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The rapid increase in the use of microprocessor-based systems in critical areas, where failures imply risks
to human lives, to the environment or to expensive equipment, significantly increased the need for
dependable systems, able to detect, tolerate and eventually correct faults. The verification and validation
of such systems is frequently performed via fault injection, using various forms and techniques. However,
as electronic devices get smaller and more complex, controllability and observability issues, and some-
times real time constraints, make it harder to apply most conventional fault injection techniques. This
paper proposes a fault injection environment and a scalable methodology to assist the execution of
real-time fault injection campaigns, providing enhanced performance and capabilities. Our proposed
solutions are based on the use of common and customized on-chip debug (OCD) mechanisms, present
in many modern electronic devices, with the main objective of enabling the insertion of faults in micro-
processor memory elements with minimum delay and intrusiveness. Different configurations were
implemented starting from basic Components Off-The-Shelf (COTS) microprocessors, equipped with
real-time OCD infrastructures, to improved solutions based on modified interfaces, and dedicated OCD
circuitry that enhance fault injection capabilities and performance. All methodologies and configurations
were evaluated and compared concerning performance gain and silicon overhead.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Most of today’s safety–critical applications require some type of
computer-based device, broadening the application range of
microprocessor systems. As electronic systems increase in com-
plexity and decrease in size, their correct behavior is becoming
harder to guarantee [1]. The higher sensitiveness to noise and
other factors increases the probability of errors, even for devices
used in non-hostile environments. The most frequent hazard
affecting microprocessor systems is usually referred as a Single
Event Upset (SEU) and consists of a change of state of a flip-flop,
induced by an ionizing particle such as a cosmic ray or proton. This
event may change the logical value of memory elements, such as
registers or memory cells [2].

The verification and validation of dependable systems requires
the study of failures and errors in order to evaluate their probabil-
ity of occurrence and subsequent effects. The possibly destructive
nature of a failure and the long error latencies make it difficult to
identify their causes in the operational environment, and recom-
mend the organization of experiments under precisely controlled
conditions. Depending on the system function and architecture,
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hardware [3] and software [4] fault tolerance techniques can be
used to minimize the effects of SEUs, enabling the system to pro-
vide acceptable service in their presence. All vulnerable critical
systems should be verified to ensure operation within acceptable
limits in the presence of such events, and validated to check if they
accomplish their intended objectives. Fault injection can be used
both to evaluate fault tolerance implementations and to estimate
fault consequences on non-tolerant systems.

When dealing with microprocessors, the main limitations im-
posed on fault injection are control, internal access, intrusiveness
and performance. Ideally a fault injection methodology should al-
low precise control of fault insertion, both in time and space, com-
plete replicability of experiments, and access to all microprocessor
resources. Simultaneously it should require no modifications to the
target software or hardware, and should execute in real time. As
this is not technically feasible, all fault injection environments
are based on acceptable (or possible) trade-offs. Access to the area
where faults are to be inserted is a major problem, often requiring
either ad hoc [5], intrusive [6], or low-controllability [7] ap-
proaches. The first and second solutions require special hardware
or modifications to running software, offer restricted coverage,
and may be difficult to execute in real-time. The third solution is
usually based on contactless fault injection techniques, making
fault synchronization and replication hard or impossible to guaran-
tee. OCD infrastructures have been used as an efficient alternative
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to handle such problems [8] and the addition of circuitry to evalu-
ate the vulnerability to SEU effects is increasingly accepted at the
design stage [9].

This paper proposes a set of fault injection solutions enabled by
debug features that are now present in recent microprocessor de-
vices. The proposed fault injection environment was designed to be
non-intrusive and to allow real time emulation of SEU effects in the
microprocessor memory. Real time operation requirements may
indeed justify the use of modified OCD infrastructures in order to
provide better fault injection capabilities and/or performance.
The rationale behind the proposed solutions is that microprocessor
systems dependability would benefit from enhancements aimed at
improving fault injection operations, making them viable from
both economical and technical viewpoints. The modified OCDs pro-
posed in this paper are based on the use of wider data link with an
external debugger, or on the use of a dedicated fault injection mod-
ule, with low overhead and higher autonomy. More intrusive fault
modules were also considered as a way to increase fault coverage
on safety–critical devices, enabling the insertion of precisely con-
trolled faults on internal registers or protected memory.

The next section summarizes the state of the art and prelimin-
ary research. Section 3 presents our proposed solutions, including
the experimental environment and application methodology. Sec-
tion 4 presents the experimental results obtained during the
course of this work. Finally, Section 5 presents the main conclu-
sions, and suggests directions for future research.
2. State of the art

2.1. Real-time fault injection in microprocessors

Real time usually designates systems that must provide ade-
quate response within a specified time window. In this case,
dependability is harder to implement and more troublesome to
evaluate. The correctness of the results must be checked and accu-
rate meeting of deadlines is mandatory, without modifying or
stopping the target system.

Real-time fault injection must be executed with the target sys-
tem running at full speed, with minimum intrusiveness and delays.
Most traditional fault injection approaches cannot be adequately
used under these constraints. Simulation based fault injection
can be useful on early stages of development, but it is often
time-consuming and intrinsically dependent on the quality of the
available model [10,11]. Additionally, it is very difficult to imple-
ment a model that accurately represents all the delays and other
timing aspects, and a different technique must be used once a pro-
totype (or production model) is available. Software fault injection
adds fault insertion routines, causing extra delays and limiting
the fault targets to those areas accessible by the application code.
Although work on this area has shown that it can be used for some
real-time systems [12], it presents considerable limitations in
terms of intrusiveness and coverage. The need to slow down or
stop the running application also makes it inconvenient to apply
most contact fault injection techniques, since they degrade system
performance. Most technical solutions to this problem rely on con-
tactless fault injection [7] or on special dedicated infrastructures
[13], both of which are complex and expensive. Contactless tech-
niques present controllability and replicability problems, concern-
ing precise control of the instant and location of a fault. Dedicated
fault injection infrastructures come together with silicon overhead
and often require special prototype versions of the target system,
hardly or even not adaptable to the final product. Additionally, ac-
cess to internal blocks where faults are more probable, generally
the memory elements and communication buses, is also problem-
atic, particularly without disturbing the running applications.
Recent approaches to real-time fault injection include improved
software techniques [14], halting the target with minimal delay for
near real-time fault injection [15] or taking advantage of recent
FPGA capabilities [16,17]. As many of today’s microprocessors
incorporate dedicated OCD circuitry, designed to operate indepen-
dently of the target system resources, their use for fault injection
purposes is becoming increasingly popular.
2.2. Fault injection via OCD

The OCD implementations present in different families of
microprocessors share common characteristics that form a core
feature set, usually including run control, breakpoint support,
and memory and register access. Some devices offer more ad-
vanced features such as watchpoints, program trace and real time
debug capabilities. In general terms, an OCD is a combination of
hardware and software embedded onto the microprocessor chip,
accessible through an interface port, and usually requiring an
external debugger.

OCD infrastructures provide access to internal resources during
system operation, being an excellent mechanism for modifying
register and/or memory values, i.e. for inserting faults, and subse-
quently retrieving the data necessary to assess the effect of those
faults. In most cases, OCD fault injection techniques rely on halting
the processor, via control signals or breakpoints [18].

The major problem of on-chip debugging is the lack of a consis-
tent set of capabilities and a standard communication interface
across processor architectures. Standard ports (RS232, JTAG) are
commonly used for the physical connection [19,20], but their capa-
bilities vary widely. Several standardization efforts