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Abstract

A test controller for BIST of Boundary Scan Boards is
described, It consists of a lest processor core, with an
optimized architecture for controlling the board-level BST
infrastructure, and a system level testability bus interface,
aliowing the implementation of a hierarchical test
strategy. Automatic test patltern generation for this
dedicated processor simplifies the task of providing a
board-level BIST solution.

1 INTRODUCTION

The increasing complexity of testing has reached a
point where traditional test techniques (in-circuit,
functional) may simply become unusable, unless special
resources for built-in test are available. While
miniaturization seriously restricts the usefulness of in-
circuit test techniques (lack of physical access to internal
nodes), the advances in integration scale, and the
widespread access to ASIC technology limit the
usefulness of functional testing (complex test program
generation). The end result is a growing difficulty in
testing both current and futore designs.

The overall need for testability improvement has lead
to the development of the Boundary Scan Test (BST)
standard [1}, which effectively provides an answer to the
need for built-in test resources. Every BST component
has a special cell associated with each functional pin,
allowing complete controilability and observability of the
corresponding electrical node. This set of cells (the
boundary scan register), and a test logic controller,
interface to the outside world by a four pin Test Access
Port (TAP). By chaining together the boundary scan
registers of board components, a scrial-access, board-level
test infrastructure is available, which resembles an
"electronic bed of nails”".

Provision of a board-level Boundary Scan Test (BST)
infrastructure is becoming a common feature for an
increasing number of designs, either resulting from the
automated inclusion of BST in ASICs [2], (3], or simply
because a growing number of standard components wiil
incorporate BST. This test technology is aiready adopted
by many commercial ASIC foundries and PLD/FPGA
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suppliers, and is quickly achieving the critical mass
needed to become a fundamental ASIC DFT framework
for the 90°s. There is a growing interest for board-level
built-in self-test (BIST) functions using the BST
infrastructure [4], [5]), and a widespread use of this test
technology will undoubtedly reinforce such interest.

This paper describes an architecture for providing built-
in self-test (BIST) that can be extended from board to
system level, making use of available BST resources.
The architecture of a dedicated test processor capable of
efficiently controlling the board level BST infrastructure
is described. Enhancement of this architecture to support a
system-level hierarchical test strategy is then discussed,
followed by the presentation of an automatic test program
generation (ATPG) tool for the described test processor.

2 BOARD-LEVEL BIST

Testing a board involves testing its components and
their interconnects. Although especially suited for the
latter, BST can be of assistance in other areas like the test
of clusters of non-BST components. Furthermore, the
ability to provide a gateway to BIST functions in
complex components is of great importance. When
combined with IC-level BIST functions, a high fault
coverage structural test of the complete board becomes
possible.

The powerful features of the BST infrastructure, and
the fact that it is supported by an IEEE standard, have lead
to a growing interest in using it as a vehicule for the
development of BIST techniques for complex boards.
These techniques rely on local control of the BST
infrastucture, by means of special components like an
on-board test processor, capable of executing its own test
program {6], [7].

In this paper, the architecture of an on-board test
processor is described. Its instruction set directly
implements the elementary operations required to control
the board-level BST infrastructure (two boundary scan
chains are supported). This component is equipped with
its own boundary scan register and TAP controller, and
allows an hierarchical configuration where the same test
processor may be used at different levels. The test
program for this dedicated test processor, stored in internal



or external ROM, is automatically generated by a TPG
tool that is also described.

3 PROCESSOR ARCHITECTURE

The processor architecture and instruction set were
defined after the specification of a minimum, and yet
complete, set of elementary operations, able to efficiently
test the board through its BST infrastructure. Such set of
elementary test operations required for the test controller
is shown in Table 1. Also shown are the basic processor
instructions that allow execution of those operations.

Although it is expected that the MTM (Module Test
and Maintenance) bus will become the future standard [8],
definition of a system-level testability bus standard is still
under way. The architecture of the test controller
distinguishes between the test processor core and the
system level testability bus interface, therefore allowing
for the same core to be used with a standard system test
bus, when one is available. As will be explained in

ection 5, the test processor presently uses a Boundary
Scan infrastructure to extend BST to the system level.
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Fig.1: Architecture of a dedic ated test processor core, for
boards with BST.

Figure 1 shows the architecture of the test processor
core. This architecture is able to implement the complete
instruction set identified in table 1, and allows an
optimized execution of test programs for boards with one
or two BST chains. Synchronization with external
equipment is supported, for those cases where the BST
infrastructure is used in conjunction with external test
TeSOUrces.

