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ABSTRACT 
 

 

A large amount of agro-industrial by-products is annually generated by canned 

fish industry and brewing process - mostly brewer´s spent grain (BSG) and brewer´s 

spent yeast (BSY). Since the main uses of these wastes are animal feed or 

incineration, sustainable practices demand for economic and environmental 

valorization. One possible approach is the recovery of protein fraction from these 

by-products for production of autolysates/ hydrolysates with potential biological 

properties and, thus, with greater commercial interest.  

This PhD research work aimed to produce BSY autolysates, sardine protein 

hydrolysates (SPH) and BSG protein hydrolysates with antioxidant and angiotensin- 

I converting enzyme inhibitory (ACE-I) activities, with potential use as new bioactive 

food ingredients. To achieve this purpose, a BSY extract was obtained by mechanic 

disruption procedure to recover valuable compounds (enzymes, proteins, vitamins, 

antioxidant compounds) and produce BSY autolysates, SPH and BSG protein 

hydrolysates by the action of BSY proteases. The processing conditions for 

autolysis/ hydrolysis were optimized by response surface methodology and 

monitorization was performed by chromatographic, electrophoretic, hydrolysis 

degree (DH) and/ or protein recovery analyses. Autolysate/ hydrolysates were 

characterized in relation to proximate composition, molecular weight distribution and 

hydrophobicity; the antioxidant activities were screened by chemical and/or cell-

based assays and the ACE-I was measured by a fluorimetric assay. Ultrafiltration 

(UF) membranes were used to concentrate the bioactive fraction. In order to predict 

the in vivo bioavailability of the bioactive compounds, the impact of gastrointestinal 

(GI) digestion and the permeability through Caco-2 and Caco-2/HT29-MTX cell 

models were also evaluated. Mass spectrometry was performed to confirm the 

molecular mass range of compounds permeated in the transport assays.  

Data showed that the BSY autolysate, produced at 36ºC for 6 h, at pH of 6, 

presented TPC, FRAP and ACE-I activity (IC50) of 385 µM GAE/mL, 374 µM TE/mL 

and 379 µg protein/mL, respectively. After simulated GI digestion, BSY autolysate 

exhibited a protective effect against oxidative stress induced by hydrogen peroxide 

in Caco-2 cells and good permeability through Caco-2 and Caco-2/HT29-MTX cell 

models. Regarding to SPH production, data showed that sarcoplasmic proteins from 

sardine by-products were effectively hydrolysed by BSY proteases. Under the 

optimum hydrolysis conditions, E/S ratio 0.27:1 U/mg (0.725 U/mL), 50ºC for 7 h, at 

pH of 6, sarcoplasmic SPH presented a FRAP value of 290 μM TE/mL and an ACE-
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I activity (IC50) of 164 µg protein/mL. These activities were enhanced by UF (10 kDa- 

membrane). The ACE-I of SPH remained unchanged upon GI digestion (117 µg 

protein/mL), but no ACE-I activity was detected after cell transport, suggesting the 

degradation of ACE-I peptides by brush-border peptidases. Antioxidant activity 

increased after GI digestion (344 μM TE/mL) and sarcoplasmic SPH bioactive 

compounds permeated across Caco-2 and Caco-2/HT29-MTX co-culture cell 

monolayers, providing further evidence of intestinal absorption. Additionally, Mass 

spectrometry revealed that peptides with m/z between 1000 and 5000 were 

transported across Caco-2/HT29-MTX co-culture cell monolayer, presumably via 

transcytosis mechanisms. The sarcoplamic SPH also exhibited anti-inflammatory 

activity in TNF-α simulated endothelial cells through the inhibition of NO, ROS and 

pro-inflammatory cytokines production, MCP-1, VEGF, IL-8 and ICAM-1. In addition, 

BSY proteases hydrolysed muscle and viscera proteins from sardine by-products, 

but in a lesser extent compared with Alcalase® and Neutrase®. However, viscera 

SPH prepared by BSY proteases presented significantly higher emulsion, foaming 

and oil binding properties compared with other viscera SPH. Besides sardine 

proteins (animal origin), BSY proteases efficiently hydrolysed the BSG proteins 

(vegetal origin). Under the hydrolysis conditions optimized, E/S ratio of 0.29:1 U/mg 

(0.725 U/mL), 50ºC, 6 h, at pH of 6.0, BSG protein hydrolysate presented DH of 

17.1%, TPC of 1.65 mg GAE/mL and FRAP value of 1.88 mg TE/mL. The main BSY 

proteases responsible for the BSG protein hydrolysis were indicated as belonging 

to the class of serine peptidases and metallopeptidases. Compared with treatments 

by commercial enzymes, BSY proteases were less efficient to hydrolyse the BSG 

proteins; Alcalase® prompted the highest TPC (0.083 mg GAE/mg dw) and ACE-I 

activity (385 µg protein/mL). Moreover, <10 kDa UF fractions inhibited the 

intracellular ROS generation and exerted a protective ability against hydrogen 

peroxide induced oxidative damage in Caco-2 and HepG2 cell lines, indicating its 

potential use in food systems as natural antioxidants. Overall, this research 

suggested that BSY autolysates, SPH and BSG protein hydrolysates can be 

considered a high added-value ingredient with promising nutraceutical applications. 

 

Keywords: Brewer´s spent yeast, brewer´s spent grain, sardine protein hydrolysate, 

antioxidant activity, angiotensin- I converting enzyme. 
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RESUMO 
 

 

Anualmente são produzidas grandes quantidades de sub-produtos agro-alimentares 

por parte das indústrias conserveira e cervejeira (levedura e dreche). Dado que as principais 

aplicações destes sub-produtos são a alimentação animal e incineração, recomendam-se 

práticas sustentáveis que promovam a sua valorização económica e ambiental. Uma 

possível aplicação é a recuperação da fração proteica destes sub-produtos para produção 

de autolisados/ hidrolisados com potenciais propriedades biológicas, e, por isso, com maior 

interesse sob o ponto de vista comercial. 

O trabalho desenvolvido nesta tese de doutoramento teve como objetivo a produção 

de autolisados de levedura de cerveja, hidrolisados proteicos de sardinha e hidrolisados 

proteicos da dreche, com atividades antioxidante e de inibição da enzima conversora da 

angiotensina I (ECA), para potencial uso como ingredientes bioativos na indústria alimentar. 

De forma a atingir estes objetivos, extratos de levedura de cerveja foram obtidos por 

disrupção mecânica para recuperar os compostos biológicos (enzimas, proteínas, vitaminas, 

compostos antioxidantes) e utilizar as proteases na produção dos referidos autolisados/ 

hidrolisados. As condições de autólise/ hidrólise foram otimizadas por metodologia de 

superfície de resposta e a monitorização dos processos foi avaliada por métodos de 

cromatografia, eletroforese, grau de hidrólise (GH) e recuperação da proteína. Os 

autolisados/ hidrolisados foram caracterizados relativamente à sua composição nutricional, 

distribuição dos pesos moleculares e hidrofobicidade; as atividades antioxidantes foram 

avaliadas for ensaios químicos e por modelos celulares e a atividade inibitória da ECA foi 

avaliada por um método fluorimétrico. A ultrafiltração (UF) foi empregue para concentrar a 

fração bioativa. A biodisponibilidade dos compostos bioativos foi avaliada através dos 

ensaios de simulação da digestão gastrointestinal (GI) e de transporte intestinal através de 

dois modelos celulares: Caco-2 e co-cultura Caco-2/HT29-MTX. 

Os resultados mostraram que o autolisado de levedura de cerveja, produzido a 36ºC 

por 6 h, a pH 6, apresentou um teor de fenólicos totais (FT), FRAP e inibição da ECA (IC50) 

de 385 µM GAE/mL, 374 µM TE/mL e 379 µg proteína/mL, respetivamente. Após simulação 

da digestão GI, o autolisado de levedura de cerveja exibiu um efeito protetor contra o stress 

oxidativo induzido por peróxido de hidrogénio nas células Caco-2 e uma boa permeabilidade 

através das monocamadas celulares Caco-2 e Caco-2/HT29-MTX. Relativamente à 

produção de hidrolisados proteicos de sardinha, os resultados evidenciaram que as 

proteínas sarcoplasmáticas extraídas dos sub-produtos de sardinha foram eficazmente 

hidrolisadas pelas proteases da levedura de cerveja. Aplicando as condições de hidrólise 

otimizadas, relação enzima substrato de 0.27:1 U/mg (0.725 U/mL), 50ºC por 7 h, a pH 6, 

os hidrolisados de proteínas sarcoplasmáticas apresentaram um valor de FRAP de 290 μM 

TE/mL e uma atividade de inibição da ECA de 164 µg proteína/mL. Ambas as atividades 

foram melhoras por UF (membrana de 10 kDa). Apesar da atividade inibitória da ECA do 
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hidrolisado de proteínas sarcoplasmáticas de sardinha não ter sido alterada após a 

simulação da digestão GI (117 µg proteína/mL), esta propriedade não foi detetada após o 

transporte celular; este resultado sugere que os compostos bioativos que atravessaram as 

monocamadas Caco-2 e Caco-2/HT29-MTX foram degradados pelas peptidases da 

bordadura em escova. A atividade antioxidante também aumentou após o ensaio de 

simulação da digestão GI e os compostos bioativos atravessaram as monocamadas Caco-

2 e Caco-2/HT29-MTX, evidenciando potencial absorção intestinal in vivo. Adicionalmente, 

os resultados de espectrometria de massa mostraram que péptidos com m/z entre 1000-

5000 atravessaram a monocamada Caco-2/HT29-MTX, provavelmente por mecanismos de 

transcitose. O hidrolisado de proteínas sarcoplasmáticas de sardinha também apresentou 

propriedades anti-inflamatórias em células endoteliais estimuladas pelo fator de necrose 

tumoral (TNF-α), visível pelos resultados de inibição da produção de óxido nítrico, espécies 

reativas de oxigénio e das citocinas pro-inflamatórias MCP-1, VEGF, IL-8 and ICAM-1. As 

proteases do extrato de levedura também conseguiram hidrolisar as proteínas musculares 

e viscerais dos sub-produtos de sardinha, embora de forma menos eficaz quando esta 

hidrólise foi comparada com a promovida pelas enzimas comerciais Alcalase® e Neutrase®. 

Contudo, comparativamente aos outos hidrolisados de proteínas viscerais, o tratamento 

com proteases da levedura de cerveja produziu hidrolisados com melhores propriedades de 

emulsão, formação de espuma e capacidade de retenção de gordura. Adicionalmente estas 

proteases também conseguiram hidrolisar as proteínas da dreche (origem vegetal). 

Aplicando as condições de hidrólise otimizadas, relação enzima substrato de 0.29:1 U/mg 

(0.725 U/mL), 50ºC por 6 h, a pH 6, os hidrolisados proteicos da dreche apresentaram um 

GH de 17.1%, TF de 1.65 mg GAE/mL e um valor de FRAP de 1.88 mg TE/mL. Os resultados 

apontam que as principais proteases responsáveis por esta hidrólise pertencem à classe 

das peptidases de serina e metaloproteases. No estudo comparativo da hidrólise das 

proteínas da dreche com proteases comerciais, as proteases da levedura de cerveja 

revelaram menor eficácia; contrariamente o tratamento com Alcalase® produziu 

hidrolisados com maior teor em FT (0.083 mg GAE/mg peso seco) e atividade inibitória da 

ECA (385 µg proteína/mL). Além disso, a fração menor de 10 kDa inibiu a produção de 

espécies reativas de oxigénio e exerceu um efeito protetor contra o stress oxidativo induzido 

por peróxido de hidrogénio nas linhas celulares Caco-2 e HepG2.  

Em conclusão, este estudo sugere que os autolisados de levedura de cerveja, 

hidrolisados proteicos de sardinha e hidrolisados proteicos da dreche podem ser 

considerados ingredientes bioativos, apresentando promissoras aplicações na área dos 

nutracêuticos. 

 

Palavras-chave: autolisados de levedura de cerveja, hidrolisados proteicos de sardinha e 

hidrolisados proteicos da dreche, atividade antioxidante, atividade inibitória da enzima 

conversora da angiotensina.  
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MOTIVATION AND RESEARCH AIMS 
 

 

Brewing and canned fish industry generate annually significant amounts of by-

products. Due to the global intense pressure towards green environmental technology, 

finding alternatives to reduce the pollution arising from these two agro-industrial activities is 

a major cause of concern. Efforts have been done to reduce the amount of waste by finding 

alternative uses for by-products apart from the current general use for animal feed or 

incineration. The main challenge is to convert the underutilized by-products into more 

profitable and marketable products. An alternative is to extract the protein fraction of these 

by-products and hydrolyze to obtain biological active peptides. The search for Angiotensin 

I-converting enzyme (ACE) inhibitors and antioxidants, with little or no side effects 

compared to the available synthetic ACE inhibitors (such as, captopril) and antioxidants 

forms (such as, α-tocopherol and butylated hydroxyanisole) have received great attention 

(1).  

 

In Portugal, two important industries facing this challenge are the Unicer- Bebidas de 

Portugal, S.A. brewing (Leça do Balio, Portugal) and the canned sardine industry 

Conservas Ramirez & Cia (Filhos), SA (Matosinhos, Portugal). The main by-products 

generated by the brewing are brewer´s spent grain (BSG), brewer´s spent yeast (BSY) and 

brewer´s spent hops (2). In 2013, Unicer brewing generated 42.261 tonnes of by-products, 

corresponding more than 96% to BSG (36.958 tonnes) and yeast surplus (6.257 tonnes) 

(3). These by-products contain more than 20% of protein and are generally sold for local 

producers as protein supplements for cattle feed (2). Other possibility is incineration, 

however it comprises an environmental problem due the gas emission effects (4). Several 

attempts have been described to reuse BSG and BSY through the recovery of valuable 

nutrients or production of protein hydrolysates (5), (6). BSG protein hydrolysates have been 

recognized to possess antioxidant, anti-inflammatory, α-glucosidase inhibitory and 

dipeptidyl-peptidase IV (DPP-IV) inhibitory activities (6). Technological-functional properties 

of BSG protein isolates/hydrolysates have also been studied (7), (8). Concerning to BSY, 

applications in aquaculture, food industry, cosmetic and pharmacology are described (5), 

(9), (10). Moreover, several laboratory preparations of yeast enzymes have been 

characterized and purified, from which protease B (PrB) and Carboxypeptidase Y (CPY) 

have been the most extensively studied (11).  

 

 



2 

Canned sardine industry generated annually several solid wastes including heads, 

tails and viscera, which constitute more than 40% of the original raw material (12), (13). In 

2009, Conservas Ramirez & Cia (Filhos), SA generated 5.060 tonnes of by-products (14). 

This material is an important source of proteins, being traditionally transformed into 

powdered fish flour for animal feed (12). However, to increase the commercial value of 

sardine proteins by-product, an interesting alternative is to digest these proteins into 

biologically active peptides (15-17). Certainly, the current conditions of handling and 

preservation of sardine by‐products must be improved if they are intended as raw material 

for the production of Sardine Protein Hydrolysates (SPH). Additionally, as sardine is a 

pelagic-oil fish, the oil recovery should be an important step because its presence in the 

obtained SPH represents a problem due to its oxidation (13). SPH have industrial 

applications well evidenced by the commercial products available in the market, such as, 

Valtryon® and Lapis Suport® (18), (19). Industrial application of SPH include food and feed 

industry, agriculture, biotechnology, cosmetics and biomedical sectors due to their 

nutritional value, biological activities and good functional properties, particularly high water 

solubility. The main biological properties of SPH reported included: antioxidant, 

antihypertensive, antithrombotic, immunomodulatory, antimicrobial, among others (12), 

(13), (20). 

 

The major goal of this thesis was to find new application for the by-products generated 

from the brewing and canned fish industry, as a source of bioactive hydrolysates and its 

potential use for production of new bioactive ingredients. For this purpose, a BSY extract 

was obtained by mechanic disruption procedure to recover valuable compounds (enzymes, 

proteins, vitamins, antioxidant compounds) and chemically and nutritionally characterized. 

SPH and BSG protein hydrolysates were produced by the action of proteases present in 

the BSY extract. The antioxidant and ACE-I activities of BSY extract, SPH and BSG protein 

hydrolysates were screened by chemical and cell-based assays. In order to predict the in 

vivo bioavailability of the bioactive compounds generated, the impact of gastrointestinal (GI) 

digestion and the permeability through Human adenocarcinoma colon cancer cell 

monolayer (Caco-2) and Caco-2/HT29-MTX cell models were also evaluated, aiming to find 

valorization of these agro-industrial by-products, which is advisable from both economic 

and environmental standpoints. Figure i.1 presents a schematic overview of the major aims 

of this thesis. 
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Figure i.1. Recovery of added value compounds from brewing and canned sardine agro-

industrial by-products for production of SPH and BSG protein hydrolysates. 

 

 

To accomplish the main goal of this thesis, different specific objectives were 

established: 

1. Assess the biological activities of BSY extract prepared by mechanical disruption 

and its stability during storage at -25ºC for 6 months;  

2. Study the influence of number of reuses of yeast in beer fermentation step on the 

biological activities of the BSY extract; 

3. Optimize the autolysis conditions to enhance the antioxidant and ACE-I activities 

of the BSY extract; 

4. Assess the stability of the antioxidant and ACE-I activities of the BSY autolysate 

to GI proteases and to transport across Caco-2 and Caco-2/HT29-MTX co-culture 

models; 
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5. Optimize the hydrolysis of sardine sarcoplasmic proteins by BSY proteases to 

produce a SPH with enhanced antioxidant and ACE-I activities; 

6. Evaluate of the effect of Ultrafiltration membranes in the antioxidant and ACE-I 

activities of the SPH, prepared by action of BSY proteases; 

7. Assess the stability of the antioxidant and ACE-I activities of the SPH, prepared 

by action of BSY proteases to GI proteases and to transport across Caco-2 and 

Caco-2/HT29-MTX co-culture models; 

8. Screen for the anti-inflammatory activity of the SPH, prepared by action of BSY 

proteases; 

9. Compare the functional properties of muscle and viscera SPH prepared by BSY 

proteases and by the commercial enzymes Alcalase® and Neutrase®; 

10. Optimize the hydrolysis conditions of BSG proteins by the BSY proteases to 

produce a BSG protein hydrolysate with enhanced antioxidant and ACE-I 

activities; 

11. Compare the antioxidant and ACE-I activities of the BSG protein hydrolysate 

prepared by BSY proteases and by the commercial enzymes Alcalase® and 

Neutrase®. 
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THESIS OUTLINE  
 

 

This thesis is divided in three parts (Part I, Part II and Part III), which closely mimic 

the development of the research program. Each part is organized in two sections: a 

“Literature review” and the “Experimental work”. Chapters regarding to “Experimental work” 

are related with each other, and the approach chosen in each one was dependent on the 

conclusions attained in previous one(s). Each chapter contain their own introduction, 

material and methods, experimental results and discussion, and a brief conclusion. The text 

of this thesis is overall organized in thirteen chapters followed by the “General conclusions 

and Future prospects” obtained with this thesis. Figure i.2 presents a schematic overview 

of the organization of this thesis. 

 

 

Part I entitled “Brewer´s spent yeast extract” includes Chapter 1 to 5. Chapter 1 is a 

literature overview of BSY nutritional characteristics and applications, the common cell 

disruption processes used to produce BSY extracts; as well as, the main biological activities 

reported for BSY autolysates and hydrolysates.  

- Chapter 2 describes the potential use of a BSY extract prepared by mechanical 

disruption as a source of proteolytic enzymes and antioxidant and ACE-I activities; 

- Chapter 3 explores the influence of the yeast reuse during beer fermentation step on 

the proteolytic activity and antioxidant and ACE-I activities of the BSY extract prepared 

by mechanical disruption;   

- Chapter 4 reports the autolysis optimization of the BSY extract to enhance its antioxidant 

and ACE-I activities; 

- Chapter 5 describes the simulated GI digestion and the in vitro intestinal cell permeability 

of the BSY autolysate with enhanced antioxidant and ACE-I activities. 

 

 

Part II entitled “Sardine protein hydrolysates” includes Chapter 6 to 10. Chapter 6 is 

a literature overview of the canned sardine by-product, it describes the characterization of 

sardine sarcoplasmic proteins, the typical process adopted for the manufacturing of SPH 

and the main biological activities reported.  

- Chapter 7 reports the hydrolysis optimization of the sardine sarcoplasmic proteins by 

BSY proteases to produce a SPH with antioxidant and ACE-I activities; 

- Chapter 8 describes the simulated GI digestion and the in vitro intestinal cell permeability 

of the SPH with antioxidant and ACE-I activities; 
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- Chapter 9 explores the potential anti-inflammatory properties of the SPH prepared by 

action of the BSY proteases; 

- Chapter 10 compares the biological activities and techno-functional properties of 

different muscle and viscera SPH prepared by action of BSY proteases and the 

commercial enzymes: Alcalase® and Neutrase®. 

 

 

Part III entitled “Brewer´s spent grain protein hydrolysates includes Chapters 11 to 

13. Chapter 11 is a literature overview of the BSG nutritional characteristics and 

applications, it also describes the typical enzymatic process adopted for the manufacturing 

of BSG protein hydrolysates and the main biological activities reported.  

- Chapter 12 reports the hydrolysis optimization of BSG proteins by BSY proteases with 

antioxidant and ACE-I activities; 

- Chapter 13 compares the biological activities of different BSG protein hydrolysates 

prepared by action of BSY proteases and the commercial enzymes: Alcalase® and 

Neutrase®.  

 

 

The experimental work was mainly developed in the following research laboratories: 

- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical 

Sciences, Faculty of Pharmacy, University of Porto (Portugal); 

- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Chemical Sciences, 

Faculty of Pharmacy, University of Porto (Portugal); 

- CICS, Department of Pharmaceutical Sciences, Instituto Superior de Ciências da Saúde-

Norte (Portugal); 

- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro 

(Portugal); 

- Research Group Food Chemistry and Human Nutrition, Department of Food Safety and 

Food Quality, Faculty of Bioscience Engineering, University of Gent (Belgium). 
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Figure i.2. Schematic overview of the organization of the Ph.D. thesis, with indication of the 

different chapters included in each part (I, II and III). 
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“Brewer´s spent yeast extracts” 
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Chapter 1 

Literature review 

Brewer`s spent yeast: potential source of biological compounds and proteases for 

application in the production of food hydrolysates 

 

Chapter 2 

Nutritive value, antioxidant activity and phenolic compounds profile of Brewer’s spent 

yeast extract 

 

Chapter 3 

A bioactive ingredient obtained from the inner cellular content of Brewer´s spent yeast  

 

Chapter 4 

Autolysis of intracellular content of brewer`s spent yeast to maximize ACE-inhibitory and 

antioxidant activities  

 

Chapter 5 

Impact of in vitro gastrointestinal digestion and transepithelial transport on antioxidant and 

ACE-inhibitory activities of brewer´s spent yeast autolysate  
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This chapter presents a literature overview of BSY nutritional 

characteristics and applications, the common cell disruption processes 

used to produce BSY extracts; as well as, the main biological activities 

reported for BSY autolysates and hydrolysates. 
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1.1. Brewer`s spent yeast  

 

 1.1.1. By-product  

 

Brewer`s yeast is an important ingredient in the beer production. Besides the ethanol 

and carbon dioxide production, yeast cells are responsible for the formation of compounds 

essential for the sensorial profile of beer, namely organic acids, esters, aldehydes, ketones 

and sulfur compounds (5). Brewer´s yeast are conventionally classified into the categories 

of Ale and Lager yeasts. Lager (“bottom-fermenting”) yeast are Saccharomyces pastorianus 

strains that run the fermentation at cool temperatures (8-15 ºC) and forms a cloudy mass 

(flocculates) on the bottom of the vessel, while Ale yeast (“top-fermenting”) are 

Saccharomyces cerevisiae strains that run the fermentation in the temperature range of 16-

25 ºC and rise to the surface of the vessel, facilitating their collection by skimming (5), (21). 

 

During beer fermentation stage, and depending on the fermentation conditions of 

each brewery, yeast tends to multiply between three to six fold in the reactor, especially 

during the early hours when oxygen is supplied to the wort (5), (22). It is a common practice 

in brewing the reuse of the cell mass generated by inoculation in a new fermentation tank. 

The number of reuses depend on species, type of beer produced, and amount of the wort 

extract and the microbiological viability of yeasts. Typically, yeast mass can be reused 

between 3 to 10 times without compromising the sensory quality of beer. Yeast cells that 

are removed from the process generates a solid by-product called Brewer´s spent yeast 

(BSY) (22).  

 

BSY is the second major by-product from brewing process (after BSG) (5). In lager 

fermentation, the typical total amount of BSY produced ranges between 1.7 kg/m3 and 2.3 

kg/m3 of final product (23). It is composed by 10-14% total solids, including yeast solids, 

beer solids and trub solids (5). 

 

1.1.2. Nutritional composition 

 

On a dry weight (dw) basis, cell wall constitutes 15-20% of the yeast weight, 

comprising 80-90% polysaccharides, particularly glucans and mannans, and a small 

amount of proteins and lipids (3). The mannans from cell wall are linked to proteins and are 

commonly described as mannoproteins, these are important structural components of the 

cell wall. Figure 1.1 illustrates the microscopic structure of yeast cell and the proximate 

composition (% dw) of BSY. 
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Figure 1.1. Microscopic structure of yeast cell and proximate composition (% dw) of BSY. 

The figure yeast diagram was taken from Northern Arizona University (2008) (24). 

Proximate composition is based on chemical analysis reported by (22), (25-27). 

 

 

 The nutritional composition of BSY has been reported by several authors (22), (24-

27). BSY is predominantly composed by proteins, ranging between 35 and 60% (dw), which 

have high biological value, representing between 70-85% of casein value (25), (28). The 

most abundant amino acids of BSG are lysine, leucine, valine, tryptophan, threonine and 

phenylalanine, and it is slightly deficient in sulfur amino acids, such as, cysteine and 

methionine (29), (30). The amino acids score of BSY is 98.1%, presenting a well-balanced 

amino acid profile for human consumption (25). Other components of BSY are 

carbohydrates (35-45%); lipids (4-6%); and minerals (5-7.5%), namely calcium, 

phosphorus, potassium, selenium, chromium, magnesium and iron (6), (22), (30-32). BSY 

is a good source of a biologically active form of chromium trivalent, known as glucose 

tolerance factor, which has been extensively studied for its medicinal properties (5). The 

yeast intracellular compartment is mostly composed of soluble proteins, B-complex 

vitamins, nucleic acids, minerals and enzymes (5). 

 

 

Composition  % dw 

  
Protein 35-60 
Total nitrogen (TN) 8.2 
N as free ammonium 1.0 
Amino nitrogen (AN) 4.5 
AN/TN 0.57 
  
  
Total carbohydrate 35-45 
β-glucan 17.2 
Glycogen 7.7 
Soluble fibre 9.65 
Insoluble fibre 2.57 
  
  
RNA 4-7 
Fat 4-6 
Minerals 5-7.5 
  
  
Bitterness (BU/g) 30 
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1.1.3. Antioxidant system 

 

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) can damage 

different cell macromolecules, being related to the development of several diseases (33). 

Yeast cells contain enzymatic and non-enzymatic defense systems to protect their cellular 

constituents and maintain the cellular redox state. Figure 1.2. presents the main classes of 

antioxidant defense in yeast cells. The antioxidant mechanisms of yeast have been 

reviewed by several authors (33-37). Several enzymes, including catalase, superoxide 

dismutase, glutathione reductase, thioredoxin reductase and methionine reductase, are 

capable of removing ROS and RNS and their products and/or repairing the damage caused 

by oxidative stress (35). Catalase catalyses the breakdown of hydrogen peroxide to oxigen 

and water, while superoxide dismutases catalyses the breakdown of superoxide anion to 

hydrogen peroxide and oxygen. The enzymes glutathione reductase and thioredoxin 

reductase require nicotinamide adenine dinucleotide phosphate (NADPH) to reduce 

oxidized glutathione (GSSG) and thioredoxin, respectively. The enzyme glutathione 

reductase is primarily responsible for the reduction of GSSG and maintenance of the 

gluthathione (GSH)/GSSG ratio in cell, whereas the enzyme glutathione peroxidase 

catalyses the reduction of hydroperoxides, using GSH as a reductant. Thioredoxin 

peroxidase reduces both hydrogen peroxide and alkyl hydroperoxides, in combination with 

thioredoxin reductase, thioredoxin and NADPH.  
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Figure 1.2. Classes of natural antioxidants of yeast cells. Adapted from (38). 

 

 

Besides the enzymatic protection against ROS and RNS, there are small molecules, 

soluble in aqueous or (in some cases) lipid environments, that act as radical scavengers. 

Some examples include Coenzyme Q10, GSH, polyamines, glutaredoxin, ascorbic acid, 

phenolic compounds, vitamin E and vitamin A (35). Recently it has been proposed that 

methionine residues exposed on the surface of proteins can also act as antioxidants to 

protect the active sites of proteins (35). GSH, a tripeptide y-L-glutamyl-L-cystinylglycine, 

acts as a radical scavenger, reacting with oxidants to produce GSSG. In addition to GSH, 

amino acid-derived polyamines have also been implicated in protecting yeast against 

oxidative stress. Other example are glutaredoxins, a class of small proteins with an active 

site containing two redox sensitive cysteines, which act as a source of electrons for 

ribonucleotide reductase.  

 

Although yeasts are non-photosynthetic microorganisms, some yeasts can 

biosynthesize carotenoids and phenolic compounds. Due to their free radical scavenging 

and/or provitamin A (carotene) potential, carotenoids and phenolic compounds prevent 

various types of cancer and other diseases (39). According to Moreira [PhD dissertation] 

(40), ferulic acid and p-coumaric acid are the main contributors for the phenolic composition 

of BSY. Although yeasts synthesize erythroascorbate instead of ascorbate, there are few 

reports describing the presence of ascorbic acid in Saccharomyces cerevisiae (35), (41). 

Vitamin E acts as a lipid-based radical chain breaking molecule with scavenging capacity 
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for free radicals, such as, lipid peroxyl, alkoxyl and hydroxyl radicals. Trolox, a water-soluble 

analog of vitamin E, decreased the levels of hydrogen peroxide and superoxide, as well as, 

increased the activity of enzymatic antioxidants in yeast. Vitamin E has also been described 

to have regulatory actions in inducing antioxidant enzymes synthesis. Other micronutrients, 

such as, manganese, copper, zinc and selenium, are components of antioxidant enzymes 

and have been reported in yeast (33). 

 

 

1.1.4. Enzymatic system 

 

 Yeast vacuole has a slightly acidic environment (pH ~6.2) compared with the cytosol 

(pH ~7.2) and contains several proteases, including protease A (PrA), PrB, CPY, 

carboxypeptidase S (CPS), aminopeptidase I (API), aminopeptidase Co and dipeptidyl 

aminopeptidase B (11), (42), (43). These vacuolar exopeptidases and endopeptidases are 

released from autolyzed cells and may promote protein degradation to generate smaller 

peptide fragments (44). These enzymes are classified as metalloproteases, serine 

proteases and aspartyl proteases (11). In brief, serine proteases comprise a large family 

whose enzymatic activity is mediated by a characteristic catalytic triad consisting of 

asparagine, histidine and serine. In contrast, metalloproteases depend on metal ions, 

especially Zn2+ for their catalytic function, and the aspartyl proteases are characterized by 

two catalytic asparagine residues, mediating an acid-base hydrolysis reaction (11). 

 

 PrA is a monomeric 42 kDa aspartyl endoprotease with a key role for the vacuolar 

protease activation cascade. PrB, CPY and AP depend on PrA for proteolytic activation. 

PrB is a 76 kDa serine endoproteases; CPY is a serine carboxypeptidase and initially 

synthesized as a ~60 kDa precursor; CPS is a zinc-dependent metallo-carboxypeptidase 

and initially synthesized as a ~64 kDa precursor and AP1 is a zinc-dependent metallo-

aminopeptidase and initially synthesized as a ~61 kDa precursor (11). 
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1.1.5. Potential applications 

 

 BSY is currently underutilized, sold primarily as inexpensive animal feed after 

inactivation by heat (45). Alternatives are incineration of this organic solid waste, or put into 

landfill, both procedures causes losses of its proteins and amino acids, and other useful 

substances (46) and causes environmental concerns (47). 

 

 Due to the fact that BSY holds the GRAS status (Generally Recognized as Safe), it 

can be used in food and pharmaceutical industries (10), (48). BSY should not be confused 

with ‘‘brewer’s type yeasts’’ or ‘‘nutritional yeasts’’, which are pure yeasts usually grown 

under controlled production conditions for specifically use as a nutritional supplement (5), 

(31), (49). As referred, BSY possess high quality proteins, which contains essential amino 

acids, particularly, lysine, isoleucine and threonine. Therefore supplements of brewer’s 

yeast are useful for low-calorie diets that are deficient in proteins (5). However, a limiting 

factor in utilization of BSY as a protein source for human consumption is its high content of 

ribonucleic acid (RNA) content. Some reagents and techniques are used for isolation of 

yeast protein with low RNA content (5), (50).  

 

 BSY can be used in food industry to produce yeast protein concentrates, usually 

commercialized in the form of powders, flakes or tablets or in liquid form (5). BSY can also 

be used to produce BSY extracts, presenting several biological properties, to be applied in 

aquaculture, food, cosmetic and pharmaceutical industries (9), (10), (36), (51-53). 

Moreover, yeast cells contain numerous enzymes, being the industrial extraction of these 

enzymes an interesting field to explore. Potential applications of BSY were reviewed by our 

research group (5). The potential applications of BSY as functional food ingredients for 

animal and human nutrition are described on Table 1.1. 
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Table 1.1. Potential applications of BSY as functional food ingredients for animal and human nutrition 

 

Yeast-derived products Potential applications Reference 

Vitamins 
(riboflavin, folic acid and biotin) 

- used as colorants of foods  
- used as vitamin supplements 

(36), (54) 

Minerals 
(selenium, chromium, zinc, iron, copper, manganese) 

- used as mineral supplements 
- extraction of glucose tolerance factor 

(36) 

Lipids 
(lecithin, choline, glycerol,  inositol, glycolipids) 

- contribute to flavour of foodstuffs  
- used as emulsifiers and surfactants  
- used to fortify foods and food supplements 

(36) 

RNA 
(ribonucleotides: 5′-IMP, 5′-GMP) 

- enhance mouthfeel of soups, sauces, marinades, soft drinks, cheese 
spreads, and seasonings – contribute to the “meaty” flavour  

(50) 

Dietary fiber 
(glucans, mannans, chitin) 

- potent immunostimulant used as additive in diet of several animals 
- lower serum cholesterol level and reduce the risk of heart diseases 

(27),  
(55-59)  

Proteins 
(mannoproteins) 

- used as protein supplement  
- used as gelling and emulsifying agents 
- lower serum cholesterol level and reduce the risk of heart diseases 

(25), (30), 
(56), (60), 
(61) 

Amino acids 
(monosodium glutamate, MSG) 

- contribute to flavour of foodstuffs  
 

(36), (62) 

Peptides 
(CHP), Cyclo-His-Pro 
(GSH), Y-L-glutamyl-L-cysteinyl-glycine) 
(AdoMet), S-Adenosyl-L-methionine) 

- used in glucose tolerance/ antidiabetic agent 
- used as antioxidant  
- used in pharmaceutical industry 

(45), (63) 

Enzymes 
(PrA, PrB, oxidoreductase) 

- used to block Maillard reaction of dicarbonyl intermediates, thereby 
preventing their decomposition to off-flavour final products  

(36), (54), 
(64), (65) 

Phenolics and Flavonoids 
(sterols, gallic acid, catechin) 

- antioxidant activity (36), (40) 

Carotenoids  
(astaxanthin, lutein, torulene, β-carotene, γ-carotene, 
lycopene, torulahordin, zeaxanthin) 

- used as food colorants 
 

(36) 
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1.2. Production of BSY extract 

 

The cytoplasm of yeast cell is a valuable source of proteins, peptides, enzymes, RNA, 

minerals, vitamins, among other compounds. The recovery of these intracellular 

compounds implies an efficient breakage of the cell walls; the final product is called yeast 

extract (48), (66). The identification of a suitable cell disruption method is very important to 

promote an efficient and cost effective recovery of the intracellular products with reduced 

contaminants and minimal micronization of cell debris (67), (68).   

 

 Disruption technique can be classified into mechanical (employing shear force) and 

non-mechanical (physical, chemical or enzymatic lysis) methods, as summarized in Figure 

1.3.  

 

 

 

 

 

 

 

 

 

Figure 1.3. Classification of disruption techniques. Adapted from (69). 

 

 

The non-mechanical methods, particularly the autolysis process, are commonly used 

at the laboratorial scale (50). In opposite, the mechanical methods are most appropriate for 

large-scale disruption and allow high recovery yields. In the mechanical methods, cell wall 

is broken due to stress produced by high pressure, cavitation, sonication, ultrasound or 

abrasion during rapid agitation with glass beads (69). Its application is restrict due to the 

temperature elevation, requiring multiple steps of cooling, and the large quantity of cell 

debris in the final products (66), (67). At laboratorial scale, cell disruption using glass beads 

is routinely used, as well as, some high-pressure methods as the Hughes press or the 

French press. Bead mill, high pressure homogenizer and high-intensity ultrasound are 

mechanical methods scalable for industrial use (69). 

Yeast cell disruption 

Mechanical methods 

Solid shear 

Bead Mill 
X-press 
Hughes press 
 
 

Liquid shear 

Microfluidizer 
Sonicator 
Ultrasonicator 
Homogenizer 
French press 
 

Physical 

Decompression 
Osmotic shock 
Thermolysis 
Freeze-thaw 
Desiccation 
Electrically-assisted 
treatment 
 
 

Chemical 

Antibiotics 
Detergents 
Chelating agents 
Solvents 
Chaotropes 
Hydroxide 
Hypochlorite 
 

Enzymatic 

Autolysis 
Hydrolysis 

 

Non-mechanical methods 
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In the Ultrasonication method, an intense shear action induced by high frequency 

sonic waves is used for cell wall disintegration. This method creates high shear force by 

high-frequency ultrasound (above 16 kHz) (66). Although ultrasonic is rather effective for 

lysis of yeast cells, it is usually accompanied by temperature increase, high content of cell 

debris and undesirable formation of chemical compounds (67). In the Bead Mill method, 

compounds are released from cells due to the action of circulating beads dispersed in the 

fluid (66), (70), it can be operated either in batch or in a continuous recycling mode (70). 

The major disadvantages of using Bead Mill and homogenizer are the poor selectivity in 

product release (i.e. the co-release of contaminants) and micronization of the cell debris, 

either of which can substantially increase the costs of subsequent downstream operation 

(46). The efficiency of mechanical cell disruption is usually monitored by measuring the 

amounts of proteins released; the activity of recovered enzymes or the number of surviving 

cells (69).  

 

The limitations associated with mechanical methods have inspired search of 

alternative methods for recovery of intracellular compounds from BSY. Currently, 

application of electrotechnologies, such as, the Pulsed electric field and High-voltage 

electrical discharges, are promising for intracellular extraction from bio-suspensions (68). 

Additionally, Electroporation has many advantages when compared with other disruption 

techniques, since it exerts a minimal undesirable impact on liquid components inside and 

outside the cell and can be done without significant temperature increase and formation of 

cell debris (67). Also, Lamoolphak et al. (47) used Hydrothermal decomposition of yeast 

cells for production of proteins and amino acids (using subcritical or supercritical water). 

 

Recovery of enzymes fraction by Ultrasonication and Bead Mill methods are the most 

effective for the destruction of cell wall while maintaining enzymes activity (70). In order to 

optimize the yield of cell disruption, beads with 0.25-0.75 mm of diameter and 40-50% cells 

(wet weight) is recommended (69). The pH of the disruption media also plays an important 

role because the enzymes/ proteins released after cell disruption must maintain their 

activity/ native structure (71). Figure 1.4. displays an example of yeast wall mechanical 

disruption (using glass beads) procedure, applied at laboratorial scale. 
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Figure 1.4. Yeast wall mechanical disruption, using glass beads, applied at laboratorial 

scale. 

 

Non-mechanical processes of yeast cell wall disruption are alternatives to mechanical 

disruption techniques and include physical, chemical and enzymatic methods (70). Physical 

methods result in large cell debris, which is a limitation for separation of soluble proteins, 

enzymes or other bio-products (69). An example is Decompression, based on introducing 

a pressurized subcritical or supercritical gas into the cells causing the cell disruption. Other 

possibilities are the Osmotic shock, where a cell suspension is diluted after equilibration in 

high osmotic pressure, and the Thermolysis. Chemical permeabilization can be promoted 

by antibiotics (penicillin, polymyxin), chelating agents (EDTA), chaotropes (urea, guanidine, 

ethanol), detergents (Triton-X, sodium dodecyl sulphate, sodium lauryl sarcosinate), 

solvents (toluene, chloroform, acetone) or by hydroxides and hypochlorites. However, 

chemical permeabilization with solvents or detergents does not result in the release of 

intracellular enzymes (69).  

 

The term autolysis means 'self-destruction', it represents self-degradation of the 

cellular constituents of a cell by its own enzymes (5), (72). The first step is disorganization 

of membranous systems, including cytoplasmic membrane and other organelles. This 

allows that the enzymes come in contact with cellular constituents, which are degraded and 

solubilized. The proteases attack the proteins and break them down into smaller constituent 

units, such as, peptides and amino acids. Likewise, enzyme nuclease degrades RNA and 

DNA yielding compounds, namely, nucleosides, mononucleotides and polynucleotides. 

Glucanases and proteases degrade the cell wall constituents such as, glucans and 

mannoproteins, which make the cell wall to become porous. Consequently, the autolysate 

(the mixture of degraded cellular components) leaks through the cell wall into the 

surrounding medium (73). Yeast autolysis is strongly influenced by temperature and pH 

(72).  

biomass 
+ beads 

biomass 
+ beads 
+ buffer 

yeast 
extract 

Time, Temperature, pH 
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By contrast, hydrolysis is accomplished by proteolytic enzymes and cell wall lysis 

enzymes. This process aims the production of a yeast extract with a low salt content (48). 

Several kinds of enzymes from bacterial, vegetable, yeast or animal origin have been used 

to produce BSY extracts, including Glucanases (74); Proteases (74), (75); Nucleases (29), 

(74); Deaminases (29), (74); Pepsin (75); Trypsin (75); Pancreatin (76); (77); Flavourzyme 

(29), (45), (48), (76), (78); Protamex (10), (45), (48), (78); Alcalase (45) and Neutrase (45). 

 

 

1.3. Biological activities of BSY extract 

 

BSY autolysates and hydrolysates are a source of nutrients and bioactive 

compounds, acting as nutraceuticals in animal and human nutrition (5). The recent patent 

by Esteves et al. (79) describes a method for obtaining peptide and polysaccharide extracts 

from BSY by hydrolysis with an enzymatic extract of Cynara scolymus flowers (55ºC, 3 h), 

followed by Ultrafiltration (UF) techniques. These BSY hydrolysates are claimed to present 

anti-hypertensive, anti-inflammatory, anti-ulcerative, antioxidant, antidiabetic, prebiotic, 

anticancer, antimicrobial and anti-obesity properties, with potential applications in the 

human and animal diet, as well, in pharmaceuticals. A summary of biological activities of 

BSY autolysates/ hydrolysates, as well as, the process preparation employed is presented 

in Table 1.2.  

 

BSY extracts have also been used as source of enzymes to produce protein 

hydrolysates from different food matrices. For instance, bovine skimmed milk digested with 

purified PrB from the cell-free extract of the BSY was found to inhibit proliferation activity of 

HL-60 cells (44). The same authors also reported an ACE-I activity (IC50) of 0.42 mg of 

protein/mL when skimmed milk was digested with the same purified PrB (64). Additionally, 

application of crude BSY protease extract to pineapple (80); papaya juice (81); beetroot and 

carrot juices (82); starch (83) and dairy products (84), (85) appears quite promising.  

 

  



24 

Table 1.2. Biological activities assessed in BSY autolysates and hydrolysates 

 

 

 

BSY extract preparation  BSY protein hydrolysis Fraction / 
Purification 

 

Method Process  Enzyme Hydrolysis Assay Bioactivity assessed Reference 

ACE-I activity 

Cultivation 30ºC, 24 h  Pepsin 
E/S ratio: 1% (w/v), 
37ºC, 12 h, pH 2 

(1) 5 kDa MWCO UF, (2) SE-HPLC, 
(3) RP-HPLC 

HHLa as 
substrate 

0.070 mg peptide /mL (75) 

np np  Alcalase 
E/S ratio: nr 
50ºC, 12 h, pH 7.5-8.5 

(1) peptide adsorption trough an 
resin column, (2) SE-HPLC,  
(3) RP-HPLC, (4) Gel filtration HPLC 

HHLa as 
substrate 

3.0-3.4 µmol peptide/L (86) 

Antioxidant activity 

8% BSY 
suspension 

np  
 
Flavourzyme 
 

E/S ratio: nr 
50ºC, 48 h, pH 7.0 

Acid treatment, activated carbon and 
5 kDa MWCO UF 

ABTS 
DPPH 

IC50= 0.9 mg peptide/mL 
IC50= 1.9 mg peptide/mL 

(45) 

np np  Pancreatine 
E/S ratio: nr 
50ºC, 5 h, pH 7.5-8.9 

np ABTS IC50= 1.3 mg peptide/mL (77) 

Antidiabetic activity 

8% BSY 
suspension 

np  
Flavourzyme 
 

E/S ratio: nr 
50ºC, 48 h, pH 7.0 

Acid treatment, activated carbon and 
5 kDa MWCO UF  

CHPb CHP = 674.0 μg/g (45) 

a HHL, Hippuryl-L-histidyl-L-leucine. 
b CHP, Cyclo-His-Pro (is an endogenous cyclic dipeptide structurally related to hypothalamic tyrotropin-releasing hormone, suggested to relate glycemic control in diabetes). 
DPPH, 2,2-diphenyl-1-picrylhydrazyl; ABTS, 2,2`-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid), MWCO,  molecular weight cut-off. 
np, not performed, nr, not reported. 
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1.4. Screening methods to search for autolysates/ hydrolysates bioactivity 

 

Autolysates/ hydrolysates may contain bioactive peptides that have a positive impact 

on body function and positive influence on health beyond their basic role as nutrient sources 

(87). Bioactive peptides have low molecular weight (i.e. 3-20 amino acid residues) and their 

activity is based on size, amino acid composition and sequence. Furthermore, their 

biological responses depend on the ability to cross the intestinal epithelium and enter the 

blood circulation, or to bind directly to specific epithelial cell surface receptor sites to exert 

physiological functions of the organism (88), (89).  

 

Several biological activities have been reported for food protein hydrolysates and for 

specific peptide sequences derived from these hydrolysates, namely, antioxidant, 

antihypertensive, anti-inflammatory, immunomodulatory, neuroactive, antimicrobial, 

mineral and hormonal regulating properties (Figure 1.5). Several in vitro methods have been 

developed for screening these properties and were reviewed by several authors (38), (87-

99). The following section will focus on the in vitro antioxidant and ACE-I activities assays. 

 

 

 

Figure 1.5. Physiological effects of food derived bioactive peptides on major body systems. 

Adapted from (100).  
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1.4.1. In vitro Antioxidant chemical activity 

 

When the balance between the production and neutralization of ROS, RNS and free 

radicals by the antioxidant defense system is compromised, cells suffer the consequences 

of oxidative stress (38), (97), (101). The main targets of ROS, RNS and free radicals are 

proteins, DNA, RNA, sugars and lipids. Oxidative stress is linked to the development of 

several diseases, such as, neurodegenerative disorders, hypertension, inflammation, 

cancer, diabetes, Alzheimer disease, Parkinson’s disease and ageing problems (38). Due 

to the potential health risks of synthetic antioxidants, as butylated hydroxyanisole (BHA), 

butylated hydroxytoluene (BHT) tert-butylhydroquinone (TBHQ) and propyl gallate (PG), the 

search for safe natural antioxidants is important (97), (102).  

 

Due to the complexity of different oxidative processes and the possibility that an 

antioxidant acts by different mechanisms, it is very difficult to select a suitable antioxidant 

assay that measures the overall antioxidant potential of the compound (94). Moreover, the 

conditions of the assay and the antioxidants solubility in the reaction media may affect the 

antioxidant activity assessed (88). For this reason, various methods are suggested to 

measure the antioxidant activity (103). Specific assays have not yet been developed or 

standardized to measure the antioxidant activity of food hydrolysates (103). 

 

The methods used for determining the antioxidant activity of a compound are 

classified in two main groups according to the chemical reactions involved: assays based 

on the hydrogen atom transfer reaction (HAT) and assays based on the electron transfer 

(ET) (97). HAT-based methods measure the ability of an antioxidant to quench free radicals 

by hydrogen donation; reactions are solvent and pH independent and are quite rapid. The 

main limitation of HAT assays is the presence of reducing agents (including metals), which 

can lead to incorrect high apparent reactivity (97). ET-based methods detect the ability of 

an antioxidant to quench free radicals, metals and/or carbonyls by electron transference 

(90). Other chemical assays that measure the scavenging capacity of individual ROS, such 

as, superoxide anion, singlet oxygen, hydrogen peroxide, hydroxyl radical and peroxynitrite, 

have been currently used and reviewed by several authors (90), (96), (98). Table 1.3 

summarizes the most widely used assays for determination of the antioxidant activity of 

food protein hydrolysates and bioactive compounds.  
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Table 1.3. Classification of in vitro analytical methods for evaluation of the antioxidant activity of food protein hydrolysates and bioactive compounds. 

Adapted from (90), (94) and (96). 

 

Classification Assay  Principle of the method Determination 

     
HAT 

 
ORAC Oxygen radical absorbance capacity Peroxyl radical reacts with a fluorescent probe to form a non-

fluorescent product 
Spectrofluorometry  

TRAP Total radical trapping antioxidant parameter Reaction between ROO. generated by AAPH and a target probe Spectrofluorometry  

LPIC Lipid peroxidation inhibition capacity Uses a Fenton-like system (Co(II) + H2O2) to 
induce lipid (e.g. fatty acid) peroxidation 

Spectrophotometry 

ABTS 2,2’- azinobis (3-ethylbenzothiozoline-6-sulfonic acid) ABTS radical reduction by oxidants Spectrophotometry 

     

     
ET TEAC Trolox equivalent antioxidant capacity ABTS radical reduction by oxidants in comparison with trolox, a 

water soluble analogue of vitamin E 
Spectrophotometry 

FRAP Ferric ion reducing antioxidant parameter Fe(III) complex reduction to Fe (II) by oxidants Spectrophotometry 

DPPH 2,2-diphenyl-1- picrylhydrazyl DPPH radical reduction by oxidants  Spectrophotometry 

CUPRAC Cupric ion reducing antioxidant capacity Cu (II) reduction to Cu (I) by antioxidants Spectrophotometry 

TPC Total phenolic assay by Folin-Ciocalteau reagent Oxidation of phenolics in basic medium resulting in the 
molybdenum oxide (MoO4+) formation 

Spectrophotometry 

DMPD N,N-dimethyl-p-Phenylenediamine assay DMPD radical reduction by oxidants Spectrophotometry 

 RP Reducing Power Fe(III) complex reduction to Fe (II) by oxidants Spectrophotometry 
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1.4.2. Antihypertensive activity 

 

Hypertension is strongly associated with cardiovascular diseases, leading to 

premature morbidity and mortality (104), (105). Emerging evidence indicates that bioactive 

peptides can promote antihypertensive effects via different mechanisms. The main group 

of antihypertensive peptides corresponds to the inhibitors of ACE. However, bioactive 

peptides can also interact with the renin-angiotensin system (RAS), Angiotensin II receptor, 

arginine-nitric oxide pathway, endothelin system and Ca2+ channels (105). 

 

Physiologically, hypertension occurs when renin produces Angiotensin I from 

angiotensinogen (103). ACE (EC 3.4.15.1) is a zinc metallocarboxydipeptidase, commonly 

found in vascular endothelial cells and neuroepithelial cells. This enzyme plays a significant 

physiological role in regulating blood pressure in the RAS; ACE can convert the inactive 

Angiotensin I into a potent vasoconstrictor, the Angiotensin II. At the same time, ACE also 

inactivates Bradykinin, a potent vasodilatory peptide. Hence, as ACE raises blood pressure, 

specific inhibitors of ACE are used as pharmaceuticals to treat hypertension (89), (103), 

(106), (107). Currently, several synthetic ACE-I, such as, captopril, lisinopril, enalapril and 

fosinopril, are been used to treat hypertension, however, they are known to have strong 

side effects, including coughing, taste disturbance and skin rash (15), (107). Therefore, the 

search for natural ACE-inhibitory peptides derived from food proteins with no side effects is 

of great importance (89). 

 

Several methods are described in literature to evaluate the ACE-Inhibitory (ACE-I) 

activity of a compound, which include spectrophotometric, fluorometric, radiochemical, 

capillary electrophoresis, and HPLC methods (107). Synthetic substrates, such as, N-α-

hippuryl-L-histidyl-L-leucine (HHL), N-[3-(2-furyl)acryloyl]-L-phenylalanyl-glycyl-glycine 

(FAPGG) and o-aminobenzoylglycyl-p-nitrophenylalanylproline (Abz-Gly-Phe-(NO2)-Pro 

(Abz) are used for measuring the in vitro ACE-I activity. HPLC, spectrophotometer, or 

spectrofluorometer are needed when HHL, FAPGG or Abz are used, respectively. Natural 

substrates as Angiotensin-I and Bradykinin are also used in these assays, but in a lesser 

extent (108). Table 1.4 summarizes the methods currently used to assess the ACE-I activity 

of food hydrolysates and bioactive peptides. ACE-I values are commonly expressed as IC50 

values, i.e., the concentration of peptide needed to inhibit 50% of the ACE activity. 

 

It should be highlighted that different methods and/or experimental conditions 

influence the ACE-I values, even with identical amino acid sequence (107). The IC50 value 
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strongly depends on various reaction parameters, such as, nature and concentration of 

substrate, volume, enzyme quantity and detection methods of reaction products (108). 

Thus, comparison between IC50 values of hydrolysate or peptides could lead to biased 

conclusions if all parameters are not considered. For example, the IC50 value of the same 

bioactive peptide Ile-Val-Tyr (IVY) was reported to be 0.479 mM by Iroyukifujita et al. (109), 

2.399 mM by Wu et al. (110) and 14.74 mM by Miyakoshi et al. (111). Other example is the 

peptide VY, which exhibited an IC50 of 10 μM by Matsufuji et al. (112) when FAPGG was 

used as substrate and an IC50 value of 16 μM by Terashima et al. (113), using HHL as 

substrate. 
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Table 1.4. In vitro analytical methods used for evaluation of the ACE-I activity of food hydrolysates and bioactive peptides 

 

 

 

 

 

Substrate Detection Principle Reference 
 

Synthetic 

HHL 

 

N-α-hippuryl-L-histidyl-L-

leucine 

HPLC HHL as substrate of ACE is hydrolyzed to 

hippuric acid (HA) and His-Leu (HL)  

(114) 

(115) 

MEKCa (116) 

     

FAPGG N-[3-(2-furyl)acryloyl]-L-

phenylalanyl-glycyl-glycine 

 

Spectrophotometry FAPGG as a substrate of ACE is hydrolyzed to 

FAG and Gly-Gly 

(117) 

(118) 

(119) 

(120) 

     

Abz Abz-Gly-Phe-(NO2)-Pro Spectrofluorometry Abz as substrate of ACE is hydrolyzed to Abz-

Gly (o-aminobenzoylglycine (fluorescent 

product) 

(121) 

(122) 

     

Natural 

Angiotensin-I  HPLC Angiotensin I as substrate of ACE is hydrolyzed 

to Angiotensin-II or bradykinin fragment 1-5, 

respectively 

(104) 

(108) 

Bradykinin HPLC  

 

a Micellar Electrokinetic Chromatography 
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1.5. Bioavailability methods 

 

Studies related with bioactivity of food hydrolysates and bioactive peptides are mostly 

restricted to in vitro experiments. In fact, only limited numbers of clinical trials were 

conducted to test their efficacy as functional ingredients in humans (102), (123). However, 

before exploitation of food hydrolysates and bioactive peptides as functional ingredients for 

human nutrition, its stability in the GI tract, absorption and bioavailability in the human 

organism must be investigated. Bioaccessibility is usually defined as the quantity or fraction 

that is released from the food matrix in the GI tract and becomes available for absorption. 

It is usually evaluated by in vitro digestion procedures, generally simulating gastric and 

small intestinal digestion, followed by Caco-2 cells uptake (123). Bioavailability is defined 

as the fraction of ingested nutrient or compound that reaches the systemic circulation and 

is used by the body; besides GI digestion and absorption, also includes metabolism, tissue 

distribution and bioactivity.  

