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ABSTRACT1 
As electronic devices get smaller and more complex, 
dependability assurance is becoming fundamental for many 
mission critical computer based systems. This paper presents a 
case study on the possibility of using the on-chip debug 
infrastructures present in most current microprocessors to execute 
real time fault injection campaigns. The proposed methodology is 
based on a debugger customized for fault injection and designed 
for maximum flexibility, and consists of injecting bit-flip type 
faults on memory elements without modifying or halting the 
target application. The debugger design is easily portable and 
applicable to different architectures, providing a flexible and 
efficient mechanism for verifying and validating fault tolerant 
components. 

Categories and Subject Descriptors 
B.8.1 [Hardware]: Performance and Reliability – Reliability, 
Testing, and Fault-Tolerance. 

General Terms 
Design, Reliability, Experimentation, Standardization. 

Keywords 
Fault Injection, Real Time Systems, On Chip Debug 

1. INTRODUCTION 
Today, most safety-critical applications require the use of some 
type of computer-based device, causing their implantation to grow 
and expand into new areas like the automotive and biomedical 
fields. However, as electronic systems increase in complexity and 
decrease in size their correct operating behavior is becoming 
harder to guarantee [1]. Circuits are getting more sensitive to 
noise and to other factors, with the appearance of soft errors 
becoming a real possibility even for devices used in non-hostile 
environments, making dependability a necessity for a much 
broader area of applications. Dependable systems are designed to 
handle errors that originate from software or hardware faults and 
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to recover from them, while maintaining acceptable operating 
conditions. The possibly destructive nature of a failure and the 
long error latencies impair identifying the cause of failures in 
field operation and in the normal time that it takes for a failure to 
occur. To identify and understand potential errors, it is desirable 
to experiment on an actual device as to better study and improve 
its dependability. This approach can be applied either on the 
development phase, where models or prototypes are used, or on 
the deployment phase, if faults can be deliberately injected in 
useful time without damaging the equipment. This experiment-
based approach requires knowledge of the system architecture and 
behavior, and especially of the mechanisms implemented to 
provide tolerance to faults, errors or failures, i.e. the events 
leading to a service failure on microprocessor based systems [2]. 
Specific instruments and tools must be used to induce these 
hazards and monitor their effects and in the case of 
microprocessor systems, access to the internal resources is of 
utmost importance. Many of today’s microprocessors provide 
such access through dedicated built-in debug circuitry, often 
designated as on-chip debug (OCD). The use of these OCD 
infrastructures for fault injection purposes is an efficient solution 
for verifying and validating fault tolerant designs. This paper 
describes recent research on real time fault injection (i.e. without 
halting application execution) targeting such devices, based on the 
development and use of a debugger optimized for fault injection. 
The rest of the paper is organized as follows: the next section 
gives an overview of fault injection methodologies used on 
microprocessor systems and previous work on this area; section 3 
presents the system used as a case study, the fault injection 
oriented debugger and some proposals for enhanced fault 
injection support; section 4 presents the experimental results 
obtained so far and finally section 5 discusses these results and 
lays the basis for future work.  

