
A Framework for Fault Tolerant Real Time Systems Based on Reconfigurable
FPGAs

Manuel G. Gericota, Luís F. Lemos, Gustavo
R. Alves

Department of Electrical Engineering – ISEP
Rua Dr. António Bernardino de Almeida

4200-072 Porto, Portugal
{mgg,lfl,gca}@isep.ipp.pt

Mário M. Barbosa, José M. Ferreira
Department of Electrical and Computer

Engineering – FEUP
Rua Dr. Roberto Frias

4200-465 Porto, Portugal
jmf@fe.up.pt

Abstract♦

To increase the amount of logic available to the users
in SRAM-based FPGAs, manufacturers are using
nanometric technologies to boost logic density and
reduce costs, making its use more attractive. However,
these technological improvements also make FPGAs
particularly vulnerable to configuration memory bit-flips
caused by power fluctuations, strong electromagnetic
fields and radiation. This issue is particularly sensitive
because of the increasing amount of configuration
memory cells needed to define their functionality.

A short survey of the most recent publications is
presented to support the options assumed during the
definition of a framework for implementing circuits
immune to bit-flips induction mechanisms in memory
cells, based on a customized redundant infrastructure
and on a detection-and-fix controller.

1. Introduction

The introduction of Very Large Scale Integration
(VLSI) technologies increased substantially the
reliability of electronic systems, when compared with the
previous use of discrete components. Hence, the use of
fault tolerance techniques was confined only to specific
applications requiring high levels of reliability or
operating on harsh environments. Shrinking
transistors’ size leads to a greater integration and to a per
unit power reduction, enabling chips to grow both in size
and complexity. But new nanometer scales also brought
negative aspects, such as a high probability of
occurrence of memory bit-flips, caused by power
fluctuations, electromagnetic interferences or radiation.
This issue has a particular impact on the reliability of
SRAM-based Field Programmable Gate Arrays
(FPGAs). The exponential growth in the number of

♦ This work is supported by an FCT program under contract

POSC/EEA-ESE/55680/2004

memory cells needed for configuration purposes makes
them especially vulnerable to memory bit-flips, resulting
on Single Event Upsets (SEU) and Multi-Bit Upsets
(MBU) [1-7]. Despite faults due to memory bit-flips do
not physically damage the chip, their effects are
permanent, since the functionality of the circuits mapped
into the device is permanently altered.

Although anti-fuse technology-based FPGAs are less
prone to SEUs due to the absence of configuration
memory cells, SRAM-based FPGAs have been the
preferred choice, for instance, in space missions, like
MARS 2003 Lander and Rover vehicles, where they
were exposed to extremely harsh conditions. That’s
because their processing performance is 10 to 100 times
higher than the performance attained by anti-fuse
technology-based FPGAs, and also due to their
reconfigurable features, which enable resource
multiplexing, updating of algorithms during long space
missions, avoiding mission obsolescence, and correction
of design flaws in orbit [8].

In non-reconfigurable technologies, such as ASICs,
protection against SEUs is restricted to flip-flops,
because logic paths between them are typically hard-
-wired. Notwithstanding, Single Event Transients
(SETs), a charge transient induced in a wire by the
incidence of an heavy ion, may be propagated to flip-
-flop inputs, where they have a high probability to be
registered causing soft-errors in the user data. Besides, if
it strikes a clock line, double-clocking may occur leading
to an extemporaneous update that may affect, depending
on the charge value and on line attenuation, part of or all
the flip-flops driven by that line. Further protection is
only achieved through full module redundancy. This is
also a preferred choice to improve the reliability of
highly critical real-time applications based on FPGAs
[4, 8-10]. Due to their inherent configurability, FPGAs
are especially suitable for the implementation of modular
redundancy, since it does not require any new
architectural feature and it is function independent.
However, their dependency on memory cells to define
logic paths makes these also susceptible to SEUs. Again,

1311-4244-0681-1/06/$20.00 '2006 IEEE

in this case, the only effective protection is full module
redundancy [9].

