
Using NEXUS Compliant Debuggers for Real Time Fault
Injection on Microprocessors

André Fidalgo, Manuel Gericota, Gustavo Alves
Department of Electrical Engineering – ISEP

Rua Prof. Bernardino de Almeida 431
P-4200 Porto, PORTUGAL

+351.22.8340500
{anf, mgg, gca}@isep.ipp.pt

José Ferreira
Department of Electrical Engineering – FEUP

Rua Dr. Roberto Frias, s/n
P-4200-465 Porto, PORTUGAL

+351.22. 508 14 00
jmf@fe.up.pt

ABSTRACT1
As electronic devices get smaller and more complex,
dependability assurance is becoming fundamental for many
mission critical computer based systems. This paper presents a
case study on the possibility of using the on-chip debug
infrastructures present in most current microprocessors to execute
real time fault injection campaigns. The proposed methodology is
based on a debugger customized for fault injection and designed
for maximum flexibility, and consists of injecting bit-flip type
faults on memory elements without modifying or halting the
target application. The debugger design is easily portable and
applicable to different architectures, providing a flexible and
efficient mechanism for verifying and validating fault tolerant
components.

Categories and Subject Descriptors
B.8.1 [Hardware]: Performance and Reliability – Reliability,
Testing, and Fault-Tolerance.

General Terms
Design, Reliability, Experimentation, Standardization.

Keywords
Fault Injection, Real Time Systems, On Chip Debug

1. INTRODUCTION
Today, most safety-critical applications require the use of some
type of computer-based device, causing their implantation to grow
and expand into new areas like the automotive and biomedical
fields. However, as electronic systems increase in complexity and
decrease in size their correct operating behavior is becoming
harder to guarantee [1]. Circuits are getting more sensitive to
noise and to other factors, with the appearance of soft errors
becoming a real possibility even for devices used in non-hostile
environments, making dependability a necessity for a much
broader area of applications. Dependable systems are designed to
handle errors that originate from software or hardware faults and

This work is supported by an FCT program under contract POSC/EEA-
ESE/55680/2004
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SBCCI'06, August 28–September 1, 2006, Minas Gerais, Brazil.
Copyright 2006 ACM 1-59593-479-0/06/0008...$5.00.

to recover from them, while maintaining acceptable operating
conditions. The possibly destructive nature of a failure and the
long error latencies impair identifying the cause of failures in
field operation and in the normal time that it takes for a failure to
occur. To identify and understand potential errors, it is desirable
to experiment on an actual device as to better study and improve
its dependability. This approach can be applied either on the
development phase, where models or prototypes are used, or on
the deployment phase, if faults can be deliberately injected in
useful time without damaging the equipment. This experiment-
based approach requires knowledge of the system architecture and
behavior, and especially of the mechanisms implemented to
provide tolerance to faults, errors or failures, i.e. the events
leading to a service failure on microprocessor based systems [2].
Specific instruments and tools must be used to induce these
hazards and monitor their effects and in the case of
microprocessor systems, access to the internal resources is of
utmost importance. Many of today’s microprocessors provide
such access through dedicated built-in debug circuitry, often
designated as on-chip debug (OCD). The use of these OCD
infrastructures for fault injection purposes is an efficient solution
for verifying and validating fault tolerant designs. This paper
describes recent research on real time fault injection (i.e. without
halting application execution) targeting such devices, based on the
development and use of a debugger optimized for fault injection.
The rest of the paper is organized as follows: the next section
gives an overview of fault injection methodologies used on
microprocessor systems and previous work on this area; section 3
presents the system used as a case study, the fault injection
oriented debugger and some proposals for enhanced fault
injection support; section 4 presents the experimental results
obtained so far and finally section 5 discusses these results and
lays the basis for future work.