2. FAULT INJECTION METHODOLOGIES 
2.1 Overview 
In microprocessor systems, the most common methodology to 
achieve dependability is the use of fault-tolerant components, 
both in hardware and software. The correct behavior of such 
components must be tested and fault injection can be used to (1) 
identify design or implementation faults, (2) verify & validate 
fault tolerance capabilities and (3) estimate how often failures will 
occur and evaluate the consequences of such failures. 
Fault injection is normally structured in campaigns, each being 
composed of a series of experiments during which the target 
system runs (a specific application is executed) and a specific 
fault (or set of faults) is inserted at specific trigger conditions. The 
target system behavior is monitored and information is recorded 
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as comprehensively as necessary and possible, to later understand 
and evaluate the effects of the inserted fault(s). 
Existent microprocessor fault injection techniques are commonly 
classified in three broad groups, namely (1) simulation based fault 
injection, (2) software based fault injection (SWIFI), and (3) 
physical fault injection. 
Simulation based fault injection is mostly used in the early phases 
of a design when the target system exists only in model format. 
This technique requires a model of the target itself, (normally in 
some HDL format), the necessary simulation tools to insert faults 
and adequate processing capabilities to run the simulation [3].  
Software based fault injection consists of reproducing at a logical 
level the errors originated by physical faults using software 
commands already available on the target device. This allows the 
injection of errors on all resources accessible by software, like 
registers, program and data memory, most peripherals and some 
timers [4]. Physical fault injection is a more realistic approach in 
the sense that it tries to replicate real world faults. All physical 
techniques perform an actual fault insertion on the circuit or 
emulate their immediate consequences (errors) through internal or 
external action. Access to the circuit elements is usually 
performed either through specific hardware equipment [5] or 
using debug and test infrastructures included on the target chip 
[6]. Physical fault injection may also be performed without a 
direct connection between the fault injector and the system under 
test, either through laser [7], heavy-ion radiation or 
electromagnetic fields [8]. 
The hardest part of microprocessor fault injection is how to access 
those internal elements where faults are more probable, generally 
the memory elements and communication buses, without 
disturbing the running applications. OCD infrastructures provide 
access to internal resources in parallel with the target hardware 
and running software, being an excellent mechanism for 
modifying register and / or memory values (i.e. insert faults) and 
subsequently retrieve the data necessary for result analysis. 
The OCD facilities implemented by different families of 
processors share some common characteristics that form a core 
feature set, which usually includes run-control, breakpoint support 
and memory and register access. Some devices include more 
advanced features like watchpoints, program trace and real time 
debugging capabilities. In general, an OCD is a combination of 
hardware and software on the microprocessor chip that requires 
some external hardware to be used, the basic requirement being 
some kind of communication link between the chip and the host 
machine. The access to the OCD infrastructure is made through an 
interface port usually requiring an external debugger in between.  
The use of OCD infrastructures for fault injection can overcome 
some of the limitations present on other approaches. For instance, 
simulation techniques are often time-consuming and may lead to 
erroneous results as they are intrinsically dependant on the quality 
of the available model. SWIFI techniques require modifications to 
the running code, which in fact modifies the target system, and 
coverage is limited to the resources accessible by software. Most 
physical fault injection techniques are expensive and precise 
control of the instant and location of a fault is often very difficult 
or even impossible. In most cases, OCD fault injection techniques 
rely on halting the processor, either by the use of control signals 
or breakpoints, and subsequently modifying the targeted registers 
or memory locations to insert the intended faults. When available, 
program or data trace provide an efficient mean to monitor fault 
propagation and effects. Recent OCD implementations provide 

added capabilities like real-time access to memory and online 
trace data output. These can be effectively reused for real-time 
fault injection in the sense that it is no longer necessary to halt the 
target execution to insert faults. 

2.2 Using commercial NEXUS debuggers 
As a technological solution, a major problem with OCD is the 
lack of a consistent set of capabilities and a standard 
communications interface across processor architectures. An 
industry consortium has been working on the establishment of a 
standard for OCD, which is still on a proposal phase and is 
formally designated as “IEEE-ISTO 5001, The Nexus 5001 
Forum Standard for a Global Embedded Processor Debug 
Interface” [9]. If widely adopted, it may be possible to employ the 
same debugger to access the core of multiple processor 
architectures and to use a similar set of debugging features for all. 
Additionally, the feature set that this standard proposes for the 
higher classes of compliance provides a useful set of tools for real 
time fault injection in the form real time access to memory and 
on-the-fly program and data trace. 
Experimental work has been done in our research group and in the 
DISCA-UPV [10] to evaluate the possibilities of executing real-
time fault injection on a NEXUS compliant microprocessor. The 
target systems used were based on a Motorola MPC565 CPU [11], 
which is a commercial 32 bit microcontroller with widespread use 
on the automotive industry. The OCD infrastructure available on 
the MPC565 devices is NEXUS Class 2+ compliant and includes 
run control, watchpoint and breakpoint support, real time access 
to memory (RAM only), access to all memory space and registers 
on DEBUG mode (i.e. execution is halted). Trace support is very 
flexible, being possible to log program and/or data accesses and 
start the trace process on specific conditions, similar to those 
available for breakpoint detection. In our case, the debugger used 
was an iSystems IC3000 [12] (iTracePro version) and its 
integrated debugging software Winidea 2005. This software 
allows direct control of the debugger and the use of scripts 
(running on the host machine) to automate the debugging tasks. 
The fault injection environment is presented in Figure 1. 