 

1.5.1. Simulated GI digestion 

 

Proteolysis by GI enzymes is a critical factor that determines the biological activity of 

food hydrolysates. During this process, Pepsin and Pancreatin can hydrolyze the food 

hydrolysate, leading to (i) modifications of the biological peptide sequences already present 

in the food hydrolysate; (ii) increasing formation of existing active peptides, and/or (iii) the 

creation of new active peptides from sequences not previously exhibiting biological activity 

in the food hydrolysate. 

 

1,5.2. Cell culture systems 

 

Compared with expensive and time-consuming animal studies and human clinical 

trials, in vitro cultured cell model systems allow for rapid and inexpensive screening of active 

compounds (88). Caco-2 cell monolayers, due to their similarity to the intestinal endothelium 

cells, have been the most commonly reported model system in the literature for studying 

intestinal permeability of bioactive compounds (124). This model can also be used to 

evaluate the cytotoxicity of the compounds at the concentrations intended to be used to 

obtain the desired bioactivity, as well as, to study the potential to inhibit intracellular 

oxidation and to reduce inflammatory responses (88). 

 

Upon culturing as a monolayer, Caco-2 cells differentiate to form tight junctions 

between cells that will serve as a model of paracellular movement of compounds across the 
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monolayer. Caco-2 cells monolayers express transporter proteins, efflux proteins, and 

Phase II conjugation enzymes to model a variety of transcellular pathways and metabolize 

the test compounds (125). The ability of individual peptides to cross the membrane depends 

on their molecular size, hydrophobicity and resistance to brush-border peptidases (88), 

(124).  

 

As depicted in Figure 1.6., the intestinal epithelium membrane presents four possible 

transport mechanisms: (a) larger water-soluble peptides can cross the intestinal barrier by 

paracellular transport via the tight junction between cells; (b) highly lipid-soluble peptides 

may diffuse via the transcellular route; (c) peptides may also enter the enterocytes via 

transcytosis; (d) while small di- and tri-peptides may be absorbed intact across the brush 

border membrane using H+ coupled PepT1 transporter system. The intestinal basolateral 

membrane also possesses a peptide transporter, which facilitates the exit of hydrolysis-

resistant small peptides from the enterocyte into the portal circulation (126-128). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Polarized epithelial cells with different types of intercellular contacts and different 

absorption and transport mechanisms of compounds through intestinal epithelium 

membrane. Legend: (a) paracellular transport; (b) passive diffusion of molecules from the 

apical to the basolateral side; (c) vesicle-mediated transcytosis and (d) carrier-mediated 

uptake and diffusion through the epithelial cell layer. Adapted from (128). 

 

 

However, Caco-2 cell model do not closely simulate the composition of the human 

epithelial layer, which contains several types of cells (128), (129). To overcome some of 

these limitations, combinations of Caco-2 cells with mucus-producing goblet cell, such as, 

HT29-MTX cells, have been proposed as co-culture models for permeation studies (130), 
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(131). Co-culture of Caco-2/HT29-MTX cells leads to the establishment of monolayers with 

intermediate properties regarding transepithelial electrical resistance (TEER), peptide 

hydrolysis and absorption. The proportion of 90:10, expressed as initial cell seeding for 

Caco-2/HT29-MTX cells, is the most prevalent in the literature and accepted to better mimic 

the natural epithelial barrier (129), (132), (133). Compared to Caco-2 monolayer, the 

expression of goblet cells in HT29-MTX cell line increases absorption of lipophilic 

compounds (131), (133). 

 

Semipermeable plastic supports that can be fitted into the wells of multi-well culture 

plates are usually used in cell culture models (Figure 1.7.). Cells are exposed to the 

bioactive compounds either from the apical (upper compartment) or the basolateral side 

(lower compartment) of the transwell system to evaluate, respectively, the cellular uptake 

and cellular efflux of the test compounds. After incubation for various time periods, aliquots 

from the opposite chambers are removed for the determination of the concentration of test 

compounds and its percentage of permeability. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 1.7. Two-chamber transwell transport model. Adapted from www.corning.com. 
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1.5.3. In vivo assays 

 

Once the potential biological activity of the food hydrolysates and bioactive peptides 

is established through in vitro assay methods, animal studies and human clinical trials 

should be conducted to confirm the desired biological function (102). To date, only a small 

number of studies evaluated the efficacy of food hydrolysates bioactivity in humans (134) 

and in animal models, such as, spontaneously hypertensive rats (SHR) (101), (135). 

Results from the in vivo assays are crucial for a bioactive compound be approved by the 

European Food Safety Authority (EFSA, Panel on Dietetic Products, Nutrition and Allergies) 

as a new functional food or nutraceutical formulation (18). 
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This chapter describes the potential use of a BSY extract prepared 

by mechanical disruption as a source of proteolytic enzymes and 

biological activities, as antioxidant and ACE-I activities. 
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ABSTRACT 
 

Brewer´s spent yeast (BSY) is the second major by-product from the brewing process. 

Mechanical disruption of yeast cell wall can be used to obtain β-glucan rich ingredients with 

applications in food industry and separation of inner yeast content with potential applications 

as food and nutraceutical ingredients. In this work, the nutritional composition, including 

minerals and B-complex vitamins, together with the antioxidant activity and phenolic 

compounds profile of BSY extract, prepared by mechanic disruption of BSY and removal of 

yeast cell wall, was investigated. Composition analysis showed that lyophilised BSY extract 

presented 64.1% of proteins and 4.0% of RNA. The amino acid profile showed a high 

proportion of essential amino acids. The BSY extract also contains macrominerals (Na, K, 

Ca, Mg) and increased content of trace elements, such as, Zn (11.90 mg/100 g dw), Fe 

(1.76 mg/100 g dw), and Mn (0.56 mg/100 g dw), and vitamins B3 (77.2 mg/100 mg dw), 

B6 (55.1 mg/100 g dw) and B9 (3.0 mg/100 g dw) when compared with other BSY extracts 

described in the literature. It also presents antioxidant activity, confirmed by three different 

assays. HPLC-DAD analysis showed that two phenolic compounds were detected as free 

forms, gallic acid (21.3 mg/100 g dw) and (±) catechin (34.2 mg/100 g dw), and alkaline 

hydrolysis released other bounded phenolic compounds: protocatechuic acid and p-

coumaric acid. The nutritive value, antioxidant properties and phenolic composition of the 

lyophilised BSY extract indicates that it can be an interesting ingredient for food and 

nutraceutical industries. 

 

 

2.1. INTRODUCTION 
 

Brewer`s spent yeast (BSY) is the second major by-product from the brewing process. 

It is low in calories, fat and carbohydrates, however, it can be a valuable source of 

inexpensive fibre, mainly β-glucans (136-139), nucleotides (50), vitamins and minerals (5). 

In the brewing process, serial repitching of Saccharomyces biomass is usual; thus, 

yeast is reused four to six times before its disposal (140). Yeast presents adaptive response 

to oxidative stress similar to that of human cells, consequently vitamins, namely B6 and 

B12, and minerals (enzyme co-factors), such as, zinc, copper and manganese can 

accumulate in yeast (51). Moreover, Saccharomyces adsorb phenolic compounds from 

exterior medium, increasing its antioxidant activity and phenolic compounds content (141). 

Although these compounds exhibit biological activities, such as, prevention of age-related 

diseases, inhibition of cancer cell proliferation and enhancement of immune response (9), 

(45), (76), (142), until now efforts to recover bioactive compounds from BSY are limited. 
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Moreover, the separation of yeast compounds for use in food applications requires 

efficient means of disrupting cell walls and separating the products of interest. Mechanical 

processes can be used to separate yeast cell-wall β-glucans, which are known for lowering 

cholesterol and triacylglycerols in blood, enhancing the immune system and the anti-

inflammatory activity, stimulating the skin cell response to combat free radicals and delaying 

aging process. EFSA has already approved the use of Saccharomyces β-glucans - referred 

to as “yeast beta-glucans” - as a new food ingredient and suggests a use ranging between 

50 and 200 mg per serving (143). However, new applications for the inner cell content are 

needed to make the process of β-glucans’ separation profitable.  

Attempts to reuse the BSY in biotechnological processes include production of flavour 

enhancers (48), (50). In a previous work, mechanical rupture of cell wall, using glass beads, 

to separate cell wall constituents and produce a yeast extract rich in nucleotides that can 

be used as flavour enhancers was described (50). However, the full characterization of this 

extract is of major relevance to find new applications for BSY. Thus, the goal of this work 

was to study the nutritional composition, the minerals and B-complex vitamins content, the 

antioxidant activity and the phenolic profile of the BSY extract obtained by mechanical 

disruption, removal of cell wall and lyophilisation, to assess its potential interest as an 

ingredient in food and nutraceutical industries. 

 

 

2.2. MATERIAL AND METHODS 
 

2.2.1. Reagents and Standards 

HPLC grade solvents were from Merck (Darmstadt, Germany). Iron (III) chloride 

hexahydrate; 2,4,6-tripyridyl-s-triazine (TPTZ); 2,2-diphenyl-1-picrylhydrazyl (DPPH); 6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox); potassium ferricyanide and 

trichloroacetic acid (TCA) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). 

Ultrapure water was obtained from a Seralpur Pro 90 CN water purification. For mineral 

analysis, all solutions were prepared using polypropylene laboratory ware: pipette tips 

(VWR, Radnor, PA), volumetric flasks (Kartell, Milan, Italy) and centrifuge tubes (TRP, 

Trasadingen, Switzerland). High purity HNO3 (≥69% w/w, TraceSELECT® Ultra, from Fluka, 

L’Isle d’Abeau Chesnes, France) and H2O2 (30% v/v, TraceSELECT® from Fluka, Seelze, 

Germany) were used as received. Mineral standard solutions were prepared from 

AccuTrace™ (AccuStandard®, New Haven, CT, USA) 10 µg/mL multi-element ICP-MS 

standards. Single-element standard solutions of Na, K, Ca, Mg and Fe, water-soluble 

vitamins and polyphenol standards were obtained from Sigma Chemical Co. (St. Louis, MO, 

USA). 
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2.2.2. Samples 

Six different batches of BSY biomasses, collected between January and March of 2014 and 

with 3, 4, 5 and 6 repitchings in the brewing fermentation step, were kindly supplied as slurry 

by Unicer brewing (Leça do Balio, Portugal). Biomasses were transported to the laboratory 

under refrigerated conditions, protected from light and stored at 4ºC until extract preparation 

(1 day maximum). 

 

2.2.3. BSY extract preparation 

The debittering process and the mechanical disruption procedure of the yeast cells were 

performed as described by Vieira et al. (50). All steps were carried out under refrigerated 

conditions to minimize autolysis. Yeast cell wall was removed by centrifugation and the 

resulting clear supernatants (extracts of the inner yeast content) obtained from the six BSY 

biomasses were freeze-dried and stored at -20°C until further analyses. 

 

2.2.4. Proximate composition  

The composition of BSY extracts were analysed in triplicate and mean results were 

expressed as % dw. Moisture content was determined at 105ºC until constant weight. Total 

nitrogen was analysed by the Kjeldahl method (144) and protein content was estimated 

using factor conversion of 6.25; free α-amino nitrogen was measured by the ninhydrin 

method using glycine as standard (145). Total lipid and ash contents were determined 

according to AOAC methods (144) and total carbohydrate was determined by difference. 

RNA was extracted according to Liwarska-Bizukojc and Ledakowicz (146) method; the 

concentration of RNA was determined based on Hebert et al. (147) method. 

 

2.2.5. Amino acid composition and chemical score 

BSY extracts were submitted to protein hydrolysis with 6 M HCl at 110ºC for 24 h and further 

derivatization was conducted according to the method validated by Pérez-Palacios et al. 

(148). All amino acids except tryptophan were separated by Gas chromatography-mass 

spectrometry (GC/MS) and the relative amino acid composition was expressed as g/100 g 

of protein. The parameters used for estimating the nutritive value of the BSY extract protein 

fraction were: 1) essential amino acid (EAA) index, calculated considering essential amino 

acids in the standard protein as described by FAO/WHO (149); chemical score; and protein 

efficiency ratio (PER) calculated from the equation developed by Lee et al. (150). The 

chemical score and PER were calculated using the following equations (1 and 2): 

Chemical score = EAA in BSY extract  EAA in standard protein                                            (1) ⁄  

 PER (Eq. 3) = −1.816 + 0.435[Met] + 0.780[Leu] + 0.211[His] − 0.944[Tyr]   (2) 
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2.2.6. Analyses of minerals 

2.2.6.1. Sample preparation 

Microwave-assisted acid digestion was performed in PTFE vessels using 300 mg of sample, 

4 mL of 69% (w/w) HNO3 and 1 mL of 30% (v/v) H2O2 and the following microwave heating 

program: 250 W for 1 min, 0 W for 2 min, 250 W for 5 min, 400 W for 5 min, and 600 W for 

5 min. After digestion, vessels content was transferred to 25 mL volumetric flasks and the 

volume was made-up with ultrapure water. Solutions were then analysed by Inductively 

coupled plasma mass spectrometry (ICP-MS) and Atomic absorption spectrometry (AAS). 

 

2.2.6.2. Inductively coupled plasma mass spectrometry analysis  

ICP-MS analyses were carried out under the following instrumental conditions: argon flow 

rate 14 L/min; auxiliary argon flow rate 0.8 L/min; nebulizer flow rate 0.95 L/min; RF power 

1550 W. The elemental isotopes (m/z ratios) 52Cr, 55Mn, 57Fe, 59Co, 65Cu, 66Zn, 82Se and 

95Mo were monitored for analytical determinations; 45Sc, 89Y, 115In and 159Tb were used as 

internal standards. The instrument was tuned daily for maximum signal sensitivity and 

stability, as well as, for low oxides and double charged species formation using the Tune B 

iCAP Q solution (Thermo Fisher Scientific; 1 μg/L of Ba, Bi, Ce, Co, In, Li and U in 2% HNO3 

+ 0.5% HCl). The internal standard solution was prepared by appropriate dilution of the 

corresponding AccuStandard® (New Haven, CT, USA) solution (ICP-MS-200.8-IS-1: 100 

μg/mL of Sc, Y, In, Tb and Bi). Calibration standards were prepared from a SCP Science 

(Baie-d'Urfé, Quebec, Canada) 100 μg/mL multi-element ICP-MS standard solution 

(PlasmaCAL SCP-33-MS). The detection limits were calculated as the concentration 

corresponding to 3 standard deviations of 10 replicate integrations of the blank (HNO3 2% 

v/v). 

 

2.2.6.3. Atomic absorption spectrometry analysis  

Determination of Na, K, Ca and Mg was performed using a Perkin Elmer (Überlingen, 

Germany) 3100 flame (air-acetylene) atomic absorption spectrometer instrument. 

 

2.2.7. Analysis of B-complex vitamins 

2.2.7.1. Extraction of B-complex vitamins 

Extraction of vitamins from BSY extracts was performed according to Parlog et al. (151). 

The lyophilized extract (1 g) was homogenized with 10 mL of mobile phase A (50 mM 

ammonium acetate/methanol, 99:1), sonicated for 30 min at 27±3°C in ultrasonic water bath 

(FungiLab SA, Barcelona, Spain), centrifuged and then filtered through a 0.22 μm 

membrane, prior to HPLC injection. 
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2.2.7.2. Preparation of B-complex vitamins standard solution 

The aqueous stock solutions of each vitamin were prepared every week and stored in the 

refrigerator in amber-glass bottles to protect vitamins from light-induced oxidation. Individual 

standard stock solutions of vitamin B2 (riboflavin), B3 (nicotinic acid), B6 (pyridoxine), and 

B12 (cyanocobalamin) were prepared by dissolving 10 mg of each compound in 10 mL of 

ultrapure water containing 0.01% of trifluoracetic acid, as described by Grotzkyj et al. (152). 

Standard stock solution of folic acid (B9) was prepared by dissolving 10 mg of the compound 

in 100 mL of pure water containing 4 mL of 1 M NaOH, as described by Ciulu et al. (153). 

Working standard solutions were prepared fresh daily and kept protected from light. The 

calibrations curves were made by running 6 different standard solutions (6 concentration 

levels) of each vitamin in the HPLC system. 

 

2.2.7.3. Chromatographic conditions for separation of B-complex vitamins 

High Performance Liquid Chromatography (HPLC) analysis was carried out according to 

the procedure described by Parlog et al. (151). The injection volume was 30 µL and all 

samples were run in triplicate. Photodiode array detection (PDA) was used to perform 

spectral scans over the range 230-360 nm and quantification was conducted at 260 nm for 

B2, B3 and B6, and at 280 nm for B9 and B12. Peak identification and purity were 

investigated by comparing the UV spectra of each individual compound when analysed in 

mixtures or in single compound standard solutions. Analysis was carried out using an 

analytical HPLC system (Jasco, Tokyo, Japan), equipped with a quaternary low pressure 

gradient HPLC pump (Jasco PU-1580), a degasification unit (Jasco DG-1580-53 3-line 

degasser), an autosampler (Jasco AS-2057-PLUS), a MD-910 multiwavelengh detector 

(Jasco) and a 7125 Rheodyne injection valve (California, USA). The column was a 

Chrompack P 300 RP (polystyrenedivinylbenzene copolymer, 8 µm, 300Å, 150 x 4.6 mm 

i.d.) (Chrompack, Middleburg, The Netherlands). Data acquisition was accomplished using 

Borwin Controller software, version 1.50 (JMBS Developments, Le Fontanil, France). 

 

2.2.8. Antioxidant activity of BSY extracts 

2.2.8.1. Ferric reducing antioxidant potential (FRAP) assay 

The measurement of the Ferric reducing antioxidant potential assay (FRAP) was done 

according to Jansen and Ruskovska (154). Trolox was used as standard at 0.0025-0.125 

mg/mL to generate a calibration curve and results (mean values ± standard deviation) were 

expressed as milligrams of Trolox Equivalent per gram of dry weight BSY extract (mg 

TE/100 g dw). 
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2.2.8.2. DPPH radical scavenging capacity assay 

The 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging capacity (DPPH) assay was 

performed as described by Herald et al. (155). Trolox was used as standard at 0.0025-0.125 

mg/mL to generate a calibration curve and data was reported as means ± standard deviation 

for three replications. Results (mean ± standard deviation) were expressed as milligrams of 

Trolox Equivalent per gram of dry weight BSY extract (mg TE/100 g dw). 

 

2.2.8.3. Ferricyanide reducing power (RP) assay 

The ferricyanide reducing power (RP) was determined as described by Almeida et al. (156). 

Trolox was used as standard at 0.0025-0.125 mg/mL to generate a calibration curve and 

results (mean ± standard deviation) were expressed as milligrams of Trolox Equivalent per 

gram of dry weight BSY extract (mg TE/100 g dw). 

 

2.2.9. Extraction of phenolic compounds 

The extraction of phenolic compounds was conducted as described by Khamam et al. (157): 

50 mg of lyophilized BSY extract were homogenized with 1 mL of mobile phase A for 

extraction of free phenolic compounds, whereas bounded phenolic compounds were 

extracted after alkaline hydrolysis: 50 mg of lyophilized BSY extract was treated with 1 mL 

of 2 M NaOH for 2 h at room temperature and constant agitation (250 rpm). After 

centrifugation at 5,000 rpm for 5 min, the resultant extract was acidified to pH 2 using 6 M 

HCl and extracted three times with diethyl ether. The ether extracts were mixed, evaporated 

to the dryness under vacuum at 35°C and finally dissolved in 1 mL of mobile phase A. 

 

2.2.9.1. HPLC analysis of phenolic compounds 

HPLC analysis was carried out according to the procedure described by Khanam et al. (157) 

with some adjustments. The binary mobile phase consisted of 6% (v/v) glacial acetic acid 

in water (solvent A) and acetonitrile (solvent B) and was pumped at a flow rate of 0.7 

mL/min, for a total run time of 75 min, at temperature of 35ºC. A gradient program was used 

as follows: 0-3.5% B for 11 min, 3.5-5% B for 9 min, 5-10% B for 3 min, 10-13% B for 7 min, 

13-15% B for 15 min, 15-30% B for 15 min, 30-50% B for 5 min, 50-100% B for 5 min and 

returning to the starting conditions for 5 min (0% B) before the next sample injection. The 

injection volume was 20 µL. PDA was used to perform spectral scans over the range 190-

400 nm and quantification was conducted at 236 nm for (±)-catechin, (-)-epicatechin and 

rutin; at 260 nm for protocatechuic and vanillic acids; at 280 nm for gallic, syringic and 

cinnamic acids; at 320 nm for the derivatives of cinnamic acid (caffeic, p-coumaric, 

chlorogenic and ferulic acids) and at 350 nm for isoquercetin. Phenolic compounds 

identification was performed by comparison with retention times and spectra of standards, 



PART I. Chapter 2  
Nutritive value, antioxidant activity and phenolic compounds profile of Brewer’s spent yeast extract 

43 

as well as, co-elution after fortification with the standards. Quantification was based on 

external standards calibration and samples were analysed in triplicate. The HPLC system 

was from Gilson (Villiers le Bel, France), consisting of two pumps (305 and 306), an 805 

manometric module, a 811C dynamic mixer, an injection port with a 20 μL loop (Rheodyne, 

Rohnert Park, California, USA) and a PDA (Varian, Santa Clara, Califórnia, USA) controlled 

by a data processor software (Varian Santa Clara, Califórnia, USA). Chromatographic 

separation was achieved with a 150 x 4.6 mm, Spherisorb® ODS-2 80Å (3 µm particle size) 

column from Waters (Milford, Massachusetts, USA). 

 

 
2.3. RESULTS AND DISCUSSION 

 

2.3.1. Nutritional composition of BSY extracts  

The proximate composition of freeze-dried BSY extracts obtained using a mechanic 

disruption process is shown in Table 2.1. BSY extracts contained low moisture (7.7%), low 

fat content (1.3% dw) and high protein content (64.1% dw), which contributes to its stability 

during storage. Protein content was in agreement with the value reported by Caballero-

Córdoba and Sgarbieri (25), in which a mechanic disruption using glass beads was also the 

process used for BSY extract production, although an alkaline treatment was previously 

performed for debittering of brewer’s yeast. The ash content (14.0%) and the total amino 

nitrogen (3.8%) were in agreement with the values reported by Saksinchai et al. (26), in 

which a autolysis process (50ºC, 20 h) was adopted to produce the BSY extract. Also, the 

RNA content (4.0%) was in agreement with Vieira et al. (50), confirming the potential use 

of this extract for flavour enhancers production. 

 

2.3.1.1. Amino acid composition 

The amino acid composition of BSY extracts and chemical scores are also presented 

in Table 2.1. Results indicated an amino acid profile rich in essential amino acids compared 

to the reference amino acid pattern recommended by FAO/WHO (1990) (149) for adult 

humans. These results also agree with the amino acid profile obtained by Caballero-

Córdoba and Sgarbieri (25). Generally, S-amino acids (methionine and cysteine) are the 

limiting factor to the nutritive value of yeast protein. However, as reported in Table 2.1, S-

amino acids were above the FAO/WHO reference (149). Essential amino acids account for 

about 40% of total amino acids, being in agreement with the reference value recommended 

by FAO/WHO (149). The protein efficiency ratio (PER) was 2.4 and BSY extracts presented 

a high content of the flavour enhancer amino acids (glutamic acid, aspartic acid, glycine 

and alanine), accounting to 34.0% of total amino acids. The amino acid composition 
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indicates that protein fraction of BSY extracts presents a good potential for applications in 

food and dietary supplement industries as a protein rich ingredient. 

 

Table 2.1. Nutritional composition of BSY extract 
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2.3.1.2. Minerals content  

The macrominerals (Na, K, Ca, Mg) and trace elements (Cr, Fe, Mn, Cu, Co, Mo, Se, 

Zn) composition of BSY extracts is also presented in Table 2.1. Due to the lack of 

information regarding the mineral composition of BSY extracts prepared by mechanic 

disruption using glass beads, as performed in this work, results were compared with the 

mineral profile of BSY extracts reported by Alvim et al. (28), in which a dehydrated yeast 

extract was prepared by spray dryer. The sodium content, 1228.6 mg/100 g dw, was lower 

than data reported by Alvim et al. (28), 1475 mg/100 g dw. By the contrary, the potassium 

content (91.5 mg/100 g dw) was similar to the content reported by Alvim et al. (28), 99 

mg/100 g dw. Both minerals play an important role in the regulation of cell acid-base balance 

and water retention, and are essential for ribosomal protein synthesis. The calcium and 

magnesium contents were 27.1 mg/100 g dw and 273.6 mg/100 g dw, respectively. These 

elements helps in bone formation, muscle function, neurotransmission, cell division and 

blood coagulation, and magnesium is important in the appropriate utilization of vitamins B 

and E and in maintaining fluid and electrolyte balance. According to the National Academy 

of Science (158), the Dietary Reference Intakes (DRIs) of Na, K, Ca and Mg for a young 

adult are 1500, 4700, 1000 and 420 mg, respectively. 

Concerning to trace elements, mean contents of 0.019 mg/100 g dw and 0.030 

mg/100 g dw were found for Cr and Mo, respectively, whereas the content of Zn was 11.90 

mg/100 g dw, Fe content was 1.755 mg/100 g dw and Mn content was 0.564 mg/100 g dw. 

According to the National Academy of Science (158), the DRIs of these elements for a 

young adult are 0.025-0.035 mg for Cr, 0.045 mg for Mo, 8-11 mg for Zn, 8-18 mg for Fe, 

and 1.8-2.3 mg for Mn. The BSY extract can be used as supplement to fulfil these 

requirements.   

 

2.3.1.3. B-complex vitamins content  

Vitamins B3, B6 and B9 were quantified in the BSY extracts (Table 2.1). The mean 

content of vitamin B3 (77.2 mg/100 g dw) was significantly higher than the content reported 

by Pinto et al. (32) (0.79 mg/100 g dw) for lyophilized brewer’s yeast surplus obtained after 

alkaline treatment without removal of cell wall. Brewer’s yeast is considered one of the best 

dietary sources of vitamin B3; this vitamin participates in several metabolic functions and 

also assists in antioxidant and detoxification functions. The mean content of vitamin B6 was 

55.1 mg/100 g dw, which was significantly higher than the content reported by Pinto et al. 

(32) for lyophilized brewer’s yeast surplus, which was 9.99 mg/100 g dw. This vitamin plays 

a vital role in the function of several enzymes that catalyse essential chemical reactions in 

the human body, especially those involved in protein and amino acid metabolism. 

Regarding to vitamin B9, the mean content found (3.0 mg/100 g dw) was also higher than 
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the values reported by Pinto et al. (32) (0.25 mg/100 g dw). This vitamin plays a central role 

in one-carbon metabolism; derivatives of folate act as co-factors, carrying one-carbon units 

for various reactions in the cell, such as, synthesis of certain amino acids and nucleotides 

(159). Vitamins B2 and B12 were not detected in BSY extracts. Pinto et al. (32) quantified 

both vitamins (at 1.38 and 75.8 mg/100 g dw mean levels, respectively), but only in the 

lyophilised BSY without any treatment. These results indicate that the processes used to 

obtain the BSY extracts significantly influence their vitamin composition, but the removal of 

yeast wall concentrated the content of vitamins B3, B6 and B9. 

 

2.3.2. Antioxidant activity  

The mean values of antioxidant activity of BSY extracts evaluated by FRAP, DPPH 

and RP were, respectively, 261±14; 59.7±2.5 and 127.6±1.0 mg TE/100g dw. Significant 

positive correlations were observed between results from FRAP versus DPPH (R2 = 0.9721) 

and versus RP (R2 = 0.8750), and also between DPPH versus RP (R2 = 0.9632). 

 

2.3.3. Phenolic compounds  

The free and bound phenolic compounds were analysed by HPLC. As shown in Table 

2.2, only gallic acid and (±)-catechin were quantified in the free fraction, being the (±)-

catechin the most representative compound (62%). In the bound fraction, six phenolic 

compounds were quantified in the following order of abundance: cinnamic acid (1.2 mg/100 

g dw), gallic acid (2.1 mg/100 g dw), ferrulic acid (9.2 mg/100 g dw), p-coumaric acid (10.3 

mg/100 g dw), protocatechuic acid (13.1 mg/100 g dw) and (+)-catechin (24.6 mg/100 g 

dw). The total phenolic compounds content in the free and bound fractions were, 

respectively, 55.5 mg/100 g dw and 60.6 mg/100 g dw. No information was found in 

literature concerning phenolic compounds content in BSY. 
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Table 2.2. Mean content (mg/100 g dw) of phenolic compounds of BSY extracts in the free and bound fractions 

 

 

 

 

 

  

Compound 
Free 

(mg/100 g dw) 

Bound 

(mg/100 g dw) 

∑ TFC 

(mg/100 g dw)a 

Free / ∑ TPC 

(%)b 

Bound / ∑ TFC 

(%)b 

Gallic acid 21.3 ± 3.5   2.1 ± 0.5 23.4 38 3 

Protocatechuic acid nq (0.125) 13.1 ± 1.3 13.1 - 22 

(±)-Catechin 34.2 ± 5.8 24.6 ± 4.1 58.8 62 41 

p-Coumaric acid nq (0.274) 10.3 ± 1.0 10.3 - 17 

Caffeic acid nq (0.068) nq (0.068) - - - 

Ferulic acid nq (0.200)   9.2 ± 0.5 9.2 - 15 

Cinnamic acid nq (0.142) 1.2 ± 0.0 1.2 - 2 

∑ TPC 55.5 ± 9.3 60.6 ± 7.4 116.1 - - 

Data are expressed as mean values ± standard deviation. 
a Total phenolic content calculated as sum of individual phenolic compounds from free and bound fractions. 
b Calculated considering the ∑ TPC of the free/bound phenolic fraction. 

nq: not quantified, concentrations <LOQ (values represented in brackets in mg/100 g). 

(-): not calculate. 
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2.4. CONCLUSIONS 

 

 This study provides a detailed analysis of the nutritional composition, antioxidant 

activity and phenolic compounds profile of BSY extracts produced by mechanic disruption 

of brewer’s spent  yeast (Saccharomyces pastorianus) and removal of the cell walls (for 

separation of β-glucans). Results showed that the extracts from the inner content of BSY 

cells are a rich source of proteins containing essential amino acids, RNA, vitamins (B3, B6 

and B9) and minerals. Higher contents were observed in comparison with other BSY 

extracts described in the literature. Chromatographic analysis also showed that BSY 

extracts contains phenolic compounds in both the free and bounded forms: gallic acid, 

protocatechuic acid, (±)catechin, p-coumaric, ferulic and cinnamic acids were quantified. 

Additionally, BSY extracts present antioxidant activity, which makes this yeast extract a 

potential ingredient to be used in the formulation of functional foods and nutraceuticals. 

Moreover, since BSY extracts production complements the use of yeast cell wall for β-

glucans and fibre obtaining, it makes the whole process much cost-effective. 
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CHAPTER 3 

 

 

A bioactive ingredient obtained from the inner cellular 

content of Brewer´s spent yeast 

_____________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter explores the influence of the yeast reuse during beer 

fermentation step on the proteolytic activity and biological activities of 

the BSY extract prepared by mechanical disruption. 
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ABSTRACT 
 

During brewing, Saccharomyces yeast is used in the fermentation process several times 

until its disposal. Yeast surplus is the second major brewing by-product, mostly used for 

animal feed. Despite its underutilization, it can be of value as a source of bioactive 

compounds. In this work, a new ingredient was obtained from the inner cell content of 

Brewer´s spent yeast (BSY) by mechanical disruption of the cell wall of yeast surplus with 

different number of reuses in the brewing process. Proximate composition, amino acid 

profile, molecular weight distribution and biological activities (proteolytic, antioxidant and 

angiotensin converting enzyme-inhibitory (ACE-I) activity) of freeze-dried BSY extracts 

were assessed. Additionally, the stability of the biological properties of BSY extract during 

6 months of storage at -25ºC was evaluated.  

Proteins were the major components of BSY extracts, its amino acid profile was well-

balanced for human consumption. The antioxidant activities of the BSY extracts were not 

influenced by the serial reuse of yeast biomass in the brewing process, neither by the 

storage period. However, BSY extracts prepared from yeast with lower number of reuses in 

brewing process presented the highest proteolytic activity and maximum ACE-I activity. 

BSY extracts are promising as a protein rich bioactive ingredient for food, nutraceutical or 

cosmetic industries.  

 

 

3.1. INTRODUCTION 

 

Currently, there is an increased interest in exploitation of yeasts as a natural resource 

of bioactive compounds for use as ingredients in food. Brewing process produces annually 

considerable amounts of brewer´s spent yeast (BSY), which constitutes a serious 

environmental problem. This biomass is underutilized, being normally used as low-

economical valuable animal feed products (5). However, BSY are GRAS microorganisms, 

containing several beneficial nutrients, such as, vitamins B complex (folic, biotin), minerals 

(zinc, chromium, iron, magnesium), nucleic acids, amino acids and glutathione (2). 

Therefore, nutritional and economical valorization of this relatively inexpensive waste to 

recover natural compounds has become an important contribution to the sustainable 

development of the brewing process (27), (36), (63). Saccharomyces yeast cells also 

contain numerous vacuolar proteases, including serine, aspartyl and metalloproteases, 

which can be used in fermentation processes to obtain hydrolysates with several biological 

activities (44), (160). Potential applications of BSY has been reviewed by several authors 

(2), (161). Other alternative is the extraction of the inner yeast cell components, namely, 
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amino acids, peptides, proteins, carbohydrates, minerals and nucleotides. They can be 

commercially produced on a large scale by hydrolysis, autolysis or plasmolysis of BSY for 

use in the food industry, for example as flavour enhancers to replace glutamates and 

nucleotides in many processed foods (2), (10) or used as healthy food ingredients (61).  

Until now, few studies have focused in the bioactive properties of yeasts. Some 

studies have demonstrated that they may exhibit antioxidant properties, such as, prevention 

of macular degeneration, inhibition of cancer cell proliferation, enhancement of immune 

response and increase glucose tolerance (2), (45), (76). These beneficial effects have been 

attributed to the presence of various functional components, including polysaccharides, 

flavonoids, phenolic acids and carotenoids (35), (36). Also, enzymatic hydrolysis of yeast 

substances have generated peptides with high levels of radical scavenging activities, oral 

glucose tolerance activity and ACE-I effect (76), (86). 

Serial repitching of Saccharomyces biomass is usual in the brewing process; yeast is 

reused four to six times before its disposal (5). This practice can induce cellular stress. 

Several antioxidants can be produced in yeasts grown under stressful conditions or in 

response to fermentation medium ingredients, such as, phenolics or additives that are 

known to be toxic to cells grown aerobically (36). Therefore, it can be of interest to 

understand the influence of yeast repitching in the bioactivity of BSY extracts.  

In this work, BSY extracts were prepared from the inner cell content using yeast 

surplus with different reuses in the fermentation process. Mechanical cell disruption was 

achieved by vortexing using glass beads, under refrigerated conditions. The proteolytic 

activity, the antioxidant activity and the ACE-I activity of freeze-dried extracts were 

evaluated. Furthermore, since BSY extract utilization as a functional ingredient depends 

largely on the stability upon storage; the effect of frozen storage on the stability of the 

biological activity was also evaluated. To the best of our knowledge, this is the first 

description of the influence of serial repitching in the bioactivity of BSY extracts. The use of 

these BSY extracts with biological properties for food and nutraceutical applications could 

be an ideal approach to reuse the Saccharomyces pastorianus surplus from the brewing 

process and simultaneously to overcome environmental industrial problems.   
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3.2. MATERIAL AND METHODS 

 

3.2.1. Chemicals, reagents and equipments 

Folin-Ciocalteu phenol reagent; 2,2-Diphenyl-1-picrylhydrazyl (DPPH); sodium dodecyl 

sulfate (SDS); 2,4,6-tripyridyl-s-triazine (TPTZ); iron (III) chloride hexahydrate; ascorbic 

acid; bovine serum albumin (BSA); 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 

acid (Trolox); catechin; gallic acid; molecular weight standard (205-6.6 kDa); rabbit lung 

acetone powder for Angiotensin-I-converting enzyme (ACE) extraction were all purchased 

from Sigma-Aldrich (St. Louis, MO, USA). Methanol, sodium acetate, sodium carbonate 

decahydrate, sodium nitrite, aluminum chloride and sodium hydroxide were purchased from 

Merck (Darmstadt, Germany). o-aminobenzoylglycyl-p-nitro-phenylalanylproline (o-ABz-

Gly-Phe(NO2)-Pro) was purchased from Bachem Feinchemikalien (Bubendorf, 

Switzerland). Ultra-pure water was obtained from a Seral-Seralpur Pro 90 CN water 

purifying system. All reagents used were of analytical grade.  

Spectrophotometric analyses were carried out using a BMG LABTECH´s SPECTROstar 

Nano-microplate, cuvette UV/Vis absorbance reader (Offenburg, Germany). Fluorimetric 

analyses were carried out using a fluorescence microplate reader (FLUOstar Optima, BMG 

Labtech GmbH). GC-MS analyses were carried out in an Agilent 6890 gas chromatograph 

(Agilent, Avondale, PA, USA) coupled to a MS detector (Agilent 5973).  

 

3.2.2. Samples 

Twelve samples of 0.5 kg of BSY (Saccharomyces pastorianus) used to produce lager beer 

were collected: 3 samples of yeast biomass used twice in the brewing process (coded as 

R2), 3 samples of yeast biomass with three serial reuses in the brewing process (coded as 

R3), 3 samples of yeast biomass with four serial reuses in the brewing process (coded as 

R4) and 3 samples of BSY containing a mixture of biomasses with different number of 

reuses in fermentation process (coded as MIST). All samples were provided as slurry by 

the Unicer brewing (Leça do Balio, Portugal); transported in a 1 liter glass bottle to 

laboratory under refrigerated conditions and stored at 4ºC until preparation procedure (1 

day maximum). 

 

3.2.3. Preparation of BSY extracts 

All steps were performed under refrigerated temperatures to minimize autolysis. Firstly, 

BSY was centrifuged at 5,000 x g for 15 min at 4°C to remove beer liquor. The biomass was 

washed three times with phosphate buffer, pH 6.0 (volume ratio 1:3). After centrifugation at 

5,000 x g during 15 min at 4°C, the yeast cell pellet was weighed and stored under 

refrigerated conditions. A mechanical disruption method by Vieira et al. (50) with some 
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modifications was adopted to promote the breakdown of yeast cell wall and release the 

inner content into the extracellular environment. Biomass was destroyed with glass beads 

with a diameter of 0.60 mm at a ratio 1:1:1 (biomass: phosphate buffer pH 6.0: glass beads); 

(m/v/m), by vortexing 10 times (1 min each) with 1 min cooling intervals on ice-water bath 

to keep the temperature below 4°C during the entire process. After removing the glass 

beads by allowing the suspension to stand, the homogenate was centrifuged at 12,000 x g 

for 40 min at 4ºC (twice) to remove the cell debris. The resulting clear supernatant was 

carefully collected and freeze-dried. The supernatant was then resuspended in phosphate 

buffer pH 6.0 and divided into aliquots. These BSY resuspended extracts were used for 

time zero analysis and subsequently frozen at -25 °C for further analyses (1, 2, 4 and 6 

months).  

 

3.2.4. Proximate Composition  

Freeze-dried BSY extracts were assayed for protein content (total nitrogen determined by 

Kjeldahl method x 6.25), fat content (Soxhlet extraction with n-hexane for 12 h), ash content 

(incineration in a muffle furnace at 550ºC until the ash had a white appearance) and 

moisture (oven at 105ºC until constant weight) according to AOAC official methods (144). 

All assays were performed in triplicate and the contents were expressed on a dry weight 

basis (% dw).  

 

3.2.5. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Relative molecular weight profiles of BSY extracts were determined by sodium dodecyl 

sulfate gel (SDS)-polyacrylamide electrophoresis (PAGE) analysis. Separation gels 

consisted of a 4% polyacrylamide stacking gel and a 15% polyacrylamide resolving gel and 

were performed according to Laemmli (162) method. For all BSY extracts, the weight of 

protein loaded (determined by Lowry method (163)) was 25 µg. Gels were stained in 

Coomassie brilliant blue R-250 (0.125% in 50% methanol and 10% acetic acid) for 1 h and 

destained using an acetic acid-methanol mixture (10% acetic acid and 50% methanol) 

during 1 h, followed by 5% methanol (v/v) and 7% (v/v) acetic acid, repeatedly until the 

protein bands were clearly visible. The standard proteins were simultaneously run for 

protein identification: myosin (205 kDa), β-galactosidase (116 kDa), phosphorilase β (97 

kDa), transferrin (80 kDa), bovine serum albumin (66 kDa), glutamate dehidrogenase (55 

kDa), ovalbumin (45 kDa), carbonic anhidrase (31 kDa), trypsin inhibitor (21 kDa), lysozyme 

(14 kDa) and aprotinin (6.6 kDa).  
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3.2.6. Amino acid composition and chemical score of BSY extract proteins 

BSY extracts were submitted to autolysis with 6 M HCl at 110ºC for 24 h and further 

derivatization was conducted according the validated method of Pérez-Palacios et al. (148). 

Amino acids were separated by Gas chromatography mass spectrometry (GC/MS). The MS 

system was routinely set in selective ion monitoring (SIM) mode and each compound was 

quantified based on peak area using one target and one or two qualifier ions. The amount 

of amino acids were calculated, based on the peak area in comparison with that of the 

standards. The results were used to determine the relative amino acid composition 

(expressed as g/100 g of protein). Essential amino acid index was calculated considering 

the essential amino acids (EAA) in the standard protein, as described by FAO/WHO (149) 

and the protein efficiency ratio (PER) was calculated considering the equation developed 

by Lee et al. (150). The chemical score and PER were calculated using the following 

equations (1 and 2): 

Chemical score = EAA in test protein  EAA in standard protein                              (1) ⁄     

PER (Eq. 3) = −1.816 + 0.435[Met] + 0.780[Leu] + 0.211[His] − 0.944[Tyr]     (2)  

 

3.2.7. Determination of biological properties of BSY extracts 

Biological properties of BSY were analyzed concerning total phenolic content (TPC), total 

flavonoid content (TFC), antioxidant activities (DPPH, FRAP and RP), proteolytic activity 

and ACE-I activity.  

 

3.2.7.1. Enzyme activity assay 

Protease activity of BSY extracts was assayed by Sigma’s non-specific protease method 

described by Cupp-Enyard (164). Assays were performed in triplicate. Protease activity was 

expressed as the number of protease units per mL of enzyme (U/mL). One unit of protease 

activity (U) was defined as the amount of the enzyme needed to catalyze the formation of 

1 µg of tyrosine per 1 min, at 37ºC. A commercial protease solution (Alcalase® 2.4L) diluted 

at 0.2 U/mL was used as positive control, for comparison. 

 

3.2.7.2. Total phenolic content (TPC) and total flavonoid content (TFC) 

The method used for TPC determination was similar to that of Herald et al. (155). Gallic 

acid was used as a standard at 12.5-200 μM to produce a calibration curve (average R2 = 

0.9975). Total phenolic concentration was expressed as µM GAE (Gallic Acid 

Equivalent)/mL of sample. The method used for TFC determination was similar to that of 

Herald et al. (155). Catechin was used as a standard at 5-250 μM to generate a calibration 

curve (average R2 = 0.9983). Total flavonoid concentration was expressed as µM CE 

(Catechin Equivalent)/mL of sample. 
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3.2.7.3. Antioxidant activity of BSY extracts 

The DPPH radical-scavenging capacity assay was performed as described by Herald et al. 

(155). Trolox was used as a standard at 50-500 μM to generate a calibration curve (average 

R2 = 0.9940). The analyses of BSY extracts were carried out in triplicate and the results 

were expressed as µM TE (Trolox Equivalent)/mL of sample. The measurement of the 

Ferric Reducing Antioxidant Power (FRAP) assay was done by the assay based on the 

method of Jansen and Ruskovska (154). Trolox was used as a standard at 50-500 μM to 

generate a calibration curve (average R2 = 0.9956) and results were expressed as mean 

values ± standard deviations as µM TE (Trolox Equivalent)/mL of sample. The 

measurement of the Reducing power (RP) was done by the assay based on the method of 

Almeida et al. (156). Trolox was used as a standard at 50-500 μM to generate a calibration 

curve (average R2 = 0.9942) and results were expressed as µM TE (Trolox Equivalent)/mL 

of sample. The intra-assay variation of the DPPH, FRAP and RP assays were, respectively, 

2.9%, 3.1% and 4.3%, as determined with three quality control samples. A standard solution 

of vitamin C (500 µM) was used as positive control in antioxidant activity assays. 

 

3.2.7.4. ACE-I activity  

The ACE-I activity was measured using the fluorimetric assay of Sentandreu and Toldrá 

(121), with the modifications reported by Quirós et al. (122). ACE was extracted from rabbit 

lung acetone powder with 100 mM sodium borate buffer (pH 8.3) containing 300 mM NaCl, 

according to the procedure described by Minervini et al. (165). Prior to assay, the 

supernatant was diluted 10-fold with 50 mM potassium phosphate buffer, pH 8.3, so that it 

would have the same ACE activity as the commercial preparation (~3 U/mg of protein). ACE 

inhibitory percentage (I %) was calculated using the equation 3: 

I % = {(B − A)|(B − C)} × 100  (3) 

where B is the fluorescence of the ACE solution without the inhibitor, BSY extract; A is the 

fluorescence of the tested sample, BSY extract; and C is the fluorescence of experimental 

blank, o-ABz-Gly-Phe(NO2)-Pro dissolved in 150 mM Tris-base buffer (pH 8.3), containing 

1.125 M NaCl. The percent inhibition curves (using a minimum of five determinations for 

each sample peptide concentration) were plotted versus protein concentration to estimate 

the mean IC50 value, which is defined as the concentration required to decrease the ACE 

activity by 50% (122). 
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3.2.8. Effect of storage conditions on the stability of BSY extract biological properties  

The stability of BSY extracts biological properties during storage at -25ºC was investigated. 

For stability studies, the biological properties of freeze-dried and resuspended BSY 

extracts, stored at -25ºC for 1, 2, 4 and 6 months, were evaluated and compared with the 

properties presented at initial time (0 months).  

 

3.2.9. Statistical analysis  

Data were reported as mean ± standard deviation of at least triplicate experiments. All 

statistical analyses were performed using the software SPSS for Windows, version 22.0 

(SPSS Inc., Chicago, IL, USA). One-way analysis of variance with Duncan’s post hoc test 

was carried out to ascertain significant differences between BSY extracts with different 

number of reuses in brewing process. In all cases, 5% significance level (p <0.05) was 

accepted as denoting significance. 

 

 

3.3. RESULTS AND DISCUSSION 

 

3.3.1. Proximate composition of freeze-dry BSY extracts 

The moisture content of freeze-dried BSY extracts obtained from yeast surplus with 

two, three, and four serial reuses in the brewing process and from the mixture of spent yeast 

with different number of reuses was very similar and ranged between 5.0% and 6.4%. Its 

proximate composition (% dw) is shown in Table 3.1. The protein fraction was the major 

component of BSY extracts and its content ranged from 69.8% (R2) to 76.5% (R4). The ash 

content was around 1%, whereas the lipid content was lower than 1%. Comparison of the 

proximate compositions of BSY extracts with literature is a difficult task because different 

processes for cell debittering and lysis were performed and also because they are reported 

for different Saccharomyces species. However, the proximate composition is in agreement 

with the results obtained by Caballero-Córdoba and Sgarbieri (25), when mechanical cell 

rupturing process using glass beads was also employed. Statistical treatment of results 

indicates significant differences concerning the composition of BSY extracts with different 

reuses in the brewing process; however, the most relevant is the increase of protein content 

with the increase of yeast repitching. 
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Table 3.1. Proximate composition (% dw) of freeze-dried BSY extracts 

 

 R2 R3 R4 MIST Mean 

Protein 69.8±2.8c 73.3±4.1b 76.5±2.8a 71.4±0.3bc 72.8±3.7 

Lipid   0.5±0.1b  0.6±0.1a   0.6±0.1a 0.5±0.0b   0.6±0.1 

Ash   1.2±0.1b  1.3±0.2a   1.4±0.3a 0.6±0.1c   1.1±0.4 

nd A   28.6±2.6a 24.8±4.3b  21.5±2.9c 27.5±0.3ab 25.6±3.9 

R2: 3 samples of yeast biomass used twice in the brewing process; R3: 3 samples 

of yeast biomass with three serial reuses in the brewing process; R4: 3 samples 

of yeast biomass with four serial reuses in the brewing process; MIST: 3 samples 

of yeast surplus containing a mixture of biomass with different number of reuses 

in the fermentation process. Results are expressed as a mean ± standard 

deviation (n=9). Values in the same row followed by different superscripted letters 

indicate significant differences at p <0.05, Duncan’s post hoc test. 

A nd. not determined; fraction corresponding to sum of carbohydrates, RNA, non-

nitrogen fraction and others components. 

 

 

3.3.2. Amino acid composition of BSY protein fraction 

The amino acid composition of the BSY protein fraction is presented in Table 3.2. In 

general, BSY extracts prepared from spent yeast with different reuses in brewing process 

had a similar amino acid profile (p <0.05). Furthermore, the essential amino acid profile of 

BSY extracts was considerably higher (p <0.05) than the suggested amino acid pattern 

recommended by FAO/WHO for adult humans (149). Similar results were observed by 

Caballero-Córdoba and Sgarbieri (25). BSY extracts were rich in glutamic acid (12.6%-

15.8%), histidine (10.5%-11.6%) and alanine (8.0%-8.8%), as quantified by Caballero-

Córdoba and Sgarbieri (28). However, these contents were relatively higher, when 

compared with BSY extracts obtained from other processes, namely autolysis and 

hydrolysis, as observed by other authors (25), (45), (166). According to Jung et al. (45), the 

amino acids histidine and proline are the components of CHP (Cyclo-His-Pro), an 

endogenous cyclic dipeptide involved in antioxidant activity of BSY hydrolysates. Generally, 

S-amino acids (methionine and cysteine) are the limiting factor to the nutritive value of yeast 

protein (25). However, as reported in Table 3.2, the S-amino acids were above the 

FAO/WHO reference (149); the contents observed were in accordance with those reported 

by Caballero-Córdoba and Sgarbieri (25). The essential amino acids ranged between 

37.2% and 38.9%, being close to the reference value of 40%, recommended by FAO/WHO 
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(149). BSY extracts presented a high content of the flavour enhancers, glutamic acid, 

aspartic acid, glycine and alanine, the sum of which represents 30.1-32.9% of total amino 

acids. The results of chemical score based on lysine (limiting amino acid) of BSY extracts 

ranged between 1.3 and 1.7 and the protein efficiency ratio (PER) ranged between 1.6 and 

2.4. In general, based on our results, extracts obtained from mechanical disruption of BSY 

were shown to be high quality nutritional ingredients. 

 

 

3.3.3. Molecular weight distribution of BSY extract protein fraction 

The molecular weight of BSY extract proteins were determined by SDS-PAGE. The 

typical SDS-PAGE profile observed for protein fraction from yeast surplus with two, three, 

and four serial reuses in the brewing process and from the mixture of spent yeast with 

different number of reuses was very similar. As shown in Figure 3.1, the electrophoretic 

patterns of BSY proteins presented seven major bands with 61, 58, 47, 42, 33, 29 and 27 

kDa. Also, minor bands were observed with molecular weight lower than 21 kDa and higher 

than 61 kDa. According to Slaughter and Nomura (167), vacuolar proteases have been 

identified in a brewing strain of Saccharomyces cerevisiae; PrB has a molecular weight of 

33 kDa, PrA has 42 kDa and CPY has 61 kDa. The BSY extracts presented 3 bands with 

these molecular weights, presumably corresponding to the 3 proteases described by 

Slaughter and Nomura (167). Although, only a purification process of BSY enzymes can 

confirm protein identification, the proteolytic activity of extracts can be easily evaluated.  
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Table 3.2. Amino acid composition of BSY extracts (g/100 g protein) and comparison with 

FAO/WHO reference protein 

 

  Amino acid composition (g/100 g Protein)a 

Amino acids Ions R2 R3 R4 MIST FAO/WHOb 

Alanined 232   8.0±0.3   8.1±0.3 8.8±0.2   8.3±0.1 - 

Argininec 286   5.4±0.8   5.5±0.6 6.8±0.8   5.6±0.8 - 

Aspartic acidd 316   5.9±0.2   5.1±0.2 5.3±0.2   5.1±0.2 - 

Cysteine 406   1.4±0.0   1.9±0.0 2.1±0.0   1.1±0.0 - 

Glutamic acidd 432 12.6±0.4 13.4±0.5 15.8±0.4 14.5±0.4 - 

Asparagine 417   2.1±0.0   2.6±0.1 2.2±0.1   2.2±0.0 - 

Glutamine 329   2.6±0.2   3.1±0.2 3.3±0.2   2.8±0.2 - 

Glycined 218   3.6±0.6   3.7±0.8 2.9±0.3   3.4±0.4 - 

Histidinec 196 10.6±0.8 10.5±0.8 10.7±0.9 11.6±1.0 1.6 

Isoleucinec 200   3.5±0.0   3.4±0.1 3.5±0.0   3.0±0.1 1.3 

Leucinec 200   3.6±0.2   3.5±0.2 3.3±0.0   3.2±0.3 1.9 

Lysinec 300   2.6±0.2   2.6±0.2 2.7±0.3   2.2±0.2 1.6 

Methioninec 218   3.1±0.2   3.1±0.1 2.4±0.2   2.7±0.1 1.7 

Phenylalaninec 336   3.2±0.0   3.2±0.0 3.1±0.0   3.6±0.0 - 

Proline 184   2.3±0.0 2.61±0.0 1.9±0.0   2.7±0.0 - 

Serine 362   4.2±0.2   4.4±0.3 4.2±0.2   4.6±0.1 - 

Threoninec 404   2.4±0.0   2.5±0.1 2.5±0.0   2.0±0.1 0.9 

Tyrosine 466   2.3±0.0   2.3±0.0 2.4±0.0   2.8±0.0 - 

Valinec 186   3.6±0.1   3.5±0.2 4.0±0.1   4.3±0.1 1.3 

Triptophan nd nd nd nd nd - 

∑ Amino acid 
(TAA) 

82.9±8.6 84.3±9.5 87.9±7.7 85.5±8.4  

∑ Essential amino acid 
(EAA)c 

38.0±4.6 37.2±4.6 38.9±4.5 38.1±5.4  

∑ Flavour amino acid 
(FAA)d 

30.1±3.0 30.3±3.6 32.9±2.1 31.3±2.4  

EAA/AA 0.5±0.0 0.4±0.0 0.4±0.0 0.5±0.0  

Protein efficiency ratio 
(PER) 

2.4±0.8 2.3±0.7 1.8±0.5 1.6±1.0  

Chemical scoree 1.6±0.3 1.3±0.3 1.7±0.3 1.4±0.3  

a Values represent mean ± standard deviation (n=3). 
b Suggested profile of EAA requirements for adults (FAO/WHO, 1990). 
c Essential amino acids. 
d Flavour amino acids. 
e Chemical score calculated based on lysine (limitant amino acid). 

nd. not determined. 
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Figure 3.1. SDS-PAGE profiles of BSY extracts. Lane BSA shows bovine serum albumin 

(66 kDa); lane Std shows molecular weight markers (6.6-205 kDa). A total of 25 µg of BSY 

protein was applied to each well. R2: yeast biomass used twice in the brewing process; R3: 

yeast biomass with three serial reuses in the brewing process; R4: yeast biomass with four 

serial reuses in the brewing process; MIST: yeast surplus containing a mixture of biomass 

with different number of reuses in the fermentation process. 

 

 

3.3.4. Proteolytic activity of BSY extracts 

The results of BSY extracts proteolytic activity ranged between 0.14 U/mL (MIST) and 

0.22 U/mL (R2), which are in agreement with Slaughter and Nomura (167), who found 

proteolytic activity of vacuolar proteases ranging between 0.2 and 0.8 U/mL. ANOVA 

analysis showed differences between the proteolytic activity of different BSY extracts (p 

<0.05). R2 BSY extract presented the highest proteolytic activity (0.22 U/mL), followed by 

R3 BSY extract (0.19 U/mL) and R4 BSY extract; (0.18 U/mL), whereas MIST BSY extract 

present the lowest proteolytic activity, 0.14 U/mL. Literature refers that under stress 

conditions proteases activity of yeast cells increase and begins to digest its own proteins 

(168). During this process, natural inhibitors of the major yeast proteases are also digested 

in a sequential manner, gradually releasing more proteolytic activity (168). However, results 

from our study showed higher proteolytic activity of BSY extracts obtained from spent yeast 

with two reuses in the brewing process in comparison with three and four reuses. 
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205 

97 
116 

80 
66 

55 

45 

21 

30 

14 

6.6 

61  
58 

47
1  42 

33 

29 

27 



62 

3.3.5. TPC, TFC and antioxidant activity of BSY extracts 

Data reported in Table 3.3 show that TPC of the different BSY extracts varied from 

255.7 µM GAE to 304.5 µM GAE, being the highest content obtained for R2 BSY extract 

and the lowest for the MIST BSY extract. Flavonoid content was measured using the 

aluminum chloride colorimetric method; the results depicted in Table 3.3 show that TFC 

varied from 187.2 µM CE/mL (R3 BSY extract) to 308.6 µM CE/mL (R2 BSY extract). The 

serial repitching of yeast biomass on brewing process does not interfere with TPC and TFC. 

