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� A new method to assess concrete strength in existing building is presented.
� The method disaggregates the concrete variability into finite populations.
� The CoV of the concrete strength is evaluated using the CoV of rebound hammer tests.
� The method controls the uncertainty in the estimate of concrete strength variability.
� The method controls the uncertainty in the estimate of the mean concrete strength.
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a b s t r a c t

A framework is defined to evaluate the concrete compressive strength in existing buildings and control
the uncertainty associated to the survey planning and to the concrete strength randomness. The frame-
work proposes the discretization and disaggregation of the concrete strength in a building into finite pop-
ulations of elements. Finite population statistics are used to correlate the number of tests performed in
each population with the uncertainty about the mean and the coefficient of variation (CoV) of the con-
crete strength. A method to estimate the CoV of the concrete strength using the CoV of rebound hammer
test results is also proposed to overcome the need for a high number of destructive tests. Results show
that the proposed approach effectively controls the uncertainty in the estimate of the variability of the
concrete strength in a population as well as the uncertainty in the estimate of the mean value of the con-
crete strength.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the safety assessment of existing buildings, quantifying the
‘‘as-built” material properties is of the utmost importance due to
the impact that it has on the subsequent application of safety
assessment methods. In the case of reinforced concrete (RC) build-
ings, the concrete compressive strength is a material property that
requires careful consideration [1] due to its inherent variability.
This fact leads to the usual consideration of the concrete strength
as being a random variable that has a certain (unknown) level of
aleatory uncertainty [2]. This aleatory uncertainty is related to
the inherent variability of the hardened concrete strength in
existing structures [3] which can reach large values [4,5], often
exceeding a coefficient of variation (CoV) of 20% [6]. Among other
factors, this variability is associated with mix, casting and curing
operations, which require a significant level of workmanship.
Several studies (e.g. see [3,7,8]) have analyzed the impact of work-
manship on the strength of hardened concrete and found that it
can induce several types of variability depending on the structural
system being analyzed. Primarily, expected variations can be asso-
ciated to batch-to-batch variability, involving the randomness
related mainly with the construction management and planning
and with quality control. Likewise, member-to-member variability
can occur due to the influence of workmanship in casting opera-
tions. Variations of the concrete strength can also be expected
within each structural member due to the previously mentioned
factors. Moreover, a recent study [9] also described cracking,
damage and the selection of the testing positions within the length
of a structural element as sources of potential variability.

In addition to the aleatory uncertainty associated with the
concrete strength, epistemic uncertainty will also be generated
due to the lack of knowledge associated with non-surveyed
structural elements. Since survey plans only comprise tests on a
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few structural members in order to minimize the damage and the
cost of inspection operations, the selection of a given set of ele-
ments to be tested instead of another will generate uncertainty.
This uncertainty is even more important due to the low number
of material tests that are generally carried out in existing buildings,
a trend partially supported by existing norms (e.g. [10–13]). Often,
standards regulating the assessment of existing buildings require a
limited number of tests/inspections to be performed at each storey
and for each type of primary component that is part of the building
in order to obtain estimates of the mean values of the material
properties. Nonetheless, as referred in [14], current building codes
do not address the uncertainty level in the survey results and
neglect the impact that sampling may have on the estimate of
the dispersion of concrete strength (specifically on the estimate
of the CoV) and on the corresponding estimate of the mean value.
Therefore, controlling the epistemic uncertainty about the CoV of
the concrete strength is a key component of a survey framework
since it will affect the variability of the estimate (i.e. its precision),
especially when it is based on a reduced number of tests. More-
over, this uncertainty is also seen to depend on the relation
between the number of structural elements that are not tested
during survey operations and the total number of structural ele-
ments of the population.

To control the extent of this uncertainty in survey operations and
its impact on the estimate of the mean value of the concrete com-
pressive strength in existing buildings, a method based on finite
population statistics is proposedherein. The proposed approachwill
enable to effectively control the uncertainty in the estimates of the
variability and of the mean value of the concrete strength in a pop-
ulation to improve their reliability. By accounting for the number
of structural elements that are not tested during survey operations,
the proposed method overcomes limitations of current standard
methods and enables the development of more consistent survey
frameworks to assess concrete strength in existing buildings.

