EURO ASIC ™92

{EEE Computer Society Press @ The institute of Electrical and Electronics Engineers, Inc.

A MODULAR ARCHITECTURE FOR BIST OF BOUNDARY SCAN BOARDS

José M. M. Ferreiral-2, Filipe S. Pinto2, José S. Matosl.2

1 FEUP / INESC
Rua dos Bragas
4099 Porto Codex - PORTUGAL

Abstract

A board-level BIST architecture for boards loaded with
ASICs and VLSI components, compliant with the IEEE
11491 BST standard, is described. This BIST architecture
consists of a lest processor core, with an optimized
architecture for controlling the board-level BST
infrastructure, an optional system-level testability bus
interface, to be included when a system-level test strategy
is to be implemented, and a ROM containing the test
program, which is automatically generated by an ATPG
tool.

1 INTRODUCTION

This paper describes a modular architecture for
integration of buili-in self-test (BIST) resources in boards
with BST. The need for built-in test (BIT) resources is
first discussed, and it is shown that the Boundary Scan
Test (BST) technology is able to satisfy the requirements
identified for these resources. This test technology is
already adopted by many commercial ASIC foundries, and
PLD suppliers, which means that it has achieved the
critical mass which will enable it to become the
fundamental ASIC DFT framework for the 90°s. The
transition from BIT to BIST is then introduced, starting
with the definition of an architecture for a dedicated test
processor. Enhancement of this architecture to support a
system-level test strategy is then discussed, followed by
the presentation of an automatic test program generation
{ATPG) tool for the described test processor. This BIST
architecture is of particular interest to boards loaded with
medium-to-high complexity ASICs and VLSI
components.

1.1 THE NEED FOR BUILT-IN TEST (BIT)

RESOURCES

The increasing complexity of testing has reached a
point where traditional lest techniques (in-circuit,
functional) may simply become unusable, unless special
BIT resources are available. While miniaturization
seriously restricts the usefulness of in-circuit test

0-8186-2845-6/92 $3.00 @ 1992 [EEE

184

2 INESC
Largo Mompilher, 22
4000 Porto - PORTUGAL

techniques (main difficulty: physical access to internal
nodes), the advances in integration scale, and the
widespread access to ASIC technology, enable
the design of very high complexity components, which in
turn restrict the usefulness of functional test techniques
(main difficulty: test program generation). The end result
is that a design may easily become untestable.

The overall need for testability improvement has led to
the development of the Boundary Scan Test (BST)
standard [1], which effectively provides an answer io the
need for BIT resources. Every BST component has a
special cell associated with each functional pin, which
allows complete controllability and observability of the
corresponding electrical node. This set of cells (the
boundary scan register) is conwrolled by an internal test
architecture which interfaces the outside world by a four
pin Test Access Pori (TAP), and may be chained with the
boundary scan registers of the remaining components to
provide a board-level serial-access BIT infrastructure.

BST is essentially a board-level test technology,
providing powerful BIT resources for interconnect testing.
However, when combined with IC-level BIST functions, a
high fault coverage structural test of the complete board
becomes possible. The BST infrastructure is nearly
equivalent to an electronic bed-of-nails, but without the
drawbacks associated with in-circuit test techniques (no
backdriving, no need for physical access). On the other
hand, it solves part of the problem associated with
functional test techniques (test program generation) by
providing a gateway to BIST functions in complex
components.

Integration of BST in an ASIC design flow is easy (0
accomplish, both because of its simplicity, and also
because tools are becoming available to automate the
inclusion of this test technology [2), [3]. These tools
accept an input describing the required characteristics for
the BST infrastructure, and automatically add the
fundamental testability blocks. The resulting board-level
BIT resources will be particularly important for those
boards loaded with medium-to-high complexity ASICs
and VLSI components implementing this test technology,
where non-BST clusters will be of reduced size and
complexity, or even non-existent.

ONE STEP FURTHER: BOARD-LEVEL BIST
RESOURCES

Board-level BIT resources will therefore become
available in an increasing number of designs, either
resulting from the integration of BST in ASICs, or
simply because a growing number of components will
incorporate BST [4], [5], [6]. The question then becomes:
What to do with these BIT resources?

BST will be combined with other test techniques in
several scenarios: prototype validation / verification,
production test, and field maintenance operations.
Enhancement of functional test techniques is also possible
(7], [8]. But the next logical step is to include the blocks
which will enable the use of these BIT resources for
board-level BIST functions. The need for board-level BIST
is being recognized for a growing number of designs {9],
[10), [11), and the widespread use of the standard BST
testability infrastructure will undoubtedly reinforce this
tendency.