The potential antioxidant activity observed for BSY extracts can be explained by the 

presence of antioxidant agents, namely glutathione, Maillard reaction products, sulfur-

containing amino acids and polysaccharides (35). In this work, the antioxidant potential of 

the BSY extracts was assessed through different complementary in vitro assays and 

compared to standard antioxidant (ascorbic acid at a concentration of 500 µM TE). Results 

from DPPH ranged between 245.7 µM TE/mL (R3 BSY extract) and 268.1 µM TE/mL (R4 

BSY extract), as presented in Table 3.3. ANOVA analysis showed differences between the 

DPPH free radical scavenging activity of different BSY extracts (p <0.05). Several 

compounds, such as, cysteine, glutathione, ascorbic acid, tocopherol, flavonoids, tannins 

and aromatic amines may reduce DPPH radical by their hydrogen donating ability (9). The 

RP of BSY extracts ranged between 463.0 µM TE/mL and 565.7 µM TE/mL and the FRAP 

results ranged from 215.0 to 272.3 µM TE/mL. For both assays, BSY MIST extract showed 

the lowest antioxidant activities. In general, the analysis of variance (ANOVA) showed 

differences between the different extracts (p <0.05), indicating different behaviors and 

consequently bioactivities differences presented by the evaluated BSY extracts. Except for 

FRAP assay, results were quite comparable with the activity of ascorbic acid at a 

concentration of 500 µM.  
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Table 3.3. Biological activity BSY extracts, namely proteolytic activity, ACE-I activity, Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and 

antioxidant activity 

  

  

     Antioxidant activity 

BSY 
Prot. Activity 

(U/mL) (i) 
IC50 

(µg/mL) (ii) 
TPC 

(µM GAE/mL) 
TFC 

(µM CE/mL) 
FRAP 

(µM TE/mL) 
DPPH 

(µM TE/mL) 
RP 

(µM TE/mL) 

R2 0.22±0.0a 266.3±11.5d 304.5±1.6a 308.6±9.7a 272.3±14.6a 257.5±6.9ab 555.0±4.8a 

R3 0.19±0.0b 288.8±6.5c 286.1±54.5a 187.2±82.5b 218.8±43.2bc 245.7±22.5b 513.0±55.9ab 

R4 0.18±0.0b 309.8±7.6b 295.5±22.0a 234.4±63.2b 247.4±44.2ab 268.1±6.5a 565.7±48.7a 

MIST 0.14±0.0c 468.5±7.5a 255.7±8.1b 239.4±12.1b 215.0±4.2c 267.9±4.1a 463.0±20.0b 

Control(iii) 0.19±0.0 16±1.0   1077±45.4 282±2.5 627±13.8 

R2: 3 samples of yeast biomass used twice in the brewing process; R3: 3 samples of yeast biomass with three serial reuses in the brewing 

process; R4: 3 samples of yeast biomass with four serial reuses in the brewing process; MIST: 3 samples of yeast surplus containing a 

mixture of biomass with different number of reuses in the fermentation process. Results are expressed as a mean ± standard deviation 

(n=9). Values in the same column followed by different subscripted letters indicate significant differences at p <0.05, Duncan’s post hoc 

test. 
(i) 1U = 1 µg of tyrosine equivalent released from casein per min. 
(ii) IC50 = concentration (µg protein/mL) of ACE inhibitor required to inhibit 50% of the ACE activity. 
(iii) Alcalase® diluted at 0.2 U/mL was used as positive control in the enzyme activity assay; Captopril was used as positive control in the 

ACE-I assay; a standard solution of vitamin C (500 µM) was used as positive control in antioxidant activity assays. 

Legend:  µM CE (Catechin Equivalent); µM TE (Trolox Equivalent); µM GAE (Gallic Acid Equivalent). 
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3.3.6. ACE-I activity of BSY extracts 

In our study, the highest ACE-I activity (lowest IC50 value) was observed for BSY 

prepared from R2 biomass, 266.3 µg protein/mL, as presented in Table 3.3. In contrast, the 

BSY extracts prepared from MIST, presented the lowest ACE-I activity, value of 468.5 µg 

protein/mL. ANOVA analysis shows that the serial repitching of yeast biomass on brewing 

process influenced significantly this biological property (p <0.05). There is little information 

in the literature regarding the potential ACE-I of Saccharomyces yeast, particularly for BSY. 

Kim et al. (75) reported the ACE-I from Saccharomyces cerevisiae extract with an IC50 of 

70 µg/mL, after 24 h of cultivation at 30ºC, treatment with pepsin and further purification of 

the ACE-I peptides by UF, Sephadex G-25 column chromatography and RP-HPLC. 

According to these authors, the ACE-I activity of the peptide fraction purified was slightly 

lower than that of the commercial antihypertensive drug captopril. BSY can be considered 

a good source for antihypertensive compounds due its GRAS status and the absence of 

adverse effects, such as coughs and allergies, associated with captopril or other synthetic 

antihypertensive agents.  

 

3.3.7. Stability of biological activity of frozen BSY extracts 

Freeze-dried BSY extracts maintained its proteolytic acitivity after 6 months of storage 

at -25ºC, while frozen resuspended BSY extracts presented a significant decrease (p <0.05) 

of the proteolytic activity after 4 months at -25ºC, decreasing to approximately half of the 

initial value after 6 months. However, no significant differences were observed on the other 

biological activities of the freeze-dried or frozen resuspended BSY extracts (p <0.05). The 

results obtained for resuspended BSY extracts of MIST are summarized in Figure 3.2 and 

highlight that storage time of 6 months (at -25ºC) preserve the ACE-I activity, TPC, TFC 

and antioxidant activity of the BSY extracts. 
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Figure 3.2. Biological activities stability of MIST BSY extract, stored at -25ºC for 6 months. Results are expressed as mean ± standard deviation of. 

Legend: µM CE (Catechin Equivalent); µM TE (Trolox Equivalent); µM GAE (Gallic Acid Equivalent); IC50 = concentration (µg/mL) of ACE inhibitor 

required to inhibit 50% of the ACE activity; 1U = 1 µg of tyrosine equivalent released from casein per min.  

* significantly different from initial value (0 Month), p <0.05, Student t test.  
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3.4. CONCLUSIONS 

 

Proteins are the major components of BSY extracts, its amino acid profile is well-balanced 

for human consumption. Additionally, those extracts present ACE-I activity and antioxidant 

activity. The antioxidant activity of BSY extract was comparable to the conventional 

synthetic antioxidant ascorbic acid, tested at the concentration of 500 µM. The number of 

the yeast reuses in brewing process does not influence significantly the antioxidant activity 

of yeast extracts, however, proteolytic activity and ACE-I activity reduces with the increase 

of serial repitching. Good stability of biological activities of BSY extracts was observed 

during a storage period of 6 months at -25ºC, without loss of their TPC, TFC, antioxidant 

properties, as well, its ACE-I activity. However, its proteolytic activity decrease 

approximately 50% after 4 months of storage at -25ºC when resuspended. Therefore, BSY 

extracts obtained using mechanical disruption can be explored in functional foods, cosmetic 

and pharmaceutical products due to their bioactive properties. To the best of our knowledge, 

this is the first report on the influence of serial repitching of brewing yeast on biological 

properties of its extracts.  
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CHAPTER 4 

 

 

Autolysis of intracellular content of brewer`s spent 

yeast to maximize ACE-inhibitory and antioxidant 

activities 

_____________________ 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the autolysis optimization of the BSY extract 

to enhance its antioxidant and ACE-inhibitory activities. 
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ABSTRACT 

 

Brewer´s spent yeast (BSY), the second major by-product from brewing, is recognized as 

a promising source of potentially bioactive ingredients. Mechanical disruption of BSY cell 

wall was performed to remove the β-glucans rich fraction and obtain the intracellular 

content, rich in proteins and enzymes, which were submitted to further autolyses. Response 

surface methodology (RSM) enabled the prediction of optimum autolysis conditions to 

achieve the highest Total Phenolic Content (TPC), antioxidant properties (evaluated by 

FRAP assay) and angiotensin I-converting enzyme inhibitory (ACE-I) activity. Autolysis of 

BSY inner cell content at 36.0°C, 6.0 h gave a TPC of 385 µM GAE/mL, a FRAP value of 

374 µM TE/mL and an IC50 value of 379 µg/mL. These experimental results were in 

agreement with the RSM predicted values. The combination of ACE-I and antioxidant 

activity in one autolysate can be very useful for application as function ingredient for food 

industry. 

 

 

4.1. INTRODUCTION 

 

Brewer´s spent yeast (BSY) (Saccharomyces genre) is the second major by-product 

from brewing (5), which presens a well-balanced amino acid profile, phenolic compounds, 

peptides, vitamins, β-glucans and nucleotides (36), (50), (86). It is also a source of several 

proteolytic enzymes, such as, PrA, PrB, CPY, AP1, aminopeptidase C and dipeptidyl 

aminopeptidase B (11), (44), (64). BSY autolysates and hydrolysates have been reported 

to possess several biological properties, particularly antioxidant (45), (76), (79), (169) and/or 

antihypertensive activities (86), (75), (79), (169), (170). Autolysis or self-digestion is often 

used for intracellular break down of proteins, nucleic acids and other cell constituents. The 

yeast autolytic process is usually carried out by incubation of yeast cells under moderate 

agitation and temperatures between 45-60ºC for 8-72 h. The major disadvantages are low 

extraction yield, difficult solid liquid separation due to high content of residue in autolysates, 

and risk of deterioration due to microbial contamination. Hydrolysis by sonication and 

digestion by enzymes, such as, trypsin, chymotrypsin flavourzyme, papain, and pancreatin 

is faster, although more expensive because requires exogenous enzymes (76), (169). 

The recovery of yeast cell-wall β-glucans to be used as a food ingredient was 

approved by the EFSA (143). However, to make the process of β-glucans’ separation from 

BSY profitable, new applications for the inner cell content are required. Cell wall 

disintegration for β-glucans’ separation can be performed by mechanical procedures (46), 

(50), (66). Ultrasound extraction is highly efficient, but it promotes protein denaturation due 
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to the increase of temperature (46), (66). Thus, when the main purpose is the recovery of 

native enzyme fraction for further autolysis of inner cell content, vortexing with glass beads 

under refrigerated conditions is commonly adopted at laboratorial scale (44), (50). 

Therefore, the objective of the present study was to produce an autolysate from intracellular 

BSY content to obtain a functional ingredient. The combination of ACE-I and antioxidant 

activity in one product could be very useful for the control of cardiovascular diseases. For 

this purpose, Response Surface Methodology (RSM) was employed to optimize the 

autolysis process (time and temperature) in order to achieve maximum antioxidant and 

ACE-I activities.  

 

 

4.2. MATERIAL AND METHODS 

 

4.2.1. Reagents 

Acetonitrile (HPLC grade) and Folin-Ciocalteu phenol reagent were obtained from Merck 

(Darmstadt, Germany). Bovine serum albumin (BSA); trifluoroacetic acid (TFA); gallic acid; 

2,4,6-tripyridyl-s-triazine (TPTZ); 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid 

(Trolox); commercial angiotensin-I-converting enzyme (ACE) (EC 3.4.15.1, 5.1 U/mg) and 

the Millipore 5 kDa MWCO UF membranes were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). ABz-Gly-Phe(NO2)-Pro was purchased from Bachem Feinchemikalien 

(Bubendorf, Switzerland). Ultrapure water was obtained from a Seral-Seralpur Pro 90 CN 

water purification system from Belgolabo (Overijse, Belgium).  

 

4.2.2. Brewer’s spent yeast (BSY) extract 

The BSY (Saccharomyces pastorianus) was supplied as slurry by Unicer brewing (Leça do 

Balio, Portugal). BSY was collected in 1 liter glass bottle and transported to the laboratory 

under refrigerated conditions. The BSY extract was prepared according to Vieira et al.(50) 

protocol. Firstly, BSY was washed three times with phosphate buffer, pH 6.0 (volume ratio 

1:3). After centrifugation (5,000 x g) during 15 min at 4°C, the yeast cell wall was destroyed 

with glass beads with a diameter of 0.60 mm at a ratio 1:1:1 (BSY: phosphate buffer pH 6.0: 

glass beads); (m/v/m), by vortexing 10 times (1 min each) with 1 min cooling intervals on 

ice-water bath to keep the temperature below 4°C during the entire process. After removing 

the glass beads by allowing the suspension to stand, the homogenate was centrifuged at 

12,000 x g, for 40 min at 4ºC, to remove the cell debris. The resulting clear supernatant was 

collected and kept at -20ºC until used. 
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4.2.3. Autolysis of BSY extract 

The protein content of BSY extract was determined by the Bradford method (171) and the 

protease activity was performed according to Cupp-Enyard assay (164). Autolyses were 

performed using 10 mL of BSY extract, under constant agitation (200 rpm) at different 

temperatures and times, according to the experimental design described in sub-section 

4.2.5. Control samples were BSY extract without any further treatment. Autolyses were 

terminated by heating the final solutions at 90ºC for 15 min, followed by centrifugation at 

10,000 x g for 10 min.  

 

4.2.4. Analytical Methods 

4.2.4.1. Determination of Total Phenolic content 

The method used for Total Phenolic quantification was similar to that described by Herald 

et al. (155). Gallic acid was used as standard at 10-500 μM to produce a calibration curve 

(average R2 = 0.9979). Total phenolic content (TPC) was expressed as mean values ± 

standard deviations, as µM of gallic acid equivalent per mL of BSY autolysate (µM GAE/mL). 

Spectrophotometric analyses were carried out using a BMG LABTECH´s SPECTROstar 

Nano-microplate, cuvette UV/Vis absorbance reader (Offenburg, Germany).  

 

4.2.4.2. Determination of Ferric ion reducing antioxidant power 

Determination of Ferric ion reducing ability (FRAP) was based on the method described by 

Jansen and Ruskovska (154). Trolox was used as standard at 10-500 μM to produce a 

calibration curve (average R2 = 0.9943). Results were expressed as mean values ± standard 

deviations, as µM of Trolox equivalent per mL of BSY autolysate (µM TE/mL). 

 

4.2.4.3. Determination of ACE-I activity 

ACE-I activity was measured using the fluorimetric assay of Sentandreu and Toldrá (121), 

with the modifications reported by Quiros et al. (122). ACE-I percentage (I %) was calculated 

using the equation: 

I % = {(B − A)|(B − C)} × 100  (1) 

where B is the fluorescence of the ACE solution without the inhibitor (BSY autolysate), A is 

the fluorescence of the tested sample (BSY autolysate) and C is the fluorescence of 

experimental blank, o-ABz-Gly-Phe(NO2)-Pro dissolved in 150 mM Tris-base buffer (pH 

8.3), containing 1.125 M NaCl. The percent inhibition curves (using a minimum of five 

determinations for each sample peptide concentration) were plotted versus peptide 

concentration to estimate the mean IC50 value, which is defined as the concentration 

required to decrease the ACE activity by 50% (122). Peptide content was determined by 
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Bradford method (171). Fluorimetric analyses were carried out using a fluorescence 

microplate reader (FLUOstar Optima, BMG Labtech GmbH). 

 

4.2.5. Experimental design, modelling and optimization of autolysis conditions 

The autolysis conditions that enabled the BSY autolysate with highest antioxidant and ACE-

I activities were optimized using a Central composite design (CCD). Two variables, namely, 

temperature (X1) and time (X2) were included in the model, in which each parameter was 

examined at five different levels, as shown in Table 4.1. CCD consisted of a complete 22-

factorial design as cubic points, with four axial points at a distance of α = 1.414 from the 

design centre and five centre points. The responses used in experimental design were TPC 

(Y1), antioxidant activity evaluated by FRAP assay (Y2) and ACE-I activity (Y3). The optimal 

values of response Y were obtained by solving the regression equation and by analysis of 

2D contour plots using the predictive equations of RSM. Then, the accuracy of the models 

was tested by conducting a set of experiments using the critical values optimized; the t test 

was conducted to compare the responses prepared under optimized conditions with those 

predicted by models.  

 

4.2.6. Statistical analysis 

Analysis of the experimental design, calculation of predicted data and production of surface 

plots were carried out using the software Design Expert trial version 7 (Stat-Ease Inc., 

Minneapolis, MN, USA). Statistical analysis of the other analytical results was performed 

with SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Analysis of variance (ANOVA) of the data 

was performed, differences were considered significant at p <0.05.  

 

 

4.3. RESULTS AND DISCUSSION 

 

A BSY extract containing 10 mg of proteins/mL was used in the autolyses 

experiments. The protease activity of the BSY extract was 0.22 U/mL and the pH was 6.0. 

Before the autolysis process, the BSY extract presented a TPC of 217 µM GAE/mL; a FRAP 

value of 199 µM TE/mL and an IC50 value of 481 µg protein/mL. 

 

4.3.1. Validation of the experimental design 

In order to investigate the effect of autolysis conditions on the bioactivity of BSY 

extract, the experiments were performed in a random manner at different combinations of 

temperature (X1) and time (X2). The TPC (Y1), FRAP (Y2) and ACE-I activity (Y3) of BSY 

autolysates were used as response factors for CCD (Table 4.1). Adequacy and significance 
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of the models were evaluated by analysis of the variance (ANOVA) by means of Fisher´s 

F-test, as detailed in Table 4.2. The independent variable X1 and X2 had a significant effect 

on all the responses. The interactions between X1.X2 also had significant effect on all 

responses (p <0.05). Quadratic term for X1 likewise had significant effect on all responses, 

but quadratic term for X2 only had significant effect on Y1 response. Thus, models 

presented a quadratic response for the three studied responses.  

The quadratic models were validated by two diagnostic residuals, the squared 

correlation coefficient (R2) and the predictive squared correlation coefficient (Q2). Typical 

values indicating good models are R2 >0.75 and Q2 >0.60 (172). The R2 for checking the 

fitness of model was very good (R2 adjust was relatively close to 1), indicating that model 

explained 99.9%, 98.2% and 97.0% of the variation on the X1, X2 and X3, respectively. The 

Q2 values were respectively 0.8461; 0.9756 and 0.9961 for the three responses, indicating 

the goodness of the model. The statistical analysis of variance also revealed that the “lack 

of fit” was not significant (p >0.05) for all the response surface models and the ‘‘Adeq 

Precision’’ was higher than 4 (as desirable) for all responses, indicating an adequate signal-

to-noise ratio. This confirmed the adequacy of model terms to describe the experimental 

data and for the prediction of the three studied parameters.  
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Table 4.1. Experimental design for evaluation the effects of autolysis conditions on biological properties of BSY autolysate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

run 

Independent 
variables 

Dependent variables 

T (X1) 
(ºC) 

t (X2) 
(h) 

Total Phenolics 
(Y1; TPC µM GAE/mL) 

Antioxidant activity 
(Y2; FRAP µM TE/mL) 

ACE-I activity 
(Y3;  IC50 µg/mL) 

1 25.0 1.5 277 235 421 

2 50.0 6.0 340 364 506 

3 38.0 3.8 347 351 376 

4 38.0 3.8 347 360 388 

5 20.0 3.8 242 231 431 

6 38.0 3.8 346 352 386 

7 38.0 1.0 342 321 410 

8 55.0 3.8 266 328 538 

9 38.0 3.8 348 352 390 

10 38.0 3.8 347 351 389 

11 38.0 7.0 405 383 380 

12 25.0 6.0 330 335 375 

13 50.0 1.5 309 337 489 
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Table 4.2. Analysis of variance (ANOVA) for Total phenolic content, Antioxidant activity and ACE-I activity of BSY autolysate 

 

 

 

Source Sum of Squares Mean Square F value p-value 

 Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 

Model 22277.6 25609.0 35587.8 4455.5 5121.8 7117.6 2303.0 130.4 77.3 <0.0001* <0.0001* <0.0001* 

X1- ºC 684.5 9057.0 15329.6 684.5 9057.0 15329.6 353.8 230.5 166.6 <0.0001* <0.0001* <0.0001* 

X2- h 3800.8 5778.4 755.2 3800.8 5778.4 755.2 1964.6 147.1 8.2 <0.0001* <0.0001* 0.0242** 

X1.X2 120.1 1347.0 990.1 120.1 1347.0 990.1 62.1 34.3 10.8   0.0001*   0.0006* 0.0135** 

X12 15063.7 9271.3 18506.4 15063.7 9271.3 18506.4 7786.3 236.0 201.1 <0.0001* <0.0001* <0.0001* 

X22 1199.2 0.1 231.4 1199.2 0.1 231.4 619.9 0.0 2.5 <0.0001* 0.9755 0.1568 

Residual 13.5 275.0 644.2 1.9 393 92.0       

Lack of Fit 10.7 212.6 517.5 3.6 70.9 172.5 5.1 4.5 5.4 0.0745 0.0889 0.0676 

Pure Error 2.8 62.4 126.7 0.7 15.6 31.7       

Total 22291.1 25884.0 36232.0          

Q2 (Y1) = 0.8461 R2 pred (Y1) = 0.9964 R2 adjust (Y1) = 0.9990 ratio = 172.7     

Q2 (Y2) = 0.9756 R2 pred (Y2) = 0.9378 R2 adjust (Y2) = 0.9818 ratio = 37.2     

Q2 (Y3) = 0.9961 R2 pred (Y3) = 0.8930 R2 adjust (Y3) = 0.9695 ratio = 27.1     

Y1- Total Phenolic Content; Y2- FRAP; Y3- ACE-I activity. 

* Significance at p <0.01; ** Significance at p <0.05. 
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4.3.2. Analysis of response surfaces 

The relationship between independent and dependent variables was graphically 

represented by 2D contour plots generated by the RSM model. As shown in Figure 4.1 

(surface and contour plots A and B), TPC and FRAP tended to steadily increase at higher 

temperature (6.0 h) and reached a maximum at the middle of temperature design, while 

undergo a reduction when autolysis time was extended at higher temperature. Similar 

behaviour was observed by other authors for other kind of food hydrolysates (173). The 

minimum values of TPC and FRAP response were observed for lower temperature and time 

responses. These results suggest that extension of autolysis time enhances the antioxidant 

and phenolic composition of BSY autolysates. However, for longer autolysis time under high 

temperature, the negative quadratic effect became significant. This may be attributed to the 

thermal degradation of phenolic and other antioxidant compounds at higher temperatures.  

Concerning to ACE-I activity, as observed in Figure 4.1 (surface and contour plot C), 

it increased with time over moderate temperature (which means lower IC50 values), 

however, when the autolysis time was extended at higher temperature, the BSY autolysate 

presented a reduction in ACE-I activity (higher IC50 values), suggesting degradation of ACE-

I peptides. These results are in agreement to those observed for other food hydrolysates 

(173), (174). 
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Figure 4.1. Response surface and contour plots for interaction effects of temperature (ºC) 

and time (h) autolysis on Total phenolics (A), FRAP (B) and ACE-I activity (C). 
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4.3.3. Validation of the RSM model 

The optimal autolysis conditions to maximize the biological activities of BSY 

autolysate were predicted by using RSM. For that purpose the response surface was 

explored and a prediction point was achieved to meet the defined goal, which means 

maximize the Y1, Y2 responses and minimize the Y3 response. Then, the confirmatory 

experiments were conducted with the parameters suggested by the experimental models, 

in three different runs, and the t test was applied to confirm the adequacy of the models in 

predicting the optimum autolysis conditions. Results from numerical optimization are 

presented in Table 4.3. The maximum TPC for BSY autolysate was predicted for autolysis 

at 38.0ºC, 6.0 h. Under these optimal conditions, the experimental value was 384 µM 

GAE/mL, which was in agreement (p <0.05) with the predicted value, 382 µM GAE/mL. The 

maximum FRAP value for BSY autolysate was predicted for autolysis at 40.0ºC, 6.0 h. 

Under these conditions, the experimental value observed was 381 µM TE/mL, being in 

agreement (p <0.05) with the predicted value, 382 µM TE/mL. The optimal autolysis 

conditions in order to obtain the higher ACE-I activity (minimum IC50) were 31.0ºC, 6.0 h; 

under these conditions, the experimental value obtained was 364 µg/mL, which was in 

agreement (p <0.05) with the predicted IC50 value of 365 µg/mL.  

 

Table 4.3. Performance of RSM model in predicting the optimum autolysis conditions to 

enhance the biological activities of BSY autolysate 

 

Response 
Optimum conditions Predicted 

value 
Experimental 

value a 
p 

value b Temp (ºC) Time (h) 

TPC (µM GAE/mL) 38.0 6.0 382 384 ± 3 0.345 

FRAP (µM TE/mL) 40.0 6.0 382 381 ± 1 0.411 

IC50 (µg/mL) 31.0 6.0 365 364 ± 1 0.401 

In combination 36.0 6.0    

a Values represent mean ± standard deviation (n=3). 

b Significance at p <0.05. 

 

 

After single evaluation of response surfaces it was established the same criteria to 

obtain the optimum experimental conditions for the three responses simultaneously. For 

that purpose, a statistical toll was employed to explore the response surface of the design 

and gave a prediction point as a result of defined goals that were introduced. Individual 



PART I. Chapter 4  
Autolysis of intracellular content of brewer`s spent yeast to maximize ACE-inhibitory and antioxidant activities 

79 

desirability indices were constructed for each variable of the design. Afterwards, individual 

desirabilities were combined into a single number and then searched the greatest overall 

desirability. Desirability indices were built (Figure 4.2) and the optimum conditions obtained 

were temperature of 36.0ºC and autolysis time of 6.0 h, by which the BSY autolysate 

presented a predicted value for TPC of 381 µM GAE/mL, a FRAP value of 378 µM TE/mL 

and an IC50 value of 376 µg protein/mL. Under the optimum conditions, the experimental 

values were, respectively, 385 µM GAE/mL, 374 µM TE/mL and 379 µg protein/mL. These 

experimental results were in agreement with the RSM predicted values. 

The optimum IC50 value of BSY obtained in this work is difficult to compare with previous 

works because the procedure employed to prepare the BSY autolysate is completely 

different. To best of our knowledge this work is the first attempt to reuse the BSY to produce 

an autolysate from the inner cell content with enhanced antioxidant and ACE-I activities.  

 

 

 

 

 

 

 

 

 

Figure 4.2. Response surface and contour plots for interaction effects of temperature (ºC) 

and time (h) autolysis on the desirability index for combined responses of BSY autolysate. 

Optimum point was identified on the response surface. 

 

 

4.4. CONCLUSIONS 

 

The BSY extract from inner yeast cell content (rich in proteins and proteases) when 

submitted to autolysis presented enhanced TPC, FRAP and ACE-I activity (respectively, 

385 µM GAE/mL, 374 µM TE/mL and 379 µg protein/mL) compared to the original extract 

(TPC of 217 µM GAE/mL; a FRAP value of 199 µM TE/mL and an IC50 value of 481 µg 

protein/mL). RSM was an efficient statistical methodology to optimize the autolysis 

conditions; the three biological activities were maximized at 36.0ºC, 6.0 h. This autolysate 
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presents potential for application as ingredient of functional foods due to its antioxidant and 

ACE-I activities. Further work should be done to assess the bioactivity of peptides from BSY 

autolysates after GI digestion, their resistance to brush-border peptidases and their 

susceptibility to intestinal transepithelial transport after GI digestion. 
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This chapter describes the simulated GI digestion and the in vitro 

intestinal cell permeability of the BSY autolysate that presented 

enhanced antioxidant and ACE-I activities  
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ABSTRACT 

 

The impact of in vitro gastrointestinal digestion and transepithelial transport on antioxidant 

and ACE-I activities of brewer´s spent yeast (BSY) autolysate obtained from the inner cell 

content was investigated using Caco-2 cell monolayer and Caco-2/HT29MTX co-culture cell 

monolayer. Gastrointestinal digestion enhanced both activities (FRAP of 405 µM TE/mL 

and IC50 of 345 μg protein/mL). Within a concentration range of 0.5 to 3.0 mg protein/mL of 

digested BSY autolysate no cytotoxic effects were observed on Caco-2 cells after 24 h 

exposition and the response to oxidative stress, induced by hydrogen peroxide, 

demonstrated the protective role of the BSY autolysate. High apparent permeability 

coefficient (Papp) values for BSY peptides across Caco-2 cell monolayer model (12.4-

20.8x10-6 cm/s) and Caco-2/HT29-MTX cell monolayer (14.5-26.1x10−6 cm/s) were 

observed in both models. Antioxidant and ACE-I activities after transepithelial transport 

suggest that bioactive peptides from digested BSY autolysate and from the action of brush-

border peptidases were well absorbed. 

 

 

5.1. INTRODUCTION 

 

Brewer´s spent yeast (BSY), the second major by-product from brewing, is currently 

used as a low-valuable animal feed product (2), (5). However, it owns the GRAS (Generally 

Recognized as Safe) status and can be valorized through the production of added value 

functional food ingredients, such as, β‐glucans from cell wall (175) and nucleotides (50).  

BSY extracts can be obtained by autolysis, plasmolysis and hydrolysis although the 

most frequent is autolysis (72). The production of BSY autolysates usually involves 

incubation of cell suspensions of BSY at temperatures ranging from 45 to 60 °C with a 

reaction time between 8 and 72 h (72), (79), (176). Another possibility not explored in the 

literature is the autolysis of intracellular content that contains native proteins and proteases, 

for this purpose a mechanical disruption of BSY cell wall under refrigerated conditions is 

required (177). After cell wall removing, useful for β‐glucans recovery, mild autolysis 

conditions with lower temperatures and reducing autolysis time can be applied to the inner 

cell content. BSY autolysates contain bioactive peptides that may have potential 

applications as food or nutraceutical ingredients due to their antioxidant and ACE-I activities 

(79). However, the challenge before in vivo efficacy studies is to understand the impact of 

simulated gastrointestinal (GI) digestion; intestinal cell permeability and interaction with 

intracellular sources of oxidative stress. 
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The human colorectal adenocarcinoma Caco-2 cell line has been widely used to 

evaluate the cytotoxicity of bioactive compounds at concentrations used to exert the desired 

bioactivity in the body, as well as, to study the potential for inhibiting intracellular oxidation 

(88). Moreover, Caco-2 cell line has been used as in vitro model of absorptive enterocytes 

to evaluate the permeability of drugs and food compounds (131), (178). However, only few 

studies addressed the intestinal transport of complex mixtures of peptides (127), (178), 

(179). Furthermore, to the best of our knowledge this is the first study in which the 

permeability of a BSY autolysate is assessed. The Caco-2 cell monolayers exhibit 

spontaneous enterocyte-like differentiation under standard culture conditions, showing 

morphological polarity and expression of brush-border hydrolases, transporters, microvilli 

and tight junctions, thus mimicking the main characteristics of the human small intestine 

(133), (178). Nevertheless, this model presents limitations since besides the absorptive 

enterocytes (80%) the human intestinal epithelial includes other types of cells, including 

enteroendocrine, goblet and paneth cells. Another disadvantage of the Caco-2 cell line is 

that the tightness of the monolayer resembles that of the colon and not the small intestine, 

therefore paracellular transport can be underestimated (180). To overcome these 

limitations, co-cultures of Caco-2 and mucus-secreting cells (HT29-MTX) have been 

proposed as a more bio-relevant model of the intestinal epithelium (131), (133), (180). 

The major goals of the present study were to investigate: (i) the effect of in vitro GI 

digestion on antioxidant and ACE-I activities of BSY autolysate and the ability of the GI 

digest to protect Caco-2 cell line regarding viability, mitochondrial integrity and oxidative 

stress, (ii) the resistance to brush-border peptidases and the susceptibility to intestinal 

transepithelial transport of BSY peptides, comparing two cell monolayer systems broadly 

used as models for the small intestine epithelium (Caco-2 and Caco-2/HT29-MTX co-culture 

cell monolayers), and (iii) the biological activity of BSY permeates.   

 

 

5.2. MATERIAL AND METHODS 

 

5.2.1. Reagents and cells 

Pepsin; pancreatin; commercial angiotensin-I-converting enzyme (ACE, EC 3.4.15.1, 5.1 

U/mg); bovine serum albumin (BSA); trifluoroacetic acid (TFA); 6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid (Trolox); dimethyl sulfoxide (DMSO); 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the Millipore UF 

membrane 5 kDa were purchased from Sigma-Aldrich (St. Louis, MO, USA). The o-

aminobenzoylglycyl-p-nitro-phenylalanylproline (o-ABz-Gly-Phe(NO2)-Pro) was purchased 

from Bachem Feinchemikalien (Bubendorf, Switzerland). GIBCO Dulbecco’s Modified 
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Eagle Medium (DMEM), heat-inactivated fetal bovine serum (FBS), penicillin/streptomycin, 

trypsin-EDTA and Hank’s balanced salt solution (HBSS, pH 7.0-7.4) were purchased from 

Invitrogen (Carlsbad, CA). Falcon® translucent polyethylene terephthalate (PET) cell 

culture inserts (3.0 µm pore size, 24 mm diameter inserts, 4.2 cm2 effective growth area) 

were acquired from BD Biosciences (Franklin Lakes, NJ, USA) and 6-well and 96-well 

microplates were purchased from Corning Costar (Sigma-Aldrich, St. Louis, MO, USA). 

Human colon carcinoma (Caco-2) cell line was obtained from the American Type Culture 

Collection (ATCC) and mucus producing HT29-MTX cell line was kindly provided by Dr. T. 

Lesuffleur (INSERM U178, Villejuif, France).  

 

5.2.2. Equipments 

The RP-HPLC analyses were carried out using an analytical HPLC system (Jasco, Tokyo, 

Japan) equipped with a quaternary low pressure gradient HPLC pump (Jasco PU-1580), a 

degasification unit (Jasco DG-1580-53 3-line degasser), an autosampler (Jasco AS-2057-

PLUS), a multiwavelengh detector (Jasco MD-910) and a 7125 Rheodyne injector valve 

(CA, USA). The data acquisition was accomplished using Borwin Controller software, 

version 1.50 (JMBS Developments, Le Fontanil, France).  

Mass Spectrometry (MS) data were acquired using a 4800 MALDI-TOF/TOF (Applied 

Biosystems, Darmstadt, Germany) mass spectrometer in the m/z range of 1000-12000. The 

MS data was processed using Data Explorer 4.8 Software (Applied Biosystems). 

Spectrophotometric analyses were carried out using a SPECTROstar Nano-microplate, 

cuvette UV/Vis absorbance reader (BMG Labtech GmbH, Offenburg, Germany). 

Fluorimetric analysis were carried out using a fluorescence microplate reader (FLUOstar 

Optima, BMG Labtech GmbH). 

 

5.2.3. Preparation of BSY autolysates and in vitro GI digestion 

BSY samples (Saccharomyces pastorianus) were supplied by Unicer brewing (Leça do 

Balio, Portugal). Disruption of cell wall to extract the inner yeast content was performed 

according to Vieira et al. (177). BSY autolysates from the inner cell content, presenting 10 

mg/mL of proteins determined by the Bradford method (171) and pH 6.0, were submitted to 

autolysis at 36°C, 6 h and filtered using a 5 kDa MWCO membrane.  

To mimic digestion in the stomach and upper intestine, in vitro pepsin-pancreatin digestion 

of BSY autolysate from the inner cell content was performed according to the method 

described by Samaranayaka et al. (181). The digested BSY autolysate was used for 

screening in vitro biological activity (described in sub-section 5.2.4) and for RP-HPLC 

analysis (described in sub-section 5.2.6). Freeze-drying of digested BSY extract was 

required for cell assays (described in sub-section 5.2.5). 



86 

5.2.4. In vitro biological activity  

Determination of Ferric ion reducing ability (FRAP) was based on the method of Jansen 

and Ruskovska (154). Trolox was used as standard at 10-500 μM to produce the calibration 

curve. Results were expressed as mean values ± standard deviations of µM of Trolox 

equivalent per mL (µM TE/mL). Assays were performed in triplicate. 

ACE-I activity was measured in triplicate using the fluorimetric assay of Sentandreu and 

Toldrá (121), with the modifications reported by Quiros et al. (122). ACE-I percentage (I) 

was calculated using the equation:  

I % = {(B − A)|(B − C)} × 100  (1) 

where B is the fluorescence of the ACE solution without an inhibitor (BSY autolysate); A is 

the fluorescence of the tested sample of BSY autolysate; and C is the fluorescence of 

experimental blank (o-ABz-Gly-Phe(NO2)-Pro dissolved in 150 mM Tris-base buffer (pH 

8.3), containing 1.125 M NaCl). IC50 values were measured as the concentration required 

to decrease the ACE activity by 50% (122).  

 

5.2.5. Cell-based assays 

5.2.5.1. Cell culture maintenance and generation of cell monolayers 

Caco-2 and HT29-MTX cell lines at passage 36 and 47, respectively, were used. The two 

cell lines were maintained in DMEM supplemented with 10% (v/v) FBS, and 100 U/mL 

penicillin and 100 µg/mL streptomycin, at 37ºC under 5% CO2, water saturated atmosphere. 

The medium was changed every other day. For cell permeability studies, 90% confluent 

Caco-2 and HT29-MTX cells were harvested using trypsin-EDTA and seeded onto 

permeable membrane supports mounted in 6-well plates. Seeding density was 2.8x105 

cells/mL for Caco-2 cell monolayers and Caco-2/HT29-MTX co-culture model (cell ratio of 

90:10), as described by Antunes et al. (131). The culture medium was allowed to 

differentiate for 21 days before permeability experiments. The integrity of the cell 

monolayers was checked before and after permeability assays by the Transepithelial 

Electrical Resistance (TEER) using an epithelial voltammeter (EVOM, World Precision 

Instrument, Sarasota, FL, USA). 

 

5.2.5.2. Cell viability determination 

Caco-2 cell viability was determined using the MTT assay described by Laitinen et al. (182). 

Caco-2 cells at densities of 8x104 cells/well were seeded on 96-well plates in order to obtain 

a confluent monolayer within 1 day. Then, cells were incubated for 24 h (37°C, 5% CO2) 

with the digested BSY samples at six different concentrations: 0.5; 1.0; 2.0; 3.0; 4.0 and 6.0 

mg protein/mL. A negative control (NEGc, cells treated with medium only) and a positive 

control (POSc, cells treated with medium and 1% Triton X-100) were also included. After 
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cell treatment with the test samples, the culture medium was aspirated and the attached 

cells were rinsed with 200 µL HBSS, followed by the addition of fresh culture medium 

containing 0.25 mg/L MTT. After 30 min of incubation (37°C, 5% CO2), the formed 

intracellular crystals of formazan were dissolved using 100 µL of DMSO and determined by 

measuring the absorbance at 570 nm. Data were obtained from three independent 

experiments, with each plate containing six replicates for each test sample. Cell viability (%) 

was calculated relative to the maximum viability of NEGc, as follows:  

𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) = (
𝐴𝑏𝑠 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑏𝑠 𝑁𝐸𝐺𝑐
) × 100   (2) 

where Absorbance of NEGc was used as a measure of the formazan formed in negative 

control cells and Absorbance of sample as the measure of the formazan formed after 

sample test exposure. 

 

5.2.5.3. Mitochondrial integrity determination 

Assessment of mitochondrial integrity was performed by measuring the 

tetramethylrhodamine ethyl ester perchlorate (TMRE) inclusion, according to Dias da Silva 

et al. (183) protocol. Caco-2 cells at the density of 105 cells/well were seeded onto 96-well 

plates. After 24 h, the media was gently aspirated and the cells were incubated with digested 

BSY autolysate at six different peptide concentrations for 24 h (37°C, 5% CO2). Then, cells 

were rinsed twice with HBSS and incubated at 37ºC with 100 µL of 2 mM TMRE for 30 min. 

Then, the media was gently aspirated and replaced by 0.2% BSA in HBSS. Fluorescence 

was measured at 37ºC set to 544 nm excitation and 590 nm emission. TMRE mitochondrial 

inclusion (%) was calculated relative to the maximum levels of the NEGc. Data were 

obtained from three independent experiments, with each plate containing six replicates of 

each test sample. 

 

5.2.5.4. ROS levels production  

The intracellular reactive oxygen species (ROS) production was monitored by means of the 

2`,7`-dichlorodihydrofluorescein diacetate (DCFH-DA) assay, according to Dias da Silva et 

al. (183) protocol. DCFH-DA penetrates into cells and is hydrolyzed to DCFH by intracellular 

esterases; the presence of ROS can oxidize DCFH to form DCF, a fluorescent product 

(183). For this determination, Caco-2 cells at the density 105 cells/well were seeded onto 

96-well plates and allowed to attach for 24 h. On the day of the experiment, the differentiated 

cells were rinsed with HBSS and incubated with 200 µL per well of digested BSY autolysate 

at six different peptide concentrations for 24 h (37°C, 5% CO2). A negative control (NEGc, 

cells treated with medium only) was also included. After the treatment period, cells were 

rinsed twice with HBSS and incubated with 10 mM DCFH-DA for 30 min (37°C, 5% CO2). 
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After removal of the DCFH-DA and further washing with HBSS, the formation of 2`,7`-

dichlorodihydrofluorescein (DCF), due to the oxidation of DCFH-DA in the presence of 

intracellular ROS, was measured at an excitation wavelength of 485 nm and an emission 

wavelength of 530 nm. Cell ROS production (%) was calculated relative to the maximum 

ROS levels of NEGc. Data were obtained from three independent experiments, with each 

plate containing six replicates of each test sample. 

In parallel, the cellular protection of digested BSY autloysate against a cytotoxic agent was 

induced by addition of 1 mM hydrogen peroxide. For this purpose, cells were also submitted 

to the 24 h treatment period, but in this case, 1 mM hydrogen peroxide was added 6 h before 

ROS measurement. Cell ROS production (%) was calculated relative to the maximum ROS 

levels of positive control (POSc, cells treated with hydrogen peroxide). 

 

5.2.5.5. Permeability experiments 

After 21 days of culturing, TEER of the cell monolayers was measured prior to the beginning 

of transport experiments and only those presenting values higher than 200 Ω.cm2 were 

used. Cell monolayers were pre-equilibrated with fresh HBSS solution, at 37°C, for 30 min. 

The apical (donor) compartment was filled with 1.5 mL of digested BSY autolysate in HBSS 

to a final concentration of 3.0 mg protein/mL and basolateral (receptor) compartment was 

filled with 2.5 mL of HBSS. Cell monolayers were allowed to incubate at 37°C under 5% 

CO2 and 95% relative humidity. Samples (1.0 mL) were collected from the basolateral side 

at 15, 30, 60, 120 and 180 min to analyze the peptides transported across cell monolayers. 

Fresh HBSS was added in order to complete the initial volume at the basolateral 

compartment. A control sample, containing only HBSS and no sample solutions was 

included in the experimental setup. After the permeability experiments, the action of cell 

proteases on collected permeates was immediately stopped by cold at -90ºC and freeze-

dried. In order to perform the antioxidant and in vitro ACE-I assays (described in sub-section 

5.2.4), freeze-dried permeates were dissolved in HBSS (20% the original volume added to 

apical side). For chromatographic analysis (described in sub-section 5.2.6), freeze-dried 

permeates were dissolved to the original volume (added to apical side) in solvent A (0.1% 

TFA in water). The efficiency of peptide transport, expressed as percentage of permeability 

for each peak (P %), was calculated according to Cinq-Mars et al. (127) as follows: 

P % =
Ab

Aa.V
 X 100          (3) 

where Ab and Aa correspond, respectively, to the RP-HPLC peak areas of the peptide 

fraction detected in the basolateral and in the apical side and V (mL) is the volume of sample 

loaded in the apical side. In addition to P (%), the apparent permeation coefficient (Papp), 
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expressed in cm/s, was calculated according to Ferraro et al. (184) from the following 

equation:  

Papp =
Q

A.C.t
     (4) 

where Q is the total amount of permeated peptides during the 180 min of the transport 

experiment (mg), A is the diffusion area (4.2 cm2), C is the apical compartment 

concentration at time zero (mg/mL), and t is the time of the experiment(s).  

 

5.2.6. Peptide analyses by Reverse-phase HPLC and by MALDI-TOF/TOF 

Peptide profiles from digested BSY autolysate (0 min) and permeates (at 15, 30, 60, 120 

and 180 min) from Caco-2 and Caco-2/HT29-MTX co-culture cell permeability assays were 

analysed by RP-HPLC, according to the method described by Ferreira el al. (185). 

Additionally, analyses by matrix-assisted laser desorption/ionisation time of-flight/time-of-

flight (MALDI-TOF/TOF) mass spectrometry were also performed to determine the 

molecular mass of the peptide mixture. For this purpose, the digested BSY autolysate and 

five-fold concentrated permeates from Caco-2/HT29-MTX cell model were cleaned with 

ZipTip C18 (Millipore) using the manufacturer’ instructions. Then, the eluted samples were 

premixed with matrix (3 mg/mL alpha-cyano-4-hydroxycinnamic acid (CHCA) in 50% (v/v) 

aqueous acetonitrile, 0.1% TFA), spotted onto a target plate, and dried at room temperature. 

The 4800 MALDI-TOF/TOF was calibrated using horse myoglobine [m/z 16952.56 (+1); m/z 

8476.78 (+2); m/z 5651.85 (+3)] and cytochrome c [m/z 12349.72 (+1); m/z 6177.94 (+2)]. 

 

5.2.7. Statistical analysis 

The student t-test was performed to compare the permeability profile between the two cell 

models; one-way analysis of variance (ANOVA) was carried out for comparing multiple 

samples, followed by Duncan’s post-hoc test. Differences with p <0.05 were considered 

significant. All statistical calculations were performed using SPSS 22.0 (SPSS software, 

Chicago, USA).  

 

 

5.3. RESULTS AND DISCUSSION 

 

5.3.1. Impact of in vitro GI digestion of BSY autolysate on the biological activity  

The autolysate obtained from the inner cell content of BSY presented both antioxidant 

and ACE-I activities, the FRAP value was 374±12 µM TE/mL and IC50 was 379±10 µg 

protein/mL. The in vitro pepsin-pancreatin digestion significantly (p <0.05) enhanced both 

activities, since FRAP value increased to 405±9  µM TE/mL and IC50 decreased to 345±10 
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µg protein/mL, probably due to the stability of the existing antioxidant and ACE-I compounds 

to digestion and the generation of small peptides presenting these activities.  

The viability of Caco-2 cells after treatment with the digested BSY autolysate, 

assessed by the MTT assay, indicates no toxic effects concerning mitochondrial enzyme 

activity after exposition (24 h at 37ºC, 5% CO2) to the digested BSY autolysate at 

concentrations between 0.5 and 4.0 mg protein/mL (Figure 5.1.A). Moreover, 

concentrations up to 3.0 mg protein/mL significantly increased the MTT reduction by Caco-

2 cells, reflecting higher metabolic competence. It is not uncommon for some chemicals/ 

compounds to induce an increase in cellular metabolic activity, which would result in 

increased mitochondrial succinate dehydrogenase activity (186). As the protocol performed 

in the present study uses cells at confluence, the attained data is not compatible with cell 

proliferation. However, at the highest concentration, 6.0 mg protein/mL, the viability of Caco-

2 cells significantly (p <0.05) decreased to around 70%.  

TMRE assay indicates that exposition of Caco-2 cells to the digested BSY autolysate 

at concentrations lower or equal to 4.0 mg protein/mL did not cause significant mitochondrial 

disruption (Figure 5.1.B). Conversely, it was observed an increase of the inner mitochondrial 

membrane potential, which is consistent with the effects obtained in the MTT assay. The 

mitochondrial membrane potential is a central parameter controlling calcium homeostasis 

and ATP synthesis (both involved in several vital cellular processes). Accordingly, 

mitochondrial hyperpolarization has been directly correlated with cell survival (187).  

Concerning the overall oxidative stress in Caco-2 cells under normal conditions (no 

oxidative stress), high inhibition of ROS production was observed for concentrations lower 

than 3.0 mg protein/mL (p <0.05) after exposure for 24 h to digested BSY autolysate (Figure 

5.2.A), suggesting a protective antioxidant effect of Caco-2 cells. A significant increase in 

ROS production occurred in the presence of hydrogen peroxide when compared with 

unstressed conditions (Figure 5.2.B). However, digested BSY autolysate presented a 

protective effect on Caco-2 cells, as evidenced by the lower ROS generation (p <0.05). The 

concentration of 3.0 mg protein/mL was selected for permeability experiments taking in 

consideration the results from cell viability, mitochondrial membrane potential and oxidative 

stress response. 
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Figure 5.1. Cell viability (%) (A) and TMRE mitochondrial inclusion (%) (B) after 24 h of 

exposure (37ºC, 5% CO2) to digested BSY autolysate at different protein concentrations. 

NEGc (cells treated with medium only); POSc (cells treated with medium and 1% Triton X-

100). Columns represent the mean and vertical bars the standard deviation, calculated 

relatively to NEGc. * denotes a significant difference when compared with NEGc (p <0.05, 

n=3). 
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Figure 5.2. Protective effect of the digested BSY autolysate on ROS levels after 24 h of 

exposure (37ºC, 5% CO2) at different protein concentrations (mg/mL) under no stress 

treatment (A) and after oxidative stress induced by hydrogen peroxide (6 h exposure) (B). 

NEGc (cells treated with medium only); POSc (cells treated with medium and 1 mM 

hydrogen peroxide). Columns represent the mean and vertical bars the standard deviation, 

calculated relative to respective control. # indicates respective differences between “no 

oxidative stress” and “oxidative stress” treatments (p <0.05, n=3). Bars labeled with different 

subscript and superscript letters have mean values that are significantly different at p <0.05 

(ANOVA followed by Duncan's test).  

 

 

5.3.2. Intestinal permeability of peptides from BSY autolysate 

Caco-2 and Caco-2/HT29-MTX monolayers with TEER values of 360-390 Ω.cm2 and 

220-250 Ω.cm2 at 21 days, respectively, were used in the permeability studies. Lower TEER 

values observed for the co-culture model are related to the establishment of looser tight 

junction between Caco-2 and HT29-MTX cells (131), (179). After permeability experiments, 

TEER values of Caco-2 and Caco-2/HT29-MTX co-culture cell monolayers remained 

unchanged compared to the original values (decrease less than 10%), suggesting that the 

digested BSY autolysate did not affect significantly the viability and integrity of cell 

monolayers. Figure 5.3 shows the typical RP-HPLC profile of the digested BSY autolysate 

used in cell permeability assays, in which six major peptide fractions were separated and 

numbered from P1 to P6 according to the polarity increase. Elution was monitored at 214 
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nm. RP-HPLC profile of permeates from Caco-2 and Caco-2/HT29-MTX co-culture cell 

monolayers obtained at 180 min are also shown in Figure 5.3. Similar RP-HPLC profiles 

were obtained in the apical and basolateral sides of Caco-2 (Figure 5.3.A) and Caco-

2/HT29-MTX monolayers (Figure 5.3.B), although qualitative differences were observed on 

peak areas. According to the literature small peptides presenting less than 1000 kDa are 

transported intact through the intestinal epithelium by PepT1, a proton-coupled membrane 

transporter (88). However, MALDI-MS spectra of permeates confirmed the presence of 

oligopeptides with molecular weight higher than 1000 kDa, not only in the digested BSY 

autolysate but also in permeates (Figure 5.4.A and B). The paracellular transport through 

the intercellular junctions can be involved in the transepithelial absorption of peptides larger 

than three amino acid residues; although the absorptive transcytosis have been suggested 

as the main transport system for long-chain oligopeptides (88), (188). Moreover, as 

illustrated in Figure 5.4, there are more peptide fragments in the sample taken from the 

basolateral side than that from the apical side, which suggests a partial degradation of 

apical peptides into smaller fragments by the action of cell peptidases and their absorption 

through the Caco-2/HT29-MTX cell monolayer (178).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. RP-HPLC chromatographic profile of digested BSY autolysate before (0 min) 

and after permeability (180 min) through Caco-2 cell monolayers (A) and Caco-2/HT29 co-

culture cell monolayers (B). The absorbance was monitored at 214 nm. Retention time for 

chromatographic peaks was: (P1) 4.2-6.2 min; (P2) 6.3-10.0 min; (P3) 10.1-13.3 min; (P4) 

13.4-16.0 min; (P5) 16.1-17.5 min and (P6) 17.6-19.6 min.   
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Figure 5.4. MALDI-TOF mass spectra of digested BSY autolysate added to the apical compartment at the beginning of transport experiment (A) and 

five concentrated permeate taken from the basolateral compartment after 180 min of a permeability experiment across Caco-2/HT29-MTX co-culture 

cell monolayer (B).  
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The permeability profile of peptide fractions (P1 to P6) for both cell models is depicted 

in Figure 5.5 as the cumulative transport up to 180 min. Intense permeation of peptide 

fractions was observed during the first 30-60 min. In Caco-2 cell monolayers, the 

accumulated permeability at 180 min was significantly higher for P5 and P6 peptide 

fractions, which reached, respectively, 44.9±2.6% and 55.4±1.3% (Figure 5.5.A). In the 

case of the Caco-2/HT29-MTX co-culture cell model, the accumulated permeability was 

significantly higher at 180 min of transport for P2, P5 and P6 peptide fractions, reaching, 

respectively, 63.5±2.6%, 52.7±1.6% and 69.6±0.6% of transport rate (Figure 5.5.B). The 

presence of HT29-MTX cells led to a significant transport increase of peptides when 

compared with the Caco-2 cell monolayer. As aforementioned, this result can be explained 

by the lower TEER values observed for Caco-2/HT29-MTX co-culture cell monolayer. 

Permeability was higher for the more hydrophobic peptides (P5 and P6 fractions), which is 

in agreement to data reported by other authors for other type of food peptides (127).  
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Figure 5.5. Comparative in vitro cumulative permeability of BSY peptides across Caco-2 cell monolayers (A) and Caco-2/HT29-MTX co-culture cell 

monolayers (B). Permeation (%) was calculated from the area of each peptide fraction in the RP-HPLC chromatogram, numbered from P1 to P6 

according to the increase of polarity (see Figure 5.3 for peak identification). Experiments were conducted from the apical to the basolateral compartment. 

Individual points and error bars represent mean ± standard deviation (n=3). 
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Papp values can be correlated with the predictable magnitude of in vivo absorption. In 

the present work, the criteria defined by Yee (189) was considered, according to which a 

compound with Papp value lower than 10−6 cm/s indicates poor in vivo absorption (0-20%); 

Papp values between 10−6-10−5 cm/s correspond to substances with moderate absorption 

(20-70%) and Papp values over 10−5 cm/s suggest that compounds are well absorbed (70-

100%). In this work, Papp values at 180 min of absorptive transport of BSY peptides across 

Caco-2 monolayers were in the range of 12.4-20.8×10-6 cm/s (Table 5.1), suggesting 

extensive in vivo absorption. This parameter was significantly higher when the Caco-

2/HT29-MTX co-culture cell monolayer was used (ranging between 14.5-26.1×10−6 cm/s). 

This last model is presumably closer to the in vivo situation and, thus, more realistically 

simulates the intestinal epithelium (131), (132). In general, the high Papp values are in 

accordance with values reported in the literature for other food-derived peptides (Papp 

ranging 4.1-20.8×10−6 cm/s) (188). The presence of mucus-producing cells makes the co-

culture monolayer looser, with higher number of paracellular pores per cm2 (133), and, thus, 

more permeable. Similar conclusions were observed by Musatti et al. (179), when 

comparing the Caco-2 and Caco-2/HT29-MTX cell culture models to evaluate the transport 

and bioavailability of glutathione-enriched baker´s yeast. Mucoadhesive delivery systems 

have been recognized as effective in enhancing the intestinal absorption of peptides and 

proteins (190). Other aspect which can also contribute to the high permeability observed is 

the fact that some compounds in complex extracts, such as, BSY autolysate, could act as 

permeability enhancers and cause partial opening of paracellular spaces between Caco-2 

cells. These small changes in the diameter of paracellular spaces can significantly affect 

the permeability of small hydrophilic molecules (180), (182). For instance, Fuller et al. (191) 

investigated the effect of heat-killed yeast cell suspensions on Caco-2 cell monolayer tight 

junction integrity in order to examine whether yeast suspension can act as a penetration 

enhancer for proteins. These authors observed that heat-killed yeast cells suspensions 

opened tight junctions in a reversible dose- and time-dependent manner without significant 

cytotoxic effects being observed.  
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Table 5.1. Apparent permeability coefficient (Papp) of BSY peptides (P1-P6) after 180 min of 

transport across Caco-2 cell and Caco-2/HT29-MTX co-culture cell models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.3. Biological activity of BSY permeates 

Antioxidant activity (evaluated by FRAP assay) and ACE-I activity (expressed as IC50) 

of BSY permeates recovered from Caco-2 and Caco-2/HT29-MTX transepithelial transport 

experiments were measured after five-fold concentration (Table 5.2). The FRAP activity of 

permeates from Caco-2 cell model reached the highest value of 426 µM TE/mL after 60 

min, whereas for co-culture cell model, the FRAP reached the highest value of 568 µM 

TE/mL after 30 min. With respect to ACE-I activity the lowest IC50 of permeates was 

observed for both models after 15 min of transepithelial transport. For the Caco-2 cell model, 

the IC50 value of permeate was 301 µg protein/mL, whereas for Caco-2/HT29-MTX cell 

model, the IC50 was significantly lower, 259 µg protein/mL. According to the literature, most 

food protein-derived peptides with ACE-I activity have low molecular mass, between two 

and five amino acids in their sequences, with molecular masses lower than 1000 Da (188), 

(192). The ACE-I activity assessed in these permeates suggests that peptides from 

digested BSY autolysate and from the action of cell peptidases can reach the blood stream 

to exert antihypertensive activity.  