 
Figure 1. Fault Injection Environment (MPC565) 

The fault campaigns were manually generated and translated into 
Winidea scripts. A typical fault injection operation would require 
the microprocessor to run until the triggering condition was met, 
this being signaled to the host machine so that it could instruct a 
memory access operation (via debugger and OCD) to inject the 
intended fault. Two triggering options are available as the direct 
use of a watchpoint signal is not possible on the Winidea 
environment, namely: (1) injecting the fault after a specific period 
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of time, as measured by the host clock or (2) use the start of the 
trace data recording to trigger the fault injection process. 
The actual fault injection consists of reading the target memory 
cell content, modifying it and then writing the faulty value on the 
same cell. If the value of the target cell at the fault triggering 
instant can be determined beforehand then the read operation can 
be bypassed and the faulty value written immediately. 
The obtained results confirmed most of the expected potentialities 
and simultaneously identified some shortcomings both in fault 
triggering and performance. It proved possible to insert faults in 
memory space without affecting the running application and then 
use the trace information gathered as an effective mean to analyze 
program flow, before and after the actual fault activation. 
However, as all NEXUS compliant debuggers currently 
communicate with the host machine through Ethernet or USB 
connections, and as the fault campaigns must be run on the host 
machine, this imposes a bottleneck on the time required for an 
actual memory access. This fact causes the time interval required 
for reading a memory cell contents and writing back a modified 
value to be measured in milliseconds. This delay allows the initial 
data to be overwritten by the application running on the target 
system, the magnitude of the problem depending of the running 
application and memory position targeted, leading to inconclusive 
results. An additional problem is the triggering of a fault. Even 
using the trace data without halting the processor the required 
information is not readily available, as it must reach the host 
machine before it can be acted upon. This additional delay is also 
in the range of milliseconds, limiting the practicability of its use 
for triggering, because once action is taken the original event has 
long passed and the precise delay can’t be accurately determined. 
Both the described problems are not directly related with the OCD 
capabilities but rather with the available tools, which lack some 
features that, not being necessary for debug, would be very useful 
for fault injection. The probability of the running application 
overwriting the targeted cell during the fault injection process can 
be minimized by reducing the writing delay of the fault injection 
process. The triggering delay problem can be solved by adding 
reactive behavior to the debugger so that it can perform a write 
operation on the detection of a specific (1) signal or (2) message 
from the target system. Both these solutions can be addressed by a 
debugger with the required capabilities. 

3. CASE STUDY 
3.1 Target System 
The use of a NEXUS compliant debugger benefits from the useful 
features defined in this standard and increases the area of 
immediate applicability of the developed concepts and solutions. 
As neither the actual compatible CPUs nor the commercial 
debuggers are easily modifiable, the reported case study requires 
(1) an alternative microprocessor core where a compliant OCD 
infrastructure could be implemented and (2) a customized 
debugger, as specific libraries are required for each target. The 
OCD and the debugger itself were developed as two distinct 
VHDL modules, aiming to keep them simple and easily portable 
to maintain a high level of compatibility with different target 
architectures. In this way a complete proof-of-concept solution 
was tested and the requirements for its migration to existent 
systems (or under development) were evaluated.   
The cpugenerator [13] building tool was selected to create the 
different microprocessor targets. It is publicly available through 
opencores [14] and allows the automatic creation of 4, 8, 16 or 32 

bit RISC microprocessor cores, being possible to configure 
several parameters like bus type, interrupt support and memory 
configuration. The OCD version implemented on the target 
system is NEXUS Class 2 compliant and provides some 
customization features, to be compatible with different CPU 
configurations with only minor adjustments. It is possible to 
define the data bus width (input and output) and the internal 
FIFOs used to store data prior to its decoding or communication. 
These parameters are very important as they may constrain the 
capabilities of the OCD in terms of trace and real time access. On 
the other hand, the use of larger buses can significantly increase 
the logic overhead imposed by the OCD infrastructure. The target 
application for testing is a Matrix_addFT program, which is a 
fault tolerant version of a matrix adder. This was selected as it is 
simple to debug and also memory intensive. The fault tolerance is 
achieved by duplicating each arithmetic operation and then 
comparing the obtained results, with any difference triggering an 
error detection routine. Although not as powerful as hardware 
fault tolerance, this solution allows for some degree of 
dependability without modifications to the hardware, at the cost of 
memory space and some performance penalty.  
The NEXUS standard defines a minimum set of debugging 
features, the interface port and the communication protocol. The 
implemented features include all common OCD features plus real 
time access to memory. The interface with the outside world is 
made using the AUX port option, which provides two message 
data buses for OCD data input and output along with independent 
clock and control signals. Two additional event pins allow halting 
the processor and provide exact timing for watchpoint / 
breakpoint signaling.  The communication protocol followed the 
NEXUS standard spec, with all mandatory messages being 
included and two additional optional messages added for internal 
register access and OCD configuration. 