2. Assessing statistical parameters in finite populations

In statistics, a population is said to be finite when it is possible
to count all its elements. Statistical parameters characterizing
these populations have specific features which are associated to
finite size conditions. To evaluate the exact value of these param-
eters, knowledge about all the N independent elements of the pop-
ulation is required. If all the N elements are observed, the
population mean is then:

�xU ¼ 1
N
�
XN
k¼1

xk ð1Þ

where U represents the population, N is the finite population size
and xk is an individual element of U. By the same principles, the
variance of the population is given by:

SU ¼ 1
N � 1

�
XN
k¼1

xk � �xUð Þ2 ð2Þ

If instead of observing all the N elements of the finite popula-
tion, a sample with size n (n < N) is observed, estimates for �xU
and SU can be computed. Assuming a simple random sampling of
n elements without replacement from an unordered population
of size N, M combinations of n elements can be defined, with M
being given by:

M ¼ N

n

� �
¼ N!

n!ðN � nÞ! ð3Þ

The main characteristic of finite population statistics resides in
the conditional correlation between the probabilities of observing
different values that is introduced by sampling. In finite popula-
tions, increasing the sample size n will affect the estimates of the
statistical parameters since the observation of element xk will
affect the probability of observing the next element in the sample,
i.e. xkþ1. This fact leads to sampling probabilities that depend on n,
thus reducing the level of statistical uncertainty (that is implicit
when considering a sample to represent the population) in the esti-
mators for the statistical parameters when compared to that of
infinite populations.

In a finite population with N elements, an estimate �̂xU for the
real mean �xU obtained using a sample with n elements is defined
by:

�̂xU ¼ 1
n
�
Xn
k¼1

xk ð4Þ

The theoretical variance of the estimator �̂xU obtained with a
sample of n elements is defined by:

Sð�̂xUÞ ¼ 1
n
� N � n

N � 1

� �
� SU ð5Þ

where N�n
N�1

� �
is the squared value of the finite population correction

factor [15]. Based on Eq. (5), the variance of the estimate of the
mean can be seen to converge to zero as n converges to N, which
implies that the sample mean will converge to the true population
mean at a rate given by the finite population correction factor.
Therefore, this factor is seen as a representation of the statistical
uncertainty in the estimate for the finite population mean. Still, in
a general case where n < N, the variance of the estimate of the mean
will be a direct function of SU , thus showing the importance of
knowing the variability of the concrete strength in order to control
the uncertainty in the estimate of the mean. However, since the
population variance SU is always unknown, it needs to be replaced

by its estimator ŜU which, for a finite population, is given by [15]:

ŜU ¼ 1
n
� N
N � 1

�
Xn
k¼1

ðxk � �̂xUÞ2 ð6Þ

The variance of the estimator ŜU depends on the selected sam-
ple (i.e. on the values xk of the n elements observed) and is given
by [15]:

SðŜUÞ ¼ N
N � 1

� �2

� 1� ðn=NÞ
n

� �
� 1
n� 1

�
Xn
k¼1

ðxk � �̂xUÞ2 � 1
n
�
Xn
k¼1

ðxk � �̂xUÞ2
" #2

ð7Þ
3. Using finite population statistics to assess concrete strength
in existing RC buildings

3.1. Discretizing the concrete strength and disaggregating its
variability

By depending on both n and N, finite population statistics
enable to control the epistemic uncertainty about the estimates
of the mean and of the variability of a population using data pro-
vided by a ratio of n/N elements. This approach is somehow similar
to the uncertainty reduction principle that underlines the proce-
dures in current standards (e.g. see [10]) where it is implicit that
an increase in the number of structural elements that are tested
during survey operations will lead to a reduction of the uncertainty
about the estimate of the mean value of the material property.
Therefore, a procedure based on finite population statistics like
the one proposed herein is found to be consistent with current
standard assessment procedures.
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Fig. 1. Comparison between the bCoV;m values obtained from the simulations
(datasets CH1–CH8) and the values of bCoV;m� for different values of N.
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Adopting finite population principles to assess the concrete
strength in existing buildings requires additional considerations
to define what can be considered to be a finite population of con-
crete strength values (i.e. a group of N values where homogeneity
is expected). To discretize the concrete strength values in a RC
building and disaggregate them into finite populations, concrete
strength variability was assumed to be the result of four compo-
nents [3]: (1) within-test variability, (2) within-member variabil-
ity, (3) between-member variability and (4) batch-to-batch
variability. Systematic between-member (3) variability and
batch-to-batch variability (4) were assumed to be dominant when
compared with the other two components [3], despite their known
effects (e.g. see [9,14,16]). This fact allows for the definition of a
concrete strength discretization criterion where it is assumed that
each structural member of the building is represented by a single
concrete strength value. For the purpose of the proposed method,
it is also considered that the concrete strength value of a given
member can be assessed from a compression test performed on a
concrete core extracted from the member. Using this discretization
of the concrete strength values, the disaggregation of the (discrete)
structure into finite populations of N structural members can then
be defined by analyzing the nature of the actual construction pro-
cess of a building. It is noted that a similar rationale was adopted in
[17] to disaggregate the concrete strength in existing RC buildings
where the material properties were assumed to be homogeneous
at each floor to reflect the construction timeline. Therefore, struc-
tural regions (where a region designates any cluster of structural
elements that are believed to have similar physical properties,
hence defining a finite population) can be established to reflect
the expected batch-to-batch variability. These regions can be made
by all the members of a given type in a storey (e.g. all the beams or
all the columns), by a portion of the members of a given type in a
storey or even by combining multiple types of elements in multiple
storeys. A disaggregation following this strategy can be seen to be
in agreement with the material property assessment procedures
defined by current seismic safety assessment standards (e.g. see
[10,11,13]). According to these procedures, the characterization
of the concrete strength in a building must include data collected
from each storey, from each type of structural element (e.g. col-
umns, beams) and over an area with a limited size.