2. FAULT INJECTION METHODOLOGIES
2.1 Overview
In microprocessor systems, the most common methodology to
achieve dependability is the use of fault-tolerant components,
both in hardware and software. The correct behavior of such
components must be tested and fault injection can be used to (1)
identify design or implementation faults, (2) verify & validate
fault tolerance capabilities and (3) estimate how often failures will
occur and evaluate the consequences of such failures.
Fault injection is normally structured in campaigns, each being
composed of a series of experiments during which the target
system runs (a specific application is executed) and a specific
fault (or set of faults) is inserted at specific trigger conditions. The
target system behavior is monitored and information is recorded

214

as comprehensively as necessary and possible, to later understand
and evaluate the effects of the inserted fault(s).
Existent microprocessor fault injection techniques are commonly
classified in three broad groups, namely (1) simulation based fault
injection, (2) software based fault injection (SWIFI), and (3)
physical fault injection.
Simulation based fault injection is mostly used in the early phases
of a design when the target system exists only in model format.
This technique requires a model of the target itself, (normally in
some HDL format), the necessary simulation tools to insert faults
and adequate processing capabilities to run the simulation [3].
Software based fault injection consists of reproducing at a logical
level the errors originated by physical faults using software
commands already available on the target device. This allows the
injection of errors on all resources accessible by software, like
registers, program and data memory, most peripherals and some
timers [4]. Physical fault injection is a more realistic approach in
the sense that it tries to replicate real world faults. All physical
techniques perform an actual fault insertion on the circuit or
emulate their immediate consequences (errors) through internal or
external action. Access to the circuit elements is usually
performed either through specific hardware equipment [5] or
using debug and test infrastructures included on the target chip
[6]. Physical fault injection may also be performed without a
direct connection between the fault injector and the system under
test, either through laser [7], heavy-ion radiation or
electromagnetic fields [8].
The hardest part of microprocessor fault injection is how to access
those internal elements where faults are more probable, generally
the memory elements and communication buses, without
disturbing the running applications. OCD infrastructures provide
access to internal resources in parallel with the target hardware
and running software, being an excellent mechanism for
modifying register and / or memory values (i.e. insert faults) and
subsequently retrieve the data necessary for result analysis.
The OCD facilities implemented by different families of
processors share some common characteristics that form a core
feature set, which usually includes run-control, breakpoint support
and memory and register access. Some devices include more
advanced features like watchpoints, program trace and real time
debugging capabilities. In general, an OCD is a combination of
hardware and software on the microprocessor chip that requires
some external hardware to be used, the basic requirement being
some kind of communication link between the chip and the host
machine. The access to the OCD infrastructure is made through an
interface port usually requiring an external debugger in between.
The use of OCD infrastructures for fault injection can overcome
some of the limitations present on other approaches. For instance,
simulation techniques are often time-consuming and may lead to
erroneous results as they are intrinsically dependant on the quality
of the available model. SWIFI techniques require modifications to
the running code, which in fact modifies the target system, and
coverage is limited to the resources accessible by software. Most
physical fault injection techniques are expensive and precise
control of the instant and location of a fault is often very difficult
or even impossible. In most cases, OCD fault injection techniques
rely on halting the processor, either by the use of control signals
or breakpoints, and subsequently modifying the targeted registers
or memory locations to insert the intended faults. When available,
program or data trace provide an efficient mean to monitor fault
propagation and effects. Recent OCD implementations provide

added capabilities like real-time access to memory and online
trace data output. These can be effectively reused for real-time
fault injection in the sense that it is no longer necessary to halt the
target execution to insert faults.

2.2 Using commercial NEXUS debuggers
As a technological solution, a major problem with OCD is the
lack of a consistent set of capabilities and a standard
communications interface across processor architectures. An
industry consortium has been working on the establishment of a
standard for OCD, which is still on a proposal phase and is
formally designated as “IEEE-ISTO 5001, The Nexus 5001
Forum Standard for a Global Embedded Processor Debug
Interface” [9]. If widely adopted, it may be possible to employ the
same debugger to access the core of multiple processor
architectures and to use a similar set of debugging features for all.
Additionally, the feature set that this standard proposes for the
higher classes of compliance provides a useful set of tools for real
time fault injection in the form real time access to memory and
on-the-fly program and data trace.
Experimental work has been done in our research group and in the
DISCA-UPV [10] to evaluate the possibilities of executing real-
time fault injection on a NEXUS compliant microprocessor. The
target systems used were based on a Motorola MPC565 CPU [11],
which is a commercial 32 bit microcontroller with widespread use
on the automotive industry. The OCD infrastructure available on
the MPC565 devices is NEXUS Class 2+ compliant and includes
run control, watchpoint and breakpoint support, real time access
to memory (RAM only), access to all memory space and registers
on DEBUG mode (i.e. execution is halted). Trace support is very
flexible, being possible to log program and/or data accesses and
start the trace process on specific conditions, similar to those
available for breakpoint detection. In our case, the debugger used
was an iSystems IC3000 [12] (iTracePro version) and its
integrated debugging software Winidea 2005. This software
allows direct control of the debugger and the use of scripts
(running on the host machine) to automate the debugging tasks.
The fault injection environment is presented in Figure 1.

