

FPGA Architectures for Reconfigurable Computing

Manuel G. Gericota, Gustavo R. Alves José M. Ferreira
DEE/ISEP

Rua Dr. Antº Bernardino de Almeida
4200-072 Porto

PORTUGAL

 DEEC/FEUP
Rua Dr. Roberto Frias,

4200-465 Porto
PORTUGAL

{mgg, gca}@isep.ipp.pt jmf@fe.up.pt

Abstract
To accelerate the execution of an application,

repetitive logic and arithmetic computation tasks
may be mapped to reconfigurable hardware, since
dedicated hardware can deliver much higher speeds
than those of a general-purpose processor.
However, this is only feasible if the run-time
reconfiguration of new tasks is fast enough, so as
not to delay application execution. Currently, this is
opposed by architectural constraints intrinsic to
current Field-Programmable Logic Array (FPGA)
architectures. Despite all new features exhibited by
current FPGAs, architecturally they are still largely
based on general-purpose architectures that are
inadequate for the demands of reconfigurable
computing. Large configuration file sizes and poor
hardware and software support for partial and
dynamic reconfiguration limits the acceleration that
reconfigurable computing may bring to applications.

The objective of this work is the identification of
the architectural limitations exhibited by current
FPGAs that prevent reconfigurable computing
systems to achieve a high efficiency and
performance and the proposal of alternatives to its
resolution.

1. The Problem

In recent years, reconfigurable computing
attracted a lot of attention due to its promise to
deliver the high performance provided by
reconfigurable hardware along with the flexibility of
general purpose processors. This perception is based
upon a number of technological advancements that
led to current generation of mega-gate chips and to a
diverse range of features. One particular feature is
the ability to partially reconfigure the FPGA
enabling the configuration of application-specific
hardware at run-time. Portions of an application,
usually referred to as tasks, are mapped to the
reconfigurable hardware, while the general-purpose
processor handles other tasks. The aim is to

accelerate application execution, by transferring the
execution of computing-intensive highly-repetitive
tasks to application-specific hardware implemented
in reconfigurable devices. This means that the
reconfigurable device attached to the system is
reused for the implementation of different logic and
arithmetic tasks, being reconfigured frequently
during run-time.

However, despite all the new features, current
FPGAs are still largely based on general-purpose
architectures that are inadequate for the demands of
reconfigurable computing. Some architectural
limitations hamper firstly the placement of new
tasks, and secondly their fast relocation into the
FPGA, preventing the efficient management of the
logic space available, and, as a result, leading to a
delay on task execution, compromising the benefits
of the reconfigurable computing concept. Large
configuration file sizes and poor hardware and
software support makes partial and dynamic
reconfiguration difficult and inefficient.
Furthermore, originally designed for rapid
prototyping, FPGAs do not emphasize rapid
reconfiguration, which limits the acceleration
reconfigurable computing may add to applications.

Depending on the application flow, configuration
loadings may be carried out along with other
computational tasks performed by the host
processor, thereby reducing reconfiguration
overhead. But this is only true if the application
flow, and therefore the sequence of tasks to be
configured, is known in advance. Furthermore,
execution delays will only be avoided if enough
reconfigurable resources are available when required
to implement incoming tasks, meaning that tasks
have to be pre-synthesised. Otherwise, the time it
takes to synthesise them at runtime may lead to an
application halt. Hence, there is no flexibility on the
placement of tasks and extra resources may be
needed just to try to ensure that all tasks will be
available when required, decreasing system
efficiency.

Anais do REC07 III Jornadas sobre Sistemas Reconfiguráveis Lisboa, Portugal

22

In addition, since different tasks have specific
spatial and temporal requirements, when resources
are allocated to enable their implementation and
later released, many small areas of free resources are
created. These portions of unallocated resources tend
to become so small that they fail to satisfy any
allocation request due to insufficient adjacent free
resources, remaining unused – the FPGA logic space
gets fragmented. Yet, a suitable relocation of a
subset of the executing tasks might solve it [1].