3.2 Fault Injection Environment 
The selected fault model is the one used in most common fault 
scenarios for microprocessor based critical systems [15] and 
consists of single bit-flip faults in random memory elements at 
also random moments during the application execution. The 
actual fault trigger can be any instruction occurrence of the 
running application, covering the entire execution time. The fault 
location can be any resource accessible for writing through the 
OCD, including memory and internal registers. As memory space 
can be accessed with the target application running, this is the 
area where the proposed solution presents the highest advantages. 
Real time access to internal registers would be intrusive, and it is 
not possible with actual OCD implementations. In this case, the 
objective is the reduction of the interval during which the 
execution is halted. 
All experiments are structured into fault injection campaigns, 
each one defining a set of fault injection operations where specific 
fault coordinates (location x value) and trigger condition are 
selected. In each such operation the processor is reset and the 
application runs from start. Each campaign is generated by an 
external tool and then described as a script with the necessary 
messages to be sent to the OCD infrastructure, both for 
configuration and data collection. Initialization is performed by 
loading the application into memory and setting up the OCD 
infrastructure as required by the specific operation. The target 
memory value at the moment of the injection must be determined 
beforehand, using either the knowledge of the running application 
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code or a prior faultless execution up to the fault triggering instant 
and then using the OCD to read the relevant memory cell 
contents. In this manner it is possible to determine the value that 
should be stored so that a single bit-flip is caused on the target 
with a single write operation. The fault trigger condition is 
selected from the executed application code and can be any event 
that triggers a watchpoint, like an instruction execution or a data 
access. The normal fault injection scenario consists of the 
NEXUS compliant target microprocessor, the debugger running 
the fault injection campaigns and the host machine which is only 
used for debugger set up (data upload) and posterior analysis (data 
download). This is represented in Figure 2. 

 
Figure 2. Fault Injection Environment (Case Study) 

The main advantage of this fault injection solution is the debugger 
capability to manage the entire fault injection process. Although 
the host machine is responsible for downloading the fault 
campaign data to the debugger and uploading the trace data after 
the fault campaign execution, the entire fault campaign is 
executed autonomously by the debugger. Additionally, if the 
target system is implemented on a FPGA device it is possible to 
add the debugger (and all relevant fault campaign data) as a 
module implemented on the same device, with the inherent 
advantages in terms of performance and cost. 
Each fault injection operation consists of loading the debugger 
input memory with a series of instructions describing the steps 
required for its execution. After the initial set up is completed, the 
debugger waits for the triggering condition to be met, which will 
be signaled by a watchpoint hit signal or by a breakpoint hit 
message. When either of these events occurs the debugger sends a 
message to the OCD instructing it to write into the target memory 
position the intended faulty value. Although the debugger allows 
an instantaneous reaction, the actual fault insertion requires the 
transmission and decoding (by the OCD) of at least one complete 
message (the write command and data). During the entire 
operation the output memory records the trace messages that are 
sent by the OCD, to allow a subsequent program flow 
reconstruction and fault effect analysis. From these messages it is 
possible to diagnose fault effects, verifying if the fault was 
acknowledged by the error detection routine, and after the 
application runs its course it is possible to use the OCD to check 
if all final results are correct. All set up steps can be done with the 
target processor running normally, but the fault activation may 
only take place after this set up is performed. The program trace is 
not affected and operates normally before, during and after the 
fault injection process, reacting exactly as if a “real” fault 
occurred. 

3.3 Debugger 
The debugger allows the execution of the common debugging 
operations, and was designed to optimize the execution of fault 
injection operations with emphasis on execution speed. It can be 
used to control the target system via the OCD, enabling run 
control and non-intrusive access to most target resources 
(depending on OCD capabilities). Figure 3 presents its internal 
structure and main components, namely the debugger core, the 
two memory banks (input and output) and the NEXUS 
communication port.  

 
Figure 3. Debugger 

The debugger core is a simple processor type device that fetches 
commands from the input memory, controls execution and 
manages the data flow and possible error conditions. Table 1 
displays a list of available commands and the corresponding 
parameters.  