 Papp × 10-6 (cm/s) 

Peak  
(retention time) 

Caco-2 
cell model 

Caco-2/HT29-MTX 
cell model 

P1 (4.2-6.2 min) * 13.6 ± 0.8 bc 16.8 ± 1.6 D 

P2 (6.3-10.0 min) * 15.6 ± 3.6 bc 23.8 ± 2.6 B 

P3 (10.1-13.3 min) * 13.4 ± 3.3 c   18.0 ± 1.2 CD 

P4 (13.4-16.0 min) 12.4 ± 2.7 c 14.5 ± 0.9 E 

P5 (16.1-17.5 min) * 18.6 ± 2.5 b 19.8 ± 1.6 C 

P6 (17.6-19.6 min) * 20.8 ± 1.3 a 26.1 ± 0.6 A 

Values shown are the mean ± standard deviation of three replicates and 

are relative to 180 min of transport assay (37ºC, 5% CO2). See Figure 5.3 

for peak identification. For each cell culture model, bars labeled with 

different subscript or superscript letters have mean values that are 

significantly different (p <0.05, ANOVA followed by Duncan's test).  

* indicates significant differences between the two cell culture models (p 

<0.05). 
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Table 5.2. FRAP and ACE-I activity of Caco-2 and Caco-2/HT29-MTX co-culture cell model 

permeates at different times of transport, five-fold concentration of permeates 

 

Sample 
FRAP 

(µM TE/mL) 
IC50 

(µg protein/mL) 

Permeates of Caco-2 cell model      

15 min 243 ± 10 c 301 ± 11 A 

30 min 304 ± 17 b 367 ± 12 B 

60 min 426 ± 11 a 826 ± 22 C 

120 min            149 ± 8 d 1238 ± 42 D 

180 min              37 ± 3 e 1981 ± 53 E 

Permeates of Caco-2/HT20-MTX co-culture cell model     

15 min 365 ± 11  c 259 ± 18 A 

30 min 568 ± 15 a 285 ± 12 B 

60 min            448 ± 8 b 669 ± 21 C 

120 min       213 ± 12 d 1071 ± 26 D 

180 min              85 ± 6 e 1821 ± 46 E 

Results are expressed as mean ± standard deviation of triplicate experiments. For 

each model, mean values with different subscript (FRAP) or superscript letters (IC50) 

are significantly different (p <0.05, ANOVA followed by Duncan's test). 

 

 

5.4. CONCLUSIONS 

 

Data from in vitro GI digestion, cell cellular antioxidant assays and cell monolayer 

permeation studies confirmed the potential of BSY autolysate obtained from inner yeast cell 

content as functional food ingredient with antioxidant and ACE-I activities. GI digestion 

enhanced both biological activities. No cytotoxic effects were observed on Caco-2 cells after 

24 h exposition to the digested BSY autolysate within a concentration range of 0.5 to 3.0 

mg protein/mL. Moreover, the response to oxidative stress induced by hydrogen peroxide 

demonstrated the protective role of the autolysate within this concentration range, which is 

relevant since GI tract is a major target for oxidative stress damage due to the constant 

exposure to diet-derived oxidants, mutagens, and carcinogens. Additionally, high apparent 

permeability coefficient (Papp) values for BSY peptides were observed in both models used 

for transepithelial transport, 14.5-26.1x10−6 cm/s for Caco-2/HT29-MTX cell monolayer and 

12.4-20.8x10-6 cm/s for Caco-2 cell monolayer model. Antioxidant and ACE-I activities were 

also found in permeates, which suggests that bioactive compounds are well absorbed. 
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However, pharmacological efficacy may only be confirmed by in vivo studies and these 

results indicate that such studies are justified. 
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This chapter presents a literature overview of the canned sardine 

by-product, it describes the characterization of sardine sarcoplasmic 

proteins, the typical process adopted for the manufacturing of SPH and 

the main biological activities reported. 
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6.1. Canned sardine industry 

 

Sardine (Sardine pilchardus) is a small pelagic fish highly consumed among 

Mediterranean populations (13), (193). Great part of it is used by canned sardine industry. 

The canning process of sardine produces more than 60% by-products, which includes head, 

skin, trimmings, fins, viscera and frames (13), (102). This waste constitutes a serious 

environmental problem for fisheries since their discharge requires convenient management, 

and contains good amounts of protein rich material, which is currently processed into low 

market-value products, such as, animal feed, fish meal and fertilizers (102). Therefore, the 

recovery of added-value compounds from these materials can be of great economic 

importance and practical interest to promote the sustainability and competitiveness of 

sardine canning industry (12). Several techniques describing the recovery of essential 

nutrients and bioactive compounds form sardine by-products to be applied as functional 

food ingredients and nutraceuticals in human and animal nutrition, pharmaceutics and 

cosmetics were published (1), (13), (194). Production of sardine protein hydrolysates (SPH) 

is one of those techniques currently employed.  

 

 

6.2. Nutritional composition of sardine by-product  

 

The lipid content of sardines ranges between 0.5 and 20% dw, depending on the 

season, stage of sexual maturity and body size. The n-3 polyunsaturated fatty acids 

(PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), 

represent 40% of total fatty acids and are recognized to possess numerous health benefits 

(195). The protein content ranges between 15 and 20% dw, depending on catch location 

and species (195). Proteins can be divided into different groups based on their solubility: (i) 

70-80% are myofibrillar proteins, being soluble in cold neutral salt solutions of fairly high 

ionic strength; (ii) 20-30% are sarcoplasmic proteins, being soluble in water and dilute 

buffers and (iii) 2-3% are structural proteins, being insoluble connective tissue proteins 

(194). The myofibrillar protein complexes contain myosin (50-60%) and actin (15-30%). 

Myosin is a large molecule containing two identical heavy chains (223 kDa) and four light 

chains subunits ranging from 17 to 22 kDa (195). Among sarcoplasmic proteins, myoglobin 

(15.3 kDa) is presumably the most important protein (196), (197). Karthikenyan et al. (198) 

and Klomklao et al. (199) reported that sarcoplasmic proteins from sardine muscle showed 

multiple bands with molecular weights between 29 and 97 kDa. 
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6.3. Potential applications of SPH 

 

SPH are breakdown products of enzymatic hydrolysis of sardine proteins into smaller 

peptides (2-20 amino acids), which present various physiological functions in the organism 

(102). To date, SPH have been produced by enzymatic hydrolysis, autolysis (using 

endogenous enzymes), fermentation or combined processes (194). SPH have been 

reported as good nutritional supplements due to peptides composition, biological activity 

and easy absorption. Thus, commercial preparations of SPH are currently used in many 

countries as health food or nutraceuticals (194). Some examples of commercially available 

nutraceutical brands are the Valtryon® and the Lapis Suport®, which contain 

antihypertensive peptides (19). 

 

SPH can be used as an excellent source of nitrogen for the growth of different 

microorganisms. For example, Ghorbel et al. (200) used SPH as nitrogen source for the 

production of extracellular lipase by the filamentous fungus Rhizopus oryzae. SPH have 

also been used in aquaculture feeds in order to enhance the growth and survival of fish. For 

instance, Kotzamanis et al. (201) reported growth performance and immunological status 

improvement of sea bass larvae when SPH was incorporated in diet.  

 

SPH have also been tested successfully for their application as antioxidant agents. 

For instance, Khaled et al. (101) studied the effect of SPH on the oxidative status and blood 

lipid profile of rats fed with hypercholesterolemic diet. SPH reduced the malondialdehyde 

(MDA) concentration and increased the antioxidant enzyme (superoxide dismutase, 

glutathione peroxidase and catalase) activities and the high density lipoprotein (HDL) 

cholesterol. More recently, Athmani et al. (135) showed that supplementation of 

hypercholesterolemic diet rats with SPH efficiently decrease the lipid peroxidation in serum 

and target tissues, being related with the increased antioxidant enzymes activity.  

 

Moreover, SPH have been used as techno-functional ingredients in food industry as 

they possess numerous important properties, such as, water holding capacity, oil absorption 

capacity, protein solubility, gelling activity, foaming capacity and emulsifying ability (20), 

(194), (202-204). SPH have been successfully tested for incorporation into different food 

systems, such as, cereal products, fish and meat products, desserts and crackers, as well 

as, protein supplements, stabilizers in beverages and flavour enhancers (194).  
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6.4. Preparation of SPH  

 

The production of fish protein hydrolysates (as SPH) and bioactive peptides has been 

described in several reviews (87), (102), (194), (205), (206). The process usually consists 

in protein extraction, enzymatic hydrolysis, separation and purification of SPH, application 

of in vitro methods to determine the biological activities, determination of the peptide 

sequence and evaluation of possible structure-function relations. In vivo studies and 

synthesis of purified peptides to validate their activities require high costs and are more 

difficult to implement than in vitro studies. The main typical steps involved in producing of 

SPH and bioactive peptides at laboratorial and industrial scale are outlined in Figure 6.1.  

 

6.4.1. Preparation of Sardine Protein concentrate (SPC) 

 

Different techniques can be used for extracting sarcoplasmic and/or myofibrillar 

proteins from sardine muscle. These include the use of aqueous and organic solvents and 

the conventional processes of cooking, pressing, drying and hot oil extraction (194). Sardine 

protein concentrates (SPC) can be obtained by acidic or alkaline solubilisation followed by 

isoelectric protein precipitation (207), (208). This technique concentrates protein fraction, 

which represents 18-23% of fish muscle, and removes water and oil from the sardine muscle 

(13). The recovery yield ranges between 42 and 90% (13). At the end of SPC preparation, 

a lipid phase, an aqueous soluble phase that contains proteins, and an insoluble sediment 

are separated, as observed in Figure 6.2. For removal of lipid phase, multiple steps of 

filtration or centrifugation must be performed (194).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Different fractions obtained in the SPC preparation. 
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Figure 6.1. Flow diagram for the preparation of fish protein hydrolysates (as SPH) and 

bioactive peptides, at laboratorial and industrial scales. Adapted from (205) and (206). 

* Biological activities and bioavailability can be performed in protein hydrolysate, 

hydrolysate fractions and isolate peptides.  
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6.4.2. Protein hydrolysis 

 

 Hydrolysis of SPC can be performed by endogenous proteolytic enzymes already 

present in muscle or viscera of sardine (4), (15), (16), (101), (209) and/or by adding 

exogenous enzymes from other sources, which must present food grade requirements 

(194). Several industrial food-grade proteases, such as, Alcalase® (12), (15), (16), (20), 

(112), (134), (200), (202), (209-213); Neutrase® (202); Flavourzyme® (211); Protamex® 

(211), (214) and Subtilisin® (215) have been widely used. Enzymes from animal sources, 

such as, Pepsin® (17); Trypsin® (199), (213), (215), and Chymotrypsin® (15) have also 

been used, although to a lesser extent. Moreover, crude enzyme preparations from other 

microorganisms, namely, Bacillus licheniformis NH1 (15), (16); Aspergillus clavatus ES1 

(15), (16); Bacillus pumilus A1 (101) and Bacillus mojavensis A21 (101) have also been 

used. In general, the use of exogenous enzymes is preferred to the autolysis process due 

to the reduction in time required to achieve similar degree of hydrolysis, as well as, better 

control of the hydrolysis to obtain more consistent molecular weight profiles and peptide 

composition (194). Besides biochemical hydrolysis, chemical hydrolysis (with either acid or 

base to cleave the peptide bonds) can also be performed to produce SPH. However, this 

method presents many limitations; the final SPH present reduced nutritional value, large 

amount of salt; poor functionality and restrictions to be use as flavour enhancers. Another 

disadvantage of acid hydrolysis is the destruction of the essential amino acid tryptophan 

(194). 

 

To obtain SPC by enzymatic treatment, the material should be first suspended in 

water/ buffer, and then adjusted to the optimum pH and temperature of the enzyme. In some 

cases, the raw material is first heated to inactivate endogenous proteases before adding 

the exogenous enzyme. Hydrolysis reactions can occur with or without pH adjustment; 

hydrolysis carried out without any pH adjustment are economically desirable from an 

industrial point of view (216). The added acid and/ or base increase salt to the hydrolysate, 

which may give undesirable effects and may be difficult and costly to remove further in a 

process (217). The hydrolysis reaction is stopped either by using a heat treatment or by 

adjusting the pH. More than one centrifugation step is often required to separate the soluble 

proteins from the lipids and insoluble solids. The lipid content of SPH must be low to prevent 

alteration of the lipid fraction during storage. After solids removal, the supernatant is often 

adjusted to neutral pH and then dehydrated to obtain the powdered SPH (13). 

 

Suitable enzyme and hydrolysis conditions, such as, enzyme to substrate (E/S) ratio, 

time and temperature, are crucial to obtain SPH with desirable biological and techno-
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functional properties. Response Surface Methodology (RSM) experimental design can be 

used to optimize hydrolysis conditions, as well as, to predict SPH properties (102), (212). 

Several RSM experimental designs have been employed, including the Central Composite 

Design (CCD), Complete Randomized Factorial Design (CRFD), Box-Behnken Design, 2-

fold Rotation Plan Centered Design and Orthogonal Design (218).  

 

The extent of enzymatic hydrolysis can be measured by several methods. The 

degree of Hydrolysis (DH %) is the most commonly used, including the pH-stat technique, 

which is more useful for industrial application, and the trichloroacetic acid (TCA) and 

trinitrobenzenesulfonic acid (TNBS) methods, very useful when working at laboratorial scale 

(194). The basic principle of the TNBS method is that free amino groups released by 

proteolysis can be measured by the formation of a yellow coloured derivative measurable 

by spectrophotometry. This method is more sensitive when several small peptides are 

available (219). Other methods to measure the extent of protein degradation are RP-HPLC 

and SDS-PAGE. In RP-HPLC analysis, peptides are separated by polarity; small hydrophilic 

peptides elute first, whereas hydrophobic and/ or higher peptides are retained in the column 

and take longer to elute (220). The SDS-PAGE is preferable to show larger fragments 

resulting from proteolysis (219). 

 

6.4.3. SPH concentration and purification 

 

 SPH contains a complex mixture of active and inactive peptides having various sizes 

and different amino acid composition. Therefore, several enrichment methods need to be 

applied to produce fractions with high concentration of bioactive peptides. SPH may be 

concentrated through UF membranes to obtain a more uniform product with the desired 

range of molecular mass (218). After enzyme inactivation, SPH is filtered through a 

membrane with a specific MWCO value; common MWCO membranes used are 1, 3, 5 and 

10 kDa. The UF process can contain more than one UF membrane, yielding several 

molecular weight fractions depending on the product desired. This method is more effective 

for highly purified and defatted SPH. Other possible separation methods are the suction 

filtration of the sludge and filtering the slurry by passing it through a 2-mm mesh screen 

(194) and the Fast Performance Liquid Chromatography (FPLC), which is usually used to 

obtain peptides with molecular weights <3 kDa (218). Chromatographic techniques have 

been used for fractionation of protein and peptide mixtures depending on their affinity to 

either the mobile or stationary phases. Gel filtration chromatography (GFC) separates 

proteins and peptides according to their size as they pass through a gel medium in a packed 
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column. This technique has been used to fractionate and concentrate peptides in SPH (16) 

and is often combined with other separation techniques (103).  

 

6.4.4. Identification of bioactive peptides from SPH 

 

Amino acid analysis is important to assess the nutritional value of SPH and to identify 

the presence of specific amino acids with influence on the biological and techno-functional 

properties of SPH (102). In order to identify the peptide sequences, Liquid chromatography 

with tandem mass spectrometry detection (LC-MS/MS) followed by a database search, is 

usually used. Also, the MALDI-TOF analysis is very useful to obtain the peptide profile of 

protein hydrolysates or semi-purified fractions. A major limitation of this method is that the 

peptides with molecular masses below 0.5 kDa are difficult to identify (221). 

 

6.5. Nutritional composition of SPH  

 

 Chemical composition of SPH is crucial from a nutritional perspective (102). Table 

6.1 summarizes the Degree of hydrolysis and proximate composition obtained for various 

SPH reported in the literature.  

 

The high protein content reported for SPH, which ranged between 66.4% and 87.0% 

(dw), is due the solubilization of proteins during hydrolysis and removal of insoluble solid 

matter by centrifugation. This content highlights the potential use of SPH for protein 

supplements intended for human nutrition (102). The low fat content of SPH is because the 

removal in the centrifugation step. As established by the Protein Advisory Groups of FAO, 

the lipid content of a SPH suitable for human consumption should not exceed 0.5% dw 

(194). The relatively high ash content of SPH may be due the added acid or base used for 

pH adjustment during hydrolysis (102). SPH contains free amino acids and short chain 

peptides. Its amino acid composition explains the nutritional value and the biological 

activities exhibited by SPH and may depend on several factors, namely, raw material, 

enzyme source and hydrolysis conditions.  
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Table 6.1. Degree of hydrolysis (DH %) and proximate composition (% dw) obtained for various SPH 

 

 

 

 

 

  

Reference (20) (15) (222) (222) (222) (215) (223) (213) (213) (224) 

Material 
Head and 
viscera 

Head and 
viscera 

Muscle Muscle Muscle Whole fish Muscle Muscle Muscle Muscle 

Enzyme Alcalase 
Viscera 
proteasesa 

Bacillus 
Pumilus 
A1b 

Bacillus 
mojavensis 
A21b 

Viscera 
proteasesa 

Subtilisin 
+ Trypsin 

Bacillus 
subtilis 
A26b 

Alcalase Trypsin Subtilisin 

DH (%) 10.2 8.0 14.0 7.5 8.5 13.7 nr 5 5 3-6 

Protein (% dw) 73.1 73.0 79.1 78.2 74.4 66.4 74.3 85.8 86.6 83.9-87.0 

Fat (% dw) 10.2 7.3 1.4 0.9 1.0 19.7 0.6 0.3 0.5 1.3-2.0 

Moisture (% dw) 4.6 nr 11.6 10.5 14.6 nr 14.7 3.0 5.3 2.5-3.7 

Ash (% dw) 12.1 12.6 11.7 10.0 10.8 nr 10.2 12.7 10.9 13.6-16.5 

a crude enzyme preparation from sardine viscera 
b crude enzyme preparation 
nr,  not reported 
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6.6. Bioactivities of SPH and derived peptides 

 

SPH and derived bioactive peptides have been receiving special attention due to their 

beneficial effects in the treatment of hypertension, particularly, due to its ACE-I and 

antioxidant activities. Tables 6.2. and 6.3. summarize the recent research related with these 

biological properties; some of these studies further fractionated the SPH in order to isolate 

and identify individual active peptides. Other biological activities reported for SPH include 

immunomodulating, anti-inflammatory, hypocholesterolemic and anticancer (101), (135), 

(225-228).  

 

6.7. Techno-functional properties of SPH 

 

Techno-functional properties are the physicochemical properties of proteins in food 

applications during processing, storage and consumption (20), (218). Enzymatic hydrolysis 

of sardine proteins modifies the techno-functional characteristics of the native proteins, 

generating a mixture of free amino acids, di-, tri- and oligopeptides with lower molecular 

mass and increased exposure of hydrophobic groups and number of ionic groups (20), 

(194). The control of the enzymatic reaction is very important as prolonged hydrolysis of 

sardine proteins may result in the formation of highly soluble peptides, with complete 

absence of the techno-functional properties of the native proteins. Extensive hydrolysis may 

also promote the formation of undesirable bitter peptides (194). SPH had been reported to 

possess good solubility over a wide range of pH levels, usually tolerate strong heat without 

precipitating and contribute to water holding, texture and emulsifying properties when added 

to food product (218). Table 6.4. summarizes the main techno-functional properties 

exhibited by SPH, including solubility, emulsifying, foaming, water binding capacity and oil 

binding capacity. 

 

6.7.1. Solubility 

 

Solubility is a good indicator of the SPH functionality and affects many of the other 

techno-functional properties, such as, emulsifying and foaming capacities. The enhanced 

solubility of the SPH over a wide pH range is due to their smaller molecular size compared 

with the intact protein and to the new exposed ionizable amino and carboxyl groups of the 

amino acids (194). Although high DH may lead to high solubility, extensive hydrolysis can 

promote negative effects on the other techno-functional properties. Usually, to maintain or 

improve functionality, low DH are required (194). 
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Solubility is generally measured by employing the nitrogen solubility index (NSI), 

which is determined by suspending the sample in water, stirring and centrifuge the mixture. 

The supernatant is then analyzed for nitrogen content and the NSI is calculated as the  

percentage of the soluble nitrogen to the total nitrogen in the sample (194). 

 

6.7.2. Emulsifying properties 

 

The emulsifying properties of SPH are directly associated to surface properties; that 

is the efficiency of the SPH to reduce the interfacial tension between the hydrophobic and 

hydrophilic components in food products (194), (218). SPH are able to promote oil-in-water 

emulsions because they possess hydrophilic and hydrophobic functional groups and are 

water soluble. Emulsifying properties are affected by solubility, molecular size and amino 

acid sequence of peptides, DH%, acetylation of the peptide and type(/s) of enzyme(/s) used 

(218), (223). Emulsifying properties decreases with extensive hydrolysis (higher DH%, 

lower molecular size proteins) due to the weak interfacial films around emulsion droplets 

and increased with the high content of larger molecular weight peptides (or more 

hydrophobic peptides). Generally, peptides presenting a minimum of ~20 residues are 

required to promote good emulsifying properties (194), (218). 

 

The ability of protein hydrolysates to form and stabilize emulsions are generally 

measured by two methods: Emulsifying activity index (EAI) and Emulsifying stability index 

(ESI). EAI is defined as the volume of oil that can be emulsified by the protein, while ESI 

refers to the ability of an emulsion to resist changes in its properties over time. Measurement 

involves blending the protein with oil and water, centrifuging, and measuring the total 

volume of emulsion (194). 

 

6.7.3. Foaming properties 

 

The foaming properties of a protein hydrolysate are affected by transportation, 

penetration and rearrangement of molecules at the air-water interface (218). The foaming 

properties of SPH are also affected by DH%; several studies reported the decrease of 

foaming properties with the increase of DH% (20), (218). 

 

Several methods are used to measure the foaming properties of a protein hydrolysate; 

results are usually expressed as Foam Expansion (FE) and Foam Stability (FS). FE is the 

percentage of excess volume produced by whipping the protein solution compared with the 
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initial volume of the liquid; FS is usually measured by whipping the protein solution and 

measuring the time required to decrease half of the volume (194). 

 

6.7.4. Water binding capacity 

 

Water binding capacity (WBC) refers to the ability of the protein to imbibe water and 

retain it against gravitational force within a protein matrix. This property is very important for 

the food industry because improves texture to a food system (194). During SPH production, 

enzymatic hydrolysis increase the polar groups, such as, COOH and NH2, which affects the 

amount of adsorbed water (233). Therefore, extensive enzymatic hydrolysis (higher DH%, 

low molecular weight peptides) appear to affect greater WBC because smaller peptide 

fragments are more hydrophilic (218). 

 

6.7.5. Oil binding capacity 

 

Extensive enzymatic hydrolysis (higher DH%, low molecular weight peptides) 

decrease the Oil binding capacity (OBC) of SPH (218). The ability of peptides to bind fat 

influences food product taste, which is especially important in both meat and confectionery 

industries (233). For OBC measurements, protein solutions are mixed with a specified 

amount of fat for a particular time and then centrifuged at a low centrifugal force (194). 
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Table 6.2. Summary of ACE-I activity reported for various SPH and derived bioactive peptides 

 
Fish species 

Part used to 
prepare SPH 

Enzyme used Assay  
Peptide sequence 
or hydrolysate 

Bioactivities showed Tested in SHR Reference 

Sardinella aurita Muscle Alcalase IC50 (HHL) MF 44.7 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) RY 51 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) MY 193 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) LY 38.5 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) YL 82 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) IY 10.5 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) VF 43.7 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) GRP 20 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) RFP 330 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) AKK 3.13 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) RVY 250.6 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) GWAP 3.86 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) KW 1.63 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (HHL) VY 10 µM np (112) 

Sardinella aurita Muscle Alcalase IC50 (FAPGG) VY 10 µM Δ 7.0 mmHg (134) 

Sardinella aurita Muscle Alcalase IC50 (HHL) KW 7.8 µM np (113) 

Sardinella aurita Muscle Alcalase IC50 (HHL) hydrolysate 0.180 mg/mL np (229) 

Sardinella aurita Muscle Alcalase IC50 (HHL) hydrolysate 0.620 mg/mL np (230) 

Sardinella aurita Muscle Alcalase IC50 (HHL) hydrolysate 0.260 mg/mL np (231) 

Sardinella aurita Muscle Alcalase IC50 (HHL) fraction a 0.015 mg/mL np (231) 

Sardinella aurita Muscle Alcalase IC50 (HHL) hydrolysate 0.082 mg/mL np (112) 

Sardinella aurita Heads and viscera Proteases NH1 IC50 (HHL) hydrolysate 2.1 mg/mL np (15) 

Sardinella aurita Heads and viscera Alcalase IC50 (HHL) hydrolysate 2.3 mg/mL np (15) 

Sardinella aurita Heads and viscera Sardine proteases IC50 (HHL) hydrolysate 1.2 mg/mL np (15) 

Sardinella aurita Heads and viscera Chymotrypsin IC50 (HHL) hydrolysate 1.8 mg/mL np (15) 

Sardinella aurita Heads and viscera Proteases ES1 IC50 (HHL) hydrolysate 7.4 mg/mL np (15) 

Sardinella pilchardus Whole fish b Subtilisin + Trypsin IC50 (FAPGG) hydrolysate 0.439 mg/mL np (215) 

Sardinella pilchardus Whole fish b Trypsin + Subtilisin IC50 (FAPGG) hydrolysate 0.442 mg/mL np (215) 

a Fractionation of the hydrolysate obtained by Matsui et al. (231) with IC50 (0.260 mg/mL) on an ODS column with ethanol. b whole fish, including skin, bones and 
internal organs. IC50, peptide concentration inducing 50% inhibition values of ACE. SHR, spontaneously hypertensive rats. np, not performed. 
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Table 6.3. Summary of antioxidant activity reported for various SPH and derived bioactive peptides 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fish species 
Part used to prepare 
SPH 

Enzyme used 
Peptide sequence 
or hydrolysate 

Bioactivities showed Reference 

Sardinella aurita Heads and viscera Alcalase hydrolysate DPPH (nr) 41% (20) 

Sardinella aurita Heads and viscera Alcalase hydrolysate DPPH (0.3 mg/mL) 
RP (0.6 mg/mL) 
β-carotene 

55% 
0.87 
39% 

(209) 

Sardinella aurita Heads and viscera Sardine proteases hydrolysate DPPH (0.3 mg/mL) 
RP (0.6 mg/mL) 
β-carotene 

41% 
0.54 
38% 

(209) 

Sardinella pilchardus Whole fish a Subtilisin+Trypsin hydrolysate DPPH (EC50, mg/mL) 
RP (5 mg/mL 
ICA (EC50, mg/mL) 

1.75 
0.22 
0.32 

(215) 

Sardinella aurita Heads and viscera Proteases NH1 hydrolysate DPPH (2 mg/mL) 
RP (2 mg/mL) 
LPIC (2 mg/mL) 

26% 
1.98 
28% 

(16) 

Sardinella aurita Heads and viscera Alcalase hydrolysate DPPH (2 mg/mL) 
RP (2 mg/mL) 
LPIC (2 mg/mL) 

54% 
2.24 
34% 

(16) 

Sardinella aurita Heads and viscera Sardine proteases hydrolysate DPPH (2 mg/mL) 
RP (2 mg/mL) 
LPIC (2 mg/mL) 

27% 
1.40 
54% 

(16) 

Sardinella aurita Heads and viscera Proteases ES1 hydrolysate DPPH (2 mg/mL) 
RP (2 mg/mL) 
LPIC (2 mg/mL) 

11% 
1.75 
15% 

(16) 

Sardinella aurita Muscle Pepsin LQPGQGQQ O2
-, .OH, ESR nr (232) 

a whole fish, including skin, bones and internal organs.  
(DPPH) 2,2-diphenyl-1- picrylhydrazyl; (RP) Reducing power; (LPIC) Lipid peroxidation inhibition capacity; (β-carotene) β-carotene bleaching method; 
(ICA) Iron (Fe2+) chelating activity; Electron Spin Resonance (ESR).  
nr, not reported. 
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Table 6.3. Summary of antioxidant activity reported for various SPH and derived bioactive peptides (continued) 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

Fish species 
Part used to prepare 
SPH 

Enzyme used 
Peptide sequence 
or hydrolysate 

Bioactivities showed Reference 

Sardinella aurita Heads and viscera Sardine proteases LARL DPPH 51% (16) 

Sardinella aurita Heads and viscera Sardine proteases GGQ DPPH 38% (16) 

Sardinella aurita Heads and viscera Sardine proteases LHY DPPH 63% (16) 

Sardinella aurita Heads and viscera Sardine proteases GAH DPPH nr (16) 

Sardinella aurita Heads and viscera Sardine proteases GAWA DPPH 52% (16) 

Sardinella aurita Heads and viscera Sardine proteases PHYL DPPH nr (16) 

Sardinella aurita Heads and viscera Sardine proteases GALAAH DPPH 54% (16) 

(DPPH) 2,2-diphenyl-1- picrylhydrazyl 
nr, not reported. 



PART II. Chapter 6  
Literature review 

Development of sardine protein hydrolysates and their health promoting ability 

 

119 

Table 6.4. Summary of techno-functional properties reported for various SPH 

 

Fish species Part used  Enzyme used DH (%) Techno-functional properties Reference 

Sardinella aurita 
Heads 
and 
viscera 

Alcalase 
FPH1 (6.6%) 
FPH2 (9.3%) 
FPH3 (10.2%) 

- Solubility (pH range 3-10): 55% - 100%, higher for FPH2 at pH 6 
- Foaming (0.01%): higher for FPH1 and lower for FPH3 
- Emulsifying: higher for FPH1 and lower for FPH3 
- OBC (0.05%): higher for FPH2 and lower for FPH1 

(20) 

Sardinella aurita Muscle 
Bacillus subtilis  
A26 a 

nr 

- Solubility (pH range 1-10): higher than 70% 
- EAI, m2/g (0.5%, 1% and 2% w/v):47.6, 23.4, 8.2 
- ESI, min (0.5%, 1% and 2% w/v, after 10 min): 47.8, 37.0, 6.3 
- FE, % (0.5%, 1% and 2% w/v): 36.4, 50.4, 76.6 
- FS, % (0.5%, 1% and 2% w/v, after 30 min): 23.5, 26.6, 47.0 
- WBC, g/g (0.1% w/v): 7.5  
- OBC, g/g (0.1% w/v): 6.0  

(223) 

Sardinella aurita Muscle 

Bacillus pumilus 
A1 a 
 

14% 

- Solubility (pH range 2-12): 65%-95% 
- EAI, m2/g (0.1%, 0.5%, 1% and 2% w/v): 76.1, 20.1, 7.3, 5.1 
- ESI, min (0.1%, 0.5%, 1% and 2% w/v, after 10 min): 30.0, 28.0, 17.0, 8.2 
- FE, % (0.1% w/v): 80.1 
- FS, % (0.1% w/v, after 15, 30 and 45 min): 78.2, 68.9, 55.2 

(222) 

Bacillus mojavensis 

A21 a 
 

7.5% 

- Solubility (pH range 2-12): 65%-85% 
- EAI, m2/g (0.1%, 0.5%, 1% and 2% w/v): 81.6, 11.8, 9.9, 9.2 
- ESI, min (0.1%, 0.5%, 1% and 2% w/v, after 10 min): 44.4, 40.2, 24.0, 11.4 
- FE, % (0.1% w/v): 85.1 
- FS, % (0.1% w/v, after 15, 30 and 45 min): 80.2, 62.1, 40.3 

Viscera  
proteases b 

8.5% 

- Solubility (pH range 2-12): 65%-85% 
- EAI, m2/g (0.1%, 0.5%, 1% and 2% w/v): 86.6, 7.9, 11.1, 17.8 
- ESI, min (0.1%, 0.5%, 1% and 2% w/v, after 10 min): 37.7, 24.0, 16.0, 15.1 
- FE, % (0.1% w/v): 71.1 
- FS, % (0.1% w/v, after 15, 30 and 45 min): 68.1, 59.0, 51.2 

(EAI) Emulsifying activity index; (ESI) Emulsifying stability index; (FE) Foam expansion; (FS) Foam stability; (OBC) Oil binding capacity; (WBC) Water binding capacity. 
a crude enzyme preparation. 
b crude enzyme preparation from sardine viscera. 
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CHAPTER 7 

 

 

Antioxidant and antihypertensive hydrolysates 

obtained from by-products of brewing and cannery 

sardine industry 

_____________________ 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the hydrolysis optimization of the sardine 

sarcoplasmic proteins by BSY proteases to produce a SPH with 

antioxidant and ACE-I activities. 
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ABSTRACT 

 

Hydrolysates with antioxidant and ACE-I activities were obtained from sarcoplasmic 

proteins of canned sardine by-product and proteases extracted from Brewer’s spent yeast. 

Using Response surface methodology (RSM), hydrolysis time and temperature were 

selected to achieve the maximum bioactivity. Hydrolysates produced using the E/S ratio 

0.27:1 (U/mg), 7 h and 50ºC have shown potential use for food industry, presenting an ACE-

I activity of 164 µg protein/mL and an antioxidant activity of 291 μM TE/mL. Experimental 

results agreed with predicted values within a 95% confidence interval. Within this work the 

simultaneous valorisation of two agro-industrial by-products was successfully achieved. 

 

 

7.1. INTRODUCTION 

 

Sardine (Sardina pilchardus) is the main species caught off the Portuguese cost. The 

vast majority of it is used in the canned sardine industry. Its by-products include head, tail, 

viscera and muscle around the head. Although this waste is an excellent source of proteins, 

it is usually processed into low market-value products, namely, fish meal and fertilizers. 

Therefore, improving the value of this underutilized by-product is of major interest (13). One 

potential application is the production of Sardine protein hydrolysates (SPH) with improved 

physicochemical, techno-functional and sensorial properties when compared with the intact 

proteins (20), (196). Additionally, similar to found for peptides derived from other marine 

sources (234), (235), SPH may contain bioactive peptides with a broad spectrum of 

pharmaceutical, cosmetic and food industry applications (87). The biological properties of 

SPH bioactive peptides, and their use as antioxidant, antihypertensive, antithrombotic, 

immunomodulatory, antimicrobial agents are now a major field of study, as reviewed 

recently by several authors (13), (87). To date, SPH have been produced by (i) in vitro 

enzymatic hydrolysis (Alcalase (20), (209), Protamex (211), Flavourzyme (211)); (ii) 

autolytic process using endogenous enzymes (crude enzyme extract from sardine viscera) 

(15), (16), (209); (iii) microbial fermentation (crude enzyme preparation from Bacillus 

licheniformis NH1 (15), (16), Aspergillus clavatus ES1 (16), Bacillus pumilus A1 (222), 

Bacillus mojavensis A21) (222) and (iv) simulated gastric digestion (pepsin (17), trypsin 

(213), chymotrypsin (15), trypsin from skipjack tuna (Katsuwonus pelamis) spleen (199), 

hepatopancreas of cuttlefish (Sepia officinalis)) (209). Enzymatic hydrolysis is the most 

widely used method, although the high cost of enzymes can make this an expensive 

process. Additionally, optimization of variables, namely the type of protease, pH, 

temperature, time and E/S ratio are required to influence the extent of hydrolysis and, the 
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functionalities of the final SPH (236). RSM has been successfully used to investigate the 

effect of these independent variables, alone and in combination, on enzymatic processes 

(236). 

BSY (Saccharomyces pastorianus) is the second major by-product from brewing 

process and is usually used as a feed supplement after heat inactivation (5). However, 

before thermal inactivation it can be an excellent source of proteases, which can be used 

to obtain protein hydrolysates with optimum activity at pH 6 (11). 

In this work, sarcoplasmic sardine proteins extracted from canned sardine by-product 

were used as substrate to obtain SPH. These proteins are soluble in water, present an 

isoelectric point around 5.0-5.5 and have low molecular weight (40-70 kDa) (207, 237). 

Protein hydrolysis was performed using proteases extracted from BSY. The optimum time 

and temperature conditions required to produce SPH with both antioxidant and ACE-I 

activities were studied. Hydrolysis was monitored by chromatography and electrophoresis. 

No previous studies were found describing the use of proteases extracted from BSY for 

SPH production. Furthermore, as far as the authors are aware, this is the first work where 

RSM methodology is used to optimize the best hydrolysis conditions to obtain in tandem 

two biological properties in SPH, antioxidant and ACE-I activities. This work contributes to 

obtain added-value for two industrial by-products. 

 

 

7.2. MATERIAL AND METHODS 

 

7.2.1. Standards and reagents 

Acetonitrile HPLC grade, trifluoroacetic acid (TFA); Folin-Ciocalteu phenol reagent; 2,4,6-

trinitrobenzenesulfonic acid (TNBS); L-leucine; iron (III) chloride hexahydrate; potassium 

ferrcyanide; 2,4,6-tripyridyl-s-triazine (TPTZ); commercial angiotensin-I-converting enzyme 

(ACE) (EC 3.4.15.1, 5.1 U/mg); molecular weight standards from 14 to 97 kDa for SDS-

PAGE separations; bovine serum albumin (BSA) and 6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid (Trolox) were obtained from Sigma-Aldrich (St. Louis, 

MO, USA). The o-aminobenzoylglycyl-p-nitro-phenylalanylproline (o-ABz-Gly-Phe(NO2)-

Pro) was purchased from Bachem Feinchemikalien (Bubendorf, Switzerland) and the 

Millipore UF membranes with MWCO of 10 kDa were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). 
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7.2.2. Equipment 

The RP-HPLC analyses were carried out using an analytical HPLC system (Jasco, Tokyo, 

Japan), equipped with a quaternary low pressure gradient HPLC pump (Jasco PU-1580), a 

degasification unit (Jasco DG-1580-53 3-line degasser), an autosampler (Jasco AS-2057-

PLUS), a MD-910 multiwavelengh detector (Jasco) and a 7125 Rheodyne injector valve 

(California, USA). Data acquisition was accomplished using Borwin Controller software, 

version 1.50 (JMBS Developments, Le Fontanil, France). The SDS-PAGE separations were 

achieved in a Multiple Gel Casters Hoefer® (Holliston, MA), Rect., Mightly Small For 8 x 9 

cm Gels Hoefer® apparatus, coupled with a UniEquip Unipack 2000 electric source 

(UniEquip, Munich, Germany). Spectrophotometric analyses were carried out using a BMG 

LABTECH´s SPECTROstar Nano-microplate, cuvette UV/Vis absorbance reader 

(Offenburg, Germany). Fluorimetric analyses were carried out using a fluorescence 

microplate reader (FLUOstar Optima, BMG Labtech GmbH). Samples were freeze-dried 

with a Telstar freeze dryer, Cryodos-80 model (Terrassa, Spain). 

 

7.2.3. By-products 

Flesh sardine by-product including head, scale, skin, blood, bone, viscera and muscle tissue 

was provided by the portuguese company Conservas Ramirez & Cia (Filhos), SA 

(Matosinhos, Portugal). Approximately 1 kg of this by-product was placed on ice during the 

transportation to the laboratory and prepared in the same day under refrigerated conditions. 

BSY (Saccharomyces pastorianus) was supplied as slurry by Unicer brewing (Leça do balio, 

Portugal). This by-product was collected in transparent glass bottles, transported to the 

laboratory under refrigerated conditions and stored at 4ºC until preparation procedure (1 

day maximum). 

 

7.2.4. Preparation of the Sardine Sarcoplasmic Protein extracts (SPE) 

The whole muscle (ordinary and dark) removed manually from sardine by-product was used 

for extraction of sarcoplasmic proteins, according to the method of Ren et al. (237), with 

slight modifications. The sardine muscle tissue was washed twice with deionized water and 

mixed with 0.2 M phosphate buffer pH 6.0, ratio of 1:3 (w/v). The mixture was homogenized 

using an Ultra-Turrex grinder for about 2 min. Then, the homogenate was heated at 85ºC 

for 20 min to inactivate endogenous enzymes and subsequently centrifuged at 16,000 x g 

for 20 min, at 4°C. The upper lipid phase was removed manually and discarded; the 

supernatant was collected and filtered through a Whatman No. 4 filter paper. The final clear 

supernatant was coded as sardine sarcoplasmic protein extract (SPE). The pH of this 

extract (pH 6.3) was adjusted to pH 6.0 by adding 0.2 M HCl with constant agitation. The 
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protein concentration of SPE, determined by Lowry method (163), was 2.40 mg/mL. This 

extract was keep at -20ºC until used; the storage time was not more than 1 month. 

 

7.2.5. Extraction of Brewer´s spent yeast (BSY) proteases  

Saccharomyces cell wall was destroyed under refrigerated conditions to minimize enzyme 

denaturation and obtain a protease rich extract. Firstly, biomass was washed three times 

with 0.2 M phosphate buffer pH 6.0 at a ratio 1:3 (w/v) and centrifuged at 5,000 x g, 5 min, 

4ºC, between each wash. Afterwards, cell wall was destroyed with glass beads at a ratio 

1:1:1 (biomass: phosphate buffer pH 6.0: glass beads) (w/v/w) by vortexing 10 times (1 min 

each) with 1 min cooling intervals on ice. Glass beads were removed and the homogenate 

was centrifuged at 12,000 x g, 40 min, 4ºC. The resulting clear supernatant was freeze-

dried, resuspended in the same buffer (25% of the initial volume) and concentrated using a 

UF membrane with a MWCO of 10 kDa. The protease activity of BSY extract, performed 

according to Cupp-Enyard (164) protocol, was 0.725 U/mL. The BSY proteases extract was 

keep at -20ºC until used. 

 

7.2.6. Enzymatic hydrolysis 

SPE (containing 2.40 mg protein/mL) was hydrolysed by BSY proteases (0.725 U/mL) using 

an E/S ratio of 0.27:1 (U/mg) and pH 6.0. For example, considering a reaction volume of 1 

mL, for each 500 µL of SPE (substrate), 450 µL of BSY proteases were added; the 

remaining volume of 50 µL was 0.2 M sodium phosphate buffer, pH 6.0. Triplicate hydrolysis 

were performed, using 2 mL eppendorf tubes, in a shaking incubator with constant agitation 

(200 rpm) at different temperatures and times, according to the experimental model 

described in sub-section 7.2.15. Control [S+E] was the mixture of SPE and BSY proteases 

before hydrolysis. Inactivation of proteases to stop reaction was performed by heating at 

95ºC for 15 min (216). The hydrolysates were cooled on ice and centrifuged at 3,000 x g at 

4ºC for 10 min. The clear supernatants, containing soluble peptides and coded as H1 to 

H13 were collected and stored at -20ºC for further analysis.  

 
7.2.7. Hydrolysis Rate (HR%) 

RP-HPLC, using the chromatographic conditions described by Ferreira et al. (185) was 

used to follow protein degradation during hydrolysis. The column was a Chrompack P 300 

RP (polystyrenedivinylbenzene copolymer, 8 µm, 300Å, 150 x 4.6 mm i.d.) (Middleburg, 

The Netherlands). Hydrolysis rate (HR%) was based on the measurement of protein fraction 

that remains intact, for this purpose the peak area of the protein fraction that eluted between 

24 and 33 min was measured. The peak area of [S+E] protein fraction before hydrolysis 

was the maximum intact protein.  
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The following equation was applied:  

HR (%) = 100 − [(
peak area of protein fraction after hydrolysis

peak area of protein fraction before hydrolysis
) × 100]        (1) 

 

7.2.8. Protein Recovery (PR%) and % of peptides formed 

Protein recovery (PR %) was calculated as the amount of protein, determined by Bradford  

method (171), in the hydrolysate in comparison with the initial amount of protein, using the 

following equation:  

PR (%) = 100 − [(
protein content after hydrolysis

protein content before hydrolysis
) × 100]                           (2) 

Additionally, the % of peptides formed in the hydrolysates was measured by subtracting the 

protein content evaluated by Bradford method to the total protein including peptides 

evaluated by Lowry method (163), using the following equation: 

% Peptides = [
(Lowry−Bradford)

Lowry
]  × 100                                  (3) 

For both assays, a calibration curve was performed with 2 mg/mL BSA and samples were 

analysed in triplicate.  

 

7.2.9. Degree of Hydrolysis (DH%) 

Degree of Hydrolysis (DH%) was determined by measuring the increase in free amino 

groups using a picrylsulfonic acid solution (TNBS), according to Hsu et al. (238); α-amino 

acid group was expressed in terms of L-leucine and the DH% was determined as follows:  

DH (%) = [(Lt − L0) (Lmax − L0)⁄ ] × 100              (4) 

where (Lt) was the amount of amino acid released at time (t); (L0) was the amount of amino 

acid in original SPE, and (Lmax) was the maximum amount of amino acid in SPE obtained 

after acid hydrolysis. For (Lmax) determination, SPE (500 µL) was mixed with 4.5 mL of 6 M 

HCl and the hydrolysis was run at 100°C for 24 h. Then, final acid-hydrolysed sample was 

filtered through Whatman paper no. 1 to remove the non-hydrolysed fragments and the 

supernatant was neutralized with 6 M NaOH before amino acid determination. 

 

7.2.10. Ferric reducing ability (FRAP)  

The measurement of FRAP was performed based on Jansen and Ruskovska (154) 

procedure, slightly modified. Briefly, 25 μL of sample/ standard/ control (pure water) and 

200 µL of working FRAP reagent were pipetted in the microplate in six replicates. After that, 

the reaction mixture was incubated for 90 min at 37 °C, under constant agitation (200 rpm). 

The absorbance was measured at 600 nm. Trolox was used as a standard at 50-500 μM to 

generate a calibration curve (average R2 = 0.9929). Results were expressed as mean 

values ± standard deviations, as µM TE (Trolox Equivalent)/mL SPH.  
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7.2.11. Reducing Power method (RP) 

RP was measured according to the assay reported by Almeida et al. (156), slightly modified. 

Briefly, 250 µL of samples/ control (pure water) were mixed with 250 µL of sodium 

phosphate buffer (200 mM, pH 6.6) and 250 µL of potassium ferricyanide 1% (w/v). The 

mixture was incubated at 50ºC for 20 min, and 250 µL of cold TCA 10% (w/v) was added to 

stop the reaction. Eppendorfs were centrifuged at 650 rpm, 10 min. Then, 500 µL of 

supernatant was incubated with 500 µL of deionized water and 100 µL of ferric chloride 

0.1% (w/v). After 10 min reaction, the absorbance was measured at 700 nm. RP values 

were expressed as µg/mL. 

 

7.2.12. ACE-I activity  

ACE-I activity was measured using the fluorimetric assay of Sentandreu and Toldrá (121) 

with the modifications reported by Quiros et al. (122). ACE-I percentage (I %) was calculated 

using the equation: 

I % = {(B − A)|(B − C)} × 100        (5) 

where B is the fluorescence of the ACE solution without the inhibitor (SPH); A is the 

fluorescence of the tested sample of SPH; and C is the fluorescence of experimental blank, 

o-ABz-Gly-Phe(NO2)-Pro dissolved in 150 mM Tris-base buffer (pH 8.3), containing 1.125 

M NaCl. The percent inhibition curves (using a minimum of five determinations for each 

sample peptide concentration) were plotted versus peptide concentration to estimate the 

mean IC50 value, which is defined as the concentration required to decrease the ACE activity 

by 50% (122). 

 

7.2.13. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteolytic degradation of SPE was monitored by SDS-PAGE analysis. Separation gels 

consisted of a 4% polyacrylamide stacking gel and a 15% polyacrylamide resolving gel and 

were performed according to Laemmli (162) protocol. The molecular weight protein 

standards used were: phosphorylase β (97 kDa), bovine serum albumin (66 kDa), 

ovalbumin (45 kDa), carbonic anhydrase (30 kDa), trypsin inhibitor (20 kDa) and lysozyme 

(14 kDa). Coomassie brilliant blue R-250 was used. The protein pattern separated on SDS-

PAGE was estimated for its molecular weight by plotting the logarithm of molecular weight 

of the protein standards against relative mobility (Mr).  

 

7.2.14. SPH amino acid composition 

SPH presenting highest FRAP and ACE-I activities was lyophilized and amino acid analysis 

was performed after hydrolysis with 6 M HCl at 110ºC for 24 h. Derivatization and GC/MS 
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were carried out according to Pérez-Palacios et al. (148). Amino acid composition was 

expressed as g/ 100 g of protein.  

 

7.2.15. Experimental design, modelling and optimization of hydrolysis conditions 

A central composite design (CCD) was built for optimization of the best hydrolysis conditions 

to obtain simultaneously in tandem two biological properties in SPH, antioxidant and ACE-

I activities. The CCD variables under analysis were time (X1) and temperature (X2) at 

ranged levels of time intervals (0.40; 1.50; 4.25; 7.00 and 8.00 h) and five temperatures (20; 

25; 38; 50 and 55ºC), in a total of 13 runs with five centre points. CCD consisted of a 

complete 22-factorial design as cubic points, with four axial points at a distance of α = 1.414 

from the design centre and five centre points. The responses used in the experimental 

designs were the HR % (Y1), antioxidant activity evaluated by FRAP assay (Y2) and ACE-

I activity as IC50 (Y3). The optimal values of response Y were obtained by solving the 

regression equation and by analysing the response surface and contour plots using the 

predictive equations of RSM. Then, the accuracy of the models was tested by conducting a 

set of experiments using the critical values optimized; the t test was conducted to compare 

the responses prepared under optimized conditions with those predicted by models. The 

statistical analyses were performed by using the software Design Expert trial version 7 

(Stat-Ease Inc., Minneapolis, MN, USA). 

 

7.2.16. Statistical analysis 

The data obtained for others assays were done by using SPSS statistical software, version 

22.0 (SPSS Inc., Chicago, IL). One-way analysis of variance and Duncans’ test was 

performed to determine the significant differences at the 5% probability level. A Pearson’s 

correlation was also used to search for correlations between the parameters under study; 

1% level was considered to be significant. The t test was conducted to compare the 

responses prepared under optimized conditions with those predicted by models. 

 

 

7.3. RESULTS AND DISCUSSION 

 

Preliminary experiments were conducted by univariate method to study the pH 

variation during hydrolysis, as well as, the influence of E/S ratio (0.10:1; 0.15:1; 0.20:1; 

0.25:1 and 0.30:1 U/mg) on hydrolysis of SPE. Reactions were performed at constant 

temperature (37ºC), while stirring at 200 rpm for 4 h. When the initial pH was 6.0 it remained 

in the range of 5.8 to 6.5 during the entire hydrolysis period. For this reason it was decided 

not adjust pH during SPE hydrolysis. From an industrial point of view, hydrolysis carried out 
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without any pH adjustment is economically desirable (216). Regarding to E/S ratio, 0.10:1 

U/mg and 0.15:1 U/mg gave a significantly lower HR%, whereas no significant differences 

were found (p >0.05) on the HR% obtained from hydrolysis using 0.25:1 U/mg and 0.30:1 

U/mg. As a result, the ratio 0.27:1 U/mg was chosen, as it is the same reported by Bougatef 

et al. (16). 

The RP-HPLC profiles of SPE plus BSY proteases [S+E] without hydrolysis, and two 

different SPH, one presenting HR = 9.3% (25ºC, 1.50 h) and another presenting HR = 83% 

(50ºC, 7.00 h), are shown in Figure 7.1. The RP-HPLC chromatograms were divided into 

three fractions: “Less hydrophobic peptides” (eluted between 4 and 12 min); “Hydrophobic 

Polypeptides” (eluted between 12.1 and 23.9 min) and “Proteins” (eluted between 24 and 

33 min). HR% determination was based on the measurement of “Proteins” fraction before 

and after hydrolysis.  

 
 

 
 

Figure 7.1. The RP-HPLC profiles of (i) SPE plus BSY proteases [S+E] without hydrolysis; 

(ii) SPH presenting HR = 9.3% (25ºC, 1.50 h); and (iii) SPH presenting HR = 83% (50ºC, 

7.00 h). RP-HPLC chromatograms are divided into three fractions: “Less hydrophobic 

peptides” (eluted between 4 and 12 min); “Hydrophobic Polypeptides” (eluted between 12.1 

and 23.9 min) and “Proteins” (eluted between 24 and 33 min). Hydrolysis rate (HR%) 

determination was based on the measurement of “Proteins” fraction before and after 

hydrolysis.  
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7.3.1. Optimization of hydrolysis conditions  

Optimization of the variables affecting the antioxidant and ACE-I activities of SPH was 

carried out using a statistical design, by CCD. The experiments were performed in a random 

manner at different combinations of temperature (X1) and time (X2). The HR% (Y1), FRAP 

(Y2) and ACE-I activity (Y3) of SPH obtained by BSY proteases were used as responses 

factors for CCD (Table 7.1). Regression analyses were performed to fit the response 

functions. The parameters of the equations (6, 7 and 8) were explained by a quadratic model 

for each response and are presented as follows: 

Y1 = −20.31 + 0.29. X1 + 4.70. X2 + 0.02. X12                                     (6) 

Y2 = 279.35 − 2.50. X1 − 10.21. X2 + 0.41. X1. X2 + 0.03. X1^2 − 0.42. X2^2        (7)                             

Y3 = −78.38 + 12.51. X1 − 0.30. X1. X2 − 0.16. X1^2 − 4.48. X2^2                       (8)   

 

where Y is the predicted response; X1 the uncoded value of variable temperature (ºC) and 

X2 the uncoded value of variable time (h). Adequacy and significance of the quadratic model 

was evaluated by analysis of the variance (ANOVA) by means of Fisher´s F-test. The 

quadratic models were validated by two diagnostic residuals, the squared correlation 

coefficient (R2) and the predictive squared correlation coefficient (Q2). Values of R2 >0.75 

and Q2 >0.60 indicate adequacy of models (172). The R2 for checking the fitness of model 

was very good (relatively close to 1), indicating that models explained 98.6%, 98.4% and 

95.3% of the variation on the HR, FRAP and ACE-I activity of sardine sarcoplasmic proteins, 

respectively. The Q2 values were respectively 0.9738; 0.9516 and 0.9804 for the three 

responses, indicating the goodness of the model. The‘‘Adeq Precision’’ was higher than 4 

(as desirable) for the three responses, indicating an adequate signal-to-noise ratio. The 

statistical analysis also showed that the ‘‘lack of fit’’ was not significant (p >0.05), which 

confirmed the adequacy of model to describe the experimental data and for the prediction 

of the three studied parameters. The independent variable X1 had a significant effect on 

Y1, Y2 and Y3 (p <0.05); X2 had significant effect on Y1 and Y2 (p <0.05), but not on Y3. 