2 A MODULAR ARCHITECTURE FOR
BOARD-LEVEL BIST RESOURCES

The board-level BIST resources described in this paper
consist of a dedicated test processor, which executes a test
program stored in ROM (internal or external}.
Additionally, and when the board is to be integrated in a
system, an optional system-level testability bus interface
may also be present.

An antomatic test program generation (ATPG) tool
provides an output file where all the elementary test
operations are specified, generated from an input
describing the board netlist, the BST infrastructure in each
component, and the clusters of non-BST components
present.

The description of the BST infrastructure in each
component must provide all the information required both
for board and component-level test procedures.
Component test will take place either through BIST
functions, or by successively applying a specified set of
test vectors.

Clusters of non-BST components are tested according
to a technique known as virtual cluster testing [12]. The
complete set of test vectors for these clusters must be
generated externally, and should be specified in the input
description file of each cluster,

The test program output by the ATPG tool is specified
in terms of a low-level language (set of commands), able
to represent all the elementary operations required to
control the BIT resources available. The complete set of
low-level commands is described in table 1 (N represenis
the value loaded in an internal counter), and constitutes
the instruction set of a dedicated test processor core.

Instruction

Control of the BST infrastructure

Applies N test clock cycles. NTCK

N bits will be shifted into the NSHF
BST chain. Bits shifted out of
the BST chain are not
compared.

N bits will be shifted into the NSHFCP
BST chain. Bits shified out of
the BST chain are compared
with their expected value. A
mask is used to discard don’t

care bits.

Forces an asynchronous reset TRST
through the active /TRST

output.

TMS0, TMS1

Forces a state transition in the
internal BST logic of each
component.

Selects which TAP will be
controlled by the following
instructions.

SELTAPO,
SELTAPI1

FOCeSSOr resources
LD CNT, N

Control of internal
Loads an internal counter with
the number of test clock cycles
to be applied.

SERFLGO,...
..., SERFLG7

Selects the active error flag.

JPE Address,
JPNE Address

Leaves the normal test program
flow, based on the state of the
active error flag.

Terminates the execution of a HALT

lesl program.

Test execution synchronization

SSA0, SSAl,

Forces a logical value (0,1) on
SSBO, SSB1

the specified synchronism
output {A,B).

WSA0, WSAL
WSB0, WSB1

Waits for a logical value (0,1}
on the specified synchronism
input (A,B).
Table 1: Elementary operations required for the test
processor core.

2.1 THE TEST PROCESSOR CORE

The identification of the required instruction set led to
the definition of a dedicated architecture for a test
processor core, shown in figure 1.

This architecture is able to implement the complete
instruction set identified in table 1, and allows an
optimized execution of test programs for boards with one
or two BST chains. Synchronization with external
equipment is supported, for those cases where the BIT
resources are used in conjunction with external test
resources.

TDO.TMS, TCK, TRST

L) AD15)
statgs
™
(TAPK), TAFY1)
(TAPNOTAP¥I)

dacodslndmdumt

é'

Synclnps,
oA Connection o the processar BST logic

Fig.1: Architecture of a dedicated test processor core, for
boards with BST.

Execution of the test program will provide a simple
pass / fail result, available through an output pin.
However, an internal status register provides two groups
of 8 error flags (one for each board BST chain), which
may be used to identify the fault(s) detected. The contents
of this register are accessible to the system-level
testability bus interface, which may then send this
information to a higher level test processor.

2.2 THE SYSTEM-LEVEL TESTABILITY BUS
INTERFACE

Definition of a system-level testability bus is still
under way, with the Module Test and Maintenance
(MTM) Bus being expected as a standard in the near future
[13]. Other altemnatives are also possible [9], [11], [14],
cne of them simply consisting of extending the BST bus
to system-level. The main disadvantage of this last
alternative consists of the long scan chains which would
result from serially connecting the BST chain in each
board. This disadvantage will however disappear if each
board has its own test processor with BST, in which case
the system test processor will only control the BST
infrastructure of each board test processor.

A system-level testability bus interface was therefore
implemented simply by adding a BST infrastructure to the
test processor core, and including the additional interaction
blocks required, The system-level BST chain will in this
case contain a number of components equal to the number
of boards present {one test processor in each board). One
of the commands supported by the BST infrastructure in
¢ach test processor is Run Board Test (besides the
mandatory Extest, Bypass, and Sample / Preload), which
enables the system-level test processor to order the
execution of BIST on the selected boards. Notice that this
approach has the additional advantage of using only one

186

testability standard both at board and system levels. As a
result, the same iest processor may be used at different
hierarchical levels, as illustrated in figure 2.

o
;
eﬁég
Duta Bus W Addres P A(0:15)
D7) * Test ERROR
pazs Processar | L TAPO Syse-icved BST chuin .
STAP il‘”l Sywem-tevel BST chan .
(Processor PP
TAP) s
fiR1 s
* Test H_-l * Test [— -
3 3
Bom}
' iy
: PP - . g ol d BST
ses (IT] s

Fig.2: Hierarchical test strategy, using the same test
processor at different levels.