Table 1 – Debugger Commands and Parameters 
COMM PARAM DESCRIPTION 

HALT None Halts target execution and enters 
DEBUG mode. 

RUN None Starts or resumes the target 
microprocessor execution. 

RESET None Resets the target microprocessor. 

DRESET None 
Resets the debugger, restarting 
command fetch from the initial 
input memory position. 

DCONFIG <code> Configures the debugger according 
to the <code> parameter. 

WAIT <time> Waits for a number of clock cycles 
defined by the <time> parameter. 

WAITFOR <event> 
<time> 

Waits for a specific message or a 
watchpoint hit signal from the 
target OCD, during a specific 
period of time. The messages can 
be any response or trace message. 

READRAM <address> Reads the contents of the memory 
cell at the specified address. 

WRITERAM <address> 
<data> 

Writes a byte of data to the 
memory cell at a specified address. 

READREG <address> Reads the contents of a register at 
the specified address. 

WRITEREG <address> 
<data> 

Writes a byte of data to the register 
at the specified address. 
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Direct control is possible through specific signals (DLINK) which 
may replace either the input or output memories (or both) as 
source of commands and destination of data.  
The access to the input memory, for reading purposes, is 
controlled by the debugger core and executed sequentially. The 
output memory is used to store data for subsequent program flow 
analysis. The type of information stored can be selected by 
configuring the debugger and depends on the task at hand and 
available memory. The NEXUS port is managed by a 
communication controller responsible for translating commands 
into messages to be sent and retrieving the messages received 
from the OCD. The width of the data buses defines the duration of 
the transmission required by each message.   

3.4 Performance Improvements  
The fault injection procedure described on the previous 
subsections was planed with the double objective of improving 
the performance and maintaining the highest level of 
compatibility with different target microprocessor architectures. It 
is possible to improve performance even further by modifying the 
OCD infrastructure present on the target microprocessor. Two 
approaches requiring modifications to the OCD were tested, 
namely (1) the simplification of the communication between the 
debugger and the OCD and (2) the migration of the reactive 
behavior to the OCD infrastructure itself. The first approach 
implies modifications to both the OCD and the debugger and 
consists of removing the NEXUS interface on both modules and 
connecting the debugger directly to the OCD internal signals and 
registers. The advantage is the elimination of the coding and 
decoding of the NEXUS messages and the inherent delay induced 
by those steps, however this approach can only be applied either 
in simulation or using a special version of the target system.  The 
second approach is described in more detail in [16] and consists of 
adding an extra module to the OCD infrastructure in order to 
allow it to control part of the fault injection process. In this 
alternative the debugger and the NEXUS interface are unchanged, 
the differences being in the sequence of commands used for each 
fault injection operation as the actual triggering of the fault and 
memory writing is executed by the enhanced OCD itself. 

4. EXPERIMENTAL RESULTS 
The target system, the debugger and the different memories were 
designed as VHDL models using the ISE 7.1i development 
environment [17] and simulated using the Modelsim 6.0a 
simulation engine. Four different CPU and OCD combinations 
were used, as summarized in Table 2. The MPC565 is included 
for comparison purposes, the values representing the best possible 
configuration. The CPU configurations differ only in terms of bus 
width. The OCD configurations vary in terms of port width and 
on the size of the internal message buffers, with MDI being the 
Message Data In bus and MDO the Message Data Out bus. 

Table 2 – Target System Configurations 

Configuration BUS 
(bits) 

CLK 
(MHz) 

MDI 
(bits) 

MDO 
(bits)

CPU8a 8 bits 100 1 bit 1 bit 
CPU8b 8 bits 100 2 bits 4 bits 
CPU32a 32 bits 25 2 bits 8 bits 
CPU32b 32 bits 25 4 bits 8 bits 
MPC565 32 bits 40 2 bits 8 bits 

CPU8a and CPU8b represent the minimal and recommended 
configurations for 8 bit microprocessors, while CPU32a 
represents a configuration equivalent to the best available for the 
MPC565 microprocessor and CPU32b represents an improved 
configuration for faster memory writing. All configurations 
include separate ROM and RAM banks on the target system, the 
first for storing the program code and the later for application 
data. The fault campaigns were structured as follows: 