By disaggregating the concrete strength using this rationale, a
number of regions can be defined within the building. Each one
of these regions is a finite population with N elements where con-
crete strength is expected to be homogeneous. Finite population
statistics can then be used to assess the concrete strength in each
region, namely by defining sampling plans in terms of the ratio n/N,
i.e. the number of structural members of the region where the con-
crete strength is evaluated (n) which is a fraction of the corre-
sponding total number of structural members in the region (N).
Therefore, by defining statistics of the concrete strength (e.g. the
mean value or other parameters) as a function of n/N, the level of
epistemic uncertainty in the concrete strength assessment
becomes explicitly controlled.

3.2. Assessing the mean and the CoV of concrete strength using finite
population statistics

In order to see how finite population statistics can be applied to
assess the mean value of the concrete strength, a simulation study
is presented in the following where 8 datasets (referred hereon as
CH1–CH8) were analyzed. Datasets CH1–CH8 have total sizes of
27, 30, 32, 22, 25, 19, 25 and 27 and were extracted from [18]
where further statistical details and analyses on these datasets
can be found. The study presented herein replicates real condi-
tions: an analyst must select a certain number of candidate struc-
tural elements (n) of a region where the material strength will be
assessed and no information about the remaining (N � n) members
will be available. For each dataset and for a given value of n, a num-
ber of samples were defined which correspond to the minimum
between the number of possible combinations of n elements
extracted from the N elements and 10 million random samples of
size n extracted from the N elements. For each dataset, the lowest
value of n that was adopted was 2 and the largest was N.

In order to examine the sampling uncertainty about the mean
estimate of the concrete strength due to the (N � n) non-
surveyed structural elements, the ratio vm was defined:

vm ¼ �̂xU
�xU

ð8Þ

where �̂xU is the sample estimate of the mean (Eq. (4)) and �xU is the
true population mean (Eq. (1)). Hence, for each size n, a dataset of
vm values was created. In order to analyze how the sampling uncer-
tainty about the mean is correlated with the global population vari-
ability, two parameters were analyzed: bm;m which is the mean of
the vmratios and bCoV;m which is defined by:

bCoV;m ¼ CoVvm

CoVU
ð9Þ

where CoVvm is the CoV of vm and CoVU is the true population CoV.
Parameter bCoV;m is closely related to the theoretical factor bCoV;m�

which depends on the finite population correction factor and is
defined by:

bCoV;m� ¼ 1ffiffiffi
n

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n
N � 1

r
ð10Þ

The results of the simulation study indicate that bm;m is 1.0 for
all the considered sample sizes, which means that, on average,
the population mean will be obtained from the samples, irrespec-
tively of the adopted sample size (i.e. on average, vm ¼ 1). With
respect to the variability of vm, Fig. 1 shows the evolution of
bCoV;m for increasing values of the ratio n/N and for the datasets
CH1–CH8 simultaneously, and compares it with the evolution of
bCoV;m� calculated for different values of N (from 10 to 40 in steps
of 5).

As expected, the variability of vm decreases as the sample size
increases. The rate of this reduction follows the evolution of
bCoV;m� (evaluated for N equal to the corresponding population size)
and reduces bCoV;m as n/N converges to 1. The value of bCoV;m is also
expected to vary significantly with the population size N, as can be
seen from the bCoV;m� curves. It can be seen that, for a given value of
n/N, bCoV;m� becomes lower as N increases. This reduction is due to
the fact that, for a given value of n/N, as N increases, n also
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increases proportionally and the 1/
ffiffiffi
n

p
factor of Eq. (10) controls

the bCoV;m� reduction rate.
Although, in the previous results, the estimate for the mean was

analyzed assuming that SU (more precisely CoVU) was known (see
Eq. (5)), often this value is not known and has to be estimated
based on the sample results. Hence, it is also expected that statis-
tical uncertainty will affect the estimate of SU obtained from a
given sample due to the possibility of multiple combinations of n
out of N test results (e.g. see Eq. (7)). The data that was simulated
to analyze the ratio vm was therefore reused in order to examine
the sampling uncertainty in the estimate of the population CoV,
i.e. CoVU. Parameter CoVU was selected as a measure of the popu-
lation dispersion instead of the variance SU since it quantifies the
variability without scaling effects, i.e. without depending on the
range of values of the population. This new analysis examined
the ratio vCoV defined by:

vCoV ¼ ĈoVU

CoVU
ð11Þ

where ĈoVU is the CoV estimated using the sampled data and CoVU

is the corresponding true population value. The mean and the CoV
of vCoV were analyzed for different values of n/N to verify the rate

at which ĈoVU converges to the real value CoVU in typical popula-
tions of concrete core strength values. Fig. 2a presents the evolution
of the mean of vCoV and Fig. 2b presents the evolution of the CoV of
vCoV for increasing values of n/N. In both cases, analytical approxi-
mations were fitted to evaluate the evolution of the mean and of
the CoV of vCoV as a function of n/N.