Figure 1. Fault Injection Environment (MPC565)

The fault campaigns were manually generated and translated into
Winidea scripts. A typical fault injection operation would require
the microprocessor to run until the triggering condition was met,
this being signaled to the host machine so that it could instruct a
memory access operation (via debugger and OCD) to inject the
intended fault. Two triggering options are available as the direct
use of a watchpoint signal is not possible on the Winidea
environment, namely: (1) injecting the fault after a specific period

215

of time, as measured by the host clock or (2) use the start of the
trace data recording to trigger the fault injection process.
The actual fault injection consists of reading the target memory
cell content, modifying it and then writing the faulty value on the
same cell. If the value of the target cell at the fault triggering
instant can be determined beforehand then the read operation can
be bypassed and the faulty value written immediately.
The obtained results confirmed most of the expected potentialities
and simultaneously identified some shortcomings both in fault
triggering and performance. It proved possible to insert faults in
memory space without affecting the running application and then
use the trace information gathered as an effective mean to analyze
program flow, before and after the actual fault activation.
However, as all NEXUS compliant debuggers currently
communicate with the host machine through Ethernet or USB
connections, and as the fault campaigns must be run on the host
machine, this imposes a bottleneck on the time required for an
actual memory access. This fact causes the time interval required
for reading a memory cell contents and writing back a modified
value to be measured in milliseconds. This delay allows the initial
data to be overwritten by the application running on the target
system, the magnitude of the problem depending of the running
application and memory position targeted, leading to inconclusive
results. An additional problem is the triggering of a fault. Even
using the trace data without halting the processor the required
information is not readily available, as it must reach the host
machine before it can be acted upon. This additional delay is also
in the range of milliseconds, limiting the practicability of its use
for triggering, because once action is taken the original event has
long passed and the precise delay can’t be accurately determined.
Both the described problems are not directly related with the OCD
capabilities but rather with the available tools, which lack some
features that, not being necessary for debug, would be very useful
for fault injection. The probability of the running application
overwriting the targeted cell during the fault injection process can
be minimized by reducing the writing delay of the fault injection
process. The triggering delay problem can be solved by adding
reactive behavior to the debugger so that it can perform a write
operation on the detection of a specific (1) signal or (2) message
from the target system. Both these solutions can be addressed by a
debugger with the required capabilities.

3. CASE STUDY
3.1 Target System
The use of a NEXUS compliant debugger benefits from the useful
features defined in this standard and increases the area of
immediate applicability of the developed concepts and solutions.
As neither the actual compatible CPUs nor the commercial
debuggers are easily modifiable, the reported case study requires
(1) an alternative microprocessor core where a compliant OCD
infrastructure could be implemented and (2) a customized
debugger, as specific libraries are required for each target. The
OCD and the debugger itself were developed as two distinct
VHDL modules, aiming to keep them simple and easily portable
to maintain a high level of compatibility with different target
architectures. In this way a complete proof-of-concept solution
was tested and the requirements for its migration to existent
systems (or under development) were evaluated.
The cpugenerator [13] building tool was selected to create the
different microprocessor targets. It is publicly available through
opencores [14] and allows the automatic creation of 4, 8, 16 or 32