 Each campaign is loaded into memory and the experiments 
are executed sequentially with the target CPU being RESET 
between experiments. 
 The instruction address that triggers each fault injection is 

randomly generated from the actually executed ROM space and 
the target memory position is randomly selected from the actually 
used RAM space. 
 The OCD is configured once at the beginning of the 

campaign, with the configuration depending on the fault injection 
target (memory or registers). Depending on the target the trigger 
is configured as a watchpoint (fault insertion on-the-fly) or a 
breakpoint (execution is halted to insert the fault). 
 The results are retrieved after all the experiments are 

complete and their analysis is performed externally with each 
experiment being diagnosed, to check if the final results are 
correct and if the fault was detected by the fault tolerance routine. 

The simulation of about 100 fault campaigns repeated for each 
configuration returned the results presented in Table 3 -. In this 
table, (1) OCD errors represent the fault campaigns that were 
impossible to terminate due to trace overflow errors, (2) 
inconclusive results represent experiments that had to be 
discarded due to multiple bit-flip error insertion (caused by a 
modification to the target memory during the fault injection 
process), and (3) fault injection delay represents the time interval 
between the meeting of the trigger condition and the actual 
insertion of the faulty value as obtained from the simulation 
waveforms. 

Table 3 - Fault Injection Results 
Configuration CPU8a CPU8b CPU32a CPU32b 

1 OCD Errors 88% 0 0 0 

2 Inconclusive 
Results 0 2% 4% 3% 

3 Fault 
Injection 25 14 24 21 

Some conclusions, relative to the fault injection process, are 
possible at this stage: 

• It wouldn’t be possible to execute the same fault campaigns 
(on real time) on a system using an MPC565 and a 
commercial controller as the reaction delay would be to high 
for this particular application (the total execution time is less 
than the interval required for injecting a single fault). 

• Using configuration CPU8a causes a very high number of 
OCD trace overflow errors due to the reduced MDO 
bandwidth, making it impracticable to use this configuration 
for fault injection. 

• When targeting memory in real time, some experiments return 
inconclusive results because the CPU writes on the memory 
cell being targeted before the fault is actually inserted.  
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• The width of the communication channel between the 
debugger and the OCD clearly affects the performance of the 
fault injection process, with the use of larger buses reducing 
the occurrence of inconclusive results. 

• The number of equivalent gates for each module and each 
target configuration is given by Table 4.  

Table 4 – Area Overhead 

CPU8a CPU8b CPU32a CPU32b 
Module 

# Equivalent Gates 

CPU core 9166 9166 53717 53717 
OCD 6217 6985 17601 18801 

Debugger 

(except RAM) 
766 766 1079 1079 

From the above values it is possible to confirm that a simple 
debugger (tasked only with fault injection campaigns 
management and results storage) requires comparatively little 
space on a programmable device.  

5. CONCLUSIONS AND FUTURE WORK 
Dependability evaluation efforts sometimes neglect the 
possibilities of powerful OCD infrastructures present on the target 
device, even knowing that their use as a mean to execute non-
intrusive real-time fault injection campaigns is often the best 
solution in terms of performance and capabilities. The reasons 
behind this are sometimes lack of appropriate tools or inadequate 
documentation. The diversity of methodologies, feature 
implementation and interface ports is also a downside. Our case 
study shows that the use of an optimized debugger and an OCD 
with real time access capabilities allows the execution of fault 
campaigns on the target memory space with full coverage of the 
application execution and all resources accessible through the 
OCD. The possibilities in terms of fault triggering, fault injection 
delay and fault coverage are dependent on the OCD capabilities. 
Communication speed is the fundamental factor as the use of 
larger communications ports allows faster operation and therefore 
minimizes the risk of the running application interfering with the 
process. In terms of coverage all resources accessible for reading 
and writing can be targeted, and real time access is a big 
advantage. Although some resources (registers, cache) that must 
be considered have limited access via OCD the proposed solution 
still offers a fast and logic efficient alternative. The migration of 
some features to the inside of the OCD allows better performance 
at the cost of little additional logic overhead on the target OCD 
circuitry.  The standardization of OCD capabilities and access 
ports would also benefit the reusability of this fault injection 
approach. 
Ongoing work is aimed at applying the proposed solutions to 
different target architectures and fault tolerant techniques. 
Simultaneously, means to further improve performance and 
coverage without incurring on unacceptable logic overhead and 
intrusiveness are also being studied.  
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