In a discrete implementation of a Triple Modular
Redundancy (TMR) system, if a defect affects the
functionality of one module, the reliability index of the
system decreases, but the system still works correctly. In
this method, extra components are used to
instantaneously mask the effect of a faulty component,
meaning that no propagation of the fault will occur.
However, a second failure in one of the remaining
modules may lead to a system failure. Ideally, when a
module fails, it should be replaced to restore the initial
system redundancy index, but this action may not be
possible immediately. In certain cases, like in space
applications, it may even be impossible. With FPGAs
this drawback may be overcome without a significant
rise in costs, because, in the event of a module failure,
the initial system redundancy index may be restored just
by performing a reconfiguration of the affected module.
No physical replacement is therefore necessary.

The aim of this paper is to define a set of rules for a
new framework for implementing highly critical real-
-time integrated systems based on dynamically
reconfigurable FPGAs. The aim is to make these systems
immune to faults emerging from memory bit-flips, by
confining, detecting, locating and mitigating them. The
proposed framework is built around a customised Triple
Modular Redundancy implementation associated to a
fault detection-and-fix controller. This controller is
responsible for:

(i) detecting data incoherencies;
(ii) locating the faulty redundant module; and
(iii) restoring the original module configuration,

fixing it without affecting the normal operation of the
functional logic.

This mechanism was implemented in a XC2V1500,
part of the Virtex-II FPGA family from Xilinx. This
approach enables the confinement and detection of faulty
modules, and the determination of when reconfiguration
must be applied to restore proper system operation
before cumulative errors, induced over time, leads to its
failure. A short survey of the most recent data published
concerning the impact of radiation induced faults on
FPGAs and on FPGA based TMR implementations is
reviewed to support the options assumed during the
implementation phase. A discussion on the issues that
come up during this phase, mainly concerning design
options and architectural features of the FPGA, which
may prevent an efficient implementation of the proposed
framework, are presented. This work is part of a broader
project, aiming the design of FPGA-based self repairing
circuits. Several aspects related to its practical
implementation are also pointed out, and current and
future research lines are presented in the concluding
section.

2. Background

The results of several radiation campaigns performed
to understand the effects radiation induced faults have on
the behavior of circuits implemented in SRAM-based
FPGAs were reported in the literature by several authors
[2, 3, 10]. These authors observed that, in general,
radiation leads to changes on the correct functionality of
the circuits, an effect defined as a Single Event
Functional Interrupt (SEFI). A classification of SEFIs
according to the affected resources and their effects was
proposed in [1-2].

Several fault injection approaches, alternative to the
always expensive radiation campaigns, may also be
found in literature. A comparatively cheaper alternative
is the use of electromagnetic interferences to conduct
contactless fault injection. These are common
disturbances in automotive vehicles, trains, airplanes, or
industrial plants. Such a technique is widely used to
stress digital equipment. Thanks to the use of
commercial burst generators, this technique is easy to
implement [7].

A different approach is the use of emulation
techniques. Bit-flips are injected by direct manipulation
of the configuration memory bitstream of the FPGA,
either through changes in the original configuration
bitstream or at run-time through dynamic reconfiguration
[11, 12]. The greatest advantage of emulation methods is
the higher controllability of the experiments, in contrast
to the unpredictability of radiation or electromagnetic
interference fault injection, which enables a better
diagnostic of the effects of each SEU. A combination of
both techniques, not only to increase the controllability
of the experiments, but also to verify the accuracy of the
emulation fault injection techniques used, may be found
in [4, 7, 8, 13, 14].

Lately, several hardening techniques have been
proposed to avoid SEU effects on the functional
behavior of circuits. Correcting techniques based on
dynamic reconfiguration, known as scrubbing, like those
presented on [15-17], periodically read back the
configuration memory to detect bit-flips caused by
SEUs. If a bit-flip is detected the affected frame is
reconfigured and the system reset thereafter. However,
the same authors recognized some limitations to these
techniques: a fault-free read back of the configuration
bitstream does not always guarantee that a SEU did not
occur. As an example, SEUs or SETs affecting flip-flop
states occur without upsetting the bitstream but may
severely disturb or halt function operation. Another
drawback is fault detection latency. Reading back the
whole configuration memory may take several to
hundred of milliseconds, depending on the FPGA size
and on the interface used to perform the read back
operation. By then, the fault may already have caused
the irreversible malfunctioning of the whole system,

132

eventually interrupting its operation. In some cases, it
may even be impossible to recover from this situation.