bit RISC microprocessor cores, being possible to configure
several parameters like bus type, interrupt support and memory
configuration. The OCD version implemented on the target
system is NEXUS Class 2 compliant and provides some
customization features, to be compatible with different CPU
configurations with only minor adjustments. It is possible to
define the data bus width (input and output) and the internal
FIFOs used to store data prior to its decoding or communication.
These parameters are very important as they may constrain the
capabilities of the OCD in terms of trace and real time access. On
the other hand, the use of larger buses can significantly increase
the logic overhead imposed by the OCD infrastructure. The target
application for testing is a Matrix_addFT program, which is a
fault tolerant version of a matrix adder. This was selected as it is
simple to debug and also memory intensive. The fault tolerance is
achieved by duplicating each arithmetic operation and then
comparing the obtained results, with any difference triggering an
error detection routine. Although not as powerful as hardware
fault tolerance, this solution allows for some degree of
dependability without modifications to the hardware, at the cost of
memory space and some performance penalty.
The NEXUS standard defines a minimum set of debugging
features, the interface port and the communication protocol. The
implemented features include all common OCD features plus real
time access to memory. The interface with the outside world is
made using the AUX port option, which provides two message
data buses for OCD data input and output along with independent
clock and control signals. Two additional event pins allow halting
the processor and provide exact timing for watchpoint /
breakpoint signaling. The communication protocol followed the
NEXUS standard spec, with all mandatory messages being
included and two additional optional messages added for internal
register access and OCD configuration.

3.2 Fault Injection Environment
The selected fault model is the one used in most common fault
scenarios for microprocessor based critical systems [15] and
consists of single bit-flip faults in random memory elements at
also random moments during the application execution. The
actual fault trigger can be any instruction occurrence of the
running application, covering the entire execution time. The fault
location can be any resource accessible for writing through the
OCD, including memory and internal registers. As memory space
can be accessed with the target application running, this is the
area where the proposed solution presents the highest advantages.
Real time access to internal registers would be intrusive, and it is
not possible with actual OCD implementations. In this case, the
objective is the reduction of the interval during which the
execution is halted.
All experiments are structured into fault injection campaigns,
each one defining a set of fault injection operations where specific
fault coordinates (location x value) and trigger condition are
selected. In each such operation the processor is reset and the
application runs from start. Each campaign is generated by an
external tool and then described as a script with the necessary
messages to be sent to the OCD infrastructure, both for
configuration and data collection. Initialization is performed by
loading the application into memory and setting up the OCD
infrastructure as required by the specific operation. The target
memory value at the moment of the injection must be determined
beforehand, using either the knowledge of the running application

216

code or a prior faultless execution up to the fault triggering instant
and then using the OCD to read the relevant memory cell
contents. In this manner it is possible to determine the value that
should be stored so that a single bit-flip is caused on the target
with a single write operation. The fault trigger condition is
selected from the executed application code and can be any event
that triggers a watchpoint, like an instruction execution or a data
access. The normal fault injection scenario consists of the
NEXUS compliant target microprocessor, the debugger running
the fault injection campaigns and the host machine which is only
used for debugger set up (data upload) and posterior analysis (data
download). This is represented in Figure 2.

Figure 2. Fault Injection Environment (Case Study)

The main advantage of this fault injection solution is the debugger
capability to manage the entire fault injection process. Although
the host machine is responsible for downloading the fault
campaign data to the debugger and uploading the trace data after
the fault campaign execution, the entire fault campaign is
executed autonomously by the debugger. Additionally, if the
target system is implemented on a FPGA device it is possible to
add the debugger (and all relevant fault campaign data) as a
module implemented on the same device, with the inherent
advantages in terms of performance and cost.
Each fault injection operation consists of loading the debugger
input memory with a series of instructions describing the steps
required for its execution. After the initial set up is completed, the
debugger waits for the triggering condition to be met, which will
be signaled by a watchpoint hit signal or by a breakpoint hit
message. When either of these events occurs the debugger sends a
message to the OCD instructing it to write into the target memory
position the intended faulty value. Although the debugger allows
an instantaneous reaction, the actual fault insertion requires the
transmission and decoding (by the OCD) of at least one complete
message (the write command and data). During the entire
operation the output memory records the trace messages that are
sent by the OCD, to allow a subsequent program flow
reconstruction and fault effect analysis. From these messages it is
possible to diagnose fault effects, verifying if the fault was
acknowledged by the error detection routine, and after the
application runs its course it is possible to use the OCD to check
if all final results are correct. All set up steps can be done with the
target processor running normally, but the fault activation may
only take place after this set up is performed. The program trace is
not affected and operates normally before, during and after the
fault injection process, reacting exactly as if a “real” fault
occurred.