Execution of the test program provides a simple pass /
fail result, available through an output pin. However, an
internal status register provides two groups of 8 error
flags (one for each board BST chain), which may be used
to identify types of detected fault(s). The contents of this
register are accessible to the system-level testability bus
interface, making this information available to a higher
level test processor.

Instruction

Procedure

Control of the BST infrastructure

Applies N test clock cycles. NTCK

N bits will be shifted into the NSHF
BST chain. Bits shifted out of
the BST chain are not

compared.

N bits will be shified into the NSHFCP
BST chain. Bits shified out of
the BST chain are compared
with their expected value. A
mask is used to discard don’t

care bits.

Forces an asynchronous reset | TRST
through the active /TRST

cutput.

Forces a state transition in the TMS0, TMS1
internal BST logic of each

component.

8

Selects which TAP will be
controlled by the following
instructions.

SELTAPO, “
SELTAP1

Control of internal processor resources

Loads an internal counter with LD CNT, N

the number of test clock cycles

to be applied.

Selects the active error flag. SERFLGO,...
..., SERFLG7

JPE Address,
JPNE Address

Leaves the normal test program
flow, based on the state of the
active error flag.

Terminates the execution of a HALT

test program.

|
n

Test execution svnchronization

Forces a logical value (0,1) on SSAD, SSAl,
the specified synchronism SSBY, SSB1
output {(A.B).

Waits for a logical value (0,1) WSA0, WSAL,
on the specified synchronism WSB0, WSB1

input (A,B).

Table 1: Elementary test operations required for the test
controller.

The data bus width is 8-bit, Fewer memory access
cycles would be required, if a larger data bus width was
selected, but the efficiency of memory usage would then
be lower. In fact, one word is required for storing each
instruction opcode, leaving a large number of bits
potentially unused. The execution speed is improved,
because memory access cycles, and the control of the BST
infrastructure, are performed concurrently. This solution
allows that only nine clock cycles are needed for each §
bits of data to be inserted in the BST chain, although
three memory access cycles are performed (data, expected
results, mask information).

The complete set of pins provided by the test processor



is shown in figure 2, grouped according to their
functionality. Direct access to the board-level BST
infrastructure is possible by controlling the logic level on
the DABC pin. The DeserEn output will be high when
the data being shified through the board-level BST chain
is compared to their pre-defined values. This pin may be
used for enabling an external deserializer, which allows
this test processor to be used as the central resource of an
off-board test controller.
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Fig.2: Pin functions of the test processor.

4 TEST PROGRAM GENERATION

An ATPG tool is of fundamental importance 1o
establish the usefulness of a test processor, and its
specification must be closely related to the definition of
the processor architecture. The test controller model
assumed for the ATPG process corresponds to the
architecture defined in Section 3, and supports the set of
elementary operations presented in table 1. It should be
qoted that the usefulness of the ATPG tool to be described
is not restricted to the specific architecture that was
presented above. In fact the same Lest controller model
could be implemented by external test equipment, or any
other processor capable of emulating this set of
elementary operations.

The majority of the papers published in this domain
[9-17] assume an interconnect fault model which includes
stuck-at and short faults. Most authors assume that open
and short faulis exhibit a deterministic behaviour,
whereby a floating input is usually assumed to capture a
logic 1, and shorted outputs are assumed to behave in a
wired-and or wired-or manner. Although this may be
reasonable for specific cases, the fact is that real examples
will seldomly exhibit a fixed-pattern behaviour.

Experiences conducted with BICMOS circuits with BST
have shown that the behaviour under short fault
conditions is essentially dependent on the number, and on
the logic levels, of the shorted outputs (which is
reasonable for outputs with the same source/sink
strength). A diagnostic resolution limitation inherent to
the BST technology compounds this problem, since a
digital probe (the BS cell) is used to capture an analog
value (the result of a short fault). A reasonable conclusion
is that the assumption of a fixed-pattern behaviour under
fauit conditions will be of reduced practical interest.

The fauit model assumed by our ATPG tool consists
of open and short fauits. It is assumed that a floating
input will capture an unpredictable value, and that short
faults will behave in an unpredictable manner. However,
it is assumed that the values captured at the receiving
nodes of at least one of the shorted interconnects will
produce results which differ from those corresponding to
the fault-free situation.

4,1 TEST PROTOCOL

The test protocol used by the ATPG tool follows the
work described in [161, [18], [19] for testing boundary
scan boards. It consists of three main steps, addressing
the board-level BST infrastructure, the board
interconnects, and the components,

The main testing actions for checking the BST
infrastructure consist of shifting through the instruction
registers, and through the (available) identification
registers, according to a procedure described in [20].
When two BST chains exist, this test step is repeated
independently for each BST chain in sequence.