Alternative techniques based on hardware redundancy
were proposed without the aim of identifying and
correcting the fault but just to mask its existence.
Through TMR extensive testing, several authors have
shown that SEU induced failures can be properly
controlled for the Virtex family of FPGA devices
[9, 10, 14, 18]. Fault tolerance is achieved using extra
components to instantaneously mask the effect of a
faulty component, meaning that no fault propagation will
occur. Still, as no fault detection occurs, the faulty
module is not replaced and therefore initial redundancy
(and reliability) is not restored. Consequently, over time,
cumulative faults will inevitably lead to a system failure.

The consideration of the results reached during
radiation campaigns concerning MBUs due to single
charged particles is also important, since they may
potentially affect multiple redundant modules and
produce incorrect values. The effects produced by MBUs
are intrinsically related to the architecture of the
configuration memory. In Virtex families, configuration
memory is divided into one bit wide vertical frames that
span from the top to the bottom of the array. Each
column of Configurable Logic Blocks (CLBs) comprises
multiple frames, which combine internal CLB
configuration and state information with column routing
and interconnection information. In [8] it is reported that,
in the case of the Virtex family, MBUs occurred all in
the same configuration frame while in the Virtex-II
family the percentage of MBUs that occurred in the
same configuration frame decreases to 88%. However,
no MBUs spanned the configuration data of separated
resource columns [4]. No correlation was observed
between MBUs and module granularity sizes, which
indicates that even at very fine granularities if the
modules are placed far enough to not share routing
networks, TMR is still a good option. These results also
reveal some important information about the placement
of the configurable memory cells inside the FPGA. This
information is important to understand the fault
induction mechanism due to radiation and
electromagnetic interferences.

In sum, the association between dynamic
reconfiguration and TMR seems thus far to be the most
effective way to mitigate the effects of radiation and
electromagnetic interferences, albeit some care must be
taken during the mapping of the circuits into the FPGA.

The above reviewed experimental results and
conclusions were taken into account when creating the
framework for the design and implementation of
radiation immune FPGA-based real-time systems that is
proposed in this paper.

3. Framework bases

At this point, it is logical to infer, based on the
previous analysis, that to protect the operation of an
FPGA-based systems against radiation and
electromagnetic interferences it has to be implemented
using TMR. Moreover, it has to incorporate an
autonomous mitigation mechanism to avoid system
failures due to the cumulative effects of SEUs.

In a classic TMR implementation [19], the correct
system output values are settled by voting elements that
accept the outputs from three redundant sources and
deliver the majority vote at their outputs. Each redundant
source may be a simple gate or a more complex unit, like
a microprocessor. The voting element accepts the
outputs from the three sources and delivers the majority
vote at its output. This concept can be extended to any
number of redundant modules to produce an N-modular
redundant (NMR) system, which can tolerate up to n
module failures, where n=floor[(N-1)/2].

The reliability equation for an NMR system is given
by [19]:

This assumes that the majority voter does not fail,

which is an unrealistic principle. When this assumption
is not verified, the reliability of the voter element will
determine the reliability of the circuit, since it will fail if
the voter fails, regardless of whether or not other
modules fail. The reliability of a voter in a redundant
system can be improved by replicating this element as
well, in a scheme that is called T-TMR. For its proper
nature, T-TMR implementations mask any single fault
emerging during circuit operation. Multiple faults may
also be masked providing that they affect only one of the
redundant modules or voters, or, if upsetting different
modules, they affect different signals and that bitwise
comparison is used. In these cases, faults are confined to
the module or voter where they emerged, not becoming
visible outside.

To fully prevent functional problems caused by
configuration upsets, each signal should enter the FPGA
in triplicate, using three input pins. Otherwise, if a single
input was connected to all three redundant modules, then
a failure at the single input would cause the error to
propagate through all the redundant modules, and thus
the error would not be masked.

This same principle applies to clock signals. Each of
the triplicate circuit modules should receive its own
clock. Otherwise, spurious signals induced by SETs on a
single clock line may lead to an extemporaneous update
of all the three-module registers and to the asynchronous
output of possibly incorrect values.

() ()iN
M

i
M

n

i
NMR RR

i
N

R −

=

⋅−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑ 1

0

133

Output signals should also leave the FPGA in
triplicate, with minority voters monitoring each one of
the outputs. The three signals converge to a same node
outside. When one of the outputs is different from the
others, the correspondent pin is driven to high
impedance. Figure 1 illustrates this scheme.