3.3 Debugger
The debugger allows the execution of the common debugging
operations, and was designed to optimize the execution of fault
injection operations with emphasis on execution speed. It can be
used to control the target system via the OCD, enabling run
control and non-intrusive access to most target resources
(depending on OCD capabilities). Figure 3 presents its internal
structure and main components, namely the debugger core, the
two memory banks (input and output) and the NEXUS
communication port.

Figure 3. Debugger

The debugger core is a simple processor type device that fetches
commands from the input memory, controls execution and
manages the data flow and possible error conditions. Table 1
displays a list of available commands and the corresponding
parameters.

Table 1 – Debugger Commands and Parameters
COMM PARAM DESCRIPTION

HALT None Halts target execution and enters
DEBUG mode.

RUN None Starts or resumes the target
microprocessor execution.

RESET None Resets the target microprocessor.

DRESET None
Resets the debugger, restarting
command fetch from the initial
input memory position.

DCONFIG <code> Configures the debugger according
to the <code> parameter.

WAIT <time> Waits for a number of clock cycles
defined by the <time> parameter.

WAITFOR <event>
<time>

Waits for a specific message or a
watchpoint hit signal from the
target OCD, during a specific
period of time. The messages can
be any response or trace message.

READRAM <address> Reads the contents of the memory
cell at the specified address.

WRITERAM <address>
<data>

Writes a byte of data to the
memory cell at a specified address.

READREG <address> Reads the contents of a register at
the specified address.

WRITEREG <address>
<data>

Writes a byte of data to the register
at the specified address.

217

Direct control is possible through specific signals (DLINK) which
may replace either the input or output memories (or both) as
source of commands and destination of data.
The access to the input memory, for reading purposes, is
controlled by the debugger core and executed sequentially. The
output memory is used to store data for subsequent program flow
analysis. The type of information stored can be selected by
configuring the debugger and depends on the task at hand and
available memory. The NEXUS port is managed by a
communication controller responsible for translating commands
into messages to be sent and retrieving the messages received
from the OCD. The width of the data buses defines the duration of
the transmission required by each message.

3.4 Performance Improvements
The fault injection procedure described on the previous
subsections was planed with the double objective of improving
the performance and maintaining the highest level of
compatibility with different target microprocessor architectures. It
is possible to improve performance even further by modifying the
OCD infrastructure present on the target microprocessor. Two
approaches requiring modifications to the OCD were tested,
namely (1) the simplification of the communication between the
debugger and the OCD and (2) the migration of the reactive
behavior to the OCD infrastructure itself. The first approach
implies modifications to both the OCD and the debugger and
consists of removing the NEXUS interface on both modules and
connecting the debugger directly to the OCD internal signals and
registers. The advantage is the elimination of the coding and
decoding of the NEXUS messages and the inherent delay induced
by those steps, however this approach can only be applied either
in simulation or using a special version of the target system. The
second approach is described in more detail in [16] and consists of
adding an extra module to the OCD infrastructure in order to
allow it to control part of the fault injection process. In this
alternative the debugger and the NEXUS interface are unchanged,
the differences being in the sequence of commands used for each
fault injection operation as the actual triggering of the fault and
memory writing is executed by the enhanced OCD itself.

4. EXPERIMENTAL RESULTS
The target system, the debugger and the different memories were
designed as VHDL models using the ISE 7.1i development
environment [17] and simulated using the Modelsim 6.0a
simulation engine. Four different CPU and OCD combinations
were used, as summarized in Table 2. The MPC565 is included
for comparison purposes, the values representing the best possible
configuration. The CPU configurations differ only in terms of bus
width. The OCD configurations vary in terms of port width and
on the size of the internal message buffers, with MDI being the
Message Data In bus and MDO the Message Data Out bus.