The interactions between X1.X2 influenced Y2 and Y3 (p <0.05). Therefore, this model 

proved to be powerful for navigating the design space and describes the dependence of 

HR%, FRAP and ACE-I activity on temperature and time. 
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Table 7.1. Results from experimental design by CCD for evaluation the effects of hydrolysis temperature and time conditions on HR, FRAP and ACE-I 

activity 

 

Point 
T 

(ºC) 

t  

(h) 

Hydrolysis Rate 

(Y1, HR %) 

Antioxidant activity 

(Y2; FRAP µM TE/ mL) 

ACE-I activity 

(Y3;  IC50 µg/ mL) 

code run X1 X2 Experimentala Predictedb Experimentala Predictedb Experimentala Predictedb 

H6 1 55 4.25 81 83 290 290 170 171 

H1 2 25 1.50 9.3 7.4 235 237 177 185 

H7 3 38 0.40 17 19.1 238 235 181 173 

H4 4 50 7.00 83 83 290 289 164 160 

H11 5 38 4.25 41 42 246 247 234 242 

H12 6 38 4.25 38 42 249 247 245 242 

H13 7 38 4.25 45 42 250 247 247 242 

H3 8 25 7.00 29 29 219 217 210 207 

H8 9 38 8.00 56 56 244 246 170 176 

H10 10 38 4.25 45 42 246 247 237 242 

H5 11 20 4.25 12 13 226 226 213 210 

H9 12 38 4.25 41 42 245 247 246 242 

H2 13 50 1.50 54 52 251 254 172 178 

a Average of triplicate determinations from different experiments; b Based on CCD evaluation. 
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7.3.2. Analysis of response surfaces 

Contour plots were employed to study the influence of temperature (ºC) and time (h) 

on HR%, FRAP and ACE-I activity. HR% increased with the increasing of time and 

temperature (Contour plot A, Figure 7.2). The minimum predicted value of HR% (7.4%) was 

observed at 25ºC and 1.50 h, while the maximum predicted value of HR% (83%) was 

observed at 50ºC and 7.00 h. Extensive time of hydrolysis and high temperatures also 

enhanced the FRAP value of SPH (counter plot B of Figure 7.2). The minimum predicted 

FRAP value was 217 µM TE/mL, observed at 25ºC and 7.00 h; whereas the maximum 

predicted FRAP value was 289 µM TE/mL found at 50ºC and 7.00 h. Similar behaviour was 

observed for HR% and FRAP, suggesting that the extension of proteolysis may be 

favourable to enhance the antioxidant properties of SPH. Concerning to ACE-I activity, the 

IC50 increased near to the centre point design and decreased for higher temperature and 

extensive time of hydrolysis (counter plot C, Figure 7.2). Lower IC50 value (160 µg 

protein/mL), which means higher ACE-I activity, was observed when hydrolysis was 

performed at 50ºC and 7.00 h.  

 

7.3.3. Validation of the RSM model 

The optimal hydrolysis conditions to maximize the antioxidant and ACE-I activities of 

SPH was predicted by using RSM. For that purpose, the optimization tool of the statistical 

program was used, which explores the response surface and gave a point prediction as a 

result of defined goals. The goals for each response were set to maximize the Y2 and Y3 

responses to construct desirability indices. The optimal hydrolysis conditions to produce a 

SPH with the highest antioxidant and ACE-I (minimum IC50) activities were temperature of 

50ºC and hydrolysis time of 7.00 h. On these conditions, the predicted antioxidant activity 

was 289 µM TE/mL and the IC50 was 160 µg protein/mL. The desirability analysis in 

identifying the optimal conditions by the RSM was 99.2%. Results showed that there is no 

statistically significant difference between the experimental and estimated values within a 

95% confidence interval. Thereby, the adequacy of the models in predicting the optimum 

hydrolysis conditions for SPH production using BSY proteases was confirmed. 
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Figure 7.2. Counter plots for interaction effects of temperature (ºC) and time (h) on 

Hydrolysis Rate (%) (A); Antioxidant activity determined by FRAP assay (B) and ACE-I 

activity (C) of SPH. Each optimum point was identified on the response surface. 

 

7.3.4. Characterization of SPH obtained under optimum conditions  

Comparison of antioxidant activity of [S+E] mixture before hydrolysis and of SPH 

obtained under optimum conditions was performed by FRAP and by RP, since both 

methods have been widely used to screen antioxidant activity of protein hydrolysates. The 

FRAP value of [S+E] mixture before hydrolysis was 146 µM TE/mL, whereas for SPH it 

increased to 291 µM TE/mL. This value is comparable to that exhibited by protein 

hydrolysates derived from threadfin bream surimi by-products (221 µM TE/mL) (239). With 

respect to RP results, [S+E] mixture before hydrolysis presented 1210 µg/mL, whereas SPH 

presented 1312 µg/mL. These results were comparable to those obtained for bigeye tuna 
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protein hydrolysates, which ranged between 948 and 12500 µg/mL (240). The ACE-I activity 

of [S+E] mixture before hydrolysis was IC50 604 µg protein/mL, whereas SPH presented an 

IC50 of 164 µg protein/mL, which is comparable to the IC50 described in literature for other 

fish protein hydrolysates. Matsui et al. (231) described an IC50 of 260 µg protein/mL for SPH 

prepared using 0.3% Alcalase® at pH 9, 50ºC for 17 h and Cinq-Mars and Li-Cha (236) 

reported a Pacific hake fillet hydrolysate with an IC50 of 165 µg protein/mL, by incubation 

with 3.0% Protamex® at pH 6.5, 40ºC for 125 min. Electrophoresis was performed to 

characterize the larger fragments resulting from proteolysis. SDS-PAGE of control sample 

[S+E] showed bands in the range of 12 to 51 kDa (Figure 7.3).  

 

 

 

 

Figure 7.3. SDS-PAGE profiles of sarcoplasmic proteins plus BSY proteases [S+E] without 

hydrolysis and SPH. A total of 8 µL of sample was applied to each well.  

Legend: Lane BSA shows bovine soro albumin (66 kDa); lane MW shows molecular weight 

of standard markers (14-97 kDa); lane S (substract) shows SPE in the absence of the BSY 

proteases; lane E (enzyme) shows BSY proteases in the absence of SPE; lane [S+E] shows 

SPE and BSY proteases without hydrolysis (control). Lane H3 shows SPH with HR = 29% 

(25ºC, 7.00 h); lane H4 shows SPH with HR = 83% (50ºC, 7.00 h); lane H11 shows SPH 

with HR = 41 % (38ºC, 4.25 h).  

 

These fractions are in agreement with the SDS-PAGE patterns of sardine 

sarcoplasmic proteins described by other authors (241), (242). The most abundant bands 

were 51 kDa, 47 KDa, 45 kDa (probably actin), 41-39 kDa a doublet band (probably from 

creatine kinase and aldolase) and 39-41 kDa band probably from glyceraldehyde-3-

phosphate dehydrogenase. Additional bands were found at 17 and 15 kDa (242). The last 
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one could be from myoglobin, as observed by Chaijan et al. (196). Finally, two protein 

bands, at 13 and 12 kDa could be parvalbumins (242). Some myofibrillar proteins (90 kDa 

band) were also extracted during the SPE extract preparation. SDS-PAGE analysis 

indicates that under prolonged time and increased temperature of hydrolysis, 50ºC, 7.00 h 

(H4, Figure 7.3), sardine sarcoplasmic proteins were extensively hydrolysed. These results 

are in good agreement with the results from assays that evaluate the extention of hydrolysis 

or the peptides formation, since this SPH presented HR% of 83, DH% of 14, PR% of 86 

and 63% of peptides formed. 

Low-molecular-weight peptides are widely recognized as presenting higher 

antioxidant and ACE-I activities, but the amino acid composition of peptides is also a crucial 

aspect. ACE-I peptides usually contain a proline residue at the carboxyl terminal end, 

whereas amino acids, such as, tyrosine, tryptophan, histidine, methionine and lysine have 

been known to exhibit antioxidant activity (234). Amino acid analysis of SPH prepared under 

the hydrolysis conditions optimized, revealed that it is rich in glutamic acid, glutamine, 

aspartic acid an alanine, which accounted for 18.0%, 12.4%, 10.5% and 9.0% of the total 

amino acids, respectively. It also presents relatively high content of hydrophobic amino 

acids, such as, proline (3.1%), leucine (5.6%), glycine (4.2%), isoleucine (2.2%), 

phenylalanine (3.2%) and valine (4.2%) and contained amino acids that exhibit antioxidant 

activity, namely, tyrosine (2.0%), histidine (5.8%), methionine (2.2%) and lysine (2.6%); 

tryptophan was not determined due to the acidic hydrolysis conditions.  

 

 

7.4. CONCLUSIONS 

 

Sardine sarcoplasmic proteins were hydrolysed by the proteases extracted from 

brewer’s spent yeast to obtain hydrolysates with antioxidant and ACE-I activities. 

Hydrolysates produced using the E/S ratio 0.27:1 U/mg, 7.00 h and 50ºC presented an 

antioxidant activity of 291 μM TE/mL and an ACE-I activity (IC50) of 164 µg protein/mL. 

These experimental FRAP and IC50 values agreed with the predicted values (289 μM TE/mL 

and 160 µg protein/mL, respectively) within a 95% confidence interval, suggesting a good 

fit between the models and the experimental data. Thus, RSM was an efficient statistical 

tool in the optimization of hydrolysis conditions. SPH presents relatively high content of 

hydrophobic amino acids, such as, proline, leucine, glycine, isoleucine, phenylalanine and 

valine, and amino acids that exhibit antioxidant activity, namely, tyrosine, histidine, 

methionine and lysine. Further work should be done to test antioxidant activity of this 

hydrolysate in vivo, as well as, isolate and identify the specific peptides that are responsible 

for these bioactive properties. 
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Simulated gastrointestinal digestion and in vitro 

intestinal permeability of bioactive protein hydrolysates 

obtained from brewing and canned sardine industry by-

products 
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This chapter describes the simulated GI digestion and the in vitro 

intestinal cell permeability of the SPH with antioxidant and ACE-I 

activities. 
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ABSTRACT 

 

A sardine protein hydrolysate (SPH) was produced using sarcoplasmic proteins from 

canned sardine by-product and proteases from brewer’s spent yeast (BSY), at an E/S ratio 

of 0.27:1 U/mg, pH 6.0, 50°C for 7 h. The SPH presented in vitro ACE-I activity, IC50 169 μg 

protein/mL and FRAP value of 288 µM TE/mL. Both activities were enhanced by UF through 

a 10 kDa MWCO membrane. Simulated gastrointestinal (GI) digestion increased the FRAP 

value, whereas the IC50 remained similar. The apparent permeability coefficient (180 min, 

37ºC) of <10 kDa fraction across Caco-2 and Caco-2/HT29-MTX cell monolayers were 

5.89x10−6 cm s-1 and 10.93×10−6 cm s-1, respectively. Permeates presented antioxidant 

activity but no ACE-I activity was detected. Mass spectrometry revealed that molecules with 

m/z between 1000 and 5000 were transported across Caco-2/HT29-MTX cell monolayer. 

SPH prepared by BSY proteases is promising for the formulation of functional foods.  

 

 

8.1. INTRODUCTION 

 

Many food protein hydrolysates show in vitro antioxidant and/ or ACE-I activities. 

However, the bioavailability of the bioactive peptides found in these protein hydrolysates 

depends on several factors, such as, enzymatic degradation in GI tract, permeability 

through intestinal epithelium and interaction with intracellular sources of oxidative stress 

(181), (243-246). Simulated GI digestion and in vitro cell-based models allow for rapid and 

inexpensive screening of potential bioactive compounds (181). Due to their similarity with 

intestinal epithelium cells, the human colorectal adenocarcinoma Caco-2 cell line and 

resulting cell monolayers have been widely accepted as in vitro models to predict the 

cytotoxicity and intestinal absorption of drugs and bioactive compounds (127), (181), (246-

248). Different transport routes, namely paracellular, fluid phase and adsorptive transcytosis 

may participate in peptide transport across Caco-2 cell monolayers (245). However, this 

cell model has some limitations when compared with human small intestine, including the 

absence of mucus-producing cells and the resulting mucus layer; higher tightness to 

molecular diffusion; as well as, low expression of uptake transporters and overexpression 

of P-glycoprotein (129), (249). To overcome some of these limitations, combinations of 

Caco-2 cells with mucus-producing goblet cell, such as HT29-MTX cells, have been 

proposed as co-culture models for permeation studies (130), (131). Co-culture of Caco-

2/HT29-MTX cells leads to the establishment of monolayers with intermediate properties 

regarding transepithelial electrical resistance (TEER), peptide hydrolysis and absorption. 

The proportion of 90:10, expressed as initial cell seeding for Caco-2/HT29-MTX cells, is the 
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most prevalent in the literature and accepted to better mimic the natural epithelial barrier 

(129), (132), (133). The expression of goblet cells in HT29-MTX cell line increases 

absorption of lipophilic compounds compared to Caco-2 monolayer (131), (133). Indeed, 

some absorption enhancers have been recognized to be effective in increasing the intestinal 

absorption of peptides and proteins (190), (250). 

We have recently reported, for the first time, a SPH prepared by the action of BSY 

proteases (251). Under optimum hydrolysis conditions (50ºC, pH 6.0, 7 h, E/S ration of 

0.27:1 U/mg), the SPH revealed a FRAP value of 291 µM TE/mL and an ACE-I activity (IC50) 

of 164 µg protein/mL. These properties suggest that SPH may be an interesting ingredient 

for the formulation of functional foods, but further investigation, regarding its digestion and 

intestinal permeability is required. To best of our knowledge, no studies on in vitro 

permeability of SPH peptides produced by BSY proteases have been published. Therefore, 

the present work aims to investigate: (i) the effects of UF membranes on the SPH biological 

activities, (ii) the stability of SPH peptides to GI proteases in order to assess its adequacy 

for oral administration, and (iii) the resistance of SPH peptides to brush-border peptidases 

and its susceptibility to intestinal transport. For this last purpose, two cellular monolayer 

models, comprising either a monoculture of Caco-2 cells or the co-culture (90/10) of Caco-

2/HT29-MTX cells, were compared. Both cells express different intestinal enzymes and 

provide distinct functionality to the monolayers: Caco-2 cells (absorptive-type) partially 

reproduce the characteristics of intestinal enterocytes, whereas HT29-MTX cells (goblet 

type) are able to secrete mucin and thus replicate mucus-secreting goblet cells (130), (131). 

 

 
8.2. MATERIAL AND METHODS 

 

8.2.1. Materials and cells 

Pepsin, pancreatin, commercial angiotensin-I-converting enzyme (ACE) (EC 3.4.15.1, 5.1 

U/mg), captopril, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), 

trifluoroacetic acid (TFA), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). The o-aminobenzoylglycyl-p-nitro-phenylalanylproline (o-ABz-Gly-Phe(NO2)-Pro) 

was purchased from Bachem Feinchemikalien (Bubendorf, Switzerland). The Millipore UF 

membranes with MWCO of 3 kDa and 10 kDa were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). GIBCO Dulbecco’s Modified Eagle Medium (DMEM), heat-inactivated 

fetal bovine serum (FBS), non-essential amino acids, penicillin/streptomycin, trypsin-EDTA 

and Hank’s Balanced Salt Solution (HBSS, pH 7.0-7.4) were purchased from Invitrogen 

(Carlsbad, California, USA). Falcon® translucent polyethylene terephthalate (PET) cell 
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culture inserts (3.0 µm pore size, 24 mm diameter inserts, 4.2 cm2 effective growth area) 

were acquired from BD Biosciences (Franklin Lakes, NJ, USA), and 6-well and 96-well 

microplates were purchased from Corning® Costar® (Sigma-Aldrich, St. Louis, MO, USA). 

Human colon carcinoma (Caco-2) cell line was obtained from the American Type Culture 

Collection (ATCC) and mucus producing HT29-MTX cell line was kindly provided by Dr. T. 

Lesuffleur (INSERM U178, Villejuif, France).  

 

8.2.2. By-products 

Flesh sardines (Sardina pilchardus) by-product including head, scale, skin, blood, bone, 

viscera and muscle tissue was provided by the portuguese company Conservas Ramirez & 

Cia (Filhos), SA (Matosinhos, Portugal). The whole muscle (ordinary and dark) was 

removed manually from sardine and used for preparation of sarcoplasmic protein extract, 

as described by Vieira and Ferreira (251). Protein concentration of sarcoplasmic protein 

extract, determined by the Lowry method, was 2.4 mg/mL; this extract was kept at -20ºC 

until use. BSY (Saccharomyces pastorianus) was supplied by the Unicer brewing (Leça do 

Balio, Portugal). Cell wall was destroyed under refrigerated temperatures with glass beads 

at a ratio of 1:1:1 (biomass: phosphate buffer pH 6.0: glass beads); (w/v/w) by vortexing 10 

times (1 min each) with 1 min cooling intervals on ice. After removing the glass beads, the 

homogenate was centrifuged at 12,000 x g, 40 min at 4ºC. The resulting clear supernatant 

was freeze-dried, resuspended in the same buffer (to 25% of the initial volume) and 

concentrated using a 10 kDa MWCO membrane. The protease activity of the retentate, 

evaluated according to Cupp-Enyard (164) protocol, was 0.725 U/mL. This extract was keep 

at -20ºC until use. 

 

8.2.3. Preparation and fractionation of SPH 

Sarcoplasmic protein extract was hydrolysed by BSY proteases using an E/S ratio of 0.27:1 

(U/mg), pH 6.0, 50°C for 7 h. SPH was filtrated successively through 10 and 3 kDa MWCO 

membranes. Fractions were collected and coded as SPH<10 kDa or SPH<3 kDa for 

peptides permeating through the 10 kDa or 3 kDa membranes, respectively. The protein 

recovery (PR%) upon UF was calculated as described by Picot et al. (244): 

PR (%) = [protein of filtrate  total protein of SPH⁄ ] × 100               (1)  

Protein content was determined by the Lowry method (163). 

 

8.2.4. In vitro Simulated GI Digestion  

In vitro pepsin-pancreatin digestion of SPH<10 kDa was performed according to the method 

described by Samaranayaka et al. (181). For this assay, SPH<10 kDa (50 mL) was used at 

a final concentration of 5.0 mg protein/mL (based on Lowry method). In brief, the pH of 
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SPH<10 kDa solution was adjusted to 2 with 5 M HCl, then a solution of 1% (w/w) pepsin 

was added in a E/S ratio of 1:35 (v/v) and the mixture was incubated in a shaking incubator 

for 1 h, 300 rpm at 37ºC. Pepsin digestion was stopped by submerging in boiling water for 

10 min. The pH was then adjusted to 5.3 with a saturated NaHCO3 solution and further to 

pH 8 with 5 M NaOH. A solution of 1% (w/w) pancreatin was added to the mixture at an E/S 

ratio of 1:25 (v/v), which was incubated again with shaking for 2 h, 300 rpm at 37ºC. To stop 

the digestion by pancreatin, the solution was submerged in boiling water for 10 min. Control 

treatment was prepared by inactivation (boiling for 10 min) of pepsin/pancreatin before 

reaction with SPH<10 kDa. An aliquot of the digested samples (referred to as SPH.GI<10 

kDa) was used directly for RP-HPLC analysis (performed as described in sub-section 8.2.9) 

and for determining antioxidant and ACE-I activities (assessed as described in sub-sections 

8.2.5 and 8.2.6, respectively). The remaining SPH.GI<10 kDa samples were freeze-dried 

and stored at -25°C for further cell assays (described in sub-sections 8.2.7 and 8.2.8).  

 

8.2.5. Ferric Reducing Antioxidant Potential (FRAP) assay  

The antioxidant activity of SPH; <10 kDa and <3 kDa fractions; SPH.GI<10 kDa and cell 

permeates (at 180 min of cell transport) were measured by FRAP, according to the method 

described by Jansen and Ruskovska (154). The absorbance was measured at 600 nm, 

using a BMG LABTECH´s SPECTROstar Nano-microplate (Offenburg, Germany). Trolox 

was used as a standard at 50-500 µM to generate a calibration curve (average R2 = 0.9971) 

and results were expressed as mean values ± standard deviations (n=3) as µM of Trolox 

equivalent per mL of sample (µM TE/mL).  

 
8.2.6. ACE-I activity assay 

ACE-I activity of SPH; <10 kDa and <3 kDa fractions; SPH.GI<10 kDa and cell permeates 

(at 180 min of cell transport) was assessed in triplicate using the fluorimetric assay 

described by Sentandreu and Toldrá (121), with the modifications reported by Quiros et al. 

(122). ACE-I percentage (I) was calculated using the equation:  

I % = {(B − A)|(B − C)} × 100     (2) 

where B is the fluorescence of the ACE solution without the inhibitor (SPH); A is the 

fluorescence of the tested sample of SPH; and C is the fluorescence of experimental blank. 

The percent inhibition curves were plotted versus peptide concentration to estimate the 

mean IC50 value, which is defined as the concentration required to decrease the ACE activity 

by 50% (122). Fluorimetric analysis was carried out using a fluorescence microplate reader 

(FLUOstar Optima, BMG Labtech GmbH, Offenburg, Germany). 
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8.2.7. Cell viability study 

The 3-(4,5-dimethylthiazol-2-yvl)-2,5-diphenyltetrazolium bromide (MTT) assay was used 

to determine the cytotoxicity of SPH.GI<10 kDa in the viability of Caco-2 cell line. In this 

assay, the MTT is reduced by mitochondrial dehydrogenases to a water-insoluble formazan 

derivative, which can be measured at 570 nm (181). Briefly, cells (8×104 cells/mL) were 

seeded onto the central 60 wells of 96-well microplates in order to obtain confluent 

monolayers within 2 days. After that, the medium was gently aspirated and the cells were 

incubated for 24 h (37°C, 5% CO2) with SPH.GI<10 kDa at five different concentrations: 

0.25; 0.50; 1.00; 2.00 and 4.00 mg protein/mL. Each individual plate included six replicates 

of negative control (medium only) and six replicates of positive control (media with 1% Triton 

X-100); peripheral wells on the plate were filled with sterile water to avoid evaporation of 

the treatment solutions. After cell treatment with test samples, the culture medium was 

aspirated and the attached cells were rinsed with 200 µL HBSS, followed by the addition of 

fresh culture medium containing 0.25 mg/L MTT. After 30 min of incubation (37°C, 5% CO2), 

the intracellular crystals of formazan were dissolved in 100 µL of DMSO and the absorbance 

was measured at 570 nm. Each sample was tested in six replicates and three independent 

experiments were performed. Cell viability was calculated as follows:   

Cell viability (%) = (
Abs sample

Abs control
)  x  100                (3) 

where Abs control was the absorbance of formazan in negative control cells and Abs sample 

was the absorbance of formazan in cells exposed to the test samples. 

 

8.2.8. Permeability experiments  

Caco-2 and HT29-MTX cell line cells were used at passages 28 and 44, respectively. The 

two cell lines were maintained in culture separately, in DMEM supplemented with 10% FBS, 

1% non-essential amino acids, 100 U/mL penicillin and 100 µg/mL streptomycin, at 37ºC 

under a 5% CO2 water saturated atmosphere. Cells were harvested at 90% confluence with 

trypsin-EDTA and seeded onto PET inserts mounted in 6-well plates, at a total density of 

105 cells/mL. In the case of the Caco-2 cell model, cells were seeded at 2.8 x 105 cells/mL, 

while in the case of Caco-2/HT29-MTX cell co-culture model, cells of each type were mixed 

prior to seeding to yield a concentration of 2.52 x 105 cells/mL and 0.28 x 105 cells/mL for 

Caco-2 and HT29-MTX, respectively, as described by Antunes et al. (131). The culture 

medium was replaced every other day and the monolayers allowed differentiating for 21 

days. Caco-2 and Caco-2/HT29-MTX monolayers with an integrity equivalent to a TEER 

higher than 200 Ω.cm2 were used for permeability experiments. Lyophilized SPH.GI<10 kDa 

sample was dissolved in HBSS and recovered to a final concentration of 2.0 mg protein/mL 

(based on Lowry assay). Caco-2 monolayer and Caco-2/HT29-MTX co-culture monolayer 
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were gently washed twice with HBSS solution and allowed to equilibrate for 30 min at 37ºC 

in HBSS before permeability experiments. Then, the basolateral sides of the insert were 

filled with 1.7 mL of HBSS solution, while 1.7 mL of SPH.GI<10 kDa (2.0 mg protein/mL in 

HBSS) were placed on top (apical side) of the Caco-2 and Caco-2/HT29-MTX cells 

monolayers. Permeability experiments were conducted at 37ºC, 5% CO2 water saturated 

atmosphere, under static conditions (i.e. without stirring). Samples (0.7 mL) were collected 

from the basolateral side after 15, 30, 60, 120 and 180 min of incubation and replaced with 

the same volume of fresh HBSS. Collected samples were used directly for chromatographic 

analysis (performed as described in sub-section 8.2.9) to evaluate the percentage 

permeability, whereas an aliquot from each permeate was concentrated by freeze-drying 

and then reconstituting in HBSS (20% the initial volume) in order to determine the 

antioxidant and ACE-I activities (as previously described in sub-sections 8.2.5 and 8.2.6). 

The efficiency of peptide transport, expressed as percentage of permeability for each peak 

(P %), was calculated according to Cinq-Mars et al. (127) as follows: 

P % = 
Ab

Aa. V
  X  100                 (4) 

where Ab and Aa correspond, respectively, to the RP-HPLC peak areas of the peptide 

fraction detected in the basolateral and in the apical side and V (mL) is the volume of sample 

loaded in the apical side. 

 

The apparent permeability coefficient (Papp, cm s-1) was calculated according to Ferraro et 

al. (184), as follows: 

Papp = 
Q

A. C. t
                  (5)   

where Q is the total amount of permeated compounds during the 180 min of the experiment 

in the basolateral side (mg), t (s) is the time of experiment, A is the monolayer area (4.52 

cm2), and C (mg/mL) is the apical side concentration at time zero. 

 

8.2.9. Reversed-phase high performance liquid chromatography 

The RP-HPLC analysis of SPH.GI<10 kDa and respective permeates from Caco-2 cell and 

Caco-2/HT29-MTX cell co-culture permeability assays were performed according to the 

method described by Ferreira et al. (185). Solvent A was 0.1% TFA in water and solvent B 

was acetonitrile-water-TFA (95:5:0.1, v/v/v). Peptides and proteins were eluted with the 

following gradient: 0-5 min, 0% B; 5-9 min, 0-5% B; 9-15 min, 5-15% B; 15-25 min, 15-33% 

B; 25-31 min, 33-40% B; 31-37 min, 40% B; 37-45 min, 40-50% B; 45-50 min (50-0% B), in 

a total run time of 50 min. The flow-rate was 1.0 mL/min and the injection volume was 100 

μL. UV detector absorbance was set at 214 nm. The equipment consisted of a Jasco HPLC 

system (Tokyo, Japan) equipped with a quaternary low pressure gradient HPLC pump 
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(Jasco PU-1580), a degassing unit (Jasco DG-1580-53 3-line degasser), an autosampler 

(Jasco AS-2057-PLUS), a MD-910 multiwavelengh detector (Jasco) and a 7125 Rheodyne 

injector valve (California, USA). The column was a Chrompack P 300 RP 

(polystyrenedivinylbenzene copolymer, 8 µm, 300 Å, 150 x 4.6 mm i.d.) (Chrompack, 

Middleburg, The Netherlands). Data acquisition was accomplished using the Borwin 

Controller software, version 1.50 (JMBS Developments, Le Fontanil, France).  

 

8.2.10. Mass spectrometry 

The molecular weight profiles of permeates after transport across Caco-2/HT29-MTX were 

analysed by MALDI-TOF MS. Data were acquired using a 4800 MALDI-TOF/TOF (Applied 

Biosystems, Darmstadt, Germany) mass spectrometer in the mass-to-charge ratio (m/z) 

range from 1000 to 12000. Samples were cleaned with ZipTip C18 (Millipore) using the 

manufacturer’s instructions. Then, the eluted samples were premixed with matrix [3 mg/mL 

alpha-cyano-4-hydroxycinnamic acid (CHCA) in 50% (v/v) aqueous acetonitrile, 0.1% 

trifluoroacetic acid (TFA)], spotted onto a target plate and dried at room temperature. The 

4800 MALDI-TOF/TOF was calibrated using horse myoglobine [m/z 16952.56 (+1); m/z 

8476.78 (+2); m/z 5651.85 (+3)] and cytochrome c [(m/z 12349.72 (+1); m/z 6177.94 (+2)]. 

The MS data was processed using the Data Explorer 4.8 software (ABSCIEX).  

 

8.2.11. Statistical analysis 

The statistical analysis was performed using the SPSS 22.0 software (SPSS, Chicago, IL, 

USA). The student t-test was performed to compare the absorptive transport between the 

two cell monolayer models; one-way analysis of variance (ANOVA) was carried out to allow 

multi-comparison test, with Duncan’s post hoc test. The significance levels were set at an 

overall α error of 5% (p <0.05).  

 

 

8.3. RESULTS AND DISCUSSION 

 

8.3.1. Effect of UF on biological activities of SPH 

The antioxidant activity (FRAP assay) and ACE-I activity of SPH, <10 kDa and <3 kDa 

fractions were assayed. Results are presented in Table 8.1. SPH showed a FRAP value of 

287.7 µM TE/mL and an ACE-I activity (IC50) of 168.5 µg protein/mL. IC50 values of 260 µg 

protein/mL have been previously reported for sardine muscle hydrolysates obtained by 

Alcalase® (231). More recently, Bougatef et al. (15) reported IC50 values ranging from 1200 

to 7400 µg protein/mL for sardine viscera hydrolysates obtained by treatment with different 

microbial and visceral fish serine proteases. However, the direct comparison with the IC50 
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values obtained in the present study is not reliable due to differences in the hydrolysis 

conditions and the methodology employed for ACE-I activity determination. UF of SPH 

using a 3 kDa MWCO membrane concentrated the antioxidant compounds, the FRAP value 

increased to 328.6 µM TE/mL (p <0.05), while the fraction <10 kDa exhibited the highest 

ACE-I activity, IC50 of 105.7 µg protein/mL (p <0.05). These results are in agreement with 

Jeon et al. (252), who reported an improvement in IC50 after UF of cod frame hydrolysate 

with a 10 kDa MWCO membrane and an increase of antioxidant activity using a 3 kDa 

MWCO membrane. Also, Cinq-Mars and Li-Chan (236) observed that UF using a 10 kDa 

MWCO membrane significantly improved (~70%) the IC50 of Pacific Hake fillet hydrolysate 

(p <0.05). Results suggest that the smaller molecular weight peptides are likely responsible 

for the antioxidant activity observed. However, the same conclusion was not observed for 

ACE-I activity. Similar conclusion was also observed for other protein hydrolysates (253), 

(254). Since the <10 kDa fraction presented enhanced antioxidant and ACE-I activity 

compared with SPH, this fraction was selected to study the stability of the antioxidant and 

ACE-I activities after simulated GI digestion. 

 

Table 8.1. Antioxidant and ACE-I activities of SPH, its fractions <10 kDa and <3 kDa and 

the in vitro GI digest of SPH<10 kDa 

 

Sample 
Protein 
Recovery (%) 

FRAP 
(µM TE/mL) 

IC50
 *

 

(µg/mL) 

SPH  --- 287.7±2.6 d 168.5±1.8 b 

SPH<10 kDa 56.3±1.8 a 305.8±3.6 c 105.7±2.2 c 

SPH<3 kDa 27.5±2.1 b 328.6±2.1 b 210.6±4.6 a 

SPH.GI<10 kDa --- 343.6±4.6 a 116.5±3.6 c 

Results are expressed as mean ± standard deviation from two replicate experiments 

analyzed in triplicate. In each column the different superscript letters indicate 

significant differences at p <0.05, Duncan’s post hoc test. 
* IC50 is the concentration (µg protein/mL) of sample required to inhibit 50% of the 

ACE activity.  

  

 

8.3.2. Effect of simulated GI Digestion on the biological activities of SPH<10 kDa  

Similar RP-HPLC profiles of SPH<10 kDa (p <0.05) were observed before and after 

GI digestion (results not shown), which suggests that SPH<10 kDa fraction is stable against 

GI proteases. Additionally, the simulated GI digestion had no effect (p <0.05) in the ACE-I 

activity (IC50 of 116.5 µg protein/mL), as observed in Table 8.1. Similarly, Cinq-Mars et al. 
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(127) reported that UF<10 kDa fraction of Pacific Hake fillet hydrolysate had similar ACE-I 

activity (IC50 of 90 μg protein/mL) before and after simulated GI digestion. Bougatef et al. 

(15) concluded that a SPH with IC50 of 810 µg protein/mL was resistant to GI proteases 

action, while Matsufuji et al. (112) reported that the IC50 of a sardine muscle hydrolysate (82 

µg protein/mL) did not changed after GI digestion. According to the criteria of Iroyukifujita 

et al. (109), hydrolysates and individual ACE-I peptides can be classified as “pro-drug type”, 

“true-drug type” or “substrate type” based, respectively, on an increased, unchanged or 

decreased ACE-I activity after simulated GI digestion. Therefore, based on our results, 

ACE-I peptides present in SPH<10 kDa can be classified as “true-drug type”. Concerning 

antioxidant activity, a significant (p <0.05) increase of the FRAP value was observed, 343.6 

µM TE/mL, indicating that GI digestion produced peptides with higher antioxidant activity. 

Wu and Ding (255) reported a similar effect of GI digestion in UF-10 kDa fraction of soy 

protein hydrolysate.  

 

8.3.3. Cellular viability of SPH.GI<10 kDa 

Caco-2 cells were used to evaluate the cellular viability of SPH.GI<10 kDa. Results 

of the MTT assay, which measures the mitochondrial succinate dehydrogenase activity, are 

reported in Figure 8.1. SPH.GI<10 kDa did not present toxic effects in relation to 

mitochondrial enzyme activity of Caco-2 cells at concentrations between 0.25 and 2.00 mg 

protein/mL, whereas a significant (p <0.05) decrease on cell viability was observed for 4.00 

mg protein/mL. Moreover, the SPH.GI<10 kDa at the concentrations of 1.0 and 2.0 mg 

protein/mL significantly (p <0.05) prompted an increased cellular reactivity, reflecting higher 

metabolic competence. Thus, the concentration of 2.00 mg protein/mL was selected for 

permeability assays in order to not affect viability of cell monolayers during permeability 

studies.  
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Figure 8.1. Effect of SPH.GI<10 kDa at different protein concentrations on Caco-2 cell viability, after 

24 h of incubation at 37ºC, 5% CO2 (MTT assay). Each bar represents the mean ± standard deviation 

of 3 individual experiments (6 replicates per experiment).  

* significant differences (p <0.05) when compared with negative control (cells incubated with medium 

only). 

 
 
8.3.4. Intestinal permeability of SPH.GI<10 kDa 

In order to simulate the intestinal epithelial barrier, absorptive Caco-2 cells and mixed 

culture of Caco-2/HT29-MTX (90:10) cells were grown on permeable supports for 21 days. 

In both models, cell monolayer formation was monitored by measuring TEER values. The 

Caco-2 cell monolayer model presented higher TEER values (360-390 Ω.cm2 at 21 days) 

when compared with the co-culture model (220-250 Ω.cm2 at 21 days) due to the 

establishment of looser tight junctions between Caco-2 and HT29-MTX; these values were 

in agreement with previous reports (131), (132). A typical RP-HPLC chromatogram of the 

SPH.GI<10 kDa used in cell permeability assays is shown in Figure 8.2.A. Analyses of 

peptide permeability were performed using the area of peaks 1 to 11. RP-HPLC 

chromatograms indicate that these peptide fractions could permeate the Caco-2/HT29-MTX 

co-culture and the Caco-2 cell monolayers (Figure 8.2.B and C). Table 8.2 presents, for 

both cell models, the cumulative percentage permeability of each peptide fraction after 180 

min of cell transport (37ºC, 5% CO2). Transepithelial transport from apical-to-basolateral 

side of Caco-2/HT29-MTX cell co-culture model, after 180 min (37ºC, 5% CO2) indicate high 

permeability, especially for peptides of peaks 5, 6, 7 and 11, which reached, respectively, 

70.6%, 78.9%, 52.6% and 62.5% (Table 8.2). Lower permeability was observed for 

transepithelial transport from apical-to-basolateral side of Caco-2 cell culture model. After 

180 min of cell transport at 37ºC, higher permeability was observed for peaks 6, 9 and 11, 

which reached 49.6%, 41.1% and 45.2%, respectively (Table 8.2).   
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Figure 8.2. RP-HPLC chromatographic profiles of SPH.GI<10 kDa added to the apical side at the beginning of permeability experiment (A) and collected from the 

basolateral side after 180 min of transport across Caco-2/HT29-MTX co-culture cell monolayer (B), and after 180 min of transport across Caco-2 cell monolayer (C). 

The absorbance was monitored at 214 nm. Retention time for HPLC peaks are: (1) 2.9 min; (2) 3.5 min; (3) 4.3 min; (4) 7.4 min; (5) 7.5-8.5 min; (6) 10.1-12.8 min; (7) 

14.4-15.1 min; (8) 16.8 min; (9) 17.8 min; (10) 18.8 min and (11) 20.5-26.8 min.  
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Table 8.2. Cumulative percentage permeability (P %) of SPH.GI<10 kDa peptides through the Caco-2/HT29-MTX co-culture cell monolayer and through 

Caco-2 cell monolayer for 180 min (37ºC, 5% CO2) 

 

 Cumulative percentage permeability (P %) 

Peak  
(min) 

1 
(2.9) 

2 
(3.5) 

3 
(4.3) 

4 
(7.4) 

5 
(7.5-8.5) 

6 
(10.1-12.8) 

7 
(14.4-15.1) 

8 
(16.8) 

9 
(17.8) 

10 
(18.8) 

11 
(20.5-26.8) 

Caco-2/HT29-MTX co-culture cell monolayer 

15`   7.5 e   6.2 e 15.4 e 15.3 e 14.6 e 59.2 d 18.6 d 14.9 e 20.9 e 12.5 e 42.0 e 

30` 16.3 d 12.2 d 27.1 d 25.0 d 21.6 d 73.8 c 26.1 d 15.4 d 28.4 c 19.6 d 48.4 d 

60` 20.3 c 14.9 c 32.0 c 32.8 c 24.1 c 75.2 b 32.5 b 17.0 b 30.0 b 23.5 c 49.9 c 

120` 22.5 b 16.5 b 34.1 b 33.7 b 49.4 b 66.8 e 32.2 c 16.3 c 25.7 d 24.7 b 52.4 b 

180` 44.7 a 36.8 a 44.8 a 34.5 a 70.6 a 78.9 a 52.6 a 31.2 a 45.5 a 51.7 a 62.5 a 

 

Caco-2 cell monolayer 

15`   0.3 d   0.0 e   0.0 e   0.0 c 0.0 c   0.0 e   0.0 e   0.0 e   0.0 e 0.0 e   0.0 d 

30`   0.7 d   0.9 d   1.7 d   0.0 c 0.0 c 53.5 c   6.0 c 12.4 b 37.7 b 7.9 a   0.0 d 

60`   1.4 c   1.5 c   2.2 c   0.0 c 0.0 c 51.5 d   4.3 d   9.7 d 25.0 d 4.6 c 37.5 b 

120`   5.5 b   5.2 b   6.3 b   5.8 a 3.1 b 55.4 b   7.1 b 10.6 c 34.2 c 7.4 b 44.1 a 

180` 15.3 a   8.1 a 12.5 a 10.6 b 4.2 a 49.6 a 15.2 a 12.9 a 41.1 a 7.4 b 45.2 a 

Results are expressed as mean ± standard deviation from three chromatographic analysis and were calculated as 100 × [peak area of 

peptide fraction detected in basolateral side] / [peak area of peptide fraction detected in apical side]. For peak identification, see Figure 

8.2. For each model, in each column the different superscript letters indicate significant differences at p <0.05, Duncan’s post hoc test. 
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The values of Papp, which reflects the rate of passage through the intestinal epithelial 

barrier, suggest that the peptide fractions 1 to 11 in SPH.GI<10 kDa are very likely to be 

absorbed in humans (Figure 8.3). Papp values obtained in vitro using cell models can be 

correlated with in vivo absorption profiles. For example, according to the criteria defined by 

Yee (189), Papp values lower than 10−6 cm s-1 indicate poor in vivo absorption (<30%); Papp 

values between 10−6 and 10−5 cm s-1 correspond to substances with moderate absorption 

(30-70%); and Papp values higher than 10−5 cm s-1 suggest that substances are well 

absorbed (>70%). The Papp values (at 180 min, 37ºC) for absorptive transport of SPH.GI<10 

kDa peptides across Caco-2/HT29-MTX co-culture and Caco-2 cell monolayers were 

11.0×10−6 cm s-1 and 5.9x10−6 cm s-1, respectively. These values are in accordance with 

other studies, in which Paap of food-derived peptides varied in the range of 0.50-9.21×10−6 

cm-1 (129), (133), (184) and support that SPH.GI<10 kDa may undergo moderate in vivo 

absorption. The higher values of permeability and Papp of the co-culture model when 

compared with the monoculture model (Table 8.2 and Figure 8.3) can be explained by the 

tighter cell junctions among Caco-2 cells than between Caco-2/HT29-MTX, as previously 

described (130), (131). As suggested by Calatayud et al. (133), the co-culture monolayer 

presents higher number of paracellular pores per cm2 and is less resistant to compound 

permeation. Furthermore, the mucus produced by HT29-MTX did not seem to delay the 

permeation of SPH.GI<10 kDa peptides, suggesting a low level of interaction with mucins 

and unimpaired diffusion. The modified HT29 cells are recognized for secreting gel-forming 

mucins, mostly MUC5AC but also MUC2 (predominant in intestinal mucus) and MUC5B 

(130), (256- 258). The Caco-2/HT29-MTX cell culture model, comprising mucus layer and 

goblet-type cells, might represent a more physiological and realistic approach compared 

with in vivo conditions and may give more accurate bioavailability predictions of the 

SPH.GI<10 kDa peptides.  
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Figure 8.3. Comparative permeability (P %) as mean values ± standard deviation bars) for 

sum of peptides fractions 1-11 (as present in Figure 8.2) from SPH.GI<10 kDa after 180 

min (37ºC) of transport across Caco-2 cell monolayer and Caco-2/HT29 co-culture cell 

monolayer. For both models, Papp values (10-6 cm s-1) are reported for peptide transport from 

apical to basolateral chamber at 180 min (n=3) and were significantly different at p <0.05.  

 

 

The analysis of mass spectra of SPH.GI<10 kDa permeates obtained after transport 

from apical-to-basolateral side of Caco-2/HT29-MTX cell monolayer also confirmed that 

compounds with m/z between 1000 and 5000 were transported (Figure 8.4). Althought the 

bioavailability of large peptides with biological activity is of great interest, few studies have 

studied the absorption of large peptides. The β-CN (193–209) peptide, a hydrophobic 

peptide composed of 17 amino acid residues (molecular mass 1881 Da) was resistant to 

the action of Caco-2 brush border peptidases and the main route involved in the 

transepithelial transport was the transcytosis via internalized vesicles, although the 

paracellular transport via tight-junctions was not excluded (259). Also, the tropomyosin (Pen 

j 1), the major shrimp allergen with a molecular mass less than 20 kDa after GI digestion, 

was rapidly degraded to small peptides (molecular mass <3.5 kDa) by Caco-2 brush border 

peptidases and absorbed via a paracellular route (260).  
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Figure 8.4. MALDI-TOF mass spectra of SPH.GI<10 kDa taken from the basolateral side after 180 min of a permeability experiment across Caco-

2/HT29-MTX co-culture cell monolayer. 
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8.3.5. Effect of intestinal transport on the biological activities of SPH.GI<10 kDa 

Permeates of SPH.GI<10 kDa recovered after crossing Caco-2/HT29-MTX co-culture 

monolayer presented a FRAP activity of 109.5 µM TE/mL, corresponding to a 70% decrease 

of the previous antioxidant activity. However, no ACE-I activity was detected, even after 5 

fold concentration of permeate by freeze-drying and further dissolution. Accordingly, 

Samaranayaka et al. (181) did not observe ACE-I activity for GI-digested Pacific Hake 

hydrolysate after 7 fold concentration. Vermeirssen et al. (261) also reported no ACE-I 

activity for GI-digested pea proteins following transepithelial procedures using Caco-2 cell 

monolayers. However, these authors referred that pea hydrolysate exerted a significant 

blood pressure lowering effect after oral administration to SHR. Presumably, the permeate 

concentration of ACE-I peptides was too low to be detected by the in vitro assay. 

Vermeirssen et al. (261) detected the ACE-I of a pea hydrolysate using 50 mg protein/mL; 

however this high concentration compromised the cell monolayer integrity. The initial 

concentration of SPH.GI<10 kDa used in the present assays was significantly lower, 2 mg 

protein/mL. Alternatively, the peptides that presented ACE-I activity were not those that 

passed through Caco-2/HT29-MTX cell monolayers or were degraded by brush border 

peptidases.  

 

8.4. CONCLUSIONS 

 SPH produced by action of BSY proteases was tested after UF membrane separation 

to assess the effect of in vitro simulated GI digestion and intestinal permeability across 

Caco-2 culture and Caco-2/HT29-MTX cell co-culture monolayer models. UF using a 10 

kDa MWCO resulted in a peptide mixture with enhanced ACE-I and antioxidant activities. 

The ACE-I potential of SPH<10 kDa remained unchanged upon simulated GI digestion, but 

no ACE-I activity was detected after cell transport, which indicates that probably the 

peptides responsible for ACE inhibition suffered proteolysis by cellular peptidases. 

Concerning antioxidant activity, the permeability assays showed that some peptide from 

SPH.GI<10 kDa permeated across Caco-2 cell and Caco-2/HT29-MTX cell co-culture 

monolayers, thereby providing further evidence of intestinal absorption and, at least, partial 

resistance to brush border peptidases. The apical to basolateral transport of SPH.GI<10 

kDa peptides was significantly higher in the physiologically relevant Caco-2/HT29-MTX cell 

co-culture model. Further work is necessary to determine the sequences of peptides with 

antioxidant capacity and to evaluate the mechanism of their biological activities. 

Furthermore, studies using in vivo animal model systems are necessary to ascertain the 

evidence for both antioxidant and ACE-I potential of bioactive peptides derived from Sardine 

pilchardus by-product hydrolysate, before application as nutraceutical or functional food 

product ingredient. 
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ABSTRACT 
 

Sardine protein hydrolysate (SPH), prepared by hydrolysis with proteases from brewing 

yeast surplus, have been regarded as a bioactive hydrolysate with high antioxidant and 

ACE-I activities. In this study, SPH was digested, fractionated with a 10 kDa-UF membrane 

and desalted. The bioactivity of SPH<10 kDa was investigated on human endothelial cell 

line during the inflammatory process (induced by TNF-α) in a co-culture model, which 

combines intestinal absorption with changes in endothelial metabolism. Effects of SPH<10 

kDa on NO production, ROS inhibition and secretion of monocyte chemoattractant protein 

1 (MCP-1), vascular endothelial growth factor (VEGF), chemokine IL-8 (IL-8) and 

intercellular adhesion molecule-1 (ICAM-1) were evaluated in TNF-α treated and untreated 

cells.  

Upon inflammation, levels of NO, MCP-1, VEGF, IL-8, ICAM-1 and endothelial ROS were 

significantly increased in the co-culture and standard models. However, treatment with 

SPH<10 kDa at a concentration of 2.0 mg protein/mL significantly decreased all the 

inflammation markers when compared to TNF-α-treated control. This effect was more 

pronounced in the co-culture model, suggesting that SPH<10 kDa Caco-2 cells metabolites 

produced in the course of intestinal absorption may provide a more relevant protective effect 

against endothelial dysfunction. Additionally, indirect cross-talk between two cell types was 

established, suggesting that SPH<10 kDa may also bind to receptors on the Caco-2 cells, 

thereby triggering a pathway to secrete the pro-inflammatory compounds. Overall, co-

culture model was indicated as a more physiological and realistic approach compared with 

in vivo conditions to assess the anti-inflammatory activity of SPH<10 kDa. 

 

 

9.1. INTRODUCTION 
 

Inflammation is a normal immune response to infection and injury, which leads to the 

up-regulation of a series of enzymes and signaling proteins in the affected tissues (99), 

(262). However, a continuous condition of (low-grade) inflammation and oxidative stress 

can contribute to the pathogenesis of several chronic diseases, such as, atherosclerosis, 

hypertension, cancer, asthma and aging-related diseases (99), (263). The endothelial 

barrier acts in the efficient regulation of the vascular tone, cell adhesion and vessel wall 

inflammation (264), (265). Endothelial dysfunction is characterized by the expression of pro-

inflammatory compounds that attract white blood cells, which are converted to foam cells in 

the atherosclerotic plaque. At the molecular level, Nitric oxide (NO) is released through 

endothelial nitric oxide synthase (eNOS) and pro-inflammatory cytokines, including TNF-α, 
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interferon-γ (IFN-γ), interleukin-1 (IL-1), interleukin-8 (IL-8), monocyte chemoattractant 

protein-1 (MCP-1), vascular endothelial growth factor (VEGF), among others cytokines, 

enhance the expression levels of intercellular and vascular adhesion molecule 1 (ICAM-1 

and VCAM-1) on the membrane of endothelial cells (265-268). Hence, the development of 

anti-inflammatory compounds, has been proposed as the key therapeutic target for 

preventing and treatment of chronic inflammation diseases (263), (269), (270). 

Given the concerns about the side effects from prolonged usage of synthetic 

compounds for the prevention and treatment of chronic diseases, there is a growing interest 

in using natural compounds (271). Bioactive peptides of food origin may have an impact on 

cardiovascular health through their anti-hypertensive, anti-oxidant, anti-thrombotic 

anticholesterolemic effects (93). Likewise, several anti-inflammatory peptides with high 

molecular weight have been isolated from different protein sources. For instance, lunasin 

peptide (5 kDa molecular weight) (272) and lunasin-like peptide (with 8 and 14 kDa 

molecular weight) (273) were isolated from defatted soybean flour. Also, the SALF55-76 

cyclic peptide composed of 24 amino acid residues from black tiger shrimp, exhibited the 

anti-inflammatory effect in LPS-stimulated RAW264.7 macrophage (274) and the >5 kDa 

peptide fraction from Mytilus edulis protein hydrolysate inhibited the NO production by 92% 

(275). Also, potent anti-inflammatory shellfish and fish peptides (276-278), as well as, 

peptide-rich protein hydrolysates (269), (270), (275), (279-281) have been produced by 

proteolysis of lower-quality food and underutilized materials. However, besides the efforts 

to elucidate mechanisms of protective effects of these compounds, most in vitro studies 

focus on their bioactivity towards endothelium (269), (270), (272-281), without taking into 

account the intestinal barrier that selectively absorbs and converts the food compounds 

(282). Recently, co-culture models of intestinal and endothelial cell cultures were 

established and used for testing the beneficial effects of resveratrol and grape extracts on 

endothelial dysfunction (268), (282). It was shown that these models were able to also 

establish cell-cell communication, which led towards a more relevant response to bioactive 

compounds at the endothelial level. Until present, only polyphenols were tested with this 

model (268), (282). 

In a previous work, a SPH prepared by hydrolysis of sarcoplasmic proteins by BSY 

proteases, showed antioxidant and ACE-I activities, with promising application as a 

functional food material (251). However, to the best of our knowledge no information is 

reported about the anti-inflammatory properties of this SPH and its metabolites. In this work, 

we will apply this SPH on the enterocyte-like Caco-2 and the endothelial-like EA.hy926 cell 

culture, as well as, the Caco-2/EA.hy926 co-culture model to evaluate its beneficial effects 

at the endothelial level under normal and inflammatory conditions, by measurement of cell 
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viability, oxidative stress and the secretion of key endothelial markers (NO, MCP-1, VEGF, 

IL-8 and ICAM-1).  

 

 

9.2. MATERIAL AND METHODS 
 

9.2.1. Reagents and standards and cells 

Tumor necrosis factor-α (TNF-α); dimethyl sulfoxide (DMSO); 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazoliumbromide (MTT); fluorescent reagent Lucifer yellow; fluorescente 

probe 2`,7`-dichlorofluorescin diacetate (DCFH-DA); Triton X-100; Bradford Reagent; 

Griess reagent, chicken egg albumin; Greiner 96-Well Multiwell Elisa plates and the 

Millipore 10 kDa-UF membranes were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

The 12-well Transwell plates (0.4 µm pore diameter, 12 mm diameter, 1.12 cm2 insert 

membrane growth area) were from Corning (Elscolab, Kruibeke, Belgium). Phosphate 

Buffered Saline (PBS); Dulbecco’s modified Eagle’s growth medium (DMEM); glutamaxTM; 

sodium pyruvate; fetal bovine serum; penicillin and streptomycin were from Gibco (Life 

Technologies, Merelbeke, Belgium). ELISA Kits (ICAM-1, MCP-1, IL-8, VEGF) were 

purchased from Peprotech (London, United Kingdom). All other chemicals and reagents 

used in this study were of analytical grade. 

 

9.2.2. By-products 

Sardine (Sardina pilchardus) by-product including head, scale, skin, blood, bone, viscera 

and muscle tissue was provided by the Portuguese company Conservas Ramirez 

(Matosinhos, Portugal). Brewing spent yeast (BSY), Saccharomyces pastorianus, was 

supplied by the brewing industry Unicer (Leça do Balio, Portugal). 

 

9.2.3. Preparation of SPH 

The preparation of sarcoplasmic protein extract from sardine by-product and the BSY 

proteases extract were prepared as described by Vieira and Ferreira (251). Protein 

concentration of sarcoplasmic protein extract, determined by the Bradford method (171) 

was 2.4 mg/mL and the protease activity of the BSY proteases extract (>10 kDa fraction), 

evaluated according to Cupp-Enyard protocol (164), was 0.725 U/mL. Sarcoplasmic protein 

extract was hydrolyzed by BSY proteases using an E/S ratio of 0.27:1 (U/mg), pH 6.0, 50°C 

for 7 h, as previously described by Vieira and Ferreira (251). Then, the SPH was submitted 

to simulated GI digestion according to Samaranayaka et al. (181) and fractionated using a 

10 kDa-UF membrane. The resulting fractions, SPH<10 kDa and SPH>10 kDa, were 
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lyophilized (Telstar freeze dryer, Cryodos-80 model, Terrassa, Spain) and stored at -20 °C 

prior to further analysis.  

 

9.2.4. Desalting of SPH  

SPH<10 kDa and SPH>10 kDa fractions were prepared in pure water at the concentration 

of 10 mg/mL and desalted by solid phase extraction using an Oasis® HLB cartridge (35 cc, 

Waters, Waters, Milford, MA). Cartridge was first activated with methanol (0.1% formic acid) 

and equilibrated with 50% acetonitrile in water according to the manufacturer’s protocol. 

Then, sample was applied, washed 4 times with water and the peptides were eluted with 

acetonitrile. The acetonitrile was subsequently evaporated in a rotary evaporator under 

vacuum and the final residues were used for the following experiments. 

 

9.2.5. Protein content 

The protein content was measured by the microprotein Bradford assay (171), using chicken 

egg albumin to construct the standard curve. Samples or standard (25 µL) were mixed with 

Bradford reagent (250 µL) and the absorbance at 595 nm was measured after 5-10 min 

against a reagent blank. The protein concentration in each sample was calculated based 

on a standard curve. The analyses were performed in triplicate. 

 

9.2.6. Cell culture routine 

The continuous human colon adenocarcinoma cell line Caco-2 ATCC©HTB37™, that 

differentiates into enterocyte-like cells upon confluence and the permanent human 

endothelial cell line EA.hy926 CRL2922™  were obtained from ATCC (American Type 

Culture Collection, Manassas, VA, USA). The Caco-2 cells (passage 8-20) and endothelial 

cells (passage 5-10) were grown separately as adherent cultures in 25 cm2 tissue culture 

flasks (Sarstedt, Essen, Belgium) and cultivated in DMEM, high glucose, supplemented with 

glutamaxTM, sodium pyruvate, 10% (v/v) fetal bovine serum, penicillin (100 U/mL), and 

streptomycin (100 mg/mL). Cells were subcultured once a week with 0.25% (v/v) trypsin-

EDTA and grown until 90% confluence. The culture medium was replaced every other day. 

Cells were incubated at 37ºC and 10% CO2 in a water saturated atmosphere (Memmert, 

VWR, Leuven, Belgium). 

 

9.2.7. Cell viability experiments  

In a first set of experiments, the effect of ultrafiltered and desalted SPH samples on Caco-

2 and EA.hy926 cell monolayers viability was evaluated through the MTT assay. Caco-2 

and EA.hy926 cells were separately cultivated in growth medium until 90% confluency, and 

subsequently seeded in 96-well plates at a concentration of 2x104 cells per well. Upon 100% 
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confluency, Caco-2 and EA.hy926 cells monolayers were treated with phenol red-free 

exposure medium (DMEM, high glucose 4.5 g/L, 1% non-essential amino acids solution) 

spiked with the samples (SPH<10 kDa and SPH>10 kDa, desalted or not desalted) at the 

concentration of 1.0 mg protein/mL, as determined by the Bradford method. The MTT assay 

was performed after 3-days treatment for differentiated Caco-2 cell monolayer and 2-days 

treatment for endothelial cell monolayer. In order to select the range of concentrations which 

will not affect viability of Caco-2 cell monolayers in the co-culture model establishment, the 

Caco-2 cell monolayer viability was also evaluated after treatment with the sample chosen 

at five different concentrations (0.1, 0.5, 1.0, 2.0 and 5.0 mg protein/mL). 