Figure 1. Full TMR output scheme
implementation.

To avoid the effect of MBUs on the different modules
[4], the three redundant functional modules should be
placed in different columns of the FPGA. Therefore, the
FPGA should be divided in four vertical areas: three for
the functional circuit modules and a fourth for the
placement of the detection-and-fix controller. To avoid
possible route networking shares,
module’ interconnections to inputs and outputs should
not cross different implementation areas. The overall
implementation scheme is presented in figure 2, where
‘M’ stands for “Majority voters” while ‘m’ stands for
“minority voters”.

When one or more faults appear in one of the
modules or voters, the T-TMR implementation confines
the fault and masks its existence, avoiding its
propagation to the rest of the circuit. However, the
cumulative effects of several faults induced over time
may suppress the effectiveness of the confinement and
masking mechanism, resulting in fault propagation. With
the aim of detecting the emergence of faults a detection-
-and-fix controller is implemented in the fourth area
defined on the FPGA logic space. A detailed overview of
the detection-and-fix controller structure is shown in
figure 3. This controller is responsible for detecting data
incoherencies, locating the faulty module and restoring
the original configuration. This is done transparently,
through partial reconfiguration of the affected functional
module, without human intervention, since physical

component replacement is not needed. As a result, a
higher level of maintainability is achieved without
implying the inoperability of the circuit.

m

M

m

M

m

M

Implementation

area for module

3

Inputs

Outputs

Implementation

area for module

1

Implementation

area for module

2

FPGA
To the

controller

From the
controller

Controller
module

Capture
registers

Scan
chain

Figure 2. Proposed framework overview.

C
o
n
t
r
o
l
l
e
r

M
o
d
.
2

M
o
d
.
3

To the external
configuration

memory

Scan chains
from

redundant
modules

M
o
d
.
1

m

M

M

m

M

M

m

M

M

1
2
3

1

2

3

Scan

chains’

control

signals

FPGA

Figure 3. Overview of the detection-and-fix
controller structure.

4. Fault Detection, Location and Mitigation

This last point implies not only the existence of
redundancy but also of a mechanism able to detect the
emergence of an induced fault. It is very hard to detect a
fault in a T-TMR implementation using traditional
online test strategies, since the redundancy of the circuit
masks it instantaneously. In our approach, the detection
of the faulty modules is done through three scan chains
that regularly capture the values at the outputs of the
modules and voters. The use of scan-chains enables the

134

isolation of the module or faulty voter and the quick
diagnose of the area where it occurred.

A Boundary-Scan (BS)-like infrastructure [20] is used
to implement the scan chain. Since only observability is
required, a simple version of the BS cell, an observe-
-only input cell, as described in the IEEE 1149.1
standard [20] and shown in figure 4, was used.
Therefore, no delay is introduced in the signal’s path by
the scan chain. To avoid the capture of undefined values,
scan chain update is synchronous with the system clock,
assuring that modules or voters outputs will be in a
steady state when they are captured. The scan chain
control signals are generated by the detection-and-fix
controller. This controller regularly triggers the updating
of the scan chains and the shifting of its contents,
comparing the values at different outputs. In our
framework we used three parallel scan chains, each one
covering a different redundant module. In this way, it is
easier for the controller to diagnose with accuracy which
one of the three module areas was affected by the
occurrence of a fault, and to promote its reconfiguration.
Moreover, putting more than one scan chain in parallel
has the additional advantage of decreasing fault
detection latency. The shifting time will be divided by
the number of parallel scan chains, enabling more
frequent captures.

Fr
om

 p
re

vi
ou

s
sc

an
 c

el
l

Sh
ift

Te
st

_c
lo

ck

Figure 4. Observe-only BS cell.

The sequence of tasks followed by the detection-and-
-fix controller is represented on the flowchart shown in
figure 5. This sequence is endlessly repeated in search
for emerging faults in the controller or user modules.
The serial bitstreams captured through the scan chains
are shifted to the internal controller where they are
compared, bit-by-bit.