Interconnect testing is divided into two main parts: full
BST interconnect testing (for those interconnects in which
every node is either a BST pin, or a primary I/O pin), and
cluster interconnect testing, which will take place when
clusters of non BST components are present. Full BST
interconnects are tested for open and short faults.

Open faults in each interconnect are tested by
successively forcing a 0, and a I, from every driving pin
in sequence, and checking the responses captured at every
receiving node. All the interconnects are tested in parallel.
Notice that stuck-at faults need not be explicitely
considered, since any fault of this type will be detected at
this step.

Short faults in full BST interconnects are tested by
applying a sequence of logic values generated according to
an algorithm which aims at achieving two main goals:
an equal number of 0s and 1s should be applied to each
interconnect by the set of test vectors generated, and each
of these test vectors should guaraniee that half of the
interconnects has a 1 applied, while the other half has a
0. The first condition is related to the assumption of a
non-fixed pattern behaviour (wired-and, wired-or) for short
faults, and the second condition tries to maximize the
probability of detecting a short fault to non-full-BST



interconnects. This algorithm proceeds by generating a
sequence of codes similar to those generated by the sclf-
diagnosis algorithm [15], but the Hamming distance
between sucessive codes is a modified version of the one
in [21].

Cluster interconnect testing is performed through the
surrounding BST infrastructure, according to a technique
described in [19] as virtual cluster testing. This step uscs
a set of test vectors generated externally for each cluster,
and takes place following the test of full-BST
interconnects.

Test action One Two
chain | chains
Shift the test vector into BST chain 0 . .
Proceed to Select-DR-scan . .
Select BST chain 1 .
Shift the test vector into BST chain 1 .
Proceed 1o Select-DR-scan .

Rise BST_READY

Wait for ATE_READY torise
Proceed to Shift-DR

Select BST chain 0

Proceed to Shifi-DR
Lower BST READY
Wait for ATE READY to be lowered

Table 2: Sequence of test actions for interconnect iesting.

All test vectors generated for interconnect testing
(either full-BST, or cluster interconnects) are applied with
the test logic in the external test mode (Extest
instruction), by cycling through the sequence of test
actions described in table 2, where one or two BST chains

e considered. Each interconnect test vector requires that a
fixed sequence is followed for the capture/update
operations in each BST chain. The BST_ready and
ATE ready signals are used to synchronize these
operations with external test equipment used for the
primary I/O pins (these signals are related to the SS and
WS instructions described in the set of elementary test
operations presented in table 1).

4.2 DATA FLOW

The data flow itlustrated in figure 3 shows the three
types of information required for the ATPG process: the
description of the BST implementation in each
component, the description of the board interconnects
(board netlist), and the description of externally generated

test vectors available for testing clusters of non-BST
components.

Preprocessors are used to cope with advances in the
standardization of data representation formats, specially for
the description of the BST implementation in each
component [22], [23]. The set of test veciors generated
may be complemented with test vectors described in
additional input files, which will be used when simple
clusters of non-BST components, or BST compenents
without BIST, are present,

43 ATPG OUTPUT

The ATPG tool generates the complete set of test
vectors that will be used for testing a board. This set
includes the serial test vectors for the scan chains, and the
paralle! test vectors for the primary 1/0 pins. The set of
test vectors generated for the scan chains are converted to
the corresponding test controller instruction formats
(NSHF and NSHFCP), and are then interleaved with the
additional elementary operations described in table 1, 0
produce the complete test processor program. These
additional operations include the necessary
synchronization sequences with the external test
equipment used for the setting of primary I/O pins.

4,4 USING BOARD-LEVEL TPG RESOURCES

The developed ATPG tool produces a test program
addressing all the steps required for testing a board with
boundary scan, and assumes that the operating modes
provided by the test logic in each component are those
that correspond to the mandatory and optional instructions
described in the 1149.1 standard.

Clusters of non-BST components are tested using the
virtual cluster testing technique {20], using a set of test
vectors generated by an external ATPG tool. Two main
drawbacks may be identified in this approach:

« Virtual cluster testing is done by serialising each
cluster test vector, which is applied through the BST
infrastructure surrounding the cluster. Shifting in a
new vector, while the responses to the previous one
are shifted out, requires a total number of test clock

cycles which is approximately N-MT (N test clock
cycles for each test vector).

» Each serialized test vector must be resident in the
memory containing the test program, seriously
restricting the size and complexity of the clusters. A
cluster requiring a set of 4.000 test vectors, inserted
in a scan chain with only 100 cells, would require
approximately 150 Kbytes of memory capacity.