From Fig. 2a, it can be seen that only the results of dataset CH1
are not in close agreement with the trend line established for the
mean of vCoV which is defined by the power model given by:

MeanvCoV ¼ 1:01� 0:01 � ðn=NÞ�1:16 ð12Þ
As can be seen in Fig. 2a, a mean ratio of 0.95 is obtained for n/N

equal to 0.2, while for the CH1 dataset a mean ratio of 0.95 requires
an increase of n/N up to 0.35. For the variability of vCoV, its power
decay with the increase of n/N can be defined by:

CoVvCoV ¼ 0:22 � ðn=NÞ�0:56 � 0:16 ð13Þ
For this case, the trend line that was found is consistent with all

the datasets. As can be seen from Fig. 2b, the uncertainty about the
estimate of the population CoV requires higher sample sizes in
order to achieve acceptable levels of precision. For example, at
least 40% of the total number of structural elements have to be
tested in order to get a minimum CoVvCoV of 0.20.
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Fig. 2. Evaluation of MeanvCoV (a) and CoVvCoV (b) for different values of n/N for the data
To further illustrate the impact of sampling in the assessment of
the CoV, Fig. 3 shows the boxplots of vCoV, obtained for all the data-
sets when adopting ratios of 3/N (Fig. 3a) and 6/N (Fig. 3b). These
two ratios were selected because they correspond to the minimum
sample sizes proposed in [11].

As shown in Fig. 3, the distribution of the sampling CoV (in this
case represented by the ratio vCoV) is considerably asymmetric. Fur-
thermore, this visual asymmetry is seen to reduce when the sample
size increases from n = 3 (Fig. 3a) to n = 6 (Fig. 3b). Based on these
results, it becomes clear that taking a small sample of values from
a population of concrete cores may lead to a significant overestima-
tion or underestimation of the concrete strength variability.

In the overall, the simulation study results indicate that adopt-
ing the proposed finite structure paradigm and using finite popula-
tion principles to assess concrete strength statistics provides
important information regarding the reduction of uncertainty
when increasing the ratio n/N. Furthermore, the results also show
that a high (and often impractical) number of destructive tests is
required to reduce the epistemic uncertainty to acceptable levels
(i.e. for CoVvCoV to be around 0.10). Therefore, alternative methods
must be defined to estimate the concrete strength variability in a
finite population and overcome the need to carry out a high num-
ber of destructive tests.
4. An alternative method to estimate the finite population CoV
of concrete strength

An alternative approach is proposed herein to estimate the
variability (i.e. the CoV) of a finite population of concrete strength
values using auxiliary information obtained from non-destructive
tests (NDTs). These tests are often used in survey campaigns since
they induce limited levels of damage to the structural components
and can be used in a larger number of elements usually at a lower
cost. An example of this kind of methods is the surface hardness
determination test using the rebound hammer. The results of this
test have been shown to correlate well with the concrete compres-
sive strength and multiple correlation models have already been
proposed (e.g. see [19]). When using adequately calibrated
correlation models, the measured rebound numbers (RNs) can be
converted into compressive strength estimates. Still, it is noted that
current standards (e.g. see [20]) do not allow the use of these corre-
lationswithout a preliminary calibration involving destructive tests
results (at least 9) obtained from concrete cores collected from the
building under survey. In general, standard-based methods recom-
mend the use of NDTs as a complementary source of information
to assess existing structures. As an example, Masi and Vona [6]
recommended conducting NDTs in 8% to 15% of the total number
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of elements per storey, with an absolute minimum of 6 to 10 tests.
For example, in a region that has 20 structural elements, this leads
to a minimum number of tests corresponding to n/N = 0.30.

Instead of converting the RN test results into concrete strength
values, the proposed method defines a direct correlation between
the CoV of destructive tests (CoVfc) and the CoV of the RNs (CoVRN)
evaluated for the same structural elements. Pairs of data compris-
ing CoVs of populations of RNs and concrete core compressive test
results were selected from existing literature studies [21–23] to
establish the proposed model. A total of 24 CoVfc–CoVRN pairs were
used, each one comprising more than 8 locations/readings of both
tests. Fig. 4 shows the correlation obtained for the considered data,
together with the 75% prediction bounds of the model [24]. The
correlation was derived using a robust regression model with a
bi-squared weighting function. The global correlation model that
was obtained has an adjusted-R2 of 0.72, a root mean squared error
(RMSE) of 0.06 and is expressed by:

ĈoVfc ¼ 1:042 � CoVRN þ 0:123 ð14Þ
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Fig. 4. Correlation between ĈoVfc and CoVRN along with the corresponding 75%
prediction bounds.
The model requires the variability of the RN values to be known,
i.e. an adequate estimate must be defined for CoVRN and the indica-
tive sample sizes proposed in [6] can be used as a reference to
establish this estimate. Accordingly, for the ranges proposed (6–
10 tests per storey, which, under the finite population paradigm,
means per finite population), it is assumed that values of n/N in
the range 0.30–0.40 will yield acceptable estimates of CoVRN.