2. Requirements and proposals

Therefore, efficient reconfigurable computing
systems require both the fast allocation and the fast
relocation of tasks, but these are features that current
FPGA architectures are unable to support. To tackle
with these problems it becomes imperative to study
and define the requirements that an FPGA targeted
at improving reconfigurable computing must fulfil to
enable fast dynamic reconfiguration, and to propose
a new architecture able to cope with such demands.

Performance degradation that occurs when tasks
are relocated is presently a major obstacle to the
efficient management of the logic space in an FPGA,
as it limits the feasibility of relocating tasks. To be
able to fit a new incoming task into the free space
available on the FPGA, instead of having a fixed
placement it is necessary to have relocatable
mappings and a symmetric architecture (i. e. the
resources in the FPGA are the same across the entire
FPGA, though some local heterogeneity is possible)
[2].

Current FPGA present some architectural
features that aim to improve the performance of
certain types of tasks. As an example, counters
benefit from the existence of fast dedicated carry
interconnections between adjacent logic blocks. The
propagation delay of the carry signal is significantly
lower because no pass transistors (usually used to
route signals along the interconnect resources) exist
in this path. The parasitic capacity of the pass
transistors is the main cause of introduction of
propagation delays in routed signals in FPGAs.
Their inexistence on the dedicated carry paths
greatly contributes to improve the maximum
allowable frequency of operation, enabling the
implementation of faster counters. Paradoxically, the
existence of carry paths is also an obstacle to the
achievement of a higher efficiency in current
reconfigurable computing systems, because in
current commercial FPGAs these dedicated carry
resources enable only to interconnect vertically
adjacent logic blocks. If a counter needs to be
relocated from a vertical to a horizontal placement,
or if the resources available to be allocated to an
incoming counter span an horizontal area rather than
a vertical one, carry signals have to be propagated

through generic interconnection resources (since no
dedicated carry paths exist to interconnect
horizontally adjacent logic blocks). Past experiments
performed using a 24-bit counter indicated an 80%
decrease on performance when a vertically placed
counter was relocated horizontally [3].

One of the earlier examples of a simple,
symmetrical, hierarchical and regular architecture
were the XC6200 FPGAs from Xilinx, composed of
a large array of simple, configurable cells. Each
basic cell contained a computation unit capable of
simultaneously implementing one of a set of logic
level functions and a routing area through which
inter-cell communication could take place [4].

However, more and more, architectures are
becoming heterogeneous with the introduction of
memory blocks, multiplier blocks and of dedicated
Digital Signal Processing (DSP) blocks distributed
among the FPGA array meant to accelerate the
execution of specific types of tasks. In sum, FPGAs
evolved from being just a fine grained architecture
to more of a mixed grain architecture [5]. The
challenge is to retain those features (or, if necessary,
to reinforce them or even to introduce others)
without compromising the homogeneity and
symmetry of the new architecture and therefore the
possibility of relocating tasks anywhere throughout
the configuration space.

However, to easily relocate a task the symmetry
of the logic and routing resources is not enough. It is
also indispensable to take into account the
addressing structure of the configurable memory
cells that will support FPGA logic configuration.
The relocation of a task from one position to another
involves the displacement of each one of the bits
present in its configuration bitstream, which defines
the configuration of the task into the FPGA.

The earlier XC6200 FPGAs had a full parallel
CPU interface, referred to as ‘FastMAP‘, which
made all the configuration SRAM and logic cells
appeared as conventional memory mapped SRAM.
This built-in, memory-like interface simplified
system design and directly interfaced to most
embedded processors without consuming any FPGA
resources, providing high-speed access to all internal
registers in the logic cells. Any register could be
mapped into the memory address space of the host
processor, allowing for simple hardware and fast
data transfers. These capabilities allowed XC6200
FPGAs to support virtual hardware in which circuits
that run on the FPGA could be saved (`swapped
out’) to allow the FPGA resources to be assigned to
a different task, then restored (`swapped in’) at a
later time with the same internal state in their
registers [4].