If an incoherency is detected, the module or voter
where it was produced is probably not working properly.
Obviously, the controller and the scan chains may also
be affected by SEUs that may cause their disruption. To
prevent it, the controller is implemented using T-TMR
and its modules and voters output signals are also
covered by the scan chains, creating a self-verifiable
circuit. The option of concentrating the controller in only

one area, despite being implemented using T-TMR, was
taken to not increase unnecessarily its complexity and
the number of occupied CLB columns. However, since it
occupies fewer slices than those available in the
columns, a convenient separation between modules was
implemented.

Figure 5. Detection-and-fix controller flowchart.

The first bits of the scan chain belong to the outputs
of the controller. If an incoherency is detected in those
first bits, the controller will immediately be full
reconfigured. This procedure aims to guarantee the good
working condition of the controller. Despite not being a
critical component concerning the functionality of the
system, its good working condition is mandatory to
avoid accumulation of errors and, as a result, to prevent
future system failure.

If an incoherency is detected on one of the outputs of
one of the modules or voters, the area where it is
implemented will be reconfigured after the last bit of the
scan chains has been shifted. If several incoherencies are
detected in the same module, the module is reconfigured
after a parameterizable number of errors, even before
reaching the last bit of the scan chains. A new capture is
then performed and the verification process restarted.

Of course, if an upset affects the values shifted
through the scan chain, this will lead to a wrong fault
diagnosis and consequently to an extemporaneous
reconfiguration of one of the modules. However, despite

135

unnecessary, it will not affect the whole system
operation.

A more complicated situation happens if the structural
configuration of the scan chains is affected by a fault. In
this case, several neighboring bits will be disturbed,
wrongly suggesting that a general failure in one or more
modules is taking place. In addition, to exactly locate the
place where the fault has emerged is not possible.
Therefore, after the occurrence of a parameterizable
number of errors, either in the controller or in the
modules, the controller undertakes the full dynamic
reconfiguration of the FPGA to completely restore the
scan chains.

The exact location of the faulty module or voter
enables the controller to activate the partial
reconfiguration and to restore its correct functional
definition. An external memory keeps the original partial
configuration files for the four defined areas. Notice that,
due to the volatility of the SRAM-like FPGA
configuration memory, this external memory is already
necessary to hold the FPGA configuration bitstream to
be uploaded during system power up.

The inclusion of a fault detection mechanism brings
several advantages to the performance of the recovery
procedure. In this case, scrubbing occurs only when its
need is identified and on a very defined target, which,
having in mind the intervals between the occurrence of
SEUs, even in space applications [15], results in
considerable power savings when compared with
periodic “blind” full reconfiguration.

Even SEUs that do not upset the bitstream, like those
affecting flip-flop states that cannot be removed by
reconfiguration, will be detected. This means, as
mentioned before, that scrubbing by itself can not assure
proper work, and TMR is always needed to avoid fault
propagation. However, due to the transient nature of
upsets, the soft error will be recovered by the circuit in
the subsequent update of the affected flip-flop.

5. Case study

To evaluate the effectiveness of our approach, a
twenty four-bit counter was implemented, following the
rules defined in the proposed framework, in a
XC2V1500-based prototyping board. The detection-and-
fix controller used a total of 254 slices, distributed by
two of the 40 available CLB columns, representing an
overhead of 5% in terms of occupied area. Notice that
this overhead is constant and independent of the size or
the complexity of the systems implemented on the
FPGA. The remaining 38 columns were divided in three
areas of 12 CLB columns each, leaving a total of 2304
slices available for the implementation of each of the
modules of the user’s circuit. The remaining two
columns were placed between module areas. Despite not
essential to assure a good immunity to column-spanning
MBUs, these two columns, which result from the

remainder of the integer division of the remaining 38
columns by the 3 areas, were placed between them to
reinforce protection.

The implementation of a TMR circuit in an FPGA
may be a hard work, mainly because some design tools
are not prepared to implement redundant circuits in an
FPGA. As redundant logic seems, at first sight,
“redundant”, the first thing synthesis tools do is to
eliminate it. Redundant modules and the whole voters
may just disappear from the final implementation. In our
example, from the initial design, only a simple four-bit
binary counter module remained in the end of the
synthesis process. To avoid it, design tools have to be
instructed to keep hierarchy. In this way, design units
will be preserved and not merged with the rest of the
design, and redundancy will be kept.