Table 2 – Target System Configurations

Configuration BUS
(bits)

CLK
(MHz)

MDI
(bits)

MDO
(bits)

CPU8a 8 bits 100 1 bit 1 bit
CPU8b 8 bits 100 2 bits 4 bits
CPU32a 32 bits 25 2 bits 8 bits
CPU32b 32 bits 25 4 bits 8 bits
MPC565 32 bits 40 2 bits 8 bits

CPU8a and CPU8b represent the minimal and recommended
configurations for 8 bit microprocessors, while CPU32a
represents a configuration equivalent to the best available for the
MPC565 microprocessor and CPU32b represents an improved
configuration for faster memory writing. All configurations
include separate ROM and RAM banks on the target system, the
first for storing the program code and the later for application
data. The fault campaigns were structured as follows:

 Each campaign is loaded into memory and the experiments
are executed sequentially with the target CPU being RESET
between experiments.
 The instruction address that triggers each fault injection is

randomly generated from the actually executed ROM space and
the target memory position is randomly selected from the actually
used RAM space.
 The OCD is configured once at the beginning of the

campaign, with the configuration depending on the fault injection
target (memory or registers). Depending on the target the trigger
is configured as a watchpoint (fault insertion on-the-fly) or a
breakpoint (execution is halted to insert the fault).
 The results are retrieved after all the experiments are

complete and their analysis is performed externally with each
experiment being diagnosed, to check if the final results are
correct and if the fault was detected by the fault tolerance routine.

The simulation of about 100 fault campaigns repeated for each
configuration returned the results presented in Table 3 -. In this
table, (1) OCD errors represent the fault campaigns that were
impossible to terminate due to trace overflow errors, (2)
inconclusive results represent experiments that had to be
discarded due to multiple bit-flip error insertion (caused by a
modification to the target memory during the fault injection
process), and (3) fault injection delay represents the time interval
between the meeting of the trigger condition and the actual
insertion of the faulty value as obtained from the simulation
waveforms.

Table 3 - Fault Injection Results
Configuration CPU8a CPU8b CPU32a CPU32b

1 OCD Errors 88% 0 0 0

2 Inconclusive
Results 0 2% 4% 3%

3 Fault
Injection 25 14 24 21

Some conclusions, relative to the fault injection process, are
possible at this stage:

• It wouldn’t be possible to execute the same fault campaigns
(on real time) on a system using an MPC565 and a
commercial controller as the reaction delay would be to high
for this particular application (the total execution time is less
than the interval required for injecting a single fault).

• Using configuration CPU8a causes a very high number of
OCD trace overflow errors due to the reduced MDO
bandwidth, making it impracticable to use this configuration
for fault injection.

• When targeting memory in real time, some experiments return
inconclusive results because the CPU writes on the memory
cell being targeted before the fault is actually inserted.

218

• The width of the communication channel between the
debugger and the OCD clearly affects the performance of the
fault injection process, with the use of larger buses reducing
the occurrence of inconclusive results.

• The number of equivalent gates for each module and each
target configuration is given by Table 4.

Table 4 – Area Overhead

CPU8a CPU8b CPU32a CPU32b
Module

Equivalent Gates

CPU core 9166 9166 53717 53717
OCD 6217 6985 17601 18801

Debugger

(except RAM)
766 766 1079 1079

From the above values it is possible to confirm that a simple
debugger (tasked only with fault injection campaigns
management and results storage) requires comparatively little
space on a programmable device.

