virtex FPGAs.

Extensive experimental work was conducted and the results
presented in this article demonstrate the effectiveness of the pro-
posed active replication procedure and of the non-intrusive on-
line concurrent structural test methodology.
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A common solution to test and defragment dynamically
reconfigurable SRAM-based FPGAs improves the reliability
and availability of reconfigurable computing systems, which
are largely based on this type of devices.
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