Although flip-flops in configurable logic blocks have
programmable features that are selected by configuration
latches, flip-flop registers are separated from
configuration latches and cannot be accessed through
configuration. Therefore, partial reconfiguration does not
affect the data stored in these registers, and
consequently, as mentioned before, soft-errors in data
registers, even being detected when the scan chain is
updated, cannot be recovered using this method. During
design project it should be assured that all flip-flops are
updated at each clock cycle, thus, due to the transient
nature of upsets, the soft-error will be recovered by the
circuit in the subsequent update of the affected flip-flop.
Therefore, if a SEU affects one flip-flop, the fault it
generates will be corrected immediately at the next clock
cycle. The propagation of soft-errors that affect data
registers is avoided by the proper nature of TMR.

The assignment of areas to the different modules and
to the detection-and-fix controller is done through the
use of placement constraints, attached to the description
of the system. These constraints are taken into account
by the place-and-route algorithm, when mapping the
different modules in the FPGA resources. Manual
adjustments may need to be performed on the final
floorplanning, as tools are not prepared to deal automatic
and efficiently with these constraints.

Each module area enables the implementation of
circuits far more complex than the one used to test the
proposed approach. The incorporation of the scan chain
implied an overhead of 3 slices per module output,
necessary to capture the output of the module and the
outputs of the corresponding majority and minority
voter. Therefore, this overhead depends on the number
of outputs of the user system and not of its complexity.
In case of fault detection, the detection-and-fix controller
triggers the partial reconfiguration of the affected area,
by resolving the location address of the file to be
configured. Our prototyping board uses SystemAce [21]
from Xilinx to keep trace of the partial configuration
files and to configure the FPGA. However, different
kinds of interfaces may be used to provide the partial

136

reconfiguration files, including remote sources. The
partial configuration files were generated using the
Foundation tools from Xilinx.

The dynamic reconfiguration of part or whole of the
FPGA configuration memory does not affect the normal
operation of the functions whose functionality is not
changed, even if these functions are in an active state
and its placement area is covered by the reconfiguration.
In sum, the mitigation procedure is completely
transparent.

The maximum speed of operation achieved by the
detection-and-fix controller was 200MHz. Since capture
operations must be synchronous with user’s system
operation, any speed below this one may be used.

Several tests based on localized fault injection
through partial reconfiguration proved the effectiveness
of the proposed concept. However, a random fault
injection procedure is being developed to better simulate
real working conditions.

6. Conclusion

This paper presented a framework for the
confinement, detection and mitigation of induced faults
in FPGAs, built around a customised TMR
implementation. Several issues related to the
effectiveness of TMR to cope with radiation and
electromagnetic interferences induced faults were
reviewed and discussed. It was explained, based on a
compilation of experimental data reported by several
authors, why T-TMR associated to scrubbing seems to
be the most effective approach to mitigate induced faults
in FPGAs and to extend the reliability of the
implemented systems. Several techniques were listed to
improve the effectiveness of T-TMR implementations,
taking into consideration some conclusions extracted
from the analysis of that data. These considerations led
to some questions and to the enumeration of a set of
rules to be followed to get the most from a T-TMR
implementation in terms of radiation and
electromagnetic interferences induced fault protection. A
simple case study based on a practical implementation
enabled the quantification of the area overhead
introduced and the assessment of the effectiveness of our
proposal. Further work is being done to emulate real
harsh operation conditions to better evaluate the
behavior of the framework.

References

[1] L. Sterpone, M. Violante, “Analysis of the Robustness of
the TMR Architecture in SRAM-Based FPGAs”, IEEE
Trans. on Nuclear Science, Vol. 52, No. 5, pp. 1545-
1549, October 2005.

[2] M. Ceschia et al., “Identification and Classification of
Single-Event Upsets in the Configuration Memory of

SRAM-Based FPGAs”, IEEE Transactions on Nuclear
Science, Vol. 50, No. 6, pp. 2088-2094, December 2003.

[3] M. Bellato et al., “Evaluating the effects of SEUs
affecting the configuration memory of an SRAM-based
FPGA”, Proc. of the Design, Automation and Test in
Europe Conf., pp. 584-589, 2004.