T M is the number of test vectors, and N is the number of
cells in the scan chain.
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Fig.3: ATPG data flow.

The solution to these problems may be found in the
use of embedded board-level TPG resources, allowing
pseudo-random pattern generation (PRPG) and signature-
analysis (SA). Besides being able to generate a new test
vector for each test clock cycle, this alternative will not
use the memory of the test processor for test vector
storage. Components with a BST infrastructure providing
additional operating modes for PRPG and SA are already
available on the market, and more sophisticated
components have been announced. Examples are the
Digital Bus Monitor from Texas Instruments [24], which
allows powerful on-board resonrces for PRPG, and
response capture/compaction, and also a Static RAM
Tester chip developed by SGS-Thomson [25], which

allows local TPG for static RAM arrays according to a
predefined algorithm.

While providing powerful board-level built-in TPG
resources for clusters of non-BST logic, these new BST
components also raise new challenges to an ATPG tool
for boundary scan boards. The more powerful operating
modes provided by these components do not require
modifications to the test controller model considered, but
enhancements will have to take place on the ATPG tool,
and additional input information will be required.

Exploitation of the board-level built-in TPG resources
means that no external ATPG tool for these clusters may
be required, and a structured approach must be defined for
specifying how lo generate the test program sequence



(using the instruction set in table 1) that will trigger the
local TPG functions for the clusters. An additional branch
will have to be present on the data flow diagram shown in
figure 3, providing the ATPG tool with input information
for generating this test program sequence. Part of this
additional information may be related to the functionality
and characteristics of the cluster, and to its interaction
with the remaining components on the board, eventually
meaning that a substantial human intervention may have
to take place. Work is being done on the characterization
of the information required for generating the test program
sequences for BST components providing board-level
built-in TPG resources, and on the feasibility of an
automated extraction of this information from the design
data base.

5 HIERARCHICAL TEST

Extending BIST functions to the system level is
implemented by adding special initialization and
Yateraction functions to the test processor core, and using
the Test Access Port of the test controller on-chip BST
infrastructure as the system-level testability bus interface.
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Fig.4: Hierarchical test strategy, using the same test
processor at different levels.

A system-level testability bus interface may therefore
be implemented simply by adding a BST infrastructure to
the test processor core, and including the additional
interaction blocks required. The system-level BST chain
will in this case contain a number of components equal to
the number of boards present {one test processor in each
board). One of the commands supported by the BST
infrastructure in each test processor is Run Board Test
(besides the mandatory Extest, Bypass, and Sample /
Preload), which will enable the system-level test
processor to order the execution of BIST on the selected
board. Notice that this approach has the additional
advantage of using only one testability standard both at
board and system levels. As a resuit, the same test
processor may be used at diffcrent hierarchical levels, as

illustrated in figure 4.

Initialization of the test processor core, and test
program execution, may have its origin locally (on the
board), or remotely (by the system test processor). Two
additional interaction blocks should therefore be present,
which will multiplex the initialization signal (local reset,
or through the BST infrastructure), and the clock source
(local clock, or system test clock), as shown in figure 5.
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Fig.5: Test processor, and oplional system-level
testability bus interface block.

Additionally, the system-level testability bus interface
includes a 6 pin identification bus, which ailows each
board to be assigned a specific address. This identification
bus allows the system test processor to check for proper
board placement.

6 CONCLUSION

An architecture for BIST on boards equipped with
Boundary Scan was described. It includes a dedicated test
processor core (with an optimized architecture for
controlling the board-level BST infrastructure), a system-



level westability bus interface, and a ROM containing the
test program. A prototype version of this architecture
was implemented using a commercial ASIC design
system (SOLO 1400) and was manufactured by ES2
(European Silicon Structures). The circuit, housed in a
68-pin LCC package, uses 1.5 pum CMOS technology
and runs on a 25 MHz clock.

Relevant aspects of a TPG tool designed to automate
the generation of test programs for the processor were
presented. The test program produced by this tool makes
use of the mandatory instructions described in the 1149.1
standard (Extest, Bypass, Sample/Preload), and is able o
detect any open or short fault present on board-level
interconnects. A test program segment devoted to
component testing is also produced, for those components
supporting the optional instructions described in the
standard (Intest, Runbist, Idcode, Usercode).

The hierarchical extension for system-level test was
discussed, and a solution was proposed, based on the use
of the processor's BST Test Access Port as the system-
level testability bus. An interesting feature of this
Jpproach is that one singie testability standard can be
used, allowing the same test processor to be used at
different hierarchical levels.
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