This option may be a solution, considering that
most recent FPGAs possess embedded processors,
which may mean faster access interfaces. Despite of

Anais do REC07 III Jornadas sobre Sistemas Reconfiguráveis Lisboa, Portugal

23

that, it may also be a bit cumbersome, taking into
account the amount of reconfiguration memory to be
mapped and the heavy load a recalculation of
configuration addresses in case of relocation might
mean for the processor. Furthermore, the XC6200 is
not on the market anymore and its addressing
structure has not been reused commercially ever
since, which may be a warning of its inefficiency.

A straightforward solution is to use a two-part
base address to identify each logic block (its x and y
coordinates inside the FPGA), as illustrated in figure
1. The word length would be equal to the logic block
height, in terms of configuration bits, and the
number of words equal to the logic block length.
Since all logic blocks have the same size, a task may
be relocated just by adding or subtracting the two-
-part address by the amount of logic blocks to be
displaced. In current architectures the minimum
configuration area spans more than one logic block,
meaning that when a logic block is configured other
logic blocks may be adversely affected by that.

Figure 1: Proposal for the configuration memory
addressing scheme

To keep the homogeneity of the configuration
bitstream and to make it simple to relocate tasks just
by recalculating the base addresses of the logic
blocks that they occupy, the interconnection
configuration bits, responsible by the routing of the
internal signals of each task, have also to be
associated to each logic block.

Additionally, it is necessary to preserve and
replicate the current state condition of the relocated
task, avoiding data incoherencies due to transfer
failures or loss of state updates that may have taken
place in the meanwhile. Just by enabling a fast and
reliable relocation of tasks it will be possible to
improve the performance and efficiency of
reconfigurable computing systems.

To replicate a task that implements a purely
combinational function, a two-phase replication
procedure is enough to assure that the relocation
occurs without disturbing its operation. In the first
phase the internal configuration of the logic blocks

and the interconnections among them are copied into
their new location and input data is applied to both
tasks simultaneously. In the second phase, the output
data feeder is switched from the original task to its
copy. The gap between first and second phase
assures the stabilization of output data and the
synchronization of both implementations.

To replicate a task that implements a sequential
function the relocation mechanism has to do more
than just copying the functional specification of the
logic blocks to be replicated: the internal state
information must also be copied. In current
architectures it is only possible to perform direct
read operations of the flip-flops contents. No
specific mechanism is provided to enable the
transference of the current logic state of a flip-flop
while assuring data coherency. The possibility of
directly accessing the memory cell of a flip-flop to
read and write its content, while adequate to enable
the pre-emption of tasks, is not sufficient to ensure a
successful replication because the circuit state may
be updated between the two operations. When
dealing with synchronous free-running clock
circuits, the two-phase relocation procedure
described previously is a good solution. Between the
first and the second phase the replicated logic blocks
receive the same input data as the original logic
blocks, and all their flip-flops acquire the same state
information. When using synchronous gated-clock
circuits, where input acquisition by the flip-flops is
controlled by the state of the clock enable signal, the
previous method does not ensure that the replicated
logic blocks capture the correct state information,
because the clock enable signal may not be active
during the relocation procedure. Besides, it is not
feasible to simply set this signal as part of the
relocation procedure, because the value present at
the input of the replica flip-flops may change in the
meantime, and a coherency problem will occur. A
solution to manage the transference of the state
information from the original flip-flops to their
replicas, while enabling state update by the circuit at
any instant, without delaying the relocation
procedure and assuring coherency, needs to be
developed.

The communication between tasks and the host
processor is an issue of its own that needs to be
addressed as well. A possible approach for the
implementation of a communication mechanism is
the use of a DyNoC (Dynamic Network-on-Chip) in
which a fixed, non-configurable, grid of routers and
interconnections is established separately from the
resources available in the configurable logic space
for the implementation of tasks, using a three-
-dimensional approach, illustrated in figure 2.
Specific configurable routing interconnections are
available only to establish communication between
routers and configurable logic. The implementation

Anais do REC07 III Jornadas sobre Sistemas Reconfiguráveis Lisboa, Portugal

24

of a task overlaps, in spatial terms, with one or more
routers. However, since this occurs in different
plans, corresponding to different layers, they do not
interfere with each other. The interconnection
between a task and the communication network may
be established through one or more routers. Due to
the fixed nature of the DyNoC structure and of its
symmetry, it does not prevent task relocation. The
original task will ensure the correct operation until
both, original and replica, were perfectly
synchronized, and the output data feeder could be
switched from one to the other.