5. CONCLUSIONS AND FUTURE WORK
Dependability evaluation efforts sometimes neglect the
possibilities of powerful OCD infrastructures present on the target
device, even knowing that their use as a mean to execute non-
intrusive real-time fault injection campaigns is often the best
solution in terms of performance and capabilities. The reasons
behind this are sometimes lack of appropriate tools or inadequate
documentation. The diversity of methodologies, feature
implementation and interface ports is also a downside. Our case
study shows that the use of an optimized debugger and an OCD
with real time access capabilities allows the execution of fault
campaigns on the target memory space with full coverage of the
application execution and all resources accessible through the
OCD. The possibilities in terms of fault triggering, fault injection
delay and fault coverage are dependent on the OCD capabilities.
Communication speed is the fundamental factor as the use of
larger communications ports allows faster operation and therefore
minimizes the risk of the running application interfering with the
process. In terms of coverage all resources accessible for reading
and writing can be targeted, and real time access is a big
advantage. Although some resources (registers, cache) that must
be considered have limited access via OCD the proposed solution
still offers a fast and logic efficient alternative. The migration of
some features to the inside of the OCD allows better performance
at the cost of little additional logic overhead on the target OCD
circuitry. The standardization of OCD capabilities and access
ports would also benefit the reusability of this fault injection
approach.
Ongoing work is aimed at applying the proposed solutions to
different target architectures and fault tolerant techniques.
Simultaneously, means to further improve performance and
coverage without incurring on unacceptable logic overhead and
intrusiveness are also being studied.

6. REFERENCES
[1] “Coping with SEUs/SETs in microprocessors by means of

low-cost solutions: A comparison study”; M. Rebaudengo,

M. S. Reorda, M. Violante, B. Nicolescu, R. Velazco; IEEE
Transactions on Nuclear Science, Vol 49, No 3; June 2002.

[2] “Basic concepts and taxonomy of dependable and secure
computing”; A. Avizienis, J.C. Laprie, B. Randell, C.
Landwehr; IEEE Transactions on Dependable and Secure
Computing, Volume 1, Issue 1; Jan 2004.

[3] “Comparison and application of different VHDL-based fault
injection techniques”; J. Gracia, J.C. Baraza, D. Gil, P.J. Gil;
IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems; San Francisco, USA; Oct 2001.

[4] “Experimental evaluation of a COTS system for space
applications”; H. Madeira, R. R. Some, F. Moreira, D. Costa,
D. Rennels; International Conference on Dependable
Systems and Networks; Bethesda, USA; June 2002.

[5] “Experimental Validation of High-Speed Fault-Tolerant
Systems Using Physical Fault Injection”; R. J. Martínez, P. J.
Gil, G. Martín, C. Pérez, J. J. Serrano; Seventh IFIP Working
Conf. Dependable Computing for Critical Applications:
DCCA-7; San Jose, USA; Jan. 1999.

[6] “Evaluation of the Thor Microprocessor Using Scan-chain-
Based and Simulation Based Fault-Injection”; P. Folkesson,
S. Svensson, J. Karlsson; 8th European Workshop on
Dependable Computing (EWDC-8); Goteborg, Sweden;
April 1997.

[7] “A Technique for Automated Validation of Fault Tolerant
Designs Using Laser Fault Injection (LFI)”; J. R. Samson ,
W. A. Moreno, F. J. Falquez; 28th Annual International
Symposium on Fault-Tolerant Computing; Munich,
Germany; June 1998.

[8] “Comparison of physical and software-implemented fault
injection techniques”; J. Arlat, Y. Crouzet, J. Karlsson, P.
Folkesson, E. Fuchs, G. H. Leber, IEEE Transactions on
Computers, Volume 52, Issue 9; Sept. 2003.

[9] “The Nexus 5001 Forum Standard for a Global Embedded
Processor Interface version 2.0”; IEEE-ISTO 5001; 2003.

[10] “INERTE: Integrated NExus-Based Real-Time Fault
Injection Tool for Embedded Systems”; P. Yuste, D. de
Andrés, L. Lemus , J. J. Serrano, P. J. Gil; The International
Conference on Dependable Systems and Networks; San
Francisco, USA; June 2003.

[11] www.freescale.com
[12] www.isystem.com/Products/Emulators/iC3000/
[13] Giovanni Ferrante, “CPUGEN 2.00”, 2003.
[14] www.opencores.org
[15] “How to characterize the problem of SEU in processors &

representative errors observed on flight”; R. Velazco, R.
Ecoffet, F. Faure; 11th IEEE International On-Line Testing
Symposium; Saint Raphael, France; July 2005.

[16] “A Modified Debugging Infrastructure to Assist Real Time
Fault Injection Campaigns”; A. Fidalgo, G. Alves, J.
Ferreira; 9th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems (in press); Prague, Czech
Republic; April 2006.

[17] www.xilinx.com

219