Initialization of the test processor core, and test
program execution, may have its origin locally (on the
board), or remotely (by the system test processor). Two
additional interaction blocks are therefore required, which
multiplex the initialization signal {local reset, or through
the BST infrastructure), and the clock source (local clock,
or system test clock), as illustrated in figure 3.

reset

STDO P — Test processor core lf——y
4Aasanss s AASGRaAnN .l-‘l.l--.....-'--
Functio:ml pins QK .
‘_,_....’] .
Identification % Fi jonal pi g .
1_’3 E E unctional pins % .
tem T AP 2| stats A
— L} [
> = ‘L < E
. a
. -
. -
. L}
o Systemn test clock ClockMux E
» .
. :
‘ :

ExtCLKT /ExtReset

System-level testability bus interface
(a) BIST resources for a system-level test sirategy.

reset
Test processor core i
| ClK
Functional pins
ExtCLK /ExtReset

(b) Stand-alone BIST resources.

Fig.3: Test processor, and optional system-level
testability bus interface block.

Additionally, the system-level testability bus interface
includes a 6 pin identification bus, which allows each
board to be assigned a specific address. This identification
bus allows the system test processor to check for proper
board placement.

2.3 AUTOMATIC TEST PROGRAM
GENERATION (ATPG)

The proposed board-level BIST architecture will only
be feasible if the test processor program is automatically
generated. When an internal ROM is to be used for test
program storage, the corresponding block should also be
completely defined by the ATPG tool. In this case, a one-
chip solution for board-level BIST of BST boards
becomes possible [15].

Description of clustars of b descriptim ~ Deacriptian of the BST
nm-BST components (PCB neilist) infrastructure in cach
component (BST data sheets)
h
v v
ATPG
r
D P
Information Test veciars fox Test program
primary YO

Fig.4: Data flow diagram for the ATPG rtool.

The ATPG tool requires an input information
describing the board netlist, the BST infrastructure in each
component, and the clusters of non-BST components
present (including the corresponding test vectors). The test
program for the dedicated test processor is then generated,
together with the set of test vectors required for primary
I/O pins. The data flow diagram for the ATPG tool is
illustrated in figure 4.

Preprocessors are under development to cope with
advances in the standardization of data representation
formats, specially for the description of the BST
implementation in each component [16], [17].

The ATPG tool uses a fault model consisting of open
and short-circuit faults, and assumes that the values
captured by the test infrastructure, under faulty conditions,
are not known. This fact will essentially affect the
diagnostic resolution available (which is itself one of the
limitations of the BST technology), but will not impair

187

the fault detection capability of the resulting test program
(the main requirement for a pass / fail test).

ATPG proceeds in three main steps, consisting of test
program generation for the board-level BST infrastructure,
for interconnect testing, and for component testing.

Testing the BST infrastructure consists essentially of
shifting through the instruction register in each BST
component [18], which will toggle each TDO-TDI
interconnect.

Interconnect testing will take place first for full BST
interconnects, and then for cluster interconnects. Open
faults in full BST interconnects are tested by successively
forcing a 0, and a 1, from each driving pin in every
interconnect. Test pattern generation for detecting short
faults among full BST interconnects is done according to
an algorithm similar to the self diagnosis algorithm [19].
A slight modification is included, in order to guarantce
that each vector will always keep half the total number of
interconnects at 0, and the other half at 1 [20]. Cluster
interconnects are tested according to a set of test vectors
generated externally, which must be specified in the
respective description file.

Component testing will then take place, first for those
BST components with BIST capability, and then for the
remaining BST components.

The test processor program output by the ATPG tool
is completely specified in terms of the elementary
operations described in table 1.

3 CONCLUSION

A modular architecture for board-level BIST resources
was described, and has been implemented. These resources
consist of a dedicated test processor core (optimized for
controlling the board-level BST infrastructure), a system-
level testability bus interface, and a ROM containing the
test program. Test program generation is supported by an
ATPG tool, which produces an output code based on the
instruction set of the dedicated test processor core.