Network structure symmetry is mandatory to
facilitate the initial placement and posterior
relocation of tasks. Since the interface architecture
ensures symmetry and homogeneity and its
placement is known in advance, tasks may be pre-
-synthesized and be ready to be placed anywhere in
the configurable logic space.

Of course, it is not feasible to place a number of
routers equal to the number of logic blocks.
However, if the number of routers were too small, it
would lead to constraints in the placement of tasks.
On the contrary, too many routers would lead to
extreme flexibility, but it would also mean a
considerable waste of resources. Experimental work
based on simulation of task placement and resource
occupation has to be done to find the optimal
number of routers to be implemented in the FPGA.

Figure 2: Proposal for the implementation of the
communications network in 3-D

Since the interconnection between the FPGA and
the host processor is done through a fixed bus, the
problem of signal rerouting from tasks to pins, when
tasks are relocated, is solved. Pin assignment is fixed
between FPGA and host processor and completely
independent from the implemented tasks.

3. Conclusions

While possibly accommodating different types of
blocks, logic block distribution should guarantee that
new allocations or the relocation of already
implemented tasks can be done easily. To achieve it,

the main features of a new architecture should be
symmetry and homogeneity of the logic blocks
distribution and of the interconnect resources
structure. Within this framework, it will be possible
to relocate horizontally or vertically tasks
throughout the configuration space or even to rotate
them in steps of 90º.

However, to easily relocate a task the symmetry
of the resources is not enough. It is also
indispensable to take into account the addressing
structure of the configurable memory cells that will
support FPGA logic configuration. A direct
addressing scheme, bit-by-bit, despite its inherent
flexibility, would consume too much resources just
to address each configuration cell, and lead to
lengthy configuration bitstreams and thus other
forms of addressing need to be explored.

A mechanism for the relocation of current tasks
while preserving the logic state, and without
disturbing their operation, and for the pre-emption of
tasks enabling the correct holding and restoring of
current task state is also mandatory. This has to
comprise mechanisms to preserve and replicate the
current state condition of the relocated task,
avoiding data incoherencies due to transfer failures
or loss of state updates that may have taken place in
the meanwhile. Just by enabling a fast and reliable
relocation of tasks it will be possible to improve the
performance and efficiency of reconfigurable
computing systems.

In sum, the final goal is to increase applications’
performance by taking full advantage of
reconfigurable features. To get there, a series of
problems have first to be address and solved before
to be able to define an adequate architecture for this
purpose.

References
[1] Manuel G. Gericota, Gustavo R. Alves, Miguel L.

Silva, José M. Ferreira, "Run-Time Management of
Logic Resources on Reconfigurable Systems", Proc.
of the IEEE/ACM Design, Automation and Test in
Europe Conference, 2003, pp. 974-979.

[2] S. Hauck, “The Future of Reconfigurable Systems”,
5th Canadian Conf. on Field Prog. Devices, 1998.

[3] Manuel G. Gericota, Gustavo R. Alves, Luís F.
Lemos, José M. Ferreira, “A New Approach to
Assess Defragmentation Strategies in Dynamically
Reconfigurable FPGAs”, Revised selected papers of
the International Workshop on Applied
Reconfigurable Computing, 2006. pp. 117-129.

[4] XC6200 Field Programmable Gate Arrays, Data
Sheet, Version 1.10, April 1997.

[5] S. Shukla, N. Bergmann, J. Becker, “QUKU: A
Coarse Grained Paradigm for FPGA”, Proc. Dagstuhl
Seminar, 2006.

Anais do REC07 III Jornadas sobre Sistemas Reconfiguráveis Lisboa, Portugal

25