The purpose of defining this general model correlating the
variability of both tests was to check if it was possible to derive
a tool that would, without any calibration, provide an indication
of the variability that an analyst may expect prior to the design
of the destructive test campaign. Hence, a naïve approximation
for the CoVfc was analyzed to check what would be the possible
improvements on the quality of the estimation of the variability
or the mean when compared with other strategies. It must be
noticed that the developed approximation [Eq. (14)] was used
hereon as a benchmark due to the limited amount of datasets
available in literature. The data used to construct was extracted
from populations of data from experimental campaigns per-
formed in a laboratory or in situ, using possibly multiple types
of equipment and different operation qualities. Hence, the pro-
posed law can be seen as a general methodology and future
improvements using results from experimental campaigns per-
formed locally at each country in portfolios of existing buildings
may significantly improve the robustness and reduce the gener-
ality of the benchmark adopted herein.

Finally, by assuming that ĈoVfc provides an adequate estimate
of CoVU and considering that bCoV;m� represents the theoretical evo-
lution of bCoV;m (Fig. 1), a reliable estimate of the sampling variabil-

ity of the mean estimate for the concrete strength CoVð�̂xfcÞ in
typical storeys (i.e. with N structural elements in the range of
15–30) is obtained by combining Eq. (14) and Eq. (10):

bCoV ;m ¼ CoVvm
CoVU

¼ CoV �̂xfcð Þ
CoVU

()
() CoV �̂xfc

� �
¼ bCoV ;m� � CoVU ()

() CoV �̂xfc
� �

¼ 1ffiffi
n

p �
ffiffiffiffiffiffiffi
N�n
N�1

q� �
� ð1:042 � CoVRN þ 0:123Þ

ð15Þ
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where CoVRNneeds to be determined from a minimum of n/N = 0.30
tests.

5. Validation of the proposed procedure using experimental
data

To assess the validity of the proposed finite population approx-
imations defined by Eqs. (14) and (15), five additional datasets of
RN and core strength values were considered. Datasets C1–C4 cor-
respond to pairs of data extracted from multi-storey RC buildings
constructed in the mid-1990 s that were surveyed within the pre-
sent study. Each pair has a core strength value evaluated in a struc-
tural element and a RN value from the same location. Since dataset
C4 presented a wide range of concrete strength values (from
20.75 MPa to 64.81 MPa) a subset of C4 (termed C4⁄) was addition-
ally defined where the top five values were removed in order to
obtain a more homogeneous dataset. Dataset C5 was obtained
from [25] and comprises RN and concrete core strength values
extracted from an existing building. Table 1 summarizes the
selected datasets.

A simulation study was performed to evaluate the reliability of
the proposed correlation defined by Eq. (14) to estimate the vari-

ability of the concrete strength ĈoVfc by analyzing the empirical
cumulative distribution function (ECDF) of the ratio wCoV defined
by:

wCoV ¼ ĈoVfc

CoVfc
ð16Þ

Where ĈoVfc represents the estimate of the real variability CoVfc

obtained for each dataset when assessing n out of N randomly
selected structural elements without having information on the

remaining N � n structural elements. To estimate ĈoVfc for each
dataset (C1–C5), M samples (see Eq. (3)) with sizes n/N = 0.30 were
extracted (i.e. n equal to 6, 8, 6, 8, 6, and 6 tests for datasets C1–C5,
respectively). For each sample, the value of CoVRN was converted

into the estimate ĈoVfc using two different models: Model RMP1
which corresponds to the correlation defined by Eq. (14), and model
RMP2 which is a variant of this model that considers a 50% upper
confidence bound of the regression, assuming the normality of the
residuals and adding 0.6745*RMSE to the mean prediction, and is
given by:

ĈoVfc ¼ 1:042 � CoVRN þ 0:163 ð17Þ
Based on this regression model, a rationale similar to the one

leading to Eq. (15) can also be established to define a new estimate
for CoVð�̂xfcÞ now given by:

CoVð�̂xfcÞ ¼ 1ffiffiffi
n

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n
N � 1

r !
� ð1:042 � CoVRN þ 0:163Þ ð18Þ

In order to compare the uncertainty associated to these strate-
gies with others that involve the use of correlation models convert-
ing each value of RN into a point estimate for the concrete strength
fc, the simulated results of wCoV for the RMP1 and RMP2 models
Table 1
Statistical parameters of the six datasets considered in the validation study.