 

9.2.8. In vitro cell culture models  

In the monoculture model, EA.hy926 cells were seeded on a 12-well plate at concentration 

of 2.5x105 cells per well. Upon 90-95% confluency, EA.hy926 cells were treated with 

desalted SPH<10 kDa sample in phenol red-free exposure medium at concentrations of 0.5 

mg protein/mL and 2.0 mg protein/mL. The endothelial cells were incubated at 37°C, 10% 

CO2 and culture medium were collected after 4 h of treatment and immediately stored at -

80°C until further analyses.  

For the co-culture model with Caco-2/EA.hy926 cells, as described by Toaldo et al. (283), 

Caco-2 cells were seeded on a 12-well Transwell plates at concentration of 2.5x105 cells 

per well. Upon confluency and after 15-days differentiation, EA.hy926 cells were seeded on 

the basolateral compartment of the Transwell plate, at cell density of 3x105 cells per well. 

The EA.hy926 cells were allowed to grow in the co-culture model until they reached 

confluency on the third day. On the fourth day of co-culture, Caco-2 cells were treated 

apically with SPH<10 kDa in phenol red-free exposure medium at the concentrations of 0.5 

mg protein/mL and 2.0 mg protein/mL, and phenol red-free exposure medium was applied 

in the basolateral compartment. The cells were incubated at 37°C, 10% CO2, and culture 

medium were collected after 4 h of treatment and immediately stored at -80°C for further 

analyses.  

The apparent permeability coefficient (Papp) of Caco-2 cell monolayers was monitored 

before and after the experiments using the fluorescent reagent Lucifer yellow as an 

indicative marker of passive paracellular diffusion. In addition, the integrity of polarized 

epithelial cell monolayers was monitored before and after the experiments through TEER 

measurements using an automated tissue resistance measurement system (REMS, World 

Precision Instruments, Hertfordshire, UK). Only intact Caco-2 monolayers with TEER values 

above 900 Ω.cm2 were used for the co-culture experiments. The Caco-2 cell monolayer 

integrity and its suitability for the transport experiments was also confirmed through the 

correlation between TEER and paracellular permeability.  
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9.2.9. Exposure to TNF-α to induce endothelial inflammation 

In order to investigate the cellular responses to desalted SPH<10 kDa samples under 

stress-induced conditions in endothelial tissue, EA.hy926 cells from co-culture and standard 

models were treated with TNF-α. In both monoculture and co-culture cell models, EA.hy926 

cells were incubated for 1 h with 10 ng/mL TNF-α in phenol red-free exposure medium to 

induce high-grade inflammation in endothelium.. Next, the culture medium was aspirated 

and the EA.hy926 cells were rinsed twice with phenol red-free exposure medium, followed 

by treatment with desalted SPH<10 kDa samples for 4 h (37ºC, 10% CO2). After treatment 

in the monoculture and co-culture models, viability of EA.hy926 cell monolayers was 

evaluated by the MTT assay, intracellular ROS was measured immediately and the culture 

medium was collected, centrifuged at 15,000 x g for 10 min and kept at -80ºC until analysis, 

which included the measurement of NO and secreted pro-inflammatory cytokines. 

 

9.2.9.1. Cell viability study 

In the 3-(4,5-dimethylthiazol-2-yvl)-2,5-diphenyltetrazolium bromide (MTT) assay, the MTT 

is reduced by mitochondrial dehydrogenases to a water-insoluble formazan derivative, 

which can be measured at 570 nm. Briefly, after cell treatment with test samples in the 

monoculture and co-culture models, the culture medium was aspirated and the attached 

cells were rinsed with 200 µL PBS, followed by the addition of the MTT solution (1 mg/mL 

in phenol red-free exposure medium). After 30 min of incubation (37ºC, 10% CO2), the MTT-

formazan product was solubilized in 100 µL of DMSO and the absorbance was measured 

at 570 nm on a Bio-Rad multiplate reader (Bio-Rad Laboratories, Hercules, CA, USA). Each 

sample was tested in six replicates and three independent experiments were performed.  

 

9.2.9.2. Determination of intracellular reactive oxygen species (ROS)  

The formation of reactive oxygen species (ROS) was evaluated using the oxidation 

sensitive dye 2`,7`-dichlorofluorescein-diacetate (H2-DCFDA). Briefly, after cell treatment 

with test samples in the co-culture and standard models, EA.hy926 cells were loaded with 

20 µM H2-DCFDA in phenol red-free exposure medium and incubated for 30 min (37°C, 

10% CO2). The cells were then washed with PBS, lysed with 0.1% Triton X-100 and 

centrifuged at 14,000 rpm for 10 min. The fluorescence of supernatants was immediately 

read in black 96-well plates at an excitation wavelength of 485 nm and an emission 

wavelength of 535 nm, using a Spectramax Fluorescent Plate Reader.  

 

9.2.9.3. Inhibition of NO production  

A spectrophotometric assay based on the Griess reaction was used to indirectly measure 

the NO production in EA.hy926 cells. Briefly, test samples were mixed with equal volume 
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of the Griess reagent. After 15 min at room temperature (18°C), absorbance was read at 

540 nm on a Bio-Rad multiplate reader (Bio-Rad Laboratories, Hercules, CA, USA). The 

nitrite concentration was determined by reference to a standard curve of sodium nitrite 

(NaNO2) in a range of 0-20 µM.  

 

9.2.9.4. Inhibition of pro-inflammatory cytokines production  

The inhibitory effects of test samples on the expression of MCP-1, VEGF, IL-8 and ICAM-1 

in the cell culture medium of co-culture and standard models was performed by enzyme 

immunoassay, using commercially available ELISA kits according to the manufacturer’s 

instructions. The endothelial markers were tested in both TNF-α-treated and untreated 

EA.hy926 cells in order to determine the test samples effects on endothelium responses 

under inflammatory and non-inflammatory conditions. The intra-assay and inter-assay 

coefficients of variation for these ELISA assays were <6% and <10%, respectively. All 

measurements were taken twice. 

 

9.2.10. Statistical analysis 

Results were expressed as mean ± standard deviation. Statistical analysis was performed 

with SPSS 22.0 (SPSS Inc., Chicago, IL, USA), using One-way analysis of variance 

(ANOVA) followed by Student’s t-test to assess statistical differences from control values 

(no treated cells) and between inflammatory and non-inflammatory conditions. Differences 

were accepted as statistically significant at p <0.05 or p <0.01. 

 

9.3. RESULTS 
 

9.3.1. Effect of UF, desalting and optimization of working concentrations 

SPH was prepared according to the previous procedure reported (251) and submitted 

to simulated GI digestion. According to the literature, anti-inflammatory peptides possess a 

wide range of molecular weights (281). For this reason, in a first set of experiments, the 

effect of 10 kDa-UF membrane of SPH digest on Caco-2 and EA.hy926 cells viability was 

assessed. Caco-2 and EAhy926 cells were treated with the fractions SPH>10 kDa and 

SPH<10 kDa at the same peptide concentration of 1.0 mg/mL for 24 h, (37°C, 10% CO2) 

and cell viability was evaluated by the MTT assay. Results present in Figure 9.1 showed 

that SPH>10 kDa significantly (p <0.05) decreased Caco-2 and EAhy.926 cells viability 

when compared to SPH<10 kDa fraction. Regarding the effect of desalting process, results 

showed that the desalted SPH<10 kDa fraction had a positive impact on both cell lines 

viability in relation to the desalted SPH>10 kDa fraction significantly (p <0.05). As the MTT 

protocol performed in the present study uses cells at confluency, the attained data is not 
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compatible with cell proliferation. These results suggest that desalting step not only 

removed the excess of salt associated with hydrolysis, but also increased the relative 

abundance of <10 kDa compounds within the SPH, thereby improving good cell viability 

(284). 

In a second set of experiments, the MTT assay was performed to evaluate the 

cytotoxicity of the desalted SPH<10 kDa fraction at five peptide concentrations. As shown 

in Figure 9.2, the highest Caco-2 cells and EAhy926 cell viability was observed in cells 

treated with desalted SPH<10 kDa at the range of 0.1 to 2.0 mg protein/mL, with a slightly 

decreased cell viability at the concentration of 5.0 mg protein/mL. Considering these results, 

two different working concentrations, 0.5 mg protein/mL and 2.0 mg protein/mL, of desalted 

SPH<10 kDa fraction were selected to further investigate its anti-inflammatory action in 

TNF-α stimulated endothelial cells in the monoculture and co-culture systems. 

 

9.3.2. Establishment of the co-culture model  

Caco-2 cells have been extensively used to study the effects of bioactive ingredients 

in both normal and inflammatory conditions (267), (268). In this work, the validated co-

culture model by Toaldo et al. (283), combining absorption by differentiated Caco-2 cells 

and sequential effects on endothelial cells metabolism, was applied to evaluate the 

response of SPH<10 kDa in both TNF-α-activated and non-activated EA.hy926 cells. The 

permeability and integrity parameters of Caco-2 cell monolayer were examined before 

transport experiments. Papp values of apical-to-basolateral direction were in the range of 

5.01 ± 0.41 x 10-5 cm/s and the TEER values were in the range of 1008.87 ± 52.41 Ω.cm2, 

indicating an intact epithelial monolayer, suitable to be used for the transport experiments.  

 

9.3.3. Effects on viability of endothelial cells 

The SPH<10 kDa cytotoxicity in EA.hy926 cells, under inflammatory and non-

inflammatory conditions, was assessed through the MTT assay in the monoculture and co-

culture models. Results present in Figure 9.3 showed that TNF-a treatment significantly 

decreased mitochondrial activity in both models. Upon TNF-α induced inflammation in the 

co-culture model, and when compared to TNF-α-treated control, a significant (p <0.05) 

decrease of EA.hy926 cell mitochondrial activity was observed upon 4 h treatment with the 

transported 0.5 mg protein/mL SPH<10 kDa fraction, while treatment with SPH<10 kDa at 

the highest concentration (2.0 mg protein/mL) resulted in a slight but significant (p <0.05) 

increase in mitochondrial activity. On the other hand, treatment with 2.0 mg protein/mL 

SPH<10 kDa significantly (p <0.01) increased the EA.hy926 mitochondrial activity in both 

models treated with TNF-α. These results show that under normal conditions, the extract 
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has a limited effect on mitochondrial respiration, whereas under inflammatory conditions, 

the SPH<10 kDa is able to restore the negative impact of the TNF-α treatment. 

 

 

 

Figure 9.1.  Effect of Ultrafiltration and Desalting processes of SPH, at the same protein 

concentration of 1.0 mg/mL (based on Bradford assay), on differentiated Caco-2 (A) and 

EAhy926 (B) cells viability (%) (MTT assay), after 24 h of incubation (37°C, 10% CO2). Data 

represent the mean ± standard deviation, calculated relative to Control (cells treated with 

medium only) and are representative of three independent experiments, in six replicates. 

Bars labeled with different subscript letters have mean values that are significantly different 

at p <0.05 (ANOVA followed by Duncan's test). 
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Figure 9.2. Effect of desalted SPH<10 kDa at different protein concentrations (0.1, 0.5, 1.0, 

2.0 and 5.0 mg protein/mL) on differentiated Caco-2 and EAhy926 cells viability (%) (MTT 

assay), after 24 h of incubation (37°C, 10% CO2). Data represent the mean ± standard 

deviation, calculated relative to Control (cells treated with medium only) and are 

representative of three independent experiments, in six replicates.  

* denotes a significant difference when compared with Control (p <0.05).  

 

 

9.3.4. Effects on NO production in endothelial cells  

The effect of SPH<10 kDa (and its metabolic fraction) on cellular NO production in 

EA.hy926 cells, under inflammatory and non-inflammatory conditions, is presented in Figure 

9.4. In the co-culture model, the production of NO by endothelial cells may be the result of 

two mechanisms: (i) the impact of transported SPH<10 kDa fraction after 4 h metabolism 

by Caco-2 cells and (ii) the indirect impact of other cytokines secreted by Caco-2 cells, 

resulted from the crosstalk between both cell lines. By contrast, in the standard model, the 

NO production is the result of the direct effect of SPH<10 kDa on endothelial cell 

metabolism. A first observation is that NO is increased 3- to 4-fold after treatment with TNF-

α; this result was similar to observed by Toaldo et al. (283). Secondly, a concentration of 2 

mg protein/mL of the extract was able to significantly decrease NO in both normal and 

inflammatory conditions. The effect of the SPH<10 kDa was highest in the TNF-α treated 

cultures, where NO production was reduced (p <0.01) in a dose-dependent manner. As 

verified with co-culture model, untreated EAhy926 cells did not produce detectable amounts 

of NO after 4 h of treatment, whereas the treatment with 2.0 mg protein/mL SPH<10 kDa 
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significantly (p <0.05) reduced the NO production. Under TNF-α-induced inflammation of 

endothelial cells, treatment with 2.0 mg protein/mL SPH<10 kDa significantly (p <0.01) 

reduced the NO production by 22%, when compared to TNF-α-treated control. This result 

suggest that SPH<10 kDa Caco-2 cell metabolites may prevent inflammatory process via 

regulation of the NO level.  

 

9.3.5. Effects on ROS levels in endothelial cells 

For intracellular ROS levels of the endothelial cells, similar observations as for NO 

were observed (Figure 9.5). Upon TNF-α-induced endothelial inflammation for both cell 

models, the levels of ROS were 2-fold increased (p <0.01) compared to untreated cells, and 

this effect was higher for the co-culture model. In the co-culture model, compared to TNF-

α-treated control, a significant (p <0.01) decrease in ROS levels (46%) was observed in 

response to 4 h treatment with 2.0 mg protein/mL SPH<10 kDa. For the monoculture model, 

in response to TNF-α-induced endothelial inflammation, the protective effect was also 

significantly (p <0.01) higher for SPH<10 kDa at the concentration of 2.0 mg protein/mL 

(16%, when compared to compared to TNF-α-treated control). These results indicate a 

dose-dependent protective effect of the SPH<10 kDa towards TNF-α induced oxidative 

stress. 

 

9.3.6. Effects on inflammation markers expression 

The influence of SPH<10 kDa (and metabolites) on the secretion of the markers MCP-1, 

VEGF, IL-8 and ICAM-1 was evaluated in the monoculture and co-culture models. The 

results are presented in Figure 9.6. In TNF-α-treated cells, the secretion of pro-inflammatory 

markers was significantly (p <0.01) higher in comparison with basal values of the non-

inflammatory conditions. Under non-inflammatory conditions, the SPH<10 kDa at the 

concentration of 2.0 mg protein/mL resulted in a significant (p <0.05) decrease on the 

secretion of the endothelial marker VEGF in the co-culture model and a significant decrease 

on the secretion of VEGF (p <0.01) and IL-8 (p <0.05) in the monoculture model. As 

observed in Figure 9.6, for the monoculture model, treatment of EA.hy926 cells with 2.0 mg 

protein/mL SPH<10 kDa significantly (p <0.01) decreased TNF-α-induced MCP-1, VEGF, 

IL-8 and ICAM-1 expression by 24%, 16%, 21% and 26%, respectively, when compared to 

TNF-α-treated control. For the co-culture model, this reduction (p <0.01) was, respectively, 

46%, 35%, 47% and 44%, when compared to TNF-α-treated control.  



 

168 

 

 

Figure 9.3.  Effect of SPH<10 kDa (and metabolites) at the protein concentrations of 0.5 and 2.0 mg protein/mL on EAhy926 cells viability (%), after 4 

h of incubation (37ºC, 10% CO2) in the co-culture and standard models, under TNF-α-induced inflammatory (1 h of TNF-α 10 ng/mL stimulation) and 

non-inflammatory conditions. Data represent the mean ± standard deviation of three measurements in triplicates, in two independent experiments. 

Results are expressed as percentage of respective control (cells treated with medium only or with medium with TNF 10 ng/mL). Controls of non-

inflammatory condition are normalized at 100% and values in the inflammatory condition are represented in comparison to the respective non-

inflammatory condition. Significance was determined at *p <0.05, **p <0.01 versus respective control and #p <0.05, ##p <0.01 versus respective non-

inflammatory condition. 
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Figure 9.4. Effect of SPH<10 kDa (and metabolites) at the protein concentrations of 0.5 and 2.0 mg/mL on NO production of EAhy926 cells after 4 h of 

incubation (37ºC, 10% CO2) in the co-culture and standard models, under TNF-α-induced inflammatory (1 h of TNF-α 10 ng/mL stimulation) and non-

inflammatory conditions. Data represent the mean ± standard deviation of three measurements in triplicates, in two independent experiments. Results 

are expressed as percentage of respective control (cells treated with medium only or with medium with TNF 10 ng/mL). Controls of non-inflammatory 

condition are normalized at 100% and values in the inflammatory condition are represented in comparison to the respective non-inflammatory condition. 

Significance was determined at *p <0.05, **p <0.01 versus respective control and #p <0.05, ##p <0.01 versus respective non-inflammatory condition. 
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Figure 9.5. Effect of SPH<10 kDa (and metabolites) at the protein concentrations of 0.5 and 2.0 mg/mL on intracellular ROS levels of EAhy926 cells, 

after 4 h of incubation (37ºC, 10% CO2) in the co-culture and standard models, under TNF-α-induced inflammatory (1 h of TNF-α 10 ng/mL stimulation) 

and non-inflammatory conditions. Data represent the mean ± standard deviation of three measurements in triplicates, in two independent experiments. 

Results are expressed as percentage of respective control (cells treated with medium only or with medium with TNF 10 ng/mL). Controls of non-

inflammatory condition are normalized at 100% and values in the inflammatory condition are represented in comparison to the respective non-

inflammatory condition. Significance was determined at *p <0.05, **p <0.01 versus respective control and #p <0.05, ##p <0.01 versus respective non-

inflammatory condition. 
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Figure 9.6. Effect of SPH<10 kDa (and metabolites) at protein concentrations of 0.5 and 2.0 mg/mL on the secretion of MCP-1 (A); VEGF (B); IL-8 (C) and ICAM-1 

(D) in EAhy926 cells, after 4 h of incubation (37ºC, 10% CO2) in the co-culture and standard models, under TNF-α-induced inflammatory (1 h of TNF-α 10 ng/mL 

stimulation) and non-inflammatory conditions. Data represent the mean ± standard deviation of three measurements in triplicates, in two independent experiments. 

Results are expressed as percentage of respective control (cells treated with medium only or with medium with TNF 10 ng/mL). Controls of non-inflammatory condition 

are normalized at 100% and values in the inflammatory condition are represented in comparison to the respective non-inflammatory condition. Significance was 

determined at *p <0.05, **p <0.01 versus respective control and #p <0.05, ##p <0.01 versus respective non-inflammatory condition. 



 

 

9.4. DISCUSSION 
 

In this research, we demonstrated the antioxidant and anti-inflammatory effects of 

SPH<10 kDa bioactive compounds on a monoculture and co-culture of an endothelial cell 

line with an intestinal cell line. SPH<10 kDa bioactive compounds were prepared by 

hydrolysis of sarcoplasmic proteins from sardine by-product with BSY proteases (251), 

followed by simulated GI digestion. The UF and desalting steps of SPH digest were 

necessary to remove background effects of the salts to the cells and to increase the peptide 

content. In this work, the desalted SPH<10 kDa fraction was used to investigate its potential 

anti-inflammatory activity through TNF-α stimulated cells. To date, the antioxidant and ACE-

I activities of SPH has been extensively studied (218), however, to our best knowledge, the 

modulatory effects of these kind of hydrolysates against inflammatory reactions have not 

yet been reported.  

Endothelial dysfunction is an inflammatory process characterized by increased 

oxidative stress and it is an important manifestation of cardiovascular diseases (285). In this 

study, a validated in vitro co-culture model with epithelial and endothelial cells, representing 

the intestinal epithelial layer and the adjacent endothelium (283), was used to investigate 

the anti-inflammatory effects of SPH<10 kDa and compared with its impact on a 

monoculture of endothelial cells. During the inflammatory process, NO was secreted by 

eNOS over EA.hy926 cells in the co-culture and standard models. Excessive production of 

NO by eNOS, which is up-regulated by inflammatory stimuli such as TNF-α, is considered 

toxic and related to various inflammatory diseases (281), (286). Thus, inhibition of NO 

secretion can attenuate inflammation and reduce cancer risk (286). The results obtained in 

this work indicated enhanced bioactivity of SPH<10 kDa Caco-2 metabolites rather than the 

compounds present in SPH<10 kDa. As suggested by other authors (282), in the course of 

intestinal absorption, SPH<10 kDa may undergo metabolization by Caco-2 cells, resulting 

in SPH<10 kDa metabolites at biological relevant concentrations and/ or with potential 

higher anti-inflammatory activity. Moreover, changes in ROS and NO levels in the co-culture 

model are the result of two important mechanisms: (i) direct impact by SPH<10 kDa 

compounds that are transported (and metabolized) through Caco-2 cells and (ii) indirect 

impact by cross-talk communication between intestinal and endothelial cell monolayers 

(287). 

The inflammatory processes is also regulated by the secretion of pro-inflammatory 

mediators (263). NO may reduce endothelial expression of several inflammatory mediators 

and adhesion molecules, whose up-regulation is linked to the pathogenesis of many 

infectious and inflammatory diseases and cancer (285). In this work, ELISA was performed 

to measure the concentrations of the pro-inflammatory cytokines MCP-1, VEGF, IL-8 and 
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ICAM-1. The inhibitory effects of SPH<10 KDa (and metabolites) on the expression of the 

selected cytokines was evaluated in the co-culture and standard models, to further validate 

the anti-inflammatory effects previously observed. Similar to observed by Toaldo et al. 

(283), secretion of these pro-inflammatory molecules in the EAhy926 cells were largely 

increased by induction of inflammation with TNF-α. For both cell culture models, treatment 

with SPH<10 kDa inhibited the pro-inflammatory cytokines expression in a dose-dependent 

manner. Treatment with 2.0 mg protein/mL SPH<10 kDa prompted a significant (p <0.01) 

decrease in the expression of these inflammation markers. However, despite the significant 

effect of 2.0 mg protein/mL SPH<10 kDa (and its metabolites) on the reducing secretion of 

pro-inflammatory molecules in the co-culture and standard models, decreases on MCP-1, 

VEGF, IL-8 and ICAM-1 concentrations in relation to TNF-α-treated control were markedly 

higher in TNF-α treated cells controls. These findings suggest that SPH<10 KDa (and its 

metabolites) operate through an inhibitory regulation of the inflammatory cascade in 

endothelial cells. Direct incubation of endothelial cells with SPH<10 kDa (standard model) 

reduced the expression of these pro-inflammatory molecules, but in a lesser extent. Thus, 

it can be speculated that unknown intermediate metabolites with higher anti-inflammatory 

potential were generated when SPH<10 kDa cross the Caco-2 cell monolayer.  

 

 

9.5. CONCLUSIONS 
 

Our findings demonstrated that besides the antioxidant and ACE-I activity previously 

reported, the peptide fraction <10 kDa from sardine protein hydrolysate prepared by action 

of brewer´s spent yeast proteases exhibited anti-inflammatory activity in TNF-α simulated 

EAhy926 cells. This bioactivity was expressed through the inhibition of NO, ROS and pro-

inflammatory cytokines production (MCP-1, VEGF, IL-8 and ICAM-1). Results suggested 

that the protective health effects of SPH<10 kDa may not only be due to bioactive 

compounds composition, but also to their metabolites produced by the action of Caco-2 cell 

peptidases in the course of intestinal absorption. Therefore, the co-culture model, which 

combines the absorption by differentiated Caco-2 cells and sequential effects on endothelial 

cells metabolism, may represent a more physiological and realistic approach compared with 

in vivo conditions, allowing more accurate knowledge about the anti-inflammatory activity 

of the SPH<10 kDa studied. To the best of our knowledge, this is the first report of the anti-

inflammatory activity exhibited by a SPH prepared by action of proteases extracted from 

brewer´s spent yeast. This bioactive hydrolysate fraction could be used as an alternative 

therapy for the prevention of inflammatory-related diseases. However, further exploration 
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of the SPH<10 kDa is required to fully explore its molecular composition, its mechanisms of 

action and overall anti-inflammatory effects in vivo. 
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CHAPTER 10 

 

 

Characterization of hydrolysates obtained from muscle 

and viscera proteins of canned sardine by-products 

_____________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter compares the biological activities and techno-

functional properties of different SPH prepared by BSY proteases and by 

two commercial enzymes: Alcalase® and Neutrase®. 
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ABSTRACT 
 

Muscle and viscera proteins from canned sardine by-products were used as substrate to 

obtain functional hydrolysates. Three enzymatic approaches, brewer´s spent yeast (BSY) 

proteases, Alcalase® and Neutrase®, were applied to perform the hydrolysis at the same 

proteolytic activity (1 U/mL), using an E/S ratio of 0.20:1 U/mg, at 50ºC and for 7 h. 

Hydrolysis degree (DH), antioxidant and ACE-I activities, techno-functional properties and 

colour were investigated. All hydrolysates presented a high protein content (52.7-83.2% dw) 

and low fat content (0.9-3.9% dw). Alcalase® treatment of muscle and viscera proteins 

resulted in higher DH (7.5 and 8.6%, respectively) and higher biological activities (p <0.05). 

Although all hydrolysates had excellent solubility at pH 4-10 range (>52.7%) and possessed 

techno-functional properties, treatment with BSY proteases was the approach that 

promoted higher emulsion (80.1 m2/g), foaming (79.2%) and oil binding capacity (5.8 g/g) 

of viscera sardine proteins. The hydrolysates produced in this study using the three 

enzymatic treatments could potentially be used in food systems due to their improved 

biological and techno-functional properties. 

 

 

10.1. INTRODUCTION 
 

Canned sardine by-products are commonly recognized as low-value resources, which 

represent around 50% of the product catch (13), (213). Hence, sustainable exploitation of 

these by-products is of major relevance. Production of SPH represents a good alternative 

to obtain added value ingredients. Several efforts have been made in finding SPH with 

antioxidant (16), (20), (209), (213), (215), (222), (223) and ACE-I activities (15), (288). 

Additionally, SPH have also demonstrated excellent physicochemical and techno-functional 

properties (20), (202), (213), (222), (223), (289). The nature of the protein substrate, the 

specificity of the enzyme used and the conditions used during hydrolysis (time, temperature, 

pH and E/S ratio), considerably influenced the molecular weight and amino acid 

composition of bioactive peptides and thus, their biological and techno-functional properties 

(103), (218). 

Different SPH have been produced in recent years, the preferred commercial 

enzymes for most researchers are industrial food-grade proteases, namely Alcalase® (5), 

(6), (15), (20), (209), (211-213), (225); Flavourzyme® (211), Neutrase® (289) and 

Protamex® (211), (214). Also, protease preparations of bacterial origin like Bacillus 

licheniformis NH1 (15), (16), Aspergillus clavatus ES1 (15), (16), Bacillus pumilus A1 (222) 

and Bacillus mojavensis A22 (222), as well as, crude enzyme extract from viscera of sardine 



 

178 

(209) have yielded good results. More recently, a SPH was also efficiently produced through 

action of BSY proteases over sarcoplasmic proteins extracted from sardine by-products 

(251). However, more studies are required concerning the hydrolysis of sardine muscle and 

viscera proteins, because those proteins are more abundant in sardine by-products and 

more resistant to hydrolysis. Comparison between biological and techno-functional 

properties of SPH obtained by BSY proteases and from commercial proteases is also 

required, since enzyme specificity has impact not only on molecular size of peptides and 

DH, but also in the biological activities and techno-functional properties, such as solubility, 

emulsifying, foaming and water binding capacity (218). Protein hydrolysates promote an oil-

in-water emulsion due their hydrophilic and hydrophobic groups and their charge (194). 

However, extensive hydrolysis may result in poor techno-functional properties of 

hydrolysates (218). Additionally, the colour of food hydrolysates is influenced by enzymatic 

browning reactions and can influence the acceptability by consumers (194). 

The objective of this work was to compare hydrolysates from muscle and viscera 

sardine proteins obtained by BSY proteases and commercial Alcalase® and Neutrase® 

with respect: (i) DH using the same proteolytic activity and hydrolysis conditions; (ii) 

antioxidant and ACE-I activities; (iii) techno-functional properties, namely, solubility, 

emulsifying, foaming, water-and oil-binding capacity and colour. 

 

 

10.2. MATERIAL AND METHODS 
 

10.2.1. Reagents and standards 

Acetonitrile HPLC grade; trifluoroacetic acid (TFA); sodium dodecyl sulfate (SDS); bovine 

serum albumin (BSA); 2,4,6-trinitrobenzenesulfonic acid (TNBS); L-leucine; 6-hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox); iron (III) chloride hexahydrate; 2,4,6-

tripyridyl-s-triazine (TPTZ); 1,1-diphenyl-2-picrylhydrazyl (DPPH); commercial ACE (EC 

3.4.15.1, 5.1 U/mg); Neutrase® (EC.3.4.24.28, ≥ 0.8 U/g); Alcalase® (EC 3.4.21.62, ≥ 2.4 

U/g); soybean oil; low range of molecular weight standard (6.5-66 kDa) and the Millipore 

UF membranes of 10 kDa were all obtained from Sigma-Aldrich (St. Louis, MO, USA). The 

o-aminobenzoylglycyl-p-nitro-phenylalanylproline (o-ABz-Gly-Phe(NO2)-Pro) was 

purchased from Bachem Feinchemikalien (Bubendorf, Switzerland). Ultrapure water was 

obtained from a Seralpur Pro 90 CN water purification. All solutions were daily freshly 

prepared.  
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10.2.2. Equipments 

SE-HPLC analysis were performed using a Gilson HPLC system (Gilson Medical 

Electronics, France) equipped with a type 302 pump, a Gilson 118 variable wavelength 

ultraviolet detector and a 7125 Rheodyne injector. The equipment was controlled by a 

Gilson 712 software. Spectrophotometric analyses were carried out using a BMG 

LABTECH´s SPECTROstar Nano-microplate, cuvette UV/Vis absorbance reader 

(Offenburg, Germany). Fluorimetric analyses were carried out using a fluorescence 

microplate reader (FLUOstar Optima, BMG Labtech GmbH). Samples were freeze-dried 

with a Telstar® freeze dryer, Cryodos-80 model (Terrassa, Spain). 

 

10.2.3. Sardine by-products and proteolytic enzymes 

Sardines (Sardina pilchardus) by-products were provided by the canned industry Ramirez. 

SA (Matosinhos, Portugal). By-products were immediately placed in ice and transported to 

the laboratory, where flesh and viscera by-products were collected and separately washed 

twice with cold pure water and stored in sealed plastic bags at -20°C.  

Proteases from BSY (Saccharomyces pastorianus), supplied by Unicer Bebidas S.A., 

brewing (Leça do Balio, Portugal), were extracted as described by Vieira et al. (251). 

Proteolytic activity, determined by Sigma’s non-specific protease assay method described 

by Cupp-Enyard (164), was 1 U/mL. Commercially available enzymes were used at the 

same activity levels of BSY proteases, 1 U/mL, to compare hydrolysis efficiencies. For this 

purpose, Alcalase® and Neutrase® were diluted in the respective buffer, 100 mM Tris-HCl 

pH 8.0 and sodium phosphate buffer pH 7.0, respectively.  

 

10.2.4. Hydrolyses of muscle and viscera proteins 

Muscle and viscera fractions were prepared separately. The muscle/ viscera (500 g) in 1000 

mL pure water were first minced with an Ultraturax® for about 5 min and then cooked at 

90°C for 20 min to inactivate the endogenous enzymes. This step was important to obtain 

a partially defatted raw material and ensure the exclusively action of the added enzymes 

and thus, the reproducibility of the process (225). After cold at room temperature and 

centrifugation at 6,000 x g for 20 min; the upper lipid phase was removed manually and 

discarded, and the suspensions were collected and filtered through a Whatman No. 4 filter 

paper. The final clear supernatants were extracts of muscle proteins and viscera proteins. 

For comparative effects, 50 mL of each muscle/ viscera protein extract was used for 

enzymatic treatment, at the same protein concentration, 20 mg of protein/mL, based on 

Bradford assay (171). The pH was adjusted to the pH optimum of each enzyme preparation: 

BSY proteases (pH 6), Alcalase® (pH 8) and Neutrase® (pH 7). Hydrolysis was performed 

using the E/S ratio of 0.20:1 U/mg (1 U/mL), at 50ºC for 7 h, under occasional stirring. No 
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pH control was chosen to avoid adding more salt to the hydrolysates (217). Control 

experiments were also performed without enzyme addition and were referred as 

MUSC.control and VISC.control. Hydrolyses were stopped at 80ºC for 15 min, 1 mL of each 

hydrolysate was taken for determination of the DH. After cooling to room temperature, the 

hydrolysates were centrifuged at 10,000 x g for 30 min to remove sludge and the oily fraction 

and to collect the digested material. The clear supernatants were used for colour 

measurements and further freeze-dried and stored at -20ºC for the other analysis. Triplicate 

analyses were always performed. Muscle SPH were referred as MUSC.Bsy; MUSC.Alc and 

MUSC.Ntr, according to the enzymatic preparation used (BSY protease extract, Alcalase® 

and Neutrase®), respectively, whereas viscera SPH were referred as VISC.Bsy; VISC.Alc 

and VISC.Ntr, respectively. 

 

10.2.5. Determination of DH and molecular weight profile of hydrolysates 

The degree of hydrolysis (DH), expressed as the percentage of peptides bonds hydrolysed, 

was determined by the TNBS method described by Hsu et al. (238). Peptides molecular 

weight distribution in muscle and viscera protein hydrolysates was analysed by SE-HPLC. 

The column used was a PSS Proteema Analytical 100 Å column (Amersham Biosciences, 

UK), equilibrated with 50 mM sodium phosphate buffer, 0.15 M NaCl, pH 6.6 at a flow rate 

of 0.3 mL/min and calibrated using a standard mixture of 8 molecular weight markers, which 

covered the range between 6.5 and 66 kDa. Aliquots of hydrolysates (0.1% w/v protein) 

were dissolved in the mobile phase and an injection volume of 20 µL was used. Detection 

was monitored at 214 nm and analyses were performed, at least, in triplicate.  

 

10.2.6. Proximate Composition 

The protein and fat composition of protein extracts (MUSC.control and VISC.control) and 

lyophilized SPH was determined according to AOAC official methods (144). The total 

nitrogen content was determined by Kjeldahl method and crude protein was estimated by 

using the 6.25 factor. Fat content was determined by Soxhlet extraction with n-hexane for 

12 h. All assays were performed in triplicate and the contents were expressed on a dry 

weight basis (% dw). 

 

10.2.7. Determination of antioxidant and ACE-I activities 

Antioxidant and ACE-I activities of muscle and viscera SPH were evaluated using the same 

protein concentration, 1.0 mg/mL. The DPPH radical-scavenging assay was performed as 

described by Herald et al. (155) with slight modifications. Trolox was used as standard at 

10-500 μM to generate a calibration curve. Results were expressed as micromole Trolox 

equivalents per mL of hydrolysate (µM TE/mL). FRAP was performed according to the 
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procedure of Jansen and Ruskovska (154). Trolox was also used as standard and results 

were expressed as micromole Trolox equivalents per mL of hydrolysate (µM TE/mL). The 

ACE-I activity was measured using the fluorimetric assay of Sentandreu and Toldrá (121) 

with the modifications reported by Quiros et al. (122). IC50 was measured as the 

concentration required to decrease the ACE activity by 50% (122). 

 

10.2.8. Determination of techno-functional properties  

The solubility of muscle and viscera SPH was evaluated over a wide range of pH value 

(from pH 4 to 10) according to the procedure described by Tsumura et al. (290). The 

emulsifying activity index (EAI) and the emulsion stability index (ESI) of the muscle and 

viscera SPH were determined according to the method of Pearce and Kinsella (1978) (291), 

with the modification of Khaled et al. (222). Soybean oil was used for emulsification and the 

absorbance of the diluted solutions was measured at 500 nm. The absorbance of the diluted 

samples measured immediately (A0) and 10 min after emulsion formation (A10) were used 

to calculate the EAI and ESI, respectively, according to Pearce and Kinsella (291) and as 

reported by Jemil et al. (223). The foam expansion (FE) and foam stability (FS) of the 

muscle and viscera SPH were determined according to the method of Shahidi et al. (292), 

with the modification of Khaled et al. (222). Water binding capacity (WBC) of the muscle 

and viscera SPH was measured according to MacConnel et al. (293), as described by Jemil 

et al. (223). Oil binding capacity (OBC) of the muscle and viscera SPH was measured 

according to Lin et al. (294), as described by Jemil et al. (223).  

 

10.2.9. Colour measurement 

The colour parameters L*, a* and b* of muscle and viscera SPH were determined with a 

tristimulus colorimeter (CR-400Chroma Meter, Konica Minolta, Japan), where L* defines 

the lightness (0<L*<100) variation and parameters a* define the red (+) to green (-) and b* 

the blue (-) to yellow (+) chromaticity. The equipment was set up for illuminant D65 with 10º 

observer angle and calibrated using a standard white plate. Sample was filled in a 64 mm 

glass sample cup with three readings in the same place and triplicate determinations were 

taken per sample. 

 

10.2.10. Statistical analysis 

Data were presented as mean ± standard deviation values from three independent 

experiments. Statistical comparisons were performed by one-way analysis of variance 

(ANOVA) followed by the Duncan’s multiple comparison test. Difference was considered 

significant at p <0.05. All statistical calculations were performed using SPSS 22.0 (SPSS 

software, Chicago, U.S.A.).  
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10.3. RESULTS AND DISCUSSION 
 

10.3.1. DH and molecular weight distribution profile of SPH 

Alcalase® was the most efficient enzyme to hydrolyse muscle and viscera proteins. 

The DH of MUSC.Alc and VISC.Alc were 7.5% and 8.6, respectively; whereas MUSC.Ntr 

and VISC.Ntr presented DH of 6.5% and 7.8%, respectively. Lower DH was obtained when 

hydrolyses were performed by BSY proteases, since DH were 5.0% and 5.8% for muscle 

and viscera SPH, respectively. Concerning the Alcalase® treatments, the DH values 

obtained in this work were in the same range of reported in the literature (15), (16), (20), 

(213). Similarly to that observed by Quaglia et al. (289), Alcalase® exhibited higher 

hydrolytic activities than Neutrase® although, the DH values reported in this study were 

different because different procedures were used to prepare the protein substrates form 

sardine by-products, and different hydrolysis conditions were applied.  

Muscle and viscera proteins presented relatively large molecular mass proteins, 

ranging from 29 and 97 kDa (results not shown), which was in agreement with Klomklao et 

al. (199) and Chaijan et al. (196), that describe myosin (~96 kDa), myoglobin (~47 kDa) and 

actin  (~45 kDa) as the major proteins found in these extracts. As depicted in Figure 10.1, 

different molecular weight distribution profiles were obtained depending on the protein 

substrate and enzyme used. Alcalase® treatment produced MUSC.Alc and VISC.Alc SPH 

with higher content of peptides with molecular weight below 14 kDa. Souissi et al. (20) also 

reported the presence of peptides with a molecular mass below 14.2 kDa in SPH prepared 

by Alcalase®. Neutrase® produced muscle and viscera SPH containing higher amount of 

protein fragments with molecular weight between 24 and 36 kDa.  

 

10.3.2. Protein and lipid content of SPH 

All hydrolysates presented high protein content, although muscle SPH contained 

higher protein content (MUSC.Bsy - 69.5%; MUSC.Alc -83.2% and MUSC.Ntr - 79.8%) than 

viscera SPH (VISC.Bsy - 58.2%; VISC.Alc - 63.4% and VISC.Ntr - 52.7%). All hydrolysates 

presented low lipid content (ranging between 0.9-3.9%). A reduced lipid content was also 

reported for other SPH (20), (211), (222), (223). In general, the high protein content and low 

fat content of all SPH may provide an incentive for use in commercial preparations.  
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Figure 10.1. SE-HPLC profiles of muscle (MUSC) and viscera (VISC) SPH produced by 

Brewer´s spent yeast proteases (Bsy), Alcalase® (Alc) and Neutrase® (Ntr) action. 

Hydrolyses were performed at 50ºC for 7 h, using an E/S ratio of 0.20:1 U/mg (1 U/mL). 

SPH were analyzed at same protein concentration (0.1% w/v protein), using 20 µL of this 

solution to the column. Absorbance (214 nm) is expressed in arbitrary units (AU). Molecular 

weight markers: Albumin (66 kDa), Ovalbumin (45 kDa), Glyceraldehyde-3-phosphate 

dehydrogenase (36 kDa), Carbonic anhydrase (29 kDa), Trypsinogen (24 kDa), Trypsin 

inhibitor (20 kDa), α-Lactalbumin (14.2 kDa) and Aprotinin (6.5 kDa). 
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10.3.3. Determination of antioxidant and ACE-I activities 

According to Table 10.1, among the muscle SPH, MUSC.Alc exhibited the highest (p 

<0.05) DPPH value (870 µM TE/mL), followed by MUSC.Ntr (780 µM TE/mL) and 

MUSC.Bsy (360 µM TE/mL). Among the viscera SPH, VISC.Alc also exhibited the highest 

(p <0.05) DPPH value (840 µM TE/mL), but VISC.BSY (780 µM TE/mL) presented highest 

antioxidant activity than VISC.Ntr (660 µM TE/mL). 

Regarding to FRAP results, Alcalase® and Neutrase® were more efficient to 

hydrolyse the muscle sardine proteins, whereas Alcalase® was more efficient to hydrolyse 

the viscera sardine proteins (p <0.05), leading to the different products with varying 

antioxidant activity (Table 10.1). The results obtained suggest that all SPH contained some 

peptides that were electron donors and could react with free radicals to convert them to 

more stable products (213), (295). Similar to suggested by Medina et al. (213), the 

differences in antioxidant activities between SPH from sardine by-products might be 

associated with the differences in size of proteins or peptides, previously discussed based 

on Figure 10.1, as well, with the high hydrophobic amino acid composition.  

The ACE-I activity of muscle and viscera SPH was also analysed; the amount of 

hydrolysate required to inhibit 50% of the ACE activity (IC50) is shown in Table 10.1. 

Compared to respective unhydrolysed proteins (MUSC.control and VISC. control), all the 

SPH presented enhanced ACE-I activity, although it was markedly different depending on 

the enzyme used. Muscle SPH prepared by Alcalase® exhibited the highest (p <0.05) ACE-

I activity, IC50 of 619 µg/mL, followed by the Neutrase® hydrolysates (735 µg/mL) and the 

BSY proteases hydrolysate (984 µg/mL). VISC.Ntr presented the highest (p <0.05) ACE-I 

activity, 550 µg/mL, among the viscera SPH. Although values of IC50 for ACE-I activity of 

muscle and viscera SPH had been previously reported by other authors, comparisons with 

IC50 values in the present study were not fully possible due to the different methodology 

employed for measuring this biological activity. However, Bougatef et al. (15) reported IC50 

values in the concentration range of 1200-7400 µg/mL for SPH prepared with different 

proteases, whereas the IC50 found for Alcalase® treatment was 2300 µg/mL. More recently, 

Moreno et al. (288) reported IC50 values in the range of 439-442 µg/mL for SPH prepared 

with combined enzymatic treatments of Subtilisin® and Trypsin®. 
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Table 10.1. Antioxidant and ACE-I activities of muscle (MUSC) and visceral (VISC) SPH 

produced by Brewer´s spent yeast proteases (Bsy), Alcalase® (Alc) and Neutrase® (Ntr) 

action 

 

Sample 
DPPH 
(µM TE/mL) 

FRAP 
(µM TE/mL) 

IC50 
#

 

(µg protein/mL) 

Muscle sardine by-product 

MUSC.control 220 ± 10 e   70 ±  8 de 1134 ± 17.06 a 

MUSC.Bsy 360 ± 40 d   80 ± 11 d   984 ±  9.85 b 

MUSC.Alc 870 ± 32 a 160 ± 13 a   619 ±  1.35 f 

MUSC.Ntr 780 ± 30 b 162 ± 21 a   735 ±  2.74 f 

Viscera sardine by-product 

VISC.control 160 ± 20 f   60 ± 14 e   987 ± 12.64 b 

VISC.Bsy 780 ± 21 b 140 ± 23 b   828 ±  22.86 c 

VISC.Alc 840 ± 12 a 190 ± 11 a   651 ±   6.86 e 

VISC.Ntr 660 ± 23 c 110 ± 14 c   550 ±  10.68 d  

Results are expressed as mean ± standard deviation from three replicate 

experiments analyzed in triplicate; a hydrolysate solution of 1.0 mg/mL was used. 

For each assay, values within column bearing different letters are statistically 

different (p <0.05), Duncan Post Hoc test.  

# IC50: concentration (µg protein/mL) of SPH required to inhibit 50% of ACE activity. 

TE: Trolox equivalents. 

 

 

10.3.4. Techno-functional properties of SPH 

10.3.4.1. Solubility 

The solubility of muscle and viscera SPH, at pH ranging from 4 to 10 is shown in 

Figure 10.2. The minimum solubility of 10.1% and 8.7% of the MUSC.control and 

VISC.control, respectively, was detected at pH 5.0, i.e. the isoelectric point of sardine 

protein (result not shown). Muscle and viscera protein solubility was significantly (p <0.05) 

increased after enzymatic treatment. Indeed, for all SPH, the protein solubility was minimum 

at pH 5.0 (52.7-68.0) and increased gradually below and above pH 5, reaching 

approximately 77.7-95.3% at pH 10. MUSC.Alc and VISC.Alc hydrolysates, showing the 

highest DH (7.5% and 8.6%, respectively), as previously reported, presented higher 

solubility in a pH values ranging from 4 to 10 than the other SPH (p <0.05). The difference 

in solubility observed among SPH can be due to peptide length and the ratio of hydrophilic/ 
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hydrophobic peptides (20). In general, the high solubility of SPH indicates potential 

applications in formulated food systems (20), (218). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.2. Solubility profiles of muscle (MUSC) and visceral (VISC) SPH as a function of 

pH (4-10 range) obtained by treatment with Brewer´s spent yeast proteases (Bsy), 

Alcalase® (Alc) and Neutrase® (Ntr) action. Results are expressed as means ± standard 

deviation from triplicate determinations; a solution of 10 mg/mL was used. 

 

 

10.3.4.2. Emulsifying properties 

The EAI and ESI of MUSC.control and VISC.control and respective SPH at the 

concentrations of 0.1% (m/v) are shown in Table 10.2. This concentration was chosen 

because is referred to the minimum concentration needed to obtain reproducible results for 

the emulsifying properties (291). All SPH present enhanced emulsion properties compared 

to the respective undigested sardine proteins, MUSC.control (EAI=13.5 m2/g) and 

VISC.control (EAI=15.2 m2/g). However, a different trend was observed when the hydrolysis 
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was promoted for both protein sources, which indicate that emulsifying properties is 

influenced by the enzyme used and the protein substrate, which affects the nature of 

peptides produced during hydrolysis. Concerning to muscle SPH, MUSC.Alc and MUSC.Ntr 

presented significantly (p <0.05) higher EAI (81.6 m2/g and 78.8 m2/g, respectively) than 

MUSC.Bsy (54.5 m2/g), suggesting that commercial enzymes are more efficient in the 

reducing of the hydrophobicity and changes in peptide size during hydrolysis to promote 

higher oil-in-water emulsions of both substrates. It is reported that peptides should have a 

minimum of 20 residues to exhibit good emulsifying and interfacial properties (218). Thus, 

the higher emulsifying properties observed for MUSC.Alc and MUSC.Ntr are in agreement 

with the higher levels of peptides with MW below 14 kDa (Figure 10.1), as previously 

discussed. Regarding, viscera SPH, results suggest the emulsifying capacity decreased 

with the increase in DH. VISC.Alc with the highest DH (8.6%) presented the lowest EAI 

(78.8 m2/g), whereas VISC.Bsy with a DH of 5.8%, presented the highest EAI, 80.1 m2/g. 

Quaglia and Orban (202) reported a 1.5- to 2-fold reduction in the emulsifying capacity of 

the Alcalase® SPH by increasing DH from 5% to 20%. The turbidimetric method was also 

used to evaluate the emulsion stability, expressed as ESI, results are present in Table 10.2. 

The most stable emulsion of muscle and viscera SPH was obtained after hydrolysis with 

Alcalase®, with a stability of 66.8% and 38.5%, respectively.  

 

10.3.4.3. Foaming properties 

The FE and FS of muscle and viscera SPH at the concentration of 0.1% (m/v) are 

shown in Table 10.2. Results showed that all muscle and viscera SPH presented an 

improved foaming activity when compared to respective unhydrolysed proteins (MUSC. 

control and VISC.control). The foaming capacity of MUSC.bsy; MUSC.Alc and MUSC.Ntr 

were 57.9%, 87.4% and 77.1%, respectively, whereas it was only 25.8% for MUSC.control. 

The foaming capacity of VISC.Bsy; VISC.Alc and VISC.Ntr were 79.2%, 77.5% and 59.7%, 

respectively, significantly (p <0.05) higher than VISC.control, 27.5%. Native muscle and 

viscera sardine proteins have limited foaming due to its quaternary and tertiary structure, 

whereas resulting hydrolysates may lost the tertiary structure, leading to improved foam 

activity. Lower foaming properties of MUSC.Bsy and VISC.Ntr can be explained by the small 

size of peptides and also by the apparition of hydrophilic peptides during hydrolysis. This is 

in line with previous findings reporting decreasing foaming properties with reduced peptide 

size (20), (218). Further experiment on foam expansion after whipping was monitored for 

30 min to study the foam stability of muscle and viscera SPH. As shown in Table 10.2, the 

FS was markedly decreased for all SPH. At a concentration of 0.1%, the foaming 

capabilities after 30 min of MUSC.bsy; MUSC.Alc and MUSC.Ntr were 39.7%, 66.8% and 

59.7%, respectively. The foam properties of VISC.Bsy; VISC.Alc and VISC.Ntr were 41.5%, 
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38.5% and 34.5%, respectively. The trend of increased foaming activity coupled with 

decreased foaming stability has been reported in previous studies for other kind of SPH 

(20), (222), (223).  

 

10.3.4.4. Water Binding Capacity (WBC) 

The WBC of muscle and viscera SPH is shown in Table 10.2. The WBC of all SPH 

was significantly (p <0.05) higher compared to the unhydrolyzed substrates. For muscle 

SPH, the WBC decreased from an initial value of 1.4 g/g (MUSC.control) for 4.3, 6.9 and 

5.6 g/g after hydrolysis with BSY proteases, Alcalase® and Neutrase®, respectively. For 

viscera SPH, VISC.Alc showed a significantly (p <0.05) higher WBC, 7.3 g/g, compared 

with the other two enzymatic treatments. From these results, the higher DH, observed for 

treatment with Alcalase®, appear to affect greater WBC. Other authors also showed 

increased WBC of SPH as peptide molecular weights decreased (223), (218). In general, 

the high WBC of muscle and viscera SPH prepared by action of BSY protease and 

commercial enzymes, Alcalase® and Neutrase®, suggest that all SPH could be used as 

techno-functional ingredients in food formulations to modify texture and viscosity, to reduce 

dehydration during storage, and to reduce energetic value. 

 

10.3.4.5. Oil Binding Capacity (OBC) 

As shown in Table 10.2, muscle and viscera SPH exhibited OBC, greater than 

undigested muscle and viscera proteins (MUSC.control and VISC.control). The higher OBC 

values for SPH might be attributed to the exposure of hydrophobic groups after enzymatic 

hydrolysis, allowing the physical entrapment of oil (296). MUSC.Bsy and VISC.Bsy 

presented the highest (p <0.05) OBC, 5.4 and 5.8 g/g, respectively; while muscle and 

viscera SPH prepared by the commercial enzymes Alcalase® and Neutrase®, showing the 

highest DH, presented the lowest OBC. Some authors reported that OBC of protein 

hydrolysates decreased with increasing DH (194) while others authors suggested no 

correlation between the OBC and DH of protein hydrolysates (20). The ability of peptides to 

bind fat influences food product taste, which is especially important in both meat and 

confectionery industries (218). 
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Table 10.2. Techno-functional properties and colour of muscle (MUSC) and visceral (VISC) SPH obtained by treatment with Brewer´s spent yeast 

proteases (Bsy), Alcalase® (Alc) and Neutrase® (Ntr) 

 

Parameter MUSC.control MUSC.Bsy MUSC.Alc MUSC.Ntr VISC.control VISC.Bsy VISC.Alc VISC.Ntr 

 

EAI (m2/g) # 13.5 ± 0.30 g 54.5 ± 0.89 e 81.6 ± 0.75 a 77.0 ± 1.51 c 15.2 ± 0.30 f 80.1 ± 1.56 ab 78.8 ± 1.51 bc 66.3 ± 0.89 d 

ES (min) #   0.7 ± 0.08 g 27.3 ± 1.34 e 68.4 ± 0.94 a 57.9 ± 1.16 b   1.5 ± 0.12 f 45.6 ± 4.25 d 50.4 ± 1.15 c 44.4 ± 0.30 d 

 

FE (%) # 25.8 ± 0.35 f 57.9 ± 1.76 e 87.4 ± 0.60 a 77.1 ± 2.04 c 27.5 ± 0.35 f 79.2 ± 0.60 ab 77.5 ± 0.92 bc 59.7 ± 1.76 d 

FS (%) #   4.5 ± 1.15 f 39.7 ± 0.88 e 66.8 ± 0.75 a 59.7 ± 1.36 b   5.8 ± 0.15 f 41.5 ± 0.89 d 38.5 ± 0.89 c 34.5 ± 4.30 d 

   

WBC (g/g)   1.4 ± 0.07 h   4.3 ± 0.27 f   6.9 ± 0.12 b   5.6 ± 0.04 d   1.9 ± 0.15 g   4.8 ± 0.33 e   7.3 ± 0.08 a   6.1 ± 0.08 c 

OBC (g/g)   0.8 ± 0.02 e   5.4 ± 0.19 b   4.8 ± 0.19 c   4.6 ± 0.05 c   1.4 ± 0.03 d   5.8 ± 0.23 a   5.5 ± 0.19 b   5.4 ± 0.20 b 

 

L* 53.4 ± 0.02 b 49.5 ± 0.01 f 49.9 ± 0.10 ef 50.1 ± 0.01 de 55.1 ± 0.59 a 51.2 ± 0.08 c 50.1 ± 0.03 de 50.3 ± 0.05 d 

a* 0.31 ± 0.01 b 0.32 ± 0.01 b 0.16 ± 0.02 d 0.37 ± 0.02 a 0.07 ± 0.00 e 0.09 ± 0.03 e 0.08 ± 0.02 e 0.26 ± 0.02 c 

b* 3.23 ± 0.02 g 3.45 ± 0.02 f 4.31 ± 0.02 d 5.52 ± 0.01 b 3.46 ± 0.01 f 4.24 ± 0.01 e 5.35 ± 0.02 c 7.37 ± 0.01 a 

 

Values are given as mean ± standard deviation from three replicate experiments analyzed in triplicate. For each parameter, values with different letters 

in the same line are statistically different (p <0.05), Duncan Post Hoc test. Emulsifying activity index (EAI; m2/g); Emulsifying stability (ES; min); 

Foaming Expansion (FE; %); Foaming Stability (FS, %), Water Binding Capacity (WBC; g/g); Oil binding capacity (OBC; g/g); MUSC.control, 

undigested muscle protein from sardine by-product; VISC.control, undigested viscera protein from sardine by-product. Muscle (MUSC) and visceral 

(VISC) SPH were obtained by treatment with brewer´s spent yeast extract proteases (Bsy), Alcalase® (Alc) and Neutrase® (Ntr) at 50ºC for 7 h, using 

an E/S ratio of 0.20:1 U/mg (1 U/mL). # a solution at 0.1% (m/v) was used.  
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10.3.5. Colour of SPH  

As presented in Table 10.2, all hydrolysis resulted in increased enzymatic browning 

reactions which are assumed to have contributed to the reduction in the luminosity, giving 

a darker colour in muscle and viscera SPH. These results indicate that colour of SPH is 

influenced by the enzyme used, as well, the protein substrate. Among muscle SPH, 

MUSC.Bsy was the darkest (L* = 49.5) and least yellowish (b* = 3.45), whereas among the 

viscera SPH, VISC.Bsy was the lighter (L* = 51.2) and least yellowish (b* = 4.240). 

Neutrase® with a dark colour contributed to the brownish colour of the resulting SPH: 

MUSC.Ntr (b* = 5.52) and VISC.Ntr (b* = 7.37). 

 

 

10.4. CONCLUSIONS 
 

The results of this study indicate that muscle and viscera SPH obtained by different 

proteases exhibited biological and techno-functional properties that make them useful 

ingredients for food industry. Under similar hydrolysis conditions, Alcalase® was the most 

appropriate protease to produce muscle and viscera SPH, presenting higher antioxidant 

and ACE-I activities. By contrast, lower biological activity was found using BSY proteases. 