The described architecture has been manufactured on a
1,5 p CMOS technology. Overhead for the system-level
testability bus interface will be minimized if a library of
BST building biocks is available. Main characteristics of
the manufactured prototype are: 68-pin LCC package (50-
cell boundary scan register, 6-bit identification bus, 16-bit
address bus, 8-bit data bus), and a 25 MHz clock
frequency.

The described architecture is of particular importance
for boards loaded with medium-to-high complexity ASICs
and VLSI components compliant with the IEEE 1149.1
BST standard, where the resulting BIT resources will
provide high fault coverage, with minimum test program
length.

REFERENCES

[1) IEEE Standards Board, /EEE Std 1149.1: Standard
Test Access Port and Boundary Scan Architecture,
May 1990.

M. Muris, "Integrating Boundary Scan Test Into an
ASIC Design Flow," in Proc. of the IEEE
International Test Conference, 1990, pp. 472-477.
D. Chiles and J. DeJaco, "Using Boundary Scan
Description Language in Design,” in Proc. of the
IEEE International Test Conference, 1991, pp. 865-
868.

W. Bruce, M. Gallup, G. Giles, and T. Munns,
"Implementing 1149.1 on CMOS Microprocessors,”
in Proc. of the IEEE International Test Conference,
1991, pp. 879-886.

L. Whetsel, "An IEEE 1149.1 Based Logic /
Signature Analyzer in a Chip,” in Proc. of the IEEE
International Test Conference, 1991, pp. 869-878.
R. G. Bennetts and A. Osseyran, "IEEE Standard
1149.1-1990 on Boundary-Scan: Hislory, Literature
Survey, and Current Statws," Journal of Electronic
Testing: Theory and Applications, Vol.2, N® 1, pp.
11-25, March 1991.

M. Lefebvre, "Functional Test and Diagnosis: A
Proposed JITAG Sample Mode Scan Tester," in Proc.
of the IEEE Iniernational Test Conference, 1990, pp.
294-303.

K. Wagner and T. Williams, "Enhancing Board
Functional Self-Test by Concurrent Sampling,” in
Proc. of the IEEE International Test Conference,
1991, pp. 633-640.

J. C. Lien and M. A. Breuer, "A Universal Test and
Maintenance Controller for Modules and Boards,”
IEEE Transactions on Industrial Electronics, Vol.
36, N® 2, pp. 231-240, May 1989.

B. Dervisoglu, "Towards a Standard Approach for
Controlling Board-Level Test Functions,” in Proc.
of the IEEE International Test Conference, 1990, pp.
582-590.

(2]

K]

4]

51

6]

Y|

(8]

9

(10)

88

[11] N. Jarwala and C. Yau, "Achieving Board-Level

BIST Using the Boundary-Scan Master,” in Proc. of

the IEEE International Test Conference, 1991, pp.

649-658.

P. Hansen, "Assessing Fault Coverage in Virtual
In-Circuit Testing of Partial Boundary-Scan
Boards," in Proc. of the European Test Conference,
1991, pp. 393-396.

[13] Test Technology Technical Committee of the IEEE
Computer Society, JEEE P1149.5 Sid: Standard
Backplane Module Test and Maintenance (MTM)
Bus Protocol, Draft 0.9, March, 1991.

[14] D. Bhavsar, "An Architecture for Extending the
IEEE Standard 1149.1 Test Access Port to System
Backplanes," in Proc. of the IEEE [nternational Test
Conference, 1991, pp. 768-776.

[151 J. M. Ferreira, J. S. Matos and F. §. Pinto,
"Automatic Generation of a Single-Chip Solution
for Board-Level BIST of BST Boards,"” Proceedings
of the European Design Automation Conference
{EDAC), March, 1992.

[16] K. Parker and 8. Oresjo, "A Language for
Describing Boundary-Scan Devices," Journal of
Electronic Testing: Theory and Applications, Vol. 2,
Nt 1, pp. 43-75, March 1991.

[17] C. Maunder, "Languages to Support Boundary-Scan
Test," in Proc. of the [EEE International Test
Conference, 1991, p. 1104 (panel summary).

[18] F. de Jong and F. van der Heyden, "Testing the
Integrity of the Boundary Scan Test Infrastructure,”
in Proc. of the IEEE International Test Conference,
1991, pp. 106-112.

[19] W. Cheng, J. Lewandowski and E. Wu, "Diagnosis
for Wiring Interconnects,” in Proc. of the IEEE
International Test Conference, 1990, pp. 565-571.

[20] J. Robinson and M. Cohn, "Counting Sequences,”
IEEE Transactions on Computers, Yol. C-30, N? 1,
January 1981, pp. 17-23.

(12)