Dataset N �xU (MPa) CoVfc CoVRN

C1 19 27.46 0.29 0.17
C2 27 28.11 0.36 0.21
C3 20 30.14 0.38 0.16
C4 25 35.99 0.34 0.14
C4⁄ 20 30.66 0.18 0.12
C5 21 19.74 0.19 0.08
were reused for a secondary analysis. In this case, the objective
was to derive the ECDF of the wCoV ratios after converting the n
RN values of the M samples into fc values using correlation models
(RM) from the literature. After converting the RN values, statistical
analyses of each sample were performed and M possible estimates

of ĈoVfc were computed. Again, the wCoV values were calculated by

normalizing the M ĈoVfc values by the CoVfc of the corresponding
dataset. Three different RM models were considered to convert
the RN values into fc values. The RM1 and RM3 correlation models
were selected because they were derived using data that is
believed to be similar to the datasets C1–C5 considered herein.
The correlation model RM2 was selected due to its alternative
form. Model RM1 is a power model proposed in [26] and defined
by:

f c;RM1 ¼ 0:00917 � ðRNÞ2:27 ð19Þ
Model RM2 is the calibration curve proposed in [27] assuming

fc,ref = 30 and RNref = 35, given by:

f c;RM2 ¼ f c;ref �
RN
RNref

� �2:38

ð20Þ

The model termed RM3 is the power model fitted to the dataset
C5 in [25] and defined by:

f c;RM3 ¼ 0:00645 � ðRNÞ2:23 ð21Þ

Although the proposed procedure focusses on quantifying ĈoVfc ,
the analysis of the RM models also allows for the computation of
an estimate for the mean concrete strength of each dataset, �̂xfc .
Due to the importance of having an estimate for this statistical
parameter, the reliability of RM1, RM2 and RM3 was also evaluated
with respect to �̂xfc . This additional analysis only requires comput-
ing the mean of the n converted values of fc for each one of the
M samples. To evaluate the statistical uncertainty associated with
�̂xfc , the ECDF of the M ratios wm was analyzed, where wm is given by:

wm ¼ �̂xfc
�xfc

ð22Þ

in which �xfc is the mean of the concrete strength of the correspond-
ing dataset (C1–C5).

It is noted that the objective of using the selected correlation
models was to verify how the estimates of wm and wCoV would com-
pare in terms of sampling uncertainty with that of core samples
with sizes n = 3 and n = 6. These sample sizes were selected as
benchmarks because standards often refer them as values for the
minimum number of tests that need to be carried out under several
situations (e.g. see [10–13]). Furthermore, for the selected datasets,
n = 3 corresponds to an average value of n/N equal to 0.14 while
n = 6 corresponds to an average value of n/N equal to 0.28. The M
combinations of destructive test results (i.e. core strength values
fc) were extracted from datasets C1–C5 and for each one of the M

samples, the estimates of ĈoVfc , �̂xfc , wm and wCoV were computed.
In addition, the ECDF of the M wm and wCoV ratios was computed
for each dataset to compare them with those calculated based on
RMP1, RMP2, RM1, RM2 and RM3.

Finally, the efficiency of Eqs. (15) and (18) to estimate the real
sampling uncertainty of the mean was also analyzed. The values

of ĈoVfc were used as an input in Eqs. (15) and (18) to estimate

CoVð�̂xfcÞ. This analysis involved four models: SIMn=3 which involve

the estimate of CoVð�̂xfcÞ obtained using Eq. (15) (RMP1) and n = 3,

SIM⁄
n=3 which involve the estimate of CoVð�̂xfcÞ obtained with Eq.

(18) (RMP2) and n = 3, SIMn=6 which involve the estimate of
CoVð�̂xfcÞ obtained with Eq. (15) (RMP1) and n = 6 and SIM⁄

n=6 which
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involve the estimate of CoVð�̂xfcÞ obtained with Eq. (18) (RMP2) and

n = 6. The ECDF of the M CoVð�̂xfcÞ values that result from the M pos-

sible estimates of ĈoVfc was then calculated for all these models. To
analyze the performance of Eq. (15), the EDCF curves were com-
pared with the CoVð�̂xfcÞ (a scalar value) obtained when computing

the CoV of all the M estimates of �̂xfc when using 3 destructive tests
(Realn=3) and 6 destructive tests (Realn=6).
6. Results and discussion

6.1. Analysis of the wCoV ratios

Fig. 5 presents the ECDFs of the wCoV ratios obtained using the
different strategies defined in the previous Section (i.e. RMP1,
RMP2, RM1, RM2 and RM3). As mentioned before, all the computed
ECDFs are conditioned to a sample size corresponding to n/
N = 0.30. Hence, the presented ECDFs reflect the sampling uncer-
tainty associated with the selection of different test locations for
the rebound hammer test within a given finite population.

The results show that the RMP1 and RMP2 models lead to data
with a lower dispersion when compared with that obtained from
models RM1, RM2 and RM3. This trend can be observed by analyz-
ing the steepness of the ECDFs, which is higher for the RMP1 and
RMP2 models than for the other cases. The median estimate
obtained for wCoV with RMP1 changes with the considered dataset.
In some cases it is higher than 1.0 (Fig. 5e) while in others it is
lower than 1.0 (Fig. 5c and d). In the overall, the RMP2 model pro-
vided results that are more conservative than the RMP1 model
which underestimated the median ratio for datasets C3 and C4
(Fig. 5c and d). Regarding model RM3, it should be noted that the
sampling uncertainty has a significant effect in the estimation of
the CoV even for dataset C5 (the dataset for which the RM3 model
was calibrated), (Fig. 5f). From Fig. 5, it can also be seen that mod-
els RM1 and RM2 lead to data with a dispersion similar to that of
(a)
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Fig. 5. Comparison of the ECDFs of the wCoV ratios considering multiple samples of RN val
RM3, possibly due to the closeness of the exponents of the power
term (see Eqs. (19)–(21)).

It is noted, however, that the models RM1, RM2 and RM3 that
were selected are not representative of all possible models. To
demonstrate the impact of selecting different regression models
(i.e. with different values of the fitted parameters) in the estimate
of wCoV, an additional analysis was performed using artificial power
models (RMb) axb simulating different values of the fitted parame-
ters. Power models with an exponent term b between 1.0 and 3.0
in steps of 0.25 were simulated. The term a was estimated for each
value of b using the correlation between the coefficients derived
by the meta-analysis presented in [28] (i.e. b = 1.0307 � 0.259�ln
(a)). Fig. 6 shows the ECDFs of the wCoV that were obtained for data-
sets C1, C3 and C5 using the several RMb correlation models. For
comparison purposes, the ECDFs of thewCoV thatwere obtainedwith
RMP1 and RMP2 are also shown. These results indicate that a lower
dispersion of wCoV can be obtained when selecting a value b equal to
1.75, 2.25and3.0 fordatasetsC1, C3andC5, respectively. Fromthese
results, it can be seen that estimating the variability of the concrete
strength using predefined correlationmodels (i.e. with uncalibrated
values of a and b) can lead to large and unreliable values. Further-
more, it is seen that in some cases (Fig. 6c) none of the RMbmodels
is able to capture the correct trend (which is approximately captured
by the models RMP1 and RMP2). This shows that, even when using
calibrated correlation models (assuming that the referred correla-
tion between the parameters a and b is a valid approximation),
caution must be adopted when estimating the CoV of the concrete
strength.

Fig. 7 presents the comparison of the ECDFs of the wCoV ratios
obtained using the RMP1 and RMP2 models and using all the pos-
sible samples with n = 3 and n = 6 cores of each dataset.

The observations that can be made regarding these results are
twofold. Firstly, it can be seen that blindly selecting a small sample
of coreswithin a finite population (an approach that is in agreement
with current standards) may lead to inadequate estimates of the
variability since the dispersion exhibitedby the corresponding ECDF
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ues with a size n=N ¼ 0:30 for dataset (a) C1, (b) C2, (c) C3, (d) C4, (e) C4⁄ and (f) C5.
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curves is very large. These observations are consistent across all the
datasets, irrespective of the fact that they might have a higher (e.g.
C1–C4) or a lower (e.g. C5) dispersion.

Secondly, when comparing these results with the proposed
strategies (RMP1 and RMP2), it can be seen that the statistical
uncertainty is adequately managed when using the RN values to
estimate the variability. This confirms the suggestion in [14] that
highlights the potential use of NDTs to complement the use of core
strength values to assess the concrete strength in existing build-
ings. The results presented herein are not only in agreement with
[14] but also show that the proposed methodology improves the
previous use of NDTs since it reduces the uncertainty in the esti-
mation of the concrete strength variability.

To further highlight this conclusion, Fig. 8 shows a global para-
metric comparison between the results obtained by the RMP1,
RMP2, RM1, RM2 and RM3 models and the core-based strategies
with n = 3 and n = 6. This comparison is performed for the Mean
wCoV (Fig. 8a) and the CoVwCoV (Fig. 8b).
The analysis of these parameters indicates that the RMP1 and
RMP2 models provide adequate results, especially in terms of con-
trolling the uncertainty given by CoVwCoV (Fig. 8b). With respect to
the Mean wCoV, RMP1 underestimates the expected value of the
population CoV (the range of Mean wCoV is 0.75–1.05) while
RMP2 provides more conservative results (the range of Mean
wCoV is 0.86–1.26). The best average response was observed when
using the n = 6 cores approach (the range of Mean wCoV is 0.92–
0.99). Nevertheless, if, on average, an adequate estimate of the
population CoV can be obtained when using the strength results
of 6 cores, analyzing the expected variability (Fig. 8b) shows other-
wise. The values of CoVwCoV for this approach range from 0.25 to
0.31 which indicates that taking a random sample of size 6 from
all the possible structural elements may yield significantly variable
estimates of the population CoV. Still, the worst results in terms of
CoVwCoV are observed when samples with n = 3 cores are consid-
ered since the range of CoVwCoV is now 0.45–0.54. On the contrary,
the most precise estimates of wCoV are given by the RMP1 and
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RMP2 models, which exhibit values of CoVwCoV that range from
0.09 to 0.11 and from 0.08 to 0.11, respectively.