Further work should be done to concentrate and identify the bioactive peptides from muscle 

and viscera SPH and determine their biological activities in vivo. On the other hand, viscera 

SPH obtained using BSY proteases presented higher emulsion, foaming and oil binding 

properties, as well as, lighter colour, indicating that the use of two industry by-products, 

BSY and viscera protein from sardine by-products, can be applied to obtain an ingredient 

with specific techno-functional characteristics. However, the sensory evaluation of these 

SPH is obligatory for the consumer acceptance and to find compatible food matrices to add 

this functional ingredient. 
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This chapter presents a literature overview of the BSG nutritional 

characteristics and applications, it also describes the typical enzymatic 

process adopted for the manufacturing of BSG protein hydrolysates and 

the main biological activities reported 
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11.1. Brewer`s spent grain by-product: characteristics and potential applications 

 

Barley malt is one of the main ingredients in the manufacturing of beer. The grain is 

rich in starch and proteins and consists of three main parts: the embryo, the endosperm 

(comprising the aleurone and starch) and the grain coverings (comprising the seed coat 

layers, pericarp and husk), as presented in Figure 11.1.A. During brewing, the nutrients 

from the malt necessary to produce the wort are solubilized, remaining the water insoluble 

proteins and the cell wall residues of the husk, pericarp and seed coat, which are referred 

as brewer´s spent grain (BSG). Thus, BSG is defined as the “husk-pericarp-seed coat layers 

that covered the original barley grain”, essentially composed by cellulose and non-cellulosic 

polysaccharides, lignin, proteins and some lipids (Figure 11.1.B). BSG also contains much 

of the phenolic components of the barley grain, including ferulic acid, p-coumaric acid, 

sinapic acid and caffeic acid (297), (298), (299). 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.1. Schematic structure of a barley grain (A) and the BSG (B). 

 

 

Chemical composition of BSG is widely described in literature (2), (4), (297), (300-

302). It is influenced by several parameters, namely the barley variety, the harvest time, the 

malting and mashing conditions, as well as, the quality and type of adjuncts added in the 

brewing process (297). BSG is mainly composed by ~15 to 26% of proteins (rich in 

glutamine and with high biological value) and ~70% of fibers (~15-25% of cellulose; ~28-

35% of hemicelluloses, mostly arabinoxylans, and ~28% of lignin). Lipids (3.9-10%), ash 

(2.5-4.5%), vitamins, minerals (mainly calcium, phosphorus and selenium), amino acids and 

(A) (B) 
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phenolic compounds (mainly hydroxycinnamic acids as ferulic and p-coumaric) are present 

in lower quantities (22), (303), (304). 

 

The use of BSG is still limited, being almost used as land fill or for animal feed 

(providing all the essential amino acids and fiber). However, given its production in large 

quantities throughout the year at relative low cost, and its nutritional and functional 

characteristics, BSG is a by-product of great interest for the sectors of biotechnology, food 

and pharmaceutical industries (4), (6), (302). Indeed, several efforts have been made in 

using BSG for microorganism’s cultivation and extraction of added-value compounds, 

namely sugars, proteins, amino acids and antioxidants. BSG was also found to be 

applicable in enzymes production, as adsorbent for removing organic materials from 

effluents and immobilization of various substances (2), (305). Moreover, BSG protein 

isolates and hydrolysates can be used as food texture enhancers due to their emulsifying 

properties (7), (8) and may present antimicrobial (306), antioxidant (307), (308), anti-

inflammatory (307) and ACE-I activities (253), (309). BSG is also considered a major 

biomass resource for the production of second generation biofuels, it can be used for 

ethanol production using a bioconversion process (305). Table 11.1 summarizes the 

proximate composition of BSG and its potential applications. 
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Table 11.1. Proximate composition (% dw) and potential applications of BSG 

 

Compound % dwa Potential application Function Reference 

Proteins 
- hordeins A,B,C 
- albumins 
- glutenins 
 

~15-26 
(~50) 
(~2) 
 

- Animal feed 
 

- addition of RUPc to lactating cows diet to 
increase milk yield 

(305), (310) 

- Human nutrition (dietary fibre-
rich and protein-rich flours) 
 

- promotion of nutritional value of bakery 
products 
- cholesterol decrease 
- intestinal digestion benefit 

(301), 310), 
(311) 
 

- Substrate for microorganisms` 
growth 

- growth and sporulation  
enhancement 

(312) 

- Production of BSG protein 
concentrates/isolates 
 

- phenolic source 
- antioxidant activity 
- ACE-I activity 
- techno-functional properties 

(308), (309) 
(7), (8) 
(4), (299) 

- Production of BSG protein 
hydrolysates with functional  
and bioactive properties 
 

- antioxidant activity  
- anti-inflammatory activity 
- immunomodulatory activity 
- ACE-I activity 

(307), (313) 
(306), (253) 

Fiber 
- cellulose 
- hemicellulose 
- lignin 

~70 
(~15-25) 
(~28-35)b 
(~28) 

- Extraction of arabinoxilans  - immunomodulatory activity 
- prebiotic activities 

(314), (315) 
(316) 

a Chemical composition (% dw) as reported by (4) and (308). 
b Mostly represented by arabinoxilans. 
c Rumen undegradable protein. 
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Table 11.1. Proximate composition (% dw) and potential applications of BSG (continued) 

 

Compound % dwa Potential application Function Reference 

Polysaccarides 
- β glucan 
- starch 
 

12 - Production of β glucan extracts 
 
 

- cholesterol decrease 
- insulin response 

(317), (318) 
 

Phenolics 
- ferulic acid 
- p-coumaric acid 
- caffeic acid 
- sinapic acid 
 

~1.7% 

 
- Production o phenolic extracts - antioxidant activity 

- anti-carcinogenic activity 
- anti-atherogenic activity 
- anti-inflammatory activity 

(298), (303) 
(299), (302) 
(319), (320) 
(321) 

Lipids 3.9-10 - Oil extraction  (22) 

Minerals 2.5-4.5 - Calcium, phosphorus, selenium 
supplements 
 

 (22) 

Other applications 

- Production of charcoal; production of lactic acid; production of xylitol and pullulan; substrate for enzyme production 
- Additive or carrier in brewing; production of energy and biogas; production of constructing bricks; paper 
manufacture; adsorbent 

(297), (305) 
(100) 

a Chemical composition (% dw) as reported by (4) and (308). 
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11.2. Preparation of BSG protein hydrolysates 

 

The applications of BSG insoluble proteins can be increased by applying chemical 

and enzymatic hydrolysis (7). The first step is the extraction of proteins from BSG (307). 

BSG protein isolates are then submitted to hydrolysis to obtain the BSG protein 

hydrolysates. These hydrolysates have been characterized as a mixtures of polypeptides, 

oligopeptides and amino acids, some of them claimed to possess bioactive activities (100).  

 

11.2.1. Extraction of BSG proteins 

 

Recovery of BSG proteins requires the use of pretreatment or vigorous disruption 

procedures. The extraction conditions usually include: mechanical shearing to reduce 

particle size, addition of reducing agents to disrupt disulphide bonds, determination of the 

optimal sodium hydroxide concentrations, weight/volume ratios and extraction temperature 

(308). Table 11.2 summarizes examples of treatments applied to extract the BSG proteins, 

to produce the hydrolysates and its biological activities when it was evaluated. 

 

An integrated process to valuate BSG proteins and arabinoxylans as food ingredients 

(4) was developed by our group. The intellectual property of this integrated process was 

assured (322). For this purpose, a sequential extraction of proteins and arabionoxilans from 

BSG with increasing alkali (KOH or NaOH) concentrations, 0.1 M, 0.5 M, and 4 M was 

optimized. This integrated extraction process allowed a yield of 82-85% of the BSG total 

proteins and 66-73% of total arabinoxylans, with formation of a cellulose rich residue 

presenting very low nitrogen content. 

 

11.2.2. Hydrolysis of BSG proteins 

 

Hydrolysis of BSG proteins has been used to generate compounds and peptides with 

potential biological activities. Enzymes are specific in their action, thus enzymatic hydrolysis 

is advantageous when compared with chemical hydrolysis. Identification of the proteolytic 

enzyme/(s) with appropriate specificity to release the bioactive compounds is an important 

step (309). Enzymatic hydrolysis presents two important benefits, since it does not destroy 

the amino acids, limiting the effects on nutritional properties, and allows controlled 

processing, determining which peptides are produced. Consequently, peptide 

characteristics, namely molecular weight, charge and exposure of hydrophobic groups and 

reactive amino acid side chains influence the functionalities of BSG protein hydrolysates, 

such as, solubility, viscosity, sensory properties and emulsifying and foaming behavior, as 
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well, the biological activities (7). As summarized in Table 11.2., BSG has been hydrolyzed 

by proteases from different sources: animal (Corolase PP, Trypsin, Pepsin); vegetal 

(Corolase L10, Promod 144MG); and microbial (Alcalase 2.4L, Flavourzyme 500 L, 

Protex6L, Protamex, Promod 24P, Promod 439, Prolyve 1000).  

 

 

11.3. Biological properties of BSG protein hydrolysate 

 

Due their biological activities, BSG protein isolates and BSG protein hydrolysates 

have numerous applications in human nutrition, including protein supplementation of 

geriatric and sports nutrition products, energy drinks and weight-loss diets for clinical 

applications (as treatment of Crohn's disease, liver disease and ulcerative colitis) (307). The 

composition of BSG isolates and hydrolysates in bioactive peptides, amino acids, vitamins 

and phenolic compounds may explain the bioactivities observed.  

 

Ferulic acid and p-coumaric acid are present at relatively high concentrations in BSG; 

1860-1948 mg/g dw and 565-794 mg/g dw, respectively (323). These compounds are 

mainly present in the bound form, requiring strong alkali or hydrolytic enzymes for their 

solubilisation (304) and show antioxidant, anti-inflammatory, anti-atherogenic and anti-

cancer bioactivities (302). On the other hand, given the prevalence of proline and alanine 

residues within the amino acid sequences of BSG proteins, it is likely that peptides with high 

ACE and DPP-IV inhibitory activities could be released during BSG protein hydrolysis (309). 

The most relevant properties recognized in BSG protein isolates and hydrolysates are: 

antioxidant, anti-inflammatory, ACE-I, α-glucosidase inhibitory and DPP-IV inhibitory 

activities. Table 11.2 also summarizes the main biological activities assessed in BSG 

protein isolates and BSG protein hydrolysates. 
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Table 11.2. Treatments applied to extract the BSG proteins, to produce the BSG protein hydrolysates and its biological activities when it was evaluated 

 

 
  BSG protein extraction BSG protein hydrolysis 

Alkaline extraction 
Protein  
(% dw) 

Enzyme Hydrolysis 
DH 
(%) 

Assay Bioactivity assessed Reference 

BSG protein isolates 

Two sequential extractions using 
0.1 M NaOH for 1 h at 25ºC, 
followed by acid precipitation at pH 
3.8 

59% np np np 
- TPC 
- FRAP 
- DPPH 

- 0.0003-0.0046 mg GAE/mg dw 
- 0.16-4.33 mg TE/g dw 
- nd - 5.34% 

(308) 

Three sequential extractions using 
0.1 M, 0.5 M and 4 M KOH for 24 h 
at 25ºC, followed by acid 
precipitation at pH 3.0 

82-85% np np np np np (4) 

Extraction with 0.1 M NaOH for 1 h 
at 60ºC, followed by acid 
precipitation at pH 4.0 

60% Alcalase 
E/S ratio (2.5% v/w), 
60ºC, pH 9, 2 h 

13a np np (7) 

Extraction with 0.1 M NaOH for 1 h 
at 60ºC, followed by acid 
precipitation at pH 4.0 

60% Flavourzyme 
E/S ratio (5.0% v/w), 
40ºC, pH 9, 3 h 

6b np np (7) 

Extraction with 0.1 M NaOH for 1 h 
at 60ºC, followed by acid 
precipitation at pH 4.0 

60% 
Pepsin 
 

E/S ratio (5.0% v/w), 
60ºC, pH 3, 3 h 

8b np np (7) 

a Degree of hydrolysis (DH %) calculated by the pH-stat method. 
b Degree of hydrolysis (DH %) calculated by the o-phthaldialdehyde method. 
TPC, Total phenolic content; FRAP, Ferric ion reducing antioxidant power; DPPH, 2,2-diphenyl-1- picrylhydrazyl. 
np, not performed. 
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Table 11.2. Treatments applied to extract the BSG proteins, to produce the BSG protein hydrolysates and its biological activities when it was 

evaluated (continued) 

 

  

BSG protein extraction BSG protein hydrolysis    

Alkaline extraction 
Protein  
(% dw) 

Enzyme Hydrolysis 
DH 
(%) 

Assay Bioactivity assessed Reference 

BSG protein hydrolysates 

Two sequential extractions using 0.1 
M NaOH for 1 h at 50°C, followed by 
acid precipitation at pH 3.8 

49% Alcalase 
E/S ratio (2.5% v/w), 
50ºC, pH 7, 4 h 

np 

- TPC 
- SOD (U937 cell line) 
- IL-2  (U937 cell line) 
- IL-4  (U937 cell line) 
- IL-10  (U937 cell line) 
- IFN-γ  (U937 cell line) 

- 0.055 mg GAE/mg dw 
- 87.20% 
- 81.74% 
- 94.80% 
- 88.41% 
- 78.86% 

(307) 

Two sequential extractions using 0.1 
M NaOH for 1 h at 50°C, followed by 
acid precipitation at pH 3.8 

49% 
Flavourzyme 
 

E/S ratio (2.5% v/w), 
50ºC, pH 7, 4 h 
 
 
 
 

np 

- TPC 
- SOD (U937 cell line) 
- IL-2  (U937 cell line) 
- IL-4  (U937 cell line) 
- IL-10  (U937 cell line) 
- IFN-γ  (U937 cell line) 

- 0.046 mg GAE/mg dw 
- 76.71% 
- 93.73% 
- 99.86% 
- 97.42% 
- 81.89% 

(307) 

Two sequential extractions using 0.1 
M NaOH for 1 h at 50°C, followed by 
acid precipitation at pH 3.8 

49% Corolase PP 

E/S ratio (2.5% v/w), 
50ºC, pH 7, 4 h 
 
 

np 

- TPC 
- SOD (U937 cell line) 
- IL-2  (U937 cell line) 
- IL-4  (U937 cell line) 
- IL-10  (U937 cell line) 
- IFN-γ  (U937 cell line) 

- 0.034 mg GAE/mg dw 
- 66.25% 
- 89.74% 
- 89.54% 
- 92.40% 
- 73.22% 

(307) 

Two sequential extractions using 0.1 
M NaOH for 1 h at 25ºC, followed by 
acid precipitation at pH 3.8 

50% Trypsin 250 
E/S ratio (1.0% w/w), 
50ºC, pH 7, 4 h 

4.7c - α-glucosidase - 66.81% (7.5 mg/mL) (309) 

TPC, Total phenolic content; SOD, Superoxide dismutase activity assay; IL-2, Interleukin-2; IL-4, Interleukin-4; IL-10, Interleukin-10; IFN-γ, Interferon-γ. 
np, not performed. 
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Table 11.2. Treatments applied to extract the BSG proteins, to produce the BSG protein hydrolysates and its biological activities when it was 

evaluated (continued) 

 

  

BSG protein extraction BSG protein hydrolysis    

Alkaline extraction 
Protein  
(% dw) 

Enzyme Hydrolysis 
DH 
(%) 

Assay Bioactivity assessed Reference 

BSG protein hydrolysates 

Two sequential extractions using 
0.1 M NaOH for 1 h at 25ºC, 
followed by acid precipitation at pH 
3.8 

50% Corolase PP 
E/S ratio (1.0% w/w), 
50ºC, pH 7, 4 h 

13.0c - DPP-IV - 70.96% (3.5 mg/mL) (309) 

Two sequential extractions using 
0.1 M NaOH for 1 h at 25ºC, 
followed by acid precipitation at pH 
3.8 

50% Prolyve 1000 
E/S ratio (1.0% w/w), 
50ºC, pH 7, 4 h 

13.8c - ACE-I activity - 89.25% (1.0 mg/mL) (309) 

Two sequential extractions using 
0.1 M NaOH for 1 h at 25ºC, 
followed by acid precipitation at pH 
3.8 

44% Alcalase 
E/S ratio (1.0% w/w), 
50ºC, pH 7, 4 h 

12.1c 
- ACE-I activity  
(IC50) 

- 0.32 mg/mL (253) 

Two sequential extractions using 
0.1 M NaOH for 1 h at 25ºC, 
followed by acid precipitation at pH 
3.8 

44% Corolase PP 
E/S ratio (1.0% w/w), 
50ºC, pH 7, 4 h 

16.4c 
- ACE-I activity 
(IC50) 

- 0.69 mg/mL (253) 

Two sequential extractions using 
0.1 M NaOH for 1 h at 25ºC, 
followed by acid precipitation at pH 
3.8 

44% Flavourzyme 
E/S ratio (1.0% w/w), 
50ºC, pH 7, 4 h 

15.1c 
- ACE-I activity 
(IC50) 

- 0.50 mg/mL (253) 

c Degree of hydrolysis (DH %) calculated by the TNBS method. 
IC50, Protein concentration inducing 50% inhibition values for ACE. 
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This chapter presents the hydrolysis optimization of BSG proteins 

by BSY proteases to produce BSG protein hydrolysates with enhanced 

antioxidant activity. 
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ABSTRACT 

 

Brewers’ spent grain (BSG) and Brewer´s spent yeast (BSY) are the main by-products of 

the brewing process, with currently limited valuable applications. However, BSG protein 

fraction can be a valuable substrate for enzymatic hydrolysis to produce hydrolysates with 

biological properties and BSY contains numerous vacuole proteases, which can be used to 

obtain these hydrolysates. Thus, the objective of this work was to explore the valorisation 

of these two brewing by-products, based on the production of BSG protein hydrolysates 

that present antioxidant properties. Response surface methodology (RSM) was employed 

to optimize the hydrolysis of BSG proteins using BSY proteases, based on degree of 

hydrolysis (DH %), total phenolic content (TPC) and antioxidant activity (FRAP assay). 

Reverse phase chromatography was also used to monitor the Hydrolysis Rate (HR %) and 

the potential presence of endogenous and other inhibitors of BSY proteases was also 

investigated.  

BSG protein hydrolysate prepared at 50ºC, pH 6.0, during 6 h and using an E/S ratio of 

0.29:1 U/mg presented maximum bioactivity with DH % of 17.1%, TPC of 1.65 mg GAE/mL 

and FRAP value of 1.88 mg TE/mL. A good correlation was obtained between HR (%) and 

DH (%) (R2 = 0.9281). The experimental values agreed with the predicted values (p <0.05), 

suggesting a good fit between the models and the experimental data. BSY proteases 

involved in the hydrolysis of BSG proteins were serine peptidases and metallopeptidases.  

 

 

12.1. INTRODUCTION 

 

BSG, the residual solid fraction of barley malt and other used grains remaining after 

filtration of wort, and BSY comprises around 85% and 15% of brewing by-products, 

respectively (3). Currently, their main application is limited to animal feed. However, due to 

the fact that both by-products are available at low or no cost through the year and both 

present high nutritional values, they are promising raw materials to be exploited for human 

nutrition and biotechnological processes (7), (297). Hence, the development of 

economically achievable technologies for valorisation of these two by- products should be 

promoted.  

BSG is a ligno-cellulosic material rich in proteins, approximately 15-26% (dw), as well, 

in phenolic compounds (namely, hydroxycinnamic acids, ferulic acid, p-coumaric acid, 

sinapic acid and caffeic acid), which exhibit antioxidant properties (299), (308), (319), (320). 

In order to increase the potential applications of the BSG insoluble proteins, chemical or 

enzymatic hydrolysis is commonly applied (308). The enzymes used determine the 
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composition of the peptides produced and, therefore, biological and technological 

functionalities of the final BSG protein hydrolysates (8), (307), (309). Different approaches 

have been conducted to reuse BSG proteins, using commercial enzymes, such as, 

Alcalase, Flavourzyme, Pepsin, Corolase, Trypsin and Protamex. BSG hydrolysates 

present a potential role as functional food ingredients in the management of type II diabetes, 

hypertension and immunomodulatory effects (307), (309). Also, BSG protein hydrolysates 

have been produced with good emulsifying and foaming properties (7), (8). 

While several attempts have been conducted to prepare BSG protein hydrolysates 

using expensive commercial enzymes, to our knowledge there are no published reports 

related to utilization of proteases from BSY. BSY is considered a GRAS raw material, 

containing several vacuole proteases (serine, aspartyl and metalloproteases), which act at 

pH 6 (10), (11). In fact, proteases from other types of yeast have been used to obtain 

hydrolysates with biological activity (64), (324), (325). BSY extract, rich in proteases, can 

be produced cheaply by mechanic disruption using glass beads (50). 

The focus of the present study was on the bioactive potential of BSG protein 

hydrolysates prepared using proteases extracted from BSY. The first aim was to optimize 

the best hydrolysis conditions through a RSM approach with the purpose of obtaining value-

added hydrolysates with antioxidant properties; and secondly, search for the potential 

presence of endogenous inhibitors of BSY proteases on BSG protein hydrolysis. The total 

phenolic content (TPC) and the antioxidant activity, using the ferricyanide reducing power 

assay (FRAP) of the BSG protein hydrolysates was investigated. Results generated from 

this study are expected to may economically benefit the brewing process, due to the reuse 

of the two major by-products, spent grain and spent yeast surplus, as well as, to provide 

the consumers with a new functional ingredient. 

 

 

12.2. MATERIAL AND METHODS 

 

12.2.1. By-products 

Brewing by-products were kindly supplied by Unicer brewing (Leça do Balio, Portugal). A 

composite sample of BSG (25% dw) was obtained from worts that had similar formulation 

and manufacturing process, briefly, the milled barley malt was mixed with hot water at 60ºC 

during 2 h to obtain the wort, the mashing temperature raised to about 75-78°C. Lautering 

was performed using a mash filter, first wort run-off undiluted, and the extract that remains 

with the grains was washed with hot water (75-78ºC). Syrup from maize grain was added 

directly to the kettle containing the filtered wort to obtain wort of 15.5° Plato and produce 
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lager beer. BSG samples were vacuum-packed and stored in polypropylene bags at -20 °C 

until use.  

BSY (Saccharomyces pastorianus) biomass was collected from a tank that contained the 

yeast surplus, and transported in 1 L glass bottles to laboratory under refrigerated 

conditions and stored at 4ºC until preparation procedure (1 day maximum). The BSY 

resulted from harvesting and repitching the yeast 3 to 6 times, which is a common practice 

in most breweries. Only yeast surplus from fermentations that exhibited normal fermentation 

characteristics was collected in the tank. The yeast slurry was thick and creamy with very 

little trub and no “off” flavours and “off” aromas. Yeast slurry viability was evaluated by 

manual counting on a standard microscope using a hemacytometer and a methylene blue 

solution (0.1%). 

 

12.2.2. Reagents 

Folin-Ciocalteu phenol reagent; trifluoroacetic acid (TFA); 2,4,6-tripyridyl-s-triazine (TPTZ); 

iron (III) chloride hexahydrate; bovine serum albumin (BSA); 6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid (Trolox); 2,4,6-trinitrobenzenesulfonic acid (TNBS); 

gallic acid; L-leucine; L-tyrosine and inhibitors of peptidases (Pepstatin A, E-64, PMSF, 

EDTA and Bestatin) were all purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Acetonitrile HPLC grade, sodium acetate, aluminium chloride and sodium hydroxide were 

purchased from Merck (Darmstad, Germany). Ultra-pure water was obtained from a Seral-

Seralpur Pro 90 CN water purifying system. The Millipore UF membranes with a MWCO of 

10 kDa were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

 

12.2.3. Apparatus 

The RP-HPLC analyses were carried out using an analytical HPLC system (Jasco, Tokyo, 

Japan), equipped with a quaternary low pressure gradient HPLC pump (Jasco PU-1580), a 

degasification unit (Jasco DG-1580-53 3-line degasser), an autosampler (Jasco AS-2057-

PLUS), a MD-910 multiwavelengh detector (Jasco) and a 7125 Rheodyne injector valve 

(California, USA). Data acquisition was accomplished using Borwin Controller software, 

version 1.50 (JMBS Developments, Le Fontanil, France). The column was a Chrompack P 

300 RP (polystyrenedivinylbenzene copolymer, 8 μm, 300Å, 150 x 4.6 mm i.d.) (Middleburg, 

The Netherlands). Spectrophotometric analyses were carried out using a BMG LABTECH´s 

SPECTROstar Nano-microplate, cuvette UV/Vis absorbance reader (Offenburg, Germany). 

 

12.2.4. Preparation of BSY proteases  

The BSY extract rich in proteases was prepared according to a previous work from Vieira 

et al. (50). After removing the glass beads, the homogenate was centrifuged at 12,000 x g, 



 

210 

40 min at 4ºC. The resulting clear supernatant was freeze-dried, resuspended in the same 

buffer (to 25% of the initial volume) and concentrated using a 10 kDa MWCO membrane. 

Protease activity, assayed by Sigma’s non-specific protease assay method described by 

Cupp-Enyard (164), was 0.725 U/mL. This extract was kept at -20ºC until used. 

 

12.2.5. Preparation of BSG protein fraction  

BSG proteins were extracted according to a previous work with slightly modifications (4). 

Briefly, BSG without pre-treatment (100 g) was added to 200 mL of 0.5 M KOH solution 

(ratio 1:2, w/v) for 2 h, 40ºC, with continuous shaking. After decantation and centrifugation 

at 15,000 x g, 4ºC during 15 min, the extract was acidified to pH 3 with a solution of 2 M 

citric acid. Further centrifugation was proceeded to obtain a final residue of BSG protein 

fraction. No protease activity was found in this protein fraction when evaluated by Cupp-

Enyard assay (164). The solubility of BSG protein fraction was determined by the method 

of Celus et al. (7) at different pH levels. The same amount of extract (1 g) was dispersed in 

10 mL of different buffers, at 4ºC.: (i) 100 mM citrate-phosphate (pH 5.0, 6.0 and 7.0), (ii) 

100 mM Tris-HCl (pH 8.0 and 9.0) and (iii) 100 mM glycine-NaOH (pH 10.0). The pH was 

adjusted and the dispersions were shaken for 1 h at 4ºC and then centrifuged at 12,000 x 

g, at 4ºC for 30 min. Protein content of the supernatant was determined following Bradford 

method (171), using BSA as standard. Protein solubility was expressed as percentage of 

protein in the solution in comparison to that of total protein in the extract. Based on the best 

pH results, the freeze-dried extract was dissolved with optimum pH buffer and stored at -

20ºC for further use. 

 
12.2.6. Enzymatic Hydrolysis  

12.2.6.1. Experimental Design  

RSM, using a Design Expert software (version 7.0, trial Stat-Ease Inc., Minneapolis, MN, 

USA), was used to investigate the influence of the independent variables (X): time, 

temperature and enzyme-substrate ratio (U/mg) on the hydrolysis of BSG protein fraction 

using a BSY protease extract, and to optimize them. The temperature ranged from 35ºC to 

50ºC, time ranged from 2 h to 6 h and E/S ratio ranged from 0.11:1 U/mg to 0.29:1 U/mg. 

The average of degree of hydrolysis (DH %); total phenolic content (TPC in mg GAE/mL) 

and antioxidant activity (FRAP in mg TE/mL) were selected as the response (Y). The full 

CCD method was applied and the experiments were conducted according to the 

experimental design depicted in Table 12.1. 

Totally, 20 runs containing six replicates at the centre point were carried out. All reactions 

were performed in triplicate, using 2 mL eppendorf tubes, in a shaking incubator with 

constant agitation (200 rpm). For all assays, 50 mL of a solution containing 5 mg of BSG 
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proteins/mL dissolved in tris-HCl was used as substrate for BSY proteases and the pH of 

hydrolysis reaction was fixed at pH 6.0. Hydrolysis experiments were performed without any 

pH adjustment and controls were performed using the protein fractions from enzyme and 

substrate, without any enzymatic treatment. Reactions were finished by heating the solution 

to 95ºC for 15 min, assuring enzyme inactivation. Aliquots (50 µL) of final hydrolysates were 

withdrawn for colorimetric determination of DH (%). The remaining material was centrifuged 

at 3,000 x g at 4ºC for 10 min to separate the undigested substrate and to collect the 

hydrolysate material. BSG protein hydrolysates (coded as H1-H20) were kept at -20ºC to 

further studies.  

 

12.2.6.2. Determination of Degree of Hydrolysis (DH %) and Hydrolysis Rate (HR %) 

The degree of hydrolysis (DH%), expressed as the percentage of peptide bonds hydrolysed 

was determined in triplicate using the TNBS method, as described by Hsu et al. (238). BSG 

protein hydrolysis was also evaluated through RP-HPLC, using the chromatographic 

conditions described by Ferreira et al. (185). HR (%) was calculated based on the 

measurement of protein fraction (eluted between 40 and 50 min) that remains intact after 

hydrolysis.  

 

12.2.6.3. Determination of total phenolic content (TPC) 

The TPC was measured using the Folin-Ciocalteu method, as previously described by 

Herald et al. (155). This assay measures the ability of a compound to reduce the yellow 

oxidising Folin-Ciocalteu reagent to a blue/green colour; absorbance is measured 

spectrophotometrically at 765 nm. Gallic acid was used as a standard at 10-500 μM to 

produce a calibration curve (average R2 = 0.9983) and results were expressed as mg of 

Gallic Acid equivalent per mL of sample (mg GAE/ mL). 

 

12.2.6.4. Ferric Ion Reducing Antioxidant Power (FRAP) assay 

The antioxidant activity was estimated according to the procedure of Jansen and Ruskovska 

method (154). This assay is based on the principle of the reduction of the ferric-

tripyridyltriazine complex to the ferrous form, upon which an intense blue colour develops 

and the change of absorbance is measured at 595 nm. Trolox, a water-soluble analogue of 

tocoferol, was used as standard at 10-500 μM to generate a calibration curve (average R2 

= 0.9975) and results were expressed as mg of Trolox equivalent per mL of sample (mg 

TE/mL). 
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12.2.7. Effect of potential inhibitors on BSG protein hydrolysis by BSY proteases 

Since BSY proteases showed higher activity on BSG proteins at pH 6.0, the potential 

presence of natural inhibitors was evaluated, according to the protocol described by 

Bolumar et al. (326), with slight modifications. BSY protease extract was split into two 

aliquots: the first was kept at pH 7.0, the second was adjusted to pH 5.0; both extracts were 

incubated at 25ºC for 20 h. Then, the activity of BSY proteases on BSG proteins was 

assessed at 50ºC and pH 6.0. Respective control of BSY proteases, kept at pH 5 and 6 and 

incubated at 25°C for 20 h, without the addition of BSG protein were assayed 

simultaneously. The reaction was stopped by adding 10% (w/v) trichloroacetic acid (TCA) 

and the absorbance of the soluble TCA peptides was examined at 280 nm. The percentage 

activity in inhibition assays was reported considering 100% activity in the absence of 

inhibitor. Additionally, the effect of inhibitors of BSY proteases on BSG proteins was studied 

in order to identify the type of catalytic peptidases responsible for the hydrolysis of BSG 

proteins. The following inhibitors were used: phenylmethylsulfonyl fluoride (PMSF) for 

serine peptidases; EDTA for metallopeptidases; bestatin for aminopeptidases 

(metallopeptidases); pepstatin A for aspartic acid peptidases and E-64 for the cysteine 

peptidases. The procedure used was according to Garcia-Carreño (327) and is outlined in 

Table 12.2. Each inhibitor was added so that the final concentration was 0.01 and 0.05 mM 

pepstatin A, E-64 and Bestatin; 1 and 2 and 10 mM PMSF and 20 mM EDTA. The 

concentrations of each inhibitor was chosen according to the manufacturer's instructions. 

The BSY peptidases activity in the absence of inhibitors was determined by adding buffer 

instead of inhibitor. In order to investigate the potential inhibitory effect of the solvent on the 

activity of BSY peptidases, a solvent control (methanol) was prepared. Additionally, to 

eliminate the effect of absorption of the inhibitor and the enzyme extract, two blanks 

(inhibition blank and blank activity) were prepared. The reaction was stopped by adding 

10% (w/v) trichloroacetic acid (TCA) and the absorbance of the soluble TCA peptides was 

examined at 280 nm. Residual activity was calculated as relative (%) considering control 

treatments as 100%. 
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Table 12.2. Procedure for studying the effect of inhibitors of BSY proteases on BSG proteins 

 

Conditions Inhibition 
Inhibition 

Blank 
Activity 

Blank 
activity 

Solvent 
Control 

Buffera + + + + + 

Inhibitorb + + - - - 

Enzyme + + + + + 

Solventc - - - - + 

Incubation 25ºC, 60 min, pH 6.0 

TCA 10% - + - + - 

Substrate + + + + + 

Incubation 50ºC, 30 min, pH 6.0 

TCA 10% + - + - - 

Incubation Room temperature, 30 min 

Centrifugation 10,000 x g, 10 min 

Measure 280 nm 
a 100 mM sodium phosphate, pH 6.0.  
b PMSF, EDTA, bestatin, pepstatin A, or E-64.  
c methanol. 
+ means that this condition was included. 

 

 

 

12.2.8. Statistical analysis 

All measurements were done in triplicate and data were reported as mean ± standard 

deviation. The statistical analyses were done using Design-Expert software version 7.0 

(Stat-Ease, Inc., USA). Analysis of variance (ANOVA) was performed and regression 

coefficients of linear, quadratic, and interaction terms were determined. Adequacy of the 

model was evaluated using model analysis, coefficient of determination (R2), and lack of fit 

test. Significance of the equation was determined by F value at a probability (p >F) less 

than 0.05. The regression coefficients were employed to create contour plots using the 

regression models.  

 

 

12.3. RESULTS AND DISCUSSION 

 

12.3.1. Influence of pH on solubility and hydrolysis of BSG protein fraction 

The protein rich isolate from BSG contained 49.1% (dw) protein, as determined by 

Kjeldahl method, which is in agreement with the content outlined by other authors (4), (307). 

Preliminary experiments were performed using a univariate method to study the influence 

of pH on solubility of BSG proteins using 5 mg of protein/mL. Figure 12.1.A shows the BSG 
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protein solubility at different pH levels. Low solubility (10%) was found at pH 6. The 

isoelectric point is probably around pH 5. Solubility reached its maximum value between pH 

8 and pH 9 (100). These results are in agreement with those reported by Celus et al. (7). 

The effect of pH on the hydrolysis of BSG proteins by BSY proteases was determined at a 

pH range of 5-10 and at a temperature of 37ºC, for 4 h. The results obtained are presented 

in Figure 12.1.B and show that BSY proteases acted on BSG proteins on the studied pH 

range. At pH 6-7, BSY proteases showed higher activity, being pH 6 the optimum pH for 

BSG protein hydrolysis. Moreover, results showed that when hydrolysis was performed at 

pH 6, the pH value remained in the range of 5.8 to 6.4 during the entire hydrolysis period. 

The same range of pH variation was observed when hydrolysis was performed at pH 5 and 

8. For this reason, in accordance with other authors, it was decided not to adjust the pH 

during BSG protein hydrolysis, which constitutes an economical advantage. 

 

 

 

 

 

 

 

 

 

Figure 12.1. Effect of pH on solubility of BSG protein fraction, at 25°C, (A). Effect of pH on 

hydrolysis of BSG protein fraction by BSY proteases, at 37°C, (B). Relative Activity (%) was 

estimated considering 100% the highest activity detected in this assay. 

 

 

12.3.2. Central composite design and response surface method 

The experimental conditions and values of DH%, TPC and FRAP assays of BSG 

protein hydrolysates are reported in Table 12.1. Results showed that the DH (%) ranged 

from 8.90% (H9: 30ºC, 4.0 h, E/S: 0.20:1) to 17.1% (H8: 50 ºC, 6.0 h, E/S: 0.29:1); TPC 

ranged from 1.10 mg GAE/mL (H1: 35ºC, 2.0 h, E/S: 0.11:1) to 1.65 mg GAE/mL (H8: 50ºC, 

6.0 h, E/S: 0.29:1) and the antioxidant activity, evaluated by FRAP assay, ranged from 0.55 

mg TE/mL (H13: 43ºC, 4.0 h, E/S: 0.05:1) to 1.88 mg TE/mL (H8: 50ºC, 6.0 h, E/S: 0.29:1). 

The model summary and the results obtained from ANOVA are detailed on Table 

12.3. The adequacy of the 2FI model was evaluated by means of Fisher’s F-test. The model 

F value for DH, TPC and FRAP responses were, respectively, 17.58, 46.25 and 123.22, 

indicating the significance of the model. The linear terms (X1, X2, X3) and the quadratic 

(A) (B) 

(B) (A) 
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terms (X12, X22, X32) had a significant effect (p <0.01) on the three responses. The cross-

product (X1.X2 and X1.X3) terms presented values of prob > F less than 0.05, that denotes 

that they are significant terms for the Y1 and Y3 responses; the cross-product X2.X3 had a 

significant effect on Y2 response. The quadratic models can be used for monitoring the 

effects of hydrolysis conditions on the DH, TPC and FRAP of BSG proteins digested by 

BSY proteases. Coefficient of determination (R2) for checking the fitness of model were 

close to 1, which indicated that models explained, respectively, 88.7%, 95.5%, and 98.3% 

of the variation in the hydrolysis conditions on the DH, TPC and FRAP of BSG proteins. 

‘‘Adeq Precision’’ was higher than 4 for the three responses, indicating an adequate signal-

to-noise ratio. Moreover, the statistical analysis of variance also revealed that there was a 

non-significant (p >0.05) lack of fit, which further validates the model. Thus, the response 

surface 2FI model is adequate and significant. Equations (1), (2) and (3) shows the 

dependence of DH (Y1), TPC (Y2) and FRAP (Y3) on temperature (X1), time (X2) and E/S 

ratio (X3), respectively. The parameters of the equation were obtained by multiple 

regression analysis of the experimental data. 

 

Y1 = −307.41 + 0.60. X1 − 0.96. X2 − 1.29. X3 + 0.05. X1. X2 +

100.00. X1. X3 − 877. X12 − 0.11. X22 − 5.44. X32                                         (1)            

                                 

Y2 = −215.34 + 0.11. X1 + 0.11. X2 + 625.76. X3 − 99.8. X12 − 471. X22 −

706.34. X32                                                                                                                (2)               

                               

Y3 = −228.15 + 0.11. X1 + 0.02. X2 − 0.20. X3 + 303. X1. X2 + 0.12. X1. X3 +

0.28. X2. X3 − 131. X12 − 0.01. X22 − 735.11. X3^2                                     (3)          

 

12.3.3. The effect of temperature, time and E/S ratio on the response value 

Curve analysis of response surfaces for experimental design allowed prediction of 

response function of the effects of the temperature, time and E/S ratio. Model equations are 

visualized in the form of three-dimensional surface plots, which are constructed by plotting 

the response on the Z-axis against any two independent variables, while maintaining other 

variables at their optimal levels. As shown in Figure 12.2, the DH, TPC and FRAP increased 

at hydrolysis conditions at pH 6.0 until temperature, time and E/S ratio reached an optimum 

point of 50ºC, 6 h and an E/S ratio of 0.29:1 U/mg. BSG protein hydrolysate prepared under 

these conditions (H8, Table 12.1) presented DH % of 17.10%, TPC of 1.65 mg GAE/mL 

and FRAP value of 1.88 mg TE/ mL. In terms of antioxidant activity, surface plots indicated 

that the same optimum conditions for higher DH may be favourable to enhance the 
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antioxidant properties of the BSG protein hydrolysate. Since some free amino acids and 

small peptides have been found to possess antioxidant activity, it seems that extension of 

hydrolysis may be favourable to enhance the antioxidant properties of the hydrolysate (328). 

 

 

Table 12.1.  Experimental design for evaluation of the effects of hydrolysis conditions at pH 

6.0 on Hydrolysis Degree (DH %), total phenolic content (TPC) and FRAP assay of BSG 

protein fraction by BSY proteases 

 

 

 

Pointa 
T 

(ºC) 
t  

(h) 
E/S  
ratio 

DH  
(Y1, %) 

TPC 
 (Y2, mg GAE/mL) 

FRAP  
(Y3, mg TE/mL) 

cod
e 

ru
n 

X1 X2 X3 Expb Predc Expb Predc Expb Predc 

H3 1 35.0 6.0 0.11 9.50 9.86 1.27 1.24 0.75 0.69 

H2 2 50.0 2.0 0.11 10.50 11.20 1.35 1.34 0.80 0.77 

H6 3 50.0 2.0 0.29 14.20 14.25 1.59 1.59 1.31 1.36 

H4 4 50.0 6.0 0.11 13.10 13.72 1.52 1.50 1.12 1.11 

H12 5 43.0 7.4 0.20 13.90 13.51 1.60 1.60 1.35 1.36 

H13 6 43.0 4.0 0.05 11.60 10.72 1.12 1.17 0.55 0.62 

H7 7 35.0 6.0 0.29 11.10 10.82 1.52 1.50 1.14 1.15 

H10 8 55.0 4.0 0.20 16.20 15.42 1.59 1.58 1.46 1.44 

H8 9 50.0 6.0 0.29 17.10 17.38 1.65 1.67 1.88 1.90 

H17 10 43.0 4.0 0.20 13.50 13.65 1.57 1.54 1.26 1.23 

H20 11 43.0 4.0 0.20 13.80 13.65 1.58 1.54 1.20 1.23 

H15 12 43.0 4.0 0.20 13.90 13.65 1.54 1.54 1.25 1.23 

H16 13 43.0 4.0 0.20 14.50 13.65 1.53 1.54 1.20 1.23 

H11 14 43.0 0.6 0.20 11.40 11.20 1.34 1.38 0.76 0.77 

H9 15 30.0 4.0 0.20 8.90 9.09 1.14 1.19 0.56 0.60 

H5 16 35.0 2.0 0.29 10.80 10.59 1.41 1.40 0.80 0.79 

H18 17 43.0 4.0 0.20 12.40 13.65 1.52 1.54 1.25 1.23 

H14 18 43.0 4.0 0.35 13.80 14.09 1.61 1.60 1.55 1.50 

H1 19 35.0 2.0 0.11 10.10 10.24 1.10 1.05 0.56 0.52 

H19 20 43.0 4.0 0.20 13.70 13.65 1.52 1.54 1.21 1.23 
a Experiments were conducted in a random order; b Average of triplicate determinations from 
different experiments; c Predicted values based on CCD evaluation. 
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Table 12.3. Model summary and analysis of variance (ANOVA) for DH% (Y1), TPC (Y2) and FRAP (Y3) 

 

  

Source Sum of Squares Mean Square F value p-value 

 Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 

Model 84.31 0.55 2.44 9.37 0.062 0.27 17.58 46.25 123.22 < 0.0001* < 0.0001* < 0.0001* 

X1- ºC 48.28 0.18 0.84 48.28 0.18 0.84 90.59 132.40 380.91 < 0.0001* < 0.0001* < 0.0001* 

X2- h 6.48 0.063 0.42 6.48 0.063 0.42 12.15 47.42 192.03 0.0059* < 0.0001* < 0.0001* 

X3- E/S 13.74 0.22 0.95 13.74 0.22 0.95 25.79 165.91 429.72 0.0005* < 0.0001* < 0.0001* 

X1.X2 4.21 3.001E-004 0.016 4.21 3.001E-004 0.016 7.89 0.23 7.48 0.0185** 0.6452 0.0210** 

X1.X3 3.65 4.950E-003 0.050 3.65 4.950E-003 0.050 6.84 3.72 22.52 0.0258** 0.0827 0.0008** 

X2.X3 0.18 3.321E-003 0.020 0.18 3.321E-003 0.020 0.34 2.49 9.05 0.5740 0.1454 0.0132** 

X12 3.51 0.045 0.079 3.51 0.045 0.079 6.58 34.13 35.74 0.0281** 0.0002* 0.0001* 

X22 3.02 5.122E-003 0.047 3.02 5.122E-003 0.047 5.67 3.85 21.31 0.0385** 0.0783 0.0010* 

X32 2.79 0.047 0.051 2.79 0.047 0.051 5.24 35.43 23.20 0.0451** 0.0001* 0.0007* 

Residual 5.33 0.013 0.022 0.53 1.332E-003 2.202E-003 1.23 3.67 4.35 0.4140 < 0.0001* 0.0663 

Lack of Fit 2.94 0.010 0.018 0.59 2.093E-003 3.581E-003       

Pure Error 2.39 2.852E-003 4.119E-003 0.48 5.703E-004 8.238E-004       

Total 89.64 0.57 2.46          

R2 pred (Y1) = 0.7125 R2 adj (Y1) = 0.8870 ratio = 16.055       

R2 pred (Y2) = 0.8523 R2 adj (Y2) = 0.9554 ratio = 23.935       

R2 pred (Y3) = 0.9417 R2 adj (Y3) = 0.9830 ratio = 41.409       

Y1, Degree of hydrolyses (DH %); Y2, Total Phenolic Content (mg GAE/mL); Y3, Antioxidant activity determined by FRAP assay (mg TE/mL).  
* Significance at p <0.01. ** Significance at p <0.05. 
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Figure 12.2. Response surface plots for the effects of variable incubation temperature (°C), incubation time (h) and E/S ratio (U/mg) on the responses: (A) Degree of 

Hydrolysis (DH %); (B) Total Phenolic contents (TPC) and (C) Antioxidant activity (FRAP assay). 
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12.3.4. Validation of the RSM model 

Desirability indices were constructed to obtain the optimum experimental conditions 

to maximize the bioactivities of BSG protein hydrolysate. The confirmatory experiments 

were conducted with the parameters suggested by experimental model, in three different 

runs, and the t test was applied to compare the DH, TPC and FRAP values of BSG protein 

hydrolysates prepared under optimized conditions at pH 6.0 with those predicted by models. 

BSG protein hydrolysate prepared at 50ºC, 6.0 h and E/S ratio of 0.29:1 U/mg showed the 

maximum results for the three responses. Under these hydrolysis conditions, the 

experimental values of DH, TPC and FRAP were, respectively, 17.6%, 1.68 mg GAE/mL 

and 1.84 mg TE/mL; and the predicted values, were respectively, 17.4%, 1.67 mg GAE/mL 

and 1.90 mg TE/mL. These results showed that there is no statistically significant difference 

between the experimental and estimated values within a 95% confidence interval for the 

three responses. Thereby, the adequacy of the models in predicting the optimum hydrolysis 

condition was confirmed.  

 

12.3.5. Hydrolysis monitoring by RP-HPLC 

Hydrolysis was also monitored by RP-HPLC. Figure 12.3 shows the RP-HPLC profiles 

of BSG protein hydrolysates with different DH. As elution was monitored at 214 nm, this 

implies that the level of smallest peptides is underestimated. Chromatographic profiles 

showed that peak area of “Polypeptide fraction” increased with increasing DH, being 

significantly higher (p <0.05) for H8, prepared at 50ºC, 6.0 h, E/S: 0.29:1 U/mg. 

Furthermore, strong correlations were found between measurements from HR (%) and DH 

(%) (R2 = 0.8861). 
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Figure 12.3. Chromatograms obtained by RP-HPLC analysis of BSG proteins hydrolysates 

(n=3). 

 

 

12.3.6. Effect of potential natural inhibitors on BSY proteases activity over BSG 

proteins 

Saccharomyces cerevisiae yeast, a species related to Saccharomyces pastorianus, 

contains various peptidases, including serine peptidases (peptidase B, carboxypeptidase Y 

and carboxypeptidase K) and metallopeptidases (aspartyl metallopeptidase, peptidase D 

and carboxypeptidase S). These enzymes, as well, some potential enzyme inhibitors, are 

localized in the cytoplasm and usually have optimal activity at pH 6-7 (11). Following 

disruption of yeast cells, complexes are formed between the inhibitor and vacuole 

peptidases. Therefore, to inactivate the endogenous inhibitors of vacuole peptidases 

different strategies, such as, long incubation periods at 25ºC and acid pH have been used 

(327), (328). 

In this work, the BSY proteases activity over BSG proteins (at 50ºC, pH 6.0) was 

evaluated after incubation of the BSY at 25ºC, 20 h, at pH 5 and 7. Results indicated that 

after 20 h of incubation at pH 7 and 25°C, the activity of BSY proteases over BSG proteins 

was reduced by about 31% compared to the activity observed in the beginning of treatment 

(results not shown). This result suggests the presence of potential natural inhibitors of 

vacuole peptidases, which were not inactivated under extended periods of incubation, at 

pH 7 and 25°C. On the other hand, after incubation at 25°C and pH 5 for 20 h, it was found 
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that the activity of BSY peptidases was doubled compared to activity observed in the 

beginning of treatment (results not shown), suggesting no effect of natural inhibitors of 

vacuole peptidases in the hydrolysis of BSG proteins, presumably due to its inactivation at 

pH 5 and 25 °C during 20 h. 

 

12.3.7. Effect of potential inhibitors on BSY proteases activity over BSG proteins 

The effect of inhibitors on the BSY proteases activity over BSG proteins was also 

evaluated in order to ascertain which type of catalytic peptidases are responsible for the 

hydrolysis under optimal conditions of temperature and pH (50ºC and pH 6.0). Results 

presented in Table 12.4 show that none of the inhibitors reduced more than 50% of BSY 

proteases activity over BSG proteins and no inhibition was observed in the presence of 

Pepstatin A and E-64 at concentrations of 0.01 mM and 0.05 mM. The weak inhibition 

caused by these two inhibitors at the higher concentration used, which suggest that the 

enzymes present in BSY responsible for hydrolysis of BSG proteins under the assay 

conditions are not cysteine peptidases and aminopeptidases (type catalytic 

metallopeptidases). On the other hand, EDTA, at a concentration of 20 mM, reduced 50% 

the activity of BSY proteases and PMSF, at a concentration of 2 mM, reduced by 

approximately 31% of BSY activity over BSG proteins. The main BSY proteases responsible 

for the hydrolysis of BSG proteins, under the optimum conditions, can belong to the class 

of serine peptidases and metallopeptidases. However, as BSY contain a mixture of various 

peptidases and compounds, this can lead to erroneous conclusions. In fact, some 

components of the BSY may affect the enzyme-inhibitor binding and, moreover, the active 

site of the peptidases may not be truly accessible to binding of the inhibitor (329). Thus, it 

would be necessary to purify the BSY proteases in order to confirm the catalytic type (s) of 

peptidase (s) that is (are) responsible (s) for its hydrolysis.  
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Table 12.4. Effect of inhibitors on BSG protein hydrolysis by BSY proteases 

 

 

 

12.4. CONCLUSIONS 

 

The present study showed that the BSG proteins were effectively hydrolysed by BSY 

proteases; the final protein hydrolysates presented improved biological properties, namely, 

better TPC and FRAP activity. RSM was an efficient statistical methodology to optimize the 

hydrolysis conditions; high DH (%) led to high TPC and antioxidant activity. The highest 

TPC (1.65 mg GAE/mL) and FRAP value (1.88 mg TE/mL) was achieved using an E/S ratio 

of 0.29:1 U/mg, a reaction time of 6 h, a reaction temperature of 50ºC and a reaction pH of 

6.0. The experimental values agreed with the predicted value within a 95% confidence 

interval, suggesting a good fit between the models and the experimental data. Good 

agreement was observed with RP-HPLC results. Apparently, the main BSY proteases 

responsible for the hydrolysis of BSG proteins, under the optimum conditions, probably 

belong to the class of serine peptidases and metallopeptidases. The reuse of these two 

agro-industrial by-products is advisable from both economic and environmental 

standpoints. 

 

 

 

Synthetic 

Inhibitors 

Catalytic  

type 

Concentration 

(mM) 

Residual enzyme  

activity (%) a 

Pepstatin A Aspartic acid 0.01 105 ± 1.58 

0.05 103 ± 2.04 

E-64 Cystein 0.01 107 ± 3.08 

0.05 91  ± 0.98 

PMSF Serine 1 95  ± 1.18 

2 69  ± 2.12 

EDTA Metalo 10 71  ± 1.78 

20 50  ± 2.01 

Bestatin Metalo 

(aminopeptidases) 

0.01 102 ± 1.05 

0.05 93  ± 1.04 

a % Residual enzyme activity was the remaining activity after 60 min incubation of 

enzyme with corresponding inhibitor. Data represents the mean ± standard deviations 

of three replications. 
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This chapter compares the biological activities of different BSG 

protein hydrolysates prepared by BSY proteases and two commercial 

enzymes: Alcalase® and Neutrase®.  
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ABSTRACT 

 

Protein fraction of Brewers’ spent grain (BSG) was used as substrate to obtain bioactive 

hydrolysates. Three enzymatic approaches were applied to perform the hydrolysis: 

Brewer´s spent yeast (BSY) proteases, Neutrase® and Alcalase®, at the same proteolytic 

activity (1 U/mL), using an E/S of 0.10:1 U/mg, at 50ºC, for 4 h. BSG hydrolysates DH%, 

PR%, proximate composition, molecular weight distribution and hydrophobicity were 

compared. Moreover, hydrolysates and their <10 kDa and <3 kDa fractions were tested for 

antioxidant and ACE-I activities. The effect of <10 kDa fractions on Caco-2 and HepG2 cell 

lines viability, mitochondrial membrane potential and oxidative stress was also investigated. 

Hydrolysates produced by Alcalase® presented significantly (p <0.05) higher ACE-I activity 

(IC50 0.385 mg protein/mL) and antioxidant capacity by TPC and FRAP assays (0.083 mg 

GAE/mg dw; 0.101 mg TE/mg dw, respectively) than other hydrolysates. Fractions <3 kDa 

of hydrolysates from BSY proteases and from Neutrase® presented enhanced ACE-I 

activities, whereas <10 kDa fraction presented increased TPC and FRAP values (p <0.05). 

The fraction <10 kDa of BSG protein hydrolysates exerted a protective effect against free-

radical induced cytotoxicity in Caco-2 and HepG2 cells. Therefore, these BSG protein 

hydrolysates may be useful functional ingredients. 

 

 

13.1. INTRODUCTION 

 

Brewers' spent grain (BSG) is the insoluble fraction of wort separated after the 

mashing phase of beer production. It is the major by-product from brewing process and is 

mainly composed by a lignocellulosic material and proteins, with high glutamine and proline 

contents (7). The protein content of BSG is approximately 20% (dw basis) and hordeins 

account for over 50% of the total proteins (4), (309). Although BSG main use is for animal 

feeding, other possible applications have been studied, because it presents high potential 

to be used for production of protein hydrolysates with biological properties (7), (307-309). 

The conditions employed on enzymatic hydrolysis, mainly the type of protease and 

the degree of hydrolysis, affect the peptides composition, as well as, the hydrolysates 

bioactivity (330). Commercially available enzymes have been commonly employed to 

undertake the hydrolytic process; these include Alcalase, Pepsine, Trypsin, Flavourzyme, 

Protamex, Prolyve, Promod, Corolase PP, among others (253), (307), (309). Our group has 

experience on the hydrolysis of BSG protein fraction using an enzyme extract from BSY. 

These hydrolysates present a DH of 17.6%, TPC of 1.65 mg GAE/mL and FRAP of 1.88 

mg TE/mL. However, besides conventional chemical assays for screening the antioxidant 



 

226 

activity of BSG protein hydrolysates, it is important to study the biological effects using in 

vitro cell models, which mimic the target site of oxidative stress in vivo. The human intestinal 

epithelial cell line (Caco-2) and the human hepatocarcinoma cell line (HepG2) have been 

considered reliable models widely used for biochemical and nutritional studies (331-337). 

Although BSG protein hydrolysates exhibit in vitro antioxidant activity in chemical assays, 

little information is available regarding their antioxidant ability on cell-based models.  

BSG protein hydrolysates exhibiting antioxidant potential may also contain peptides 

with other biological activities, such as, ACE-I activity. ACE inhibition plays a key role in the 

treatment of hypertension and ACE-I peptides are generally small sized peptides, less than 

3 or 5 kDa, often carrying polar amino acid residues, such as, proline (253), (330). Few 

studies have focused on the production of BSG hydrolysates with ACE-I effects. In fact, 

Connolly et al. (253) reported for the first time the ability of BSG protein hydrolysates to 

inhibit ACE; BSG proteins hydrolyzed with Alcalase, Flavourzyme and Corolase resulted in 

an IC50 of 0.32 mg protein/mL, 0.69 mg protein/mL and 0.50 mg protein/mL, respectively. 

No studies have yet reported the ability of BSG protein hydrolysates produced by BSY 

proteases to inhibit ACE. 

The aims of the present study were (i) to compare the capacity of proteases extracted 

from BSY to hydrolyze the BSG protein substrate with that of two commercially available 

proteases, Neutrase® and Alcalase®; (ii) to assess the potential bioactivity of the 

hydrolysates obtained by measuring the in vitro antioxidant and ACE-I activities and (iii) to 

measure the ability of these hydrolysates to protect Caco-2 and HepG2 cell lines regarding 

cell viability, mitochondrial integrity and oxidative stress. 