[4] H. Quinn, P. Graham, J. Krone, M. Caffrey, S. Rezgui,
C. Carmichael, “Radiation-Induced Multi-Bit Upsets in
Xilinx SRAM-Based FPGAs”, Proc. Military and
Aerospace Appl. of Prog. Logic Devices Conf., 2005.

[5] Oscar R. Gonzalez, W. Steven Gray, Sudarshan
Patilkulkarni, “Analysis of memory bit errors induced by
electromagnetic interference in closed-loop digital flight
control systems”, Proc. of the 19th Digital Avionics
Systems Conf., pp. 3C5/1-3C5/9, 2000.

[6] G. C. Cardarilli, F. Kaddour, A. Leandri, M. Ottavi, S.
Pontarelli, R. Velazco, “Bit flip injection in processor-
based architectures: a case study”, Proc. of the 8th IEEE
On-Line Testing Workshop, pp. 117-127, 2002.

[7] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs,
G. H. Leber, “Comparison of physical and software-
implemented fault injection techniques”, IEEE
Transactions on Computers, Vol. 52, No. 9, pp. 1115-
1133, September 2003.

[8] M. French, P. Graham, M. Wirthlin, Li Wang, G.
Larchev, “Radiation Mitigation and Power Optimization
Design Tools for Reconfigurable Hardware in Orbit”,
Proc. of the Earth-Sun System Technology Conference,
2005.

[9] C. Carmichael, E. Fuller, P. Blain, M. Caffrey, “SEU
Mitigation Techniques for Virtex FPGAs in Space
Applications”, Proc. Military and Aerospace
Applications of Prog. Logic Devices Conf., 1999.

[10] E. Fuller, M. Caffrey, C. Carmichael, A. Salazar, J.
Fabula, “Radiation Testing Update, SEU Mitigation, and
Availability Analysis of the Virtex FPGA for Space
Reconfigurable Computing”, Proc. Military and
Aerospace Appl. of Prog. Logic Devices Conf., 2000.

[11] F. Lima, C. Carmichael, J. Fabula, R. Padovani, R. Reis,
“A Fault Injection Analysis of Virtex FPGA TMR
Design Methodology”, Proc. 6th European Conf. on
Radiation and its Effects on Components and Systems,
pp. 275-282, 2005.

[12] M. Rebaudengo, M. S. Reorda, M. Violante,
“Simulation-based analysis of SEU effects on SRAM-
based FPGAs”, Proc. of the 12th Intl. Conf. on Field-
Prog. Logic and Applications, pp. 607 615, 2002.

[13] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, P.
Graham, “The Reliability of FPGA Circuit Designs in
the Presence of Radiation Induced Configuration
Upsets”, Proc. 11th IEEE Symp. on Field-Prog. Custom
Computing Machines, pp. 133 142, 2003.

[14] G. M. Swift et al., “Dynamic testing of Xilinx Virtex-II
field programmable gate array (FPGA) input/output
blocks (IOBs)”, IEEE Trans. on Nuclear Science, Vol.
51, No. 6, pp. 3469-3474, December 2004.

137

[15] M. Gokhale, P. Graham, E. Johnson, N. Rollins, M.
Wirthlin, “Dynamic reconfiguration for management of
radiation-induced faults in FPGAs”, Proc. 18th Intl.
Parallel and Distributed Processing Symp., pp. 145 150,
2004.

[16] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya,
V. Verma, “Using Roving STARs for On-Line Testing
and Diagnosis of FPGAs in Fault-Tolerant
Applications”, Proc. of the Intl. Test Conference, pp. 973
982, 1999.

[17] M. G. Gericota, G. R. Alves, M. L. Silva, J. M. Ferreira,
“Active Replication: Towards a Truly SRAM-based
FPGA On-Line Concurrent Testing”, Proc. of the 8th

IEEE Intl. On-Line Testing Workshop, pp. 165-169,
2002.

[18] Triple Module Redundancy Design Techniques for
Virtex FPGAs, XAPP 197 Application Note, Xilinx,
2001.

[19] P. K. Lala, Self-Checking and Fault-Tolerant Digital
Design. San Francisco, CA: Morgan Kaufman
Publishers, 2001.

[20] IEEE Standard Test Access Port and Boundary Scan
Architecture (IEEE Std 1149.1), IEEE Std. Board, June
2001.

[21] System ACE MPM Solution, Product Specification,
Xilinx, 2003.

138

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