6.2. Analysis of the wm ratios

With respect to the results of the wm ratios, Fig. 9 presents the
ECDFs of the estimates obtained using the samples of RN values
and the models RM1, RM2 and RM3. These curves are compared
with those obtained with the core-based strategies with n = 3
and n = 6 in order to verify if the use of predefined correlation
models would lead to a lower sampling variability when compared
to that which is obtained using with core samples with sizes n = 3
and n = 6. It can be seen that, on average, the RM1, RM2 and RM3
models fail to predict the true mean of the population since the
median value of the ECDFs is, in most cases, shifted away from
the ratio wm ¼ 1. An exception is however found for dataset C5
and model RM3 (Fig. 9f) since this model was calibrated for this
dataset. Despite this agreement of results when estimating the
mean of the concrete strength, it is recalled that this model was
unable to provide adequate estimates of the CoV of this dataset
(Fig. 5f). With respect to the core-based strategies with n = 3 and
n = 6, they can be seen to provide adequate estimates for the mean
of the finite population. Furthermore, no significant differences
have been found between the results for n = 3 or n = 6 cores.

Finally, Fig. 10 shows the comparison between the values of
CoVð�̂xfcÞ obtained with the core-based strategies with n = 3 and
n = 6 and the corresponding ECDF curves involving different sam-
ples of RN values, i.e. RMP1 (Eq. (15)) and RMP2 (Eq. (18)). The
results show that, for all the cases and models considered, the
ECDFs have a small variability and the difference between their
median value and the CoV of the sample mean is usually within
a range of 0.05, thus demonstrating the adequacy of the proposed
approaches. The differences found are a direct consequence of
the main limitation of the proposed methods, i.e. they rely on
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empirical correlations (i.e. Eqs. (14) and (17)). Consequently, the
proposed methods can be improved by adding more data. With
respect to the differences between the curves obtained with n = 3
and n = 6 cores, it can be seen that, although these approaches pro-
vided good results regarding the estimate of the mean concrete
strength, the sampling variability almost doubles when the lower
sample size is adopted. Therefore, these approaches are not ade-
quate to provide an effective control of the uncertainty in the esti-
mate of the mean value of the concrete strength.
7. Conclusions

A finite population statistics-based approach that uses auxiliary
information for the assessment of concrete strength in existing RC
buildings has been presented in this study. The proposed approach
effectively controls the uncertainty in the estimate of the variabil-
ity of the concrete strength in a population as well as the uncer-
tainty in the estimate of the mean value of the concrete strength.
The approach relies on a discretization of the concrete strength dis-
tribution within the building considering that a single concrete
strength value can be assigned to each structural element, thus
making the variability a direct representation of the member-to-
member heterogeneity. Other sources of variability such as within
member variability and the uncertainty related to the test proce-
dure were excluded from the proposed approach. However, analyz-
ing the importance of these factors is recommended by repeating
tests whenever possible. To assess the variability of a finite popu-
lation of concrete strength values, an empirical model was pro-
posed that correlates the CoV of concrete core strength values
and the CoV of populations of RN values assessed in the same loca-
tions. The adequacy of the proposed empirical model to estimate
the CoV of the concrete strength using indirect measurements of
the concrete strength has been shown using five datasets involving
core strength results and RN values. These results showed that the
proposed method enhances the use of NDTs for the assessment of
the concrete strength in existing buildings since it leads to a reduc-
tion of the uncertainty in the estimation of the concrete strength
variability. It is noted that the empirical model that was developed
does not account for test repeatability issues that may affect the
regression. Such approach was selected to reflect scenarios where
the number of tests that can be carried out is limited.

Regarding the estimate of the mean value of the concrete
strength, the simulations carried out within the present study
showed that, on average, the mean value of a region can be esti-
mated with an acceptable uncertainty using a number of core com-
pression tests obtained from 15% to 30% of the members in the
region. However, this approach leads to inadequate estimates of
the mean concrete strength variability. The proposed method also
provides a better estimate of the mean concrete strength variabil-
ity, assuming that NDTs can capture the expected variability of the
concrete strength of a finite population of structural elements
where the concrete strength is assumed to be homogeneous.

In conclusion, the presented study highlights the importance of
using auxiliary data provided by NDTs when assessing the concrete
compressive strength of an existing building and proposes the use
of a strategy based on finite population principles to manage the
uncertainty in the estimation of concrete strength statistics.
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