 

 
13.2. MATERIAL AND METHODS 

 

13.2.1. Reagents and cells 

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich (St. Louis, MO, 

USA) and the cell culture reagents were purchased from Gibco® (Invitrogen Corporation, 

Paisley, UK). Neutrase® (EC.3.4.24.28) and Alcalase® (EC 3.4.21.62) were purchased 

from Sigma-Aldrich (St. Louis, MO, USA) and ABz-Gly-Phe(NO2)-Pro was purchased from 

Bachem Feinchemikalien (Bubendorf, Switzerland). The Millipore UF membranes with a 

MWCO of 3 and 10 kDa were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Ultrapure water was obtained from a Seralpur Pro 90 CN water purification. Caco-2 and 

HepG2 cell lines were obtained from the American Type Culture Collection (ATCC). 

Dulbecco’s modified eagle’s medium (DMEM) with high glucose, heat-inactivated fetal 

bovine serum (FBS), 0.25% trypsin/1 mM EDTA, antibiotic solution (10,000 U/mL penicillin, 
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10,000 µg/mL streptomycin), Hanks balanced salt solution (HBSS) were purchased from 

Invitrogen Corporations (Paisley, UK).  

 

13.2.2. Equipments 

The RP-HPLC analysis was carried out using an analytical HPLC system (Jasco, Tokyo, 

Japan), equipped with a quaternary low pressure gradient HPLC pump (Jasco PU-1580), a 

degasification unit (Jasco DG-1580-53 3-line degasser), an autosampler (Jasco AS-2057-

PLUS), a MD-910 multiwavelengh detector (Jasco) and a 7125 Rheodyne injector valve 

(California, USA). The data acquisition was accomplished using Borwin Controller software, 

version 1.50 (JMBS Developments, Le Fontanil, France). SE-HPLC analyses were 

performed using a Gilson HPLC system (Gilson Medical Electronics, France), equipped with 

a type 302 pump, a Gilson 118 variable wavelength ultraviolet detector and a 7125 

Rheodyne injector. The equipment was controlled by a Gilson 712 software. 

Spectrophotometric analyses were carried out using a BMG LABTECH´s SPECTROstar 

Nano-microplate, cuvette UV/Vis absorbance reader (Offenburg, Germany). Fluorimetric 

analyses were carried out using a fluorescence microplate reader (FLUOstar Optima, BMG 

Labtech GmbH). 

 

13.2.3. BSG protein extraction  

BSG was supplied by Unicer brewing (Leça do Balio, Portugal). BSG protein substrate was 

prepared by alkaline extraction and subsequent acid precipitation, as previously described 

by Vieira et al. (4). Briefly, BSG (100 g) was added to 200 mL of 0.5 M KOH solution (ratio 

1:2, w/v) for 2 h at 40ºC, with continuous shaking. After centrifugation at 15,000 x g, at 4ºC 

during 15 min, the extract was acidified to pH 3 with a solution of 2 M citric acid. The final 

residue of BSG presented a protein content of 49.13% dw (based on the Kjeldahl method) 

and maximum solubility in Tris-HCl buffer, pH 8.0.  

 

13.2.4. BSY proteases and commercial enzymes 

BSY, supplied by Unicer brewing (Leça do Balio, Portugal), was collected from the brewery 

with four reuses in the fermentation process. The BSY extract rich in proteases was 

prepared according to a previous work (177). Proteolytic activity, determined by Sigma’s 

non-specific protease method described by Cupp-Enyard (164), was 1 U/mL. Commercially 

available enzymes Neutrase® and Alcalase® were used at the same activity levels to 

compare hydrolysis efficiencies. For this purpose, Neutrase® and Alcalase® were diluted 

in the respective buffer, sodium phosphate buffer pH 7.0 and 100 mM Tris-HCl pH 8.0, to 

have the same proteolytic activity of 1 U/mL. 
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13.2.5. Preparation of Brewers' spent grain protein hydrolysates 

A BSG protein solution of 15 mg of protein/mL (based on Lowry assay) (163) was used as 

substrate for the three enzymatic treatments. Hydrolysis of BSG proteins were performed 

with the BSY extract, with Neutrase® and with Alcalase®, according to the conditions 

described in Table 13.1. Triplicate assays using a final volume of 100 mL were performed 

for each enzyme, using a thermostatically controlled water bath with constant shaking and 

without pH adjustment. Control assays were performed using substrate and enzyme, 

without any incubation treatment. The hydrolysates (coded as BSYH, NTH and ALH) were 

heated at 95ºC for 15 min, assuring the enzymes inactivation. A volume of 400 μL of 

hydrolysates was withdrawn for determination of the DH (%) and PR (%). Then, the 

remaining mixture was centrifuged (5,000 x g; 20 min; 4°C) to collect the hydrolysate 

material. Half volume of the supernatant was subjected to UF, the other half volume was 

lyophilized and kept at -20ºC for further chemical and molecular weight characterization. 

 

13.2.6. Determination of Degree of Hydrolysis (DH %) and Protein Recovery (PR %) 

The degree of hydrolysis (DH %), expressed as the percentage of peptides bonds 

hydrolyzed was determined in triplicate using the TNBS method, as described by Hsu et al. 

(238). The α-amino acids were expressed in terms of L-leucine and the DH% was 

determined using the following equation:  

DH (%) = [(Lt − L0) (Lmax − L0)⁄ ] × 100               (1)      

where Lt corresponded to the amount of α-amino acid released after 30 min. L0 was the 

amount of α-amino acid in original BSG protein substrate. Lmax was the maximum amount 

of α-amino acid in BSG protein substrate obtained after acid hydrolysis (6 M HCl at 105°C 

for 24 h).  

Protein recovery (PR %) was calculated as the amount of protein present in the final 

hydrolysate relative to the initial amount of protein present in the reaction mixture (control), 

using the following equation:  

PR (%) = 100 − [(
protein content after hydrolysis

protein content before hydrolysis
) × 100]                   (2)   

Protein content was determined using the Lowry’s method (163). 
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Table 13.1. Conditions used for preparation of BSG protein hydrolysates 

 

Enzyme 
Activity 
(U/mL) 

Optimum Conditions 
Enzyme 

composition 
Enzyme 
Source pH 

T 
 (ºC) 

Time  
(h) 

E/S ratio 
 
(iii) 

BSY 
proteases 

1 (i) 6.0 50 6 10 
Serine and 

Metaloproteases 
Saccharomyces 

pastorianus 

Neutrase® 1 (ii) 7.0 50 6 10 Metaloprotease 
Bacillus 

amyloliquefaciens 

Alcalase® 1 (ii) 8.0 50 6 10 
Alkaline serine 
endopeptidase 

Bacillus 
licheniformis 

(i) Proteolytic activity determined by the Sigma’s non-specific protease assay.  
(ii) Proteolytic activity obtained after dilution of the commercially available enzyme with respective buffer: 100 mM sodium 

phosphate buffer (pH 7); 100 mM Tris-HCl (pH 8.0).  
(iii) E/S ratio of 0.10:1 U/mg (10 mL enzyme for 100 mL of BSG protein solution of 15 mg of protein/mL (based on the Lowry 

method). 

  



 

 

13.2.7. Characterization of BSG protein hydrolysates 

13.2.7.1. Proximate composition analysis 

Lyophilized BSG protein hydrolysates were analyzed in terms of protein content (total 

nitrogen was determined by the Kjeldahl method x 6.25), fat content (Soxhlet extraction with 

n-hexane for 12 h), ash content (incineration in a muffle furnace at 550ºC until the ash had 

a white appearance) and dry matter (oven at 105ºC until constant weight), determined 

according to AOAC official methods (144). All assays were performed in triplicate and the 

contents were expressed on a dry weight basis (% dw). 

 

13.2.7.2. Molecular weight distribution profile 

Molecular weight distributions of BSG protein hydrolysates were determined by SE-HPLC. 

The column used was a PSS Proteema Analytical 100 Å column (Amersham Biosciences, 

UK), equilibrated with 50 mM sodium phosphate buffer, 0.15 M NaCl, pH 6.6 at a flow rate 

of 0.5 mL/min and calibrated using a standard mixture of eleven molecular weight markers: 

Myosin (205 kDa), β-Galactosidase (116 kDa), Phosphorilase β (97 kDa), Transferrin (80 

kDa), BSA (66 kDa), Glutamate dehydrogenase (55 kDa), Ovalbumin (45 kDa), Carbonic 

anhydrase (30 kDa), Trypsin inhibitor (21 kDa), Lysozyme (14 kDa) and Aprotinin (6.6 kDa). 

Aliquots of samples (0.1 % w/v protein) were dissolved in the mobile phase and an injection 

volume of 20 µL was used. Detection was monitored at 214 nm and analyses were 

performed in triplicate.  

 

13.2.7.3. Proteins and peptides profile 

RP-HPLC was carried out according to the method of Ferreira et al. (185). Gradient elution 

was carried out at a flow‐rate of 1 mL/min, using a mixture of two solvents. Solvent A was 

0.1% (v/v) TFA in water and solvent B was acetonitrile‐water‐trifluoracetic acid 95∶5∶0.1 

(v/v/v). Aliquots of samples (0.1% w/v protein) were dissolved in solvent A, filtered through 

0.2 μm syringe filters and injected (50 µL) on a Chrompack P 300 RP 

(polystyrenedivinylbenzene copolymer, 8 µm, 300Å, 150 x 4.6 mm i.d.) (Chrompack, 

Middleburg, The Netherlands) column maintained at room temperature. Detector response 

was monitored at 214 nm and analyses were performed in triplicate. 

 

13.2.8. Ultrafiltration of BSG protein hydrolysates 

BSG protein hydrolysates were fractionated through UF membranes with MWCO of 10 and 

3 kDa. Unfractionated hydrolysates and respective fractions <10 kDa and <3 kDa were 

lyophilized and stored at -20°C. ACE-I activity, chemical antioxidant activity, and cell-based 

antioxidant activity assays were further performed.  
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13.2.9. ACE-I activity 

The ACE-I activity of hydrolysates and their <10 kDa and <3 kDa fractions were determined 

at the concentration of 1.0 mg/mL. ACE was extracted from rabbit lung acetone powder with 

100 mM sodium borate buffer (pH 8.3) containing 300 mM NaCl, according to the procedure 

described by Minervini et al. (165). Prior to assay, the supernatant was diluted 10-fold with 

50 mM potassium phosphate buffer, pH 8.3, so that it would have the same ACE activity as 

the commercial preparation (3 U/mg of protein). ACE-I activity was measured using the 

fluorimetric assay of Sentandreu and Toldrá (121), with the modifications reported by Quirós 

et al. (122). ACE-I percentage (I) was calculated using the equation: 

I % = {(B − A)|(B − C)} × 100                 (3)  

where B is the fluorescence of the ACE solution without the inhibitor (BSG hydrolysate); A 

is the fluorescence of the tested sample of BSG hydrolysate; and C is the fluorescence of 

experimental blank, o-ABz-Gly-Phe(NO2)-Pro dissolved in 150 mM Tris-base buffer (pH 

8.3), containing 1.125 M NaCl. The percent inhibition curves (using a minimum of five 

determinations for each sample peptide concentration) were plotted versus protein 

concentration to estimate the mean IC50 value, which is defined as the concentration 

required to decrease the ACE activity by 50% (122). Protein content was determined using 

the Lowry’s method (163). 

 

13.2.10. Chemical antioxidant activities 

The chemical antioxidant activities of hydrolysates and their <10 kDa and <3 kDa fractions 

were determined at the concentration of 1.0 mg/mL. The TPC was measured using the 

Folin-Ciocalteu method as previously described by Herald et al. (155). Gallic acid was used 

as standard at 10-500 μM to produce a calibration curve (average R2 = 0.9899) and 

absorbance was measured at 765 nm. Results were expressed as mg of Gallic acid 

equivalent per mg of sample (mg GAE/mg dw). The FRAP was estimated according to the 

procedure of Jansen and Ruskovska (154). Trolox was used as standard at 10-500 μM to 

generate a calibration curve (average R2 = 0.9968) and absorbance was measured at 595 

nm. Results were expressed as mg of Trolox equivalent per mg of sample (mg TE/mg dw). 

 

13.2.11. Cell-based antioxidant activities  

13.2.11.1. Cell culture routine 

Caco-2 (human colon adenocarcinoma cell line) and HepG2 (human hepatocarcinoma cell 

line) cells were routinely cultured in 75 cm2 flasks (BD Biosciences, Oxford, UK) using 

DMEM with high glucose medium, supplemented with 10% FBS and 1% antibiotic solution 

(10,000 U/mL penicillin, 10,000 µg/mL streptomycin). The cells were incubated at 37ºC 

under a humidified atmosphere condition that contained 5% CO2. The medium was changed 
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every other day. When cells reached 70-80% confluent monolayer cells, cells were 

detached by trypsinization (0.25% trypsin) and subcultured over a maximum of 10 

passages.  

 

13.2.11.2. Samples preparation to cell culture studies 

For all BSG protein hydrolysates, <10 kDa lyophilized fractions were dissolved in HBSS to 

obtain two final concentrations: 0.1 mg/mL and 1.0 mg/mL. 

 

13.2.11.3. Cell viability determination 

Cell viability was determined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assay, as previously reported by Dias da Silva et al. (183). 

Caco-2 and HepG2 cells at the same density of 8x104 cells/well were seeded onto the 

central 60 wells of 96-well plates (BD Biosciences, Oxford, UK) to obtain confluent 

monolayers within 2 days. Then, the cells were incubated for 24 h at 37°C with the <10 kDa 

samples at the concentrations of 0.1 mg/mL and 1.0 mg/mL. Peripheral wells on the plate 

were filled with sterile water to avoid evaporation of the treatment solutions. A media blank 

(no cells) to account for the color of the samples; a negative control (NEGc, cells treated 

with medium only) and a positive control (POSc, cells treated with medium and 1% Triton 

X-100) were also included in the plate. After cell treatment with the test samples, the culture 

medium was aspirated and the attached cells were rinsed with 200 µL HBSS, followed by 

the addition of fresh culture medium containing 0.25 mg/L MTT. After 30 min of incubation 

(37°C, 5% CO2), the formed intracellular crystals of formazan were dissolved in 100 µL 

100% dimethyl sulfoxide (DMSO). The quantity of formazan crystals was determined by 

measuring the absorbance at 570 nm. Cell viability (%) was calculated relative to the 

maximum viability of NEGc. Data were obtained from three independent experiments, with 

each plate containing six replicates of each test sample. 

 

13.2.11.4. Mitochondrial integrity determination 

Mitochondrial integrity was performed by measuring the tetramethylrhodamine ethyl ester 

perchlorate (TMRE) inclusion, as previously reported by Dias da Silva et al. (183). TMRE is 

a cell permeable fluorescent dye that specifically stains live mitochondria and accumulates 

in proportion to mitochondrial membrane potential (Dcm). Maintenance of Dcm is extremely 

important for normal cell function (183). For both cell lines, 8x104 cells were seeded onto 

96-well black plates. After 24 h, the media was gently aspirated and the cells were incubated 

with each <10 kDa samples at concentrations of 0.1 mg/mL and 1.0 mg/mL (at 37ºC, 5% 

CO2). At the end of the 24 h incubation period, the cells were rinsed twice with HBSS and 

incubated at 37ºC with 100 µL of 2 mM TMRE for 30 min. Then, the media was gently 
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aspirated and replaced by 0.2% BSA in HBSS. Fluorescence was measured at 37ºC set to 

544 nm excitation and 590 nm emission. TMRE mitochondrial inclusion (%) was calculated 

relative to the maximum levels of NEGc. Data were obtained from three independent 

experiments, with each plate containing six replicates of each test sample. 

 

13.2.11.5. ROS production 

The intracellular reactive oxygen species (ROS) production was monitored by means of the 

2`,7`-dichlorodihydrofluorescein diacetate (DCFH-DA) assay, as previously reported by 

Dias da Silva et al. (183). For this determination and for both cell lines, 8 x104 cells per well 

were seeded onto 96-well black plates and allowed to attach for 24 h. On the day of the 

experiment, the cells were rinsed with HBSS and incubated with 200 µL per well of <10 kDa 

samples at concentrations of 0.1 mg/mL and 1.0 mg/mL, for 24 h (37°C, 5% CO2). A 

negative control (NEGc, cells treated with medium only) was also included in the plate. After 

a 24 h treatment period, cells were rinsed twice with HBSS and incubated with 10 mM 

DCFH-DA for 30 min (37°C, 5% CO2). After removal of the DCFH-DA and further washing 

with HBSS, the formation of 2`,7`-dichlorodihydrofluorescein (DCF), due to the oxidation of 

DCFH-DA in the presence of intracellular ROS, was read at an excitation wavelength of 485 

nm and an emission wavelength of 530 nm. Cell ROS production (%) was calculated relative 

to the maximum ROS levels of NEGc. Data were obtained from three independent 

experiments, with each plate containing six replicates of each test sample.  

In parallel, the cellular protection of <10 kDa samples against a cytotoxic agent was 

evaluated. Oxidative stress was induced in both confluent cell cultures by addition of 1 mM 

H2O2. For this purpose, cells were submitted to the 24 h treatment period described above 

but, in this case, 1 mM H2O2 was added 6 h before the ROS measurement. Cell ROS 

production (%) was calculated relative to the maximum ROS levels of positive control 

(POSc, cells treated with H2O2). 

 

13.2.12. Statistical analysis 

Data were presented as mean ± standard deviation from three independent experiments 

unless stated otherwise. Statistical comparisons were performed by one-way analysis of 

variance (ANOVA) followed by the Duncan’s multiple comparison test. Difference was 

considered significant at p <0.05. All statistical calculations were performed using SPSS 

22.0 (SPSS software, Chicago, U.S.A.).  
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13.3. RESULTS AND DISCUSSION 

 

13.3.1. Measuring the extent of hydrolysis 

BSG proteins were hydrolyzed by three different enzyme approaches: a BSY extract 

rich in proteases, Neutrase® and Alcalase®. Hydrolyses were carried out under the same 

conditions: 50ºC, 4 h and using the same E/S ratio of 0.10:1 U/mg; enzymes were compared 

at the same proteolytic activity (1 U/mL). Few studies have been conducted comparing 

enzymes on the basis of their proteolytic activity, usually researchers compare enzyme 

activity on a weight basis of enzymes used in the reaction mixture, which constitutes a 

limitation (194). The DH (%) was used as an indicator of the hydrolysis progress and PR 

(%) as an indicator of the hydrolysis yield (219), (295). The hydrolysis yield (%) of BSG 

protein hydrolysates (% dw) is present in Table 13.2. Results show that the DH % for BSYH, 

NTH and ALH were 8.27%, 4.63% and 10.4%, respectively. Higher hydrolysis was observed 

for ALH. Results from PR % were 58.9%, 37.2% and 62.2% for BSYH, NTH and ALH, 

respectively. Similar to observed by other authors (194), (338), Alcalase® exhibited higher 

hydrolytic activities than Neutrase®, although these values are different from those 

observed by other authors, in which Alcalase® treatment was used to produce BSG protein 

hydrolysates (253), (309). For instance, Connolly et al. (309) reported a DH (%) of ~12% 

when BSG protein was hydrolyzed at 50ºC, pH 9, using an E/S ratio of 2.5% (v/w) for 4 h. 

These differences can be explained by the different procedures used to prepare the BSG 

protein substrate, different hydrolysis conditions applied, namely, the proteolytic activity of 

enzyme and reaction time, as well as, the different methods employed to evaluate the DH 

%.  

 

13.3.2. Proximate composition of BSG protein hydrolysates 

The proximate composition of BSG protein hydrolysates (% dw) obtained by the three 

enzymatic treatments is presented in Table 13.2. The protein content was similar in the 

three hydrolysates, ranging between 68.0-76.6% (dw). The nutritional composition of ALH 

was different from that reported by Celus et al. (8). This difference may be attributed to the 

difference in raw materials and the processes involved in preparing the Alcalase 

hydrolysates. BSYH presented the highest content of ash (8.12%), presumably due to the 

buffer required for the preparation of the BSY extract rich in proteases, but a significantly (p 

<0.05) lower content in fat (2.42%). In general, the high protein content and low fat content 

of all hydrolysates may provide an incentive for use in commercial preparations. 
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Table 13.2. Hydrolysis yield (%) and proximate composition (% dw) of BSG protein 

hydrolysates 

 

 

 

13.3.3. Molecular weight distribution and peptides/proteins profile 

The BSG protein substrate consisted of relatively large molecular mass proteins, 

containing hordeins D (~96 kDa) and mostly hordeins C (~55-80 kDa) and hordeins B (~35-

50 kDa), as reported by Vieira et al. (4) and Celus et al. (339) (results not shown). In 

agreement with Connolly et al. (253), 54.6% of the large mass components of the BSG 

protein substrate were higher than ~15 kDa. After enzymatic treatments, proteins were 

broken down into smaller molecular weight peptides; the distribution profiles obtained are 

presented in Figure 13.1.A. Results showed that BSG protein hydrolysates were composed 

of a wide range of protein/peptide bands with molecular weight less than ~62 kDa for BSYH; 

less than ~60 kDa for NTH and less than ~50 kDa for ALH. BSYH was composed of major 

protein bands with molecular weight of ~45 and ~21 kDa and the highest (p <0.05) quantity 

of low molecular weight peptides (< 6.6 kDa). ALH showed a major protein band with 

molecular weights between ~21 and 6.6 kDa. Of the three enzymes, NTH had the lowest 

percentage of low molecular weight peptides (< 6.6 kDa) and an appreciable protein band 

with molecular weight between ~60 kDa and ~52 kDa, denoting the lowest efficiency in 

protein breakdown. In general, the molecular weight profiles of these hydrolysates are in 

agreement with the values of DH% and PR% obtained for the three treatments.  

The RP-HPLC profiles of BSG protein hydrolysates with different DH% are presented 

in Figure 13.1.B, which demonstrated considerable variation in peptide composition. RP-

HPLC profiles were divided into three fractions: fraction I consisted of the “less hydrophobic 

fragments” eluting between 4 and 12.5 min, fraction II contained the “hydrophobic 

Sample 

code 

Hydrolysis Yield (%)  Proximate Composition (% dw) 

DH (i) PR (ii)  Protein Ash Fat 

BSYH 8.27±0.97 a 58.9±1.71 a  76.7±4.10 a 8.12±3.30 a 2.42±0.75 b 

NTH 4.63±0.62 b 37.2±1.49 b  68.0±4.97 a 6.53±0.38 b 3.84±0.50 a 

ALH 10.4±1.42 a 62.2±2.15 a  71.3±3.30 a 6.87±0.14 b 4.59±0.35 a 

(i) Degree of hydrolysis (DH %) determined with TNBS. 
(ii) Protein recovery (PR %) determined by Lowry method. 

Results are expressed as mean ± standard deviation of triplicate experiments. For 

each assay, means that do not share a letter are significantly different at p <0.05. 

Statistical analysis were performed by ANOVA followed by Duncan's multiple 

comparison test. 
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polypeptides” that eluted between 12.5 and 25 min and fraction III contained the “protein 

fractions” with elution between 25 and 55 min. Proteins eluted mainly in fraction III, similarly 

to what was already observed in our previous study (4). Comparing the percentage area of 

the three fractions relative to the total area of the RP-HPLC chromatogram, results show 

that with increasing DH, the level of fraction I increased, while the proportions of fractions II 

and III decreased. The higher percentage area of fraction I was observed for ALH, which 

had also higher DH%. In opposite, NTH presented the smallest area of fraction I, suggesting 

that this enzyme is not very efficient in the BSG protein hydrolysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.1. SE-HPLC (A) and RP-HPLC (B) profiles of BSG protein hydrolysates with 

different DH (%), obtained after enzymatic hydrolysis with BSY extract (BSYH), Neutrase® 

(NTH) and Alcalase® (ALH). Absorbance (214 nm) is expressed in arbitrary units (AU). In 

the SE-HPLC profile, elution times of molecular weight markers with molecular weight 

between 6.6 and 66 kDa are indicated from left to right. BSG protein hydrolysates were 

analyzed at same protein concentration (1 mg/mL), using 20 µL of this solution to the 

column. RP-HPLC profiles are divided into three fractions: I- “Less hydrophobic”; II- 

“Polypeptides” and III- “Proteins”.  

(A) 

(B) 
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13.3.4. Effect of UF on ACE-I activity of BSG protein hydrolysates 

BSG protein hydrolysates were fractionated using two kinds of UF membranes (10 

and 3-kDa MWCO membranes) and two kinds of permeates were obtained, the fractions 

<10 kDa and the fractions <3 kDa. It should be highlighted that the molecular weight 

distributions of these fractions was similar, although the relative proportions of the peaks 

varied according to the MWCO size of the membrane used, meaning that the UF technique 

enriched the fractions of their respective size rather than accurately separated the proteins 

and peptides according to size (340). The BSG protein substrate, the hydrolysates and <10 

kDa and <3 kDa fractions were screened for their ACE-I potential at 1.0 mg/mL. The ACE-

I activities obtained are presented in Figure 13.2.A. The results show that the IC50 of BSG 

protein substrate (coded as NT; no treatment) was 1.45 mg protein/mL, meaning that some 

peptides with ACE-I could be naturally present in BSG protein substrate, as a result of the 

alkaline procedure employed for extraction of protein fraction. ALH showed the strongest 

ACE-I activities (p <0.05) among the three hydrolysates tested, with an IC50 of 0.385 mg 

protein/mL. This result is correlated with the higher DH observed for this enzymatic 

treatment. Other authors also obtained a good correlation between the DH and the IC50 

(253), (309), (341). Moreover, this result is in agreement with that reported recently by 

Connolly et al. (253), in which the ACE-I activity of BSG protein hydrolysates using 

Alcalase® was evaluated using the fluorimetric assay, and an IC50 of 0.340 mg protein/mL 

was observed. Small differences with the IC50 values obtained in this work may be due to 

the differences in temperature, E/S ratio and time conditions employed in the generation of 

the hydrolysates, as well as, with some differences in the method used to determine the 

ACE-I activity. The IC50 values of BSYH and NTH were 0.820 mg protein/mL and 0.615 mg 

protein/mL, respectively. In order to determine if the observed ACE-I activities are due to 

specific molecular mass fractions in the protein hydrolysate, UF was performed. ACE-I 

activity tends to increase with the decrease of molecular weight. In the case of BSYH and 

NTH, using a 3 kDa MWCO, this activity was enhanced. The IC50 values of the <3 kDa 

fractions were respectively, 0.652 and 0.512 mg protein/mL, corresponding to an increase 

of 20% and 17% of ACE-I activity. These results are in accordance with previously studies, 

which reported that ACE-I peptides are composed of a small number of amino acids, less 

than 3 kDa (342), (330). For BSYH, no statistical differences (p <0.05) were observed 

between the ACE-I activity obtained for <10 kDa and <3 kDa fractions. In opposite, for ALH, 

the <10 kDa fraction allowed an enhancement of 19% on the ACE-I activity (IC50 of 0.312 

mg protein/mL). This result is in agreement with Connolly et al. (253), who reported that the 

IC50 values of the unfractionated hydrolysate were lower than the respective 5 kDa and 3 

kDa fractions. 
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Figure 13.2. Comparison of ACE-I activity (A), Total Phenolic Content (B) and FRAP (C) of 

BSG protein starting material (NT, no treatment), full BSG protein hydrolysates (BSYH, 

NTH, ALH) and respective <10 kDa and <3 kDa fractions. Each bar represents the mean ± 

standard deviation of triplicate experiments. For each assay, bars labeled with different 

letters have mean values that are significantly different at p <0.05. Statistical analysis were 

performed by ANOVA followed by Duncan's multiple comparison test.  

 

 

13.3.5. Effect of UF on antioxidant activity of BSG protein hydrolysates 

Chemically based antioxidant activities of the BSG protein substrate, hydrolysates 

and fractions <10 kDa and <3 kDa were investigated based on the TPC and FRAP assays. 

Results are presented in Figure 13.2.B and 13.2.C, respectively. Results show that all 
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hydrolysates had significantly (p <0.05) higher antioxidant activities compared to BSG 

protein substrate (TFC of 0.021 mg GAE/mg dw and FRAP of 0.035 mg TE/mg dw). ALH 

showed significantly (p <0.05) higher TPC (0.083 mg GAE/mg dw) compared to NTH (0.057 

mg GAE/mg dw) and BSYH (0.048 mg GAE/mg dw). The result obtained for Alcalase® 

treatment can be compared with the BSG protein hydrolysate reported by Aoife et al. (307), 

in which hydrolysis was performed with Alcalase®, using an E/S ratio of 1% (v/w), pH 9, for 

4 h at 60ºC. The lower TPC value reported by these authors, 0.055 mg GAE/mg dw, can 

be explained by the different procedure used to prepare the BSG protein substrate and by 

the different hydrolysis conditions applied. In general, the UF step using a 10 kDa MWCO 

increased values of TPC. NT<10 kDa (0.082 mg GAE/mg dw) and AL<10 kDa (0.084 mg 

GAE/mg dw) presented significantly higher TPC (p <0.05) compared to BSYH<10 kDa 

(0.070 mg GAE/mg dw).  

The FRAP assay measures the ability of a compound to reduce Fe3+ (ferric ion) to 

Fe2+ (ferrous ion), thus, indicating the antioxidant potential of a compound. FRAP results 

presented in Figure 13.2.C show that BSG protein hydrolysates prepared with Alcalase® 

(DH = 10.4%) and Neutrase® (DH = 4.63%) presented similar antioxidant activity (p <0.05), 

0.101 mg TE/mg dw and 0.098 mg TE/mg dw, respectively. In opposite, BSYH with a DH 

of 8.27% presented the lowest FRAP activity, 0.062 mg TE/mg dw. These results suggest 

that the antioxidant activity of BSG protein hydrolysates does not necessarily increase with 

DH%. As reported by other authors, the antioxidant activity of a protein hydrolysate is 

dependent not only on the molecular size of the peptides present, but markedly on the 

presence of specific peptide sequences and their amino acid composition (239), (343). 

Further UF using a 10 kDa MWCO enhanced the FRAP values of NTH, ALH and BSYH (p 

<0.05). The BSYH<10 kDa showed antioxidant activity of 0.082 mg TE/mg dw, whilst 

NTH<10 kDa showed antioxidant activity of 0.157 mg TE/mg dw and ALH presented 0.129 

mg TE/mg dw. UF using a 3 kDa MWCO reduced the FRAP values of NTH, ALH and BSYH 

(p <0.05), thus, no benefits were observed in this fraction. 

 

13.3.6. Cellular antioxidant activities 

The <10 kDa fractions obtained from BSG protein hydrolysates presented higher in 

vitro antioxidant activities were selected to evaluate the cellular antioxidant activity. This 

determination represents an effective biological method due to similarities in the 

characteristics related to the uptake and metabolism of antioxidants within the living cells of 

the target organs (335). Therefore, these fractions were screened at two different 

concentrations, 0.1 mg/mL and 1.0 mg/mL, for their cytotoxic effects on cell viability, 

mitochondrial integrity and ROS generation. Two widely used human cell lines were 

evaluated to assess the GI tract and liver target organ cytotoxicity as a consequence of 
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exposure to these fractions. Cell viability, defined as the potential of a compound to induce 

cell death (336), was assessed using the MTT assay. In this study, a clear difference 

between the HepG2 cell line (human liver) and the Caco-2 cell line (human intestine) was 

observed regarding the exposure to <10 kDa fractions. Results showed a significantly (p 

<0.05) concentration-dependent decrease (maximum of 26%) in Caco-2 cell viability 

compared with the NEGc, after 24 h of exposure to <10 kDa fractions (Figure 13.3.A). This 

result indicates a relatively low cytotoxic effect for Caco-2 cell model at concentrations of 

1.0 mg/mL, which is in agreement to the observed by other kind of hydrolysates (337), (181), 

(344). In the case of HepG2 cell line, the ALH<10 kDa fraction, at the concentration of 0.1 

mg/mL, significantly (p <0.05) decreased the viability below 35% of the NEGc (p <0.05). On 

the other hand, the BSYH< 10 kDa fraction, at the concentration of 1.0 mg/mL, showed a 

significant increase (p <0.05) in HepG2 cells viability (Figure 13.3.B). 

In order to investigate whether the <10 kDa fractions could disturb the mitochondrial 

function, the mitochondrial membrane potential was evaluated through the TMRE inclusion. 

Results present in Figure 13.3.A showed that, except for ALH<10 kDa at the concentration 

of 1.0 mg/mL, all fractions were not effective in generating significant mitochondrial 

disruption in Caco-2 cell line, with decreases less than ~6% compared to NEGc. Regarding 

the HepG2 cell line (Figure 13.3.B), as observed for cell viability, the TMRE inclusion was 

significantly (p <0.05) lower for ALH<10 kDa at both test concentrations, 0.1 and 1.0 mg/mL. 

These results support the view of differential sensitivity of BSG protein hydrolysates among 

HepG2 and Caco-2 cellular models, but further investigation is needed.  
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Figure 13.3. Effect of BSG protein hydrolysates (<10 kDa fractions) on cell viability (%) and 

TMRE mitochondrial inclusion (%) in Caco-2 cell line (A) and HepG2 cell line (B), after 24 

h of incubation at 37ºC, 5% CO2. Each bar represents the mean ± standard deviation. NEGc 

(cells treated with medium only) and POSc (cells treated with medium and 1% Triton X-

100). For each assay (and for each cell model), bars labeled with different letters have mean 

values that are significantly different at p <0.05. Statistical analysis were performed by 

ANOVA followed by Duncan's multiple comparison test.  

 

  



 

242 

 

 

Figure 13.4. Protective effect of BSG protein hydrolysates (<10 kDa fractions at 

concentrations of 0.1 and 1.0 mg/mL) for 24 h against oxidative stress induced by H2O2 (6 

h of exposure) in Caco-2 cell line (A) and HepG2 cell line (B). Each bar represents the 

mean ± standard deviation. NEGc (cells treated with medium only); POSc (cells treated with 

medium and H2O2). (#) indicates respective differences between “no oxidative stress” and 

“oxidative stress” treatments at p <0.05. For “no oxidative stress” treatment (and for each 

cell model), bars labeled with different subscript letters have mean values that are 

significantly different at p <0.05. For “oxidative stress” treatment (and for each cell model), 

bars labeled with different superscript letters have mean values that are significantly 

different at p <0.05. Statistical analysis were performed by ANOVA followed by Duncan's 

multiple comparison test. 

 

 

13.4. CONCLUSIONS 

In conclusion, the <3 kDa fraction of ALH displayed the highest ACE-I activity, 

whereas <10 kDa fractions presented increased in vitro antioxidant potential and inhibited 

the intracellular ROS generation, as well, exerted a protective ability against H2O2 induced 

oxidative damage in Caco-2 and HepG2 cell lines. While much evidence exists with regard 

to BSG protein hydrolysates obtained from commercial enzymes, to our knowledge, this is 

the first study on the bioactivity of BSG protein hydrolysates prepared by a BSY extract rich 

in proteases. Therefore, the results obtained in this work suggest that these kind of 

hydrolysates may be useful functional ingredients to be used in food or pharmaceutical 

industries. Further work must be undertaken to identify the peptides that are responsible for 

exerting these activities. 
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GENERAL CONCLUSIONS 
 

 

The experimental work presented in this Ph.D. thesis is an effort to find a scientific 

basis for the valorisation of the main agro-industrial by-products from brewing and canned 

sardine industry. The sustainable exploitation of these by-products is of major relevance for 

both industries, in terms of economic and environmental perspectives. Brewer´s spent yeast 

(BSY) autolysates, sardine protein hydrolysates (SPH) and brewer´s spent grain (BSG) 

protein hydrolysates were prepared through RSM optimization and presented enhanced in 

vitro antioxidant and/ or ACE-I activities, when compared to the initial raw materials, 

suggesting its potential use as new bioactive ingredients. The major findings of the research 

undertaken are briefly discussed as follows. 

 

 Part I of this dissertation was focused on the potential reuse of BSY (Saccharomyces 

pastorianus), the second major by-product of the brewing process. A mechanic disruption 

method (using glass beads, under refrigerated conditions) of yeast cells and removal of the 

cell wall fraction was applied to produce a BSY extract, which comprises the inner content 

of yeast cells. Usually, autolysis is the conventional process applied to produce BSY 

extracts and recover the β-glucans and fibre fractions. Autolytic process involves incubation 

of cell suspensions of BSY at temperatures ranging from 45 to 60°C with a reaction time 

between 8 and 72 h; the final autolysate is a mixture of the cell wall and the inner yeast cell 

content. By contrast, the adoption of mechanic disruption before autolysis allowed the 

effective separation of two important cell fractions: (i) yeast cell wall rich in β-glucans and 

fibre and (ii) the intracellular content (BSY extract) composed by proteins, proteases, RNA, 

minerals and vitamins - both potential ingredients to be used in the formulation of functional 

foods and nutraceuticals.  

                                                                          

 The nutritional composition, antioxidant activity and phenolic compounds profile of 

BSY extract obtained by mechanic disruption was described in Chapter 2. Data showed 

that BSY extract presented high content of proteins (64%) with an amino acid profile well-

balanced for human consumption (PER of 2.4), RNA (4%), vitamins (B3, B6 and B9), 

macrominerals and trace elements. Additionally, BSY extract presented in vitro antioxidant 

activity and phenolic compounds in both the free and bounded forms, namely, gallic acid, 

protocatechuic acid, (±)catechin, p-coumaric, ferulic and cinnamic acids. Besides these 

compounds explain the antioxidant activity of the BSY extract, others that were not 

evaluated, namely, glutathione, maillard reaction products, sulfur-containing amino acids, 



 

246 

peptides as the peptide cyclo(His-Pro), and polysaccharides may also contribute to the 

observed activity. 

 

 The brewer’s yeast is reused in the fermentation process several times until its 

disposal, therefore the influence of serial repitching on the bioactivity of the BSY extract 

was investigated in Chapter 3. BSY extracts were prepared from yeast biomass with 2, 3, 

4 reuses, as well as, from a mixture of yeast biomass with different number of reuses in the 

brewing process. The TPC, TFC, antioxidant properties, ACE-I and proteolytic activities 

were in the range of 255-304 µM GAE/mL; 187-308 µM CE/mL; 255-304 µM TE/mL (FRAP 

assay), 255-304 µM TE/mL (DPPH assay); 255-304 µM TE/mL (RP assay), 266-468 µg 

protein/mL (IC50) and 0.14-0.22 U/mL, respectively. The antioxidant activity of BSY extract 

was comparable to the conventional synthetic antioxidant ascorbic acid, tested at the 

concentration of 500 µM, suggesting that BSY extract has potential application as a natural 

antioxidant ingredient in food systems. Additionally, the proteolytic activity of the BSY 

extracts indicated that in opposite to the conventional autolytic process, which applies high 

temperatures, the mechanic disruption process under refrigerated conditions employed in 

this work presents the advantage of recovery of native enzyme fraction. Hence, BSY extract 

was found to be a promising source of proteases to be used in the production of protein 

hydrolysates from different food matrices. Data of this experimental work also showed that 

the number of the yeast reuses in the brewing process does not influence significantly the 

antioxidant activity of BSY extracts; exhibiting, however, a negative effect in the proteolytic 

and ACE-I activities. Moreover, TPC, TFC, antioxidant properties and ACE-I activity 

presented good stability during a storage period of 6 months at -25ºC, although the 

proteolytic activity of BSY extracts decreased of approximately 50% after 4 months of 

storage at -25ºC. This last result indicated that the use of BSY extract as a source of 

proteases implies correct management and storage period for less than 4 months. 

 

 In Chapter 4, the BSY extract (rich in proteins and proteases) was submitted to 

autolysis, with the aim to enhance the antioxidant and ACE-I activities. RSM was the 

statistical methodology applied to optimize the autolysis conditions (temperature and time). 

Optimum autolysis conditions were 36.0ºC, 6.0 h, pH of 6.0 by which, the BSY autolysate 

presented TPC, FRAP and ACE-I activity of 385 µM GAE/mL, 374 µM TE/mL and 379 µg 

protein/mL, respectively. Those activities were significantly higher than the biological 

activities of the original BSY extract. In comparison with the conventional autolytic process, 

the autolysis process optimized in this work employs mild conditions (lower temperatures 

and reduced autolysis time), which can be economically advantageous from an industrial 

point of view. On the other hand, this process overcomes some limitations associated with 
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conventional autolytic process, such as, the low extraction yield, difficult separation of cell 

debris, production of several off-favour compounds and risk of deterioration due the 

microbial contamination.  

 

 As described in Chapter 5, the low-molecular-weight fraction of BSY autolysate was 

concentrated through 5 kDa MWCO - UF membrane and its bioactivity was investigated 

after simulated GI digestion; resistance to brush-border peptidases and transepithelial 

transport across Caco-2 and Caco-2/HT29-MTX co-culture cell monolayers. Data obtained 

after simulated GI digestion showed enhanced biological activity of BSY autolysate and 

protective effect against oxidative stress induced by hydrogen peroxide in Caco-2 cells. 

These results are of great relevance since GI tract is a major target for oxidative stress 

damage due to the constant exposure to diet-derived oxidants, mutagens, and carcinogens. 

Additionally, the antioxidant and ACE-I activities found in cell permeates indicate that 

bioactive compounds present in the BSY autolysate were well absorbed. In comparison with 

Caco-2 cell model, higher permeability was found in the Caco-2/HT29-MTX co-culture cell 

model, which is recognized as more physiological and a realistic approach of the in vivo 

intestinal conditions. Antioxidant and ACE-I activities of permeates suggest that bioactive 

peptides from digested BSY autolysate and from the action of brush-border peptidases were 

well absorbed. Mass spectrometry revealed that peptides with m/z between 1000 and 5000 

were transported across Caco-2/HT29-MTX co-culture cell monolayer, presumably via 

transcytosis mechanisms. Permeability of those oligopeptides was suggested to be related 

to the presence of permeability enhancers in BSY extract. 

 

 The Parts II and III of this dissertation were addressed to the potential utilization of 

BSY proteases over two different protein substrates, proteins extracted from sardine by-

products (animal origin) and BSG proteins (vegetal origin), in order to produce protein 

hydrolysates with enhanced antioxidant and/ or ACE-I activities. For this purpose, the BSY 

extract prepared by mechanic disruption under refrigerated temperatures was freeze-dried, 

resuspended in the same buffer (25% of the initial volume) and concentrated using a UF 

membrane with a UF MWCO of 10 kDa. Through this procedure, the proteolytic activity of 

the BSY extract increased around 4 fold. No enzyme purification was performed, hence the 

production of SPH and the BSG protein hydrolysates resulted from the action of a mixture 

of several BSY proteases. 

 

 Considering that the sarcoplasmic proteins represent 20-30% of total sardine proteins 

and are characterized for its higher solubility and digestion compared to the myofibrillar 

proteins, the first attempt to produce SPH by action of BSY proteases was performed in this 
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protein fraction (Chapter 7). RSM was used to optimize the hydrolysis conditions in order 

to obtain a SPH with enhanced antioxidant and ACE-I activities. SPH produced using the 

E/S ratio 0.27:1 U/mg (0.725 U/mL), 50ºC for 7 h, at pH of 6.0 presented a FRAP value of 

290 μM TE/mL, an ACE-I activity (IC50) of 164 µg protein/mL and relatively high content of 

hydrophobic amino acids, such as, proline, leucine, glycine, isoleucine, phenylalanine and 

valine; as well, amino acids that exhibit antioxidant activity, namely, tyrosine, histidine, 

methionine and lysine.  

 

 As reported in Chapter 8, FRAP value and ACE-I activity of SPH were enhanced by 

UF, using a 10 kDa MWCO - UF membrane. The ACE-I potential of SPH remained 

unchanged upon simulated GI digestion (117 µg protein/mL) but no ACE-I activity was 

detected after cell transport, which indicates that probably the bioactive compounds 

responsible for the ACE inhibition suffered proteolysis by brush-border peptidases. 

Regarding to antioxidant activity, the permeability assays showed that some SPH bioactive 

compounds permeated across Caco-2 and Caco-2/HT29-MTX co-culture cell monolayers, 

thereby providing further evidence of intestinal absorption. Similar to that observed for 

transepithelial transport of BSY autolysates, the Caco-2/HT29-MTX co-culture cell model 

also showed significantly higher apical to basolateral transport of SPH peptides when 

compared with Caco-2 cell model. This result suggested a low level of interaction with 

mucins produced by HT29-MTX and unimpaired diffusion of the SPH bioactive compounds. 

Moreover, mass spectrometry revealed that peptides with m/z between 1000 and 5000 were 

transported across Caco-2/HT29-MTX co-culture cell monolayer, presumably via 

transcytosis mechanisms. 

 

 The SPH (after simulated GI digestion) was also screened for its anti-inflammatory 

activity (Chapter 9). For this purpose, a co-culture model, which combines the absorption 

by differentiated Caco-2 cells and sequential effects on endothelial cells metabolism, was 

compared with the standard method, which exclusively considers the direct exposition effect 

of SPH on endothelial cells metabolism. Data demonstrated that SPH exhibited anti-

inflammatory activity in TNF-α simulated endothelial cells, through the inhibition of NO, ROS 

and pro-inflammatory cytokines production, MCP-1, VEGF, IL-8 and ICAM-1. Likewise, 

results suggested that the protective health effects of SPH might not only be due to SPH 

bioactive compounds, but also due to their metabolites produced by the action of Caco-2 

cell peptidases in the course of intestinal absorption. In this regard, the co-culture model, 

which represents a more physiological and realistic approach compared with in vivo 

conditions, allowed more accurate knowledge about the anti-inflammatory activity of the 

SPH studied.  
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Due to the fact that BSY proteases efficiently hydrolysed the sarcoplasmic proteins 

from sardine by-products, the action of this enzymatic preparation was also evaluated on 

muscle and viscera proteins, recognized as proteins more resistant to hydrolysis. The bio-

functional and techno-functional properties of the muscle and viscera SPH were compared 

with properties obtained by SPH produced using commercial enzymes, Alcalase® and 

Neutrase®, which are widely used in the SPH preparation (Chapter 10). Muscle and viscera 

SPH were produced at the same hydrolysis conditions, using the same protein substrate 

concentration, 20 mg of protein/mL, an E/S ratio of 0.20:1 U/mg (1 U/mL), 50ºC and 7 h  of 

treatment. The results obtained in this chapter indicated that the type of enzyme used 

influenced the bio-functional and techno-functional properties of SPH. Among all treatments 

Alcalase® produced SPH with higher DH% and higher antioxidant and ACE-I activities for 

both muscle [DPPH of 870 µM TE/mL and ACE-I (IC50) of 619 µg protein/mL] and viscera 

proteins [DPPH of 840 µM TE/mL and ACE-I (IC50) of 651 µg protein/mL]. BSY enzymatic 

approach produced muscle and viscera SPH with lower DH% and lower bio-functional 

activities. However, viscera SPH prepared by BSY proteases presented significantly higher 

emulsion (80.1 m2/g), foaming (79.2%) and oil binding capacity (5.8 g/g) compared with 

other viscera SPH. All SPH were considered potential ingredients to be incorporated into 

various food formulations to improve rheological properties. 

 

BSG protein fraction was another substrate investigated for BSY proteases action. 

BSG hydrolysates with improved biological activities can be an alternative approach for 

valorisation of the second major brewing by-product. As described in Chapter 12, the 

hydrolysis conditions optimized by RSM were: E/S ratio of 0.29:1 U/mg (0.725 U/mL), 50ºC, 

6 h, pH of 6.0; which allowed the maximum DH of 17.1%, TPC of 1.65 mg GAE/mL and 

FRAP value of 1.88 mg TE/mL. The main BSY proteases responsible for the BSG protein 

hydrolysis were indicated as belonging to the class of serine peptidases and 

metallopeptidases.  

 

Afterwards, the efficiency of the BSY proteases for production of BSG protein 

hydrolysates was compared with two commercial enzymes: Alcalase® and Neutrase® 

(Chapter 13). The same proteolytic activity (1 U/mL), protein substrate concentration (15 

mg of protein/mL), E/S ratio of 0.10:1 U/mg, 50ºC and 4 h treatment were applied to prepare 

BSG protein hydrolysates. Additionally, the effect of UF using 10 and 3 kDa MWCO 

membranes on antioxidant and ACE-I activities of these hydrolysates was investigated. 

Data showed that among the three enzymatic approaches, Alcalase® BSG protein 

hydrolysate presented the highest ACE-I activity (385 µg protein/mL), whereas the IC50 

values of BSG protein hydrolysates prepared by BSY proteases and Neutrase® action were 
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820 and 615 µg protein/mL, respectively. UF with 10 kDa MWCO membrane increased the 

ACE-I activity of Alcalase® BSG protein hydrolysate (312 µg protein/mL), as well, the in 

vitro antioxidant potential (TPC of 0.084 mg GAE/mg dw and FRAP of 0.129 mg TE/mg dw). 

In general, all the three <10 kDa UF fractions of BSG protein hydrolysates inhibited the 

intracellular ROS generation and exerted a protective ability against hydrogen peroxide 

induced oxidative damage in Caco-2 and HepG2 cell lines at concentrations of 1 mg 

protein/mL, suggesting its potential use in food systems as natural additives possessing 

antioxidant properties. 

 

In this work, the biological activities (antioxidant, ACE-I and anti-inflammatory) 

reported were screened exclusively through in vitro assays. Therefore, it is important to 

highlight the limitations associated to the in vitro assays, since they are less representative 

of the physiological situation and no conclusions can be made in the long term. However, 

in a first attempt to screen the biological activities of new potential bioactive ingredients, in 

vitro models reveal several advantages over in vivo experiments with laboratory animals 

and clinical trials in humans. For instance, they pose no ethical restrictions, are more 

reproducible and suited for standard operation, have lower costs, allow fast screening of 

numerous samples and are easier to investigate underlying mechanisms. 

 

Compared to literature, where emphasis is put on the isolation of antioxidant and 

ACE-I peptide(s) and their in vitro biological activities and in vivo pharmacological effects, 

this dissertation addressed the in vitro antioxidant and ACE-I activities of complex 

autolysates/ hydrolysates. Accordingly, the antioxidant and ACE-I activities exhibited by 

BSY autolysates, SPH and BSG protein hydrolysates resulted from the synergistic effect of 

a mixture of several compounds, such as, peptides, amino acids and phenolic compounds. 

As GI digestion and intestinal transport are the major barriers in the bioavailability of 

antioxidant and ACE-I bioactive compounds, research was focused on the effects of 

simulated GI proteases/peptidases in the formation and degradation of bioactive 

compounds and its susceptibility to intestinal transport. The ACE-I activity after simulated 

GI digestion was more pronounced for sarcoplasmic SPH (IC50 of 117 µg protein/mL) than 

for BSY autolysate (IC50 of 345 µg protein/mL). This result could suggest that SPH produced 

from action of BSY proteases on sarcoplasmic proteins from sardine by-products presented 

higher and potential to exert biological activity in vivo.  

 

The comparison of ACE-I activities of BSY autoysates, SPH and BSG protein 

hydrolysates with other results reported in the literature is a difficult task due the use of 

different in vitro assays. However, the new bioactive ingredients produced in this work have 
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potential to be used in the prevention of hypertension or as initial treatment in mild 

hypertensive individuals. 

 

In conclusion, this Ph.D. thesis revealed that BSY, the second major by-product from 

brewing process is a valuable source of proteins and proteases for the production of protein 

autolysates and hydrolysates. The promising antioxidant and ACE-I activities of BSY 

autolysates, SPH and BSG protein hydrolysates produced during the present study makes 

them potential ingredients to be explored in functional foods, cosmetic and pharmaceutical 

products. Hence, the results from this experimental work will contribute for the sustainability 

of brewing and canned sardine industry through the development of value-added products 

with greater commercial market.  

 

 

 

FUTURE PROSPECTS 
 

As aforementioned in Chapter 6, several scientific, technological and regulatory 

issues should be comprehensively addressed if the major goal is the development of new 

bioactive ingredients to be incorporate in food chain or used as pharmaceutical agents in 

human nutrition and health. Thus, considering the conclusions obtained within this Ph.D. 

thesis, additional studies should be undertaken before application of BSY autolysate, SPH 

and BSG protein hydrolysates as nutraceutical or functional food ingredients, namely:   

(i) the purification and identification of the bioactive compounds responsible for the 

in vitro biological activities; 

(ii) the confirmation of the in vivo biological activities through animal model systems; 

(iii) the sensory evaluation of the potential new ingredients for the consumer 

acceptance. 

 

The major barriers in the bioavailability of antioxidant compounds and ACE-I peptides 

are GI digestion and intestinal transport. In this work, permeability studies using the Caco-

2 cell and Caco-2/HT28-MTX co-culture cell models provided evidence to support the 

possibility that antioxidant compounds present in the BSY autolysate and sarcoplasmic SPH 

were transported through the intestinal epithelium and may exert antioxidant activity in vivo. 

However, the identification of antioxidant peptides was not assessed during the present 

study and hence the mechanism of antioxidant action, the fate of antioxidant compounds 

during GI digestion and intestinal transport, as well as, the mechanisms of cell transport are 

need to be elucidated.  
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On the other hand, although the ACE-I activity of BSY autolysate was detected in the 

Caco-2 and Caco-2/HT28-MTX co-culture cell permeates, in case of sarcoplasmic SPH 

permeates no ACE-I activity was detected at the concentration tested, 2.0 mg proteins/mL. 

Although it was suggested that ACE-I peptides were degraded by brush border peptidases, 

there is also a possibility that sarcoplasmic SPH peptides present ACE-I activity if higher 

concentrations were used in this assay. Furthermore, as discussed in Chapter 7, the 

inhibition of ACE-I activity is not the only mechanism by which bioactive peptides can act 

as antihypertensive agents; bioactive peptides can also exhibit opiate and/ or vasorelaxing 

properties. Furthermore, since the sarcoplasmic SPH also presents high antioxidant 

potential, the antioxidant compounds could contribute to reduce the oxidative stress-related 

damage and, thereby, still reduce hypertension. Thus, it would be interesting to assess 

other possible antihypertensive mechanisms of sarcoplasmic SPH peptides. Moreover, the 

efficacy of BSY autolysate and sarcoplasmic SPH in cardiovascular diseases should be 

tested via in vivo animal model systems, firstly with spontaneously hypertensive rats (SHR) 

and further through clinical trials with human volunteers to validate the effective biological 

activity in vivo. Studies with sarcoplasmic SHR can involve measurement of systolic arterial 

blood pressure and determination of ACE activity and angiotensin II levels in plasma, after 

BSY autolysate or sarcoplasmic SPH oral administration (by gavage using a ball ended 

feeding needle). Additionally, the effect of chronic (oral) administration of BSY autolysate 

or sarcoplasmic SPH on structural patophysiological changes can be performed.  

  

Once the potential biological activities of BSY autolysate and sarcoplasmic SPH 

peptides are established through clinical trials, further research is needed to identify 

appropriate functional food applications, as well as, to overcome problems during 

incorporating of these potential bioactive ingredients into food matrices. One possible 

problem is the bitterness associated with low molecular weight peptides and amino acids, 

probably present in BSY autolysate and sarcoplasmic SPH. In this case, the application of 

exo- and endo-peptidases to remove bitter amino acids without losing intended activity 

could be done. Other alternative is to mask the bitter taste via encapsulation of the 

compounds of interest, thus avoiding bitter taste perception and bioactive peptide 

degradation during digestion. Sensory studies will be required for this step. 

Another problem to face is the possible interactions of bioactive compounds with other 

components in the food matrix during processing and storage period. Encapsulation of 

bioactive compounds is an effective strategy to overcome this limitation. Also, possible 

allergic reactions by incorporating bioactive compounds into functional foods may occur. 

Although BSY autolysate and sarcoplasmic SPH were non-toxic to Caco-2 cells when 

incubated for 24 h, at concentrations lower than 4.0 mg protein/mL, the present study did 
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not look into the possible allergenicity associated with these potential nutraceuticals. Thus, 

considering these potential limitations, more research work is need in order to develop a 

functional food acceptable by consumers and without adverse effects. 

 

Concerning the main findings obtained in Chapter 9, relative to the potential anti-

inflammatory activity of sarcoplasmic SPH, further investigation of the sarcoplasmic SPH is 

required regarding its molecular composition, mechanisms of action and overall anti-

inflammatory effects in vivo. With respect to the potential techno-functional properties 

observed for viscera SPH prepared by BSY proteases treatment (Chapter 10), its potential 

use as a multi-functional ingredient in emulsion-type food formulations should be also 

investigated. Finally, concerning to BSG protein hydrolysates (Chapter 12) further assays 

should be undertaken to evaluate the effects of simulated GI digestion and in vitro 

permeability transport on the biological activities. Moreover, before its exploitation as 

nutraceutical or a functional ingredient, its biological efficacy should be ascertain through in 

vivo assays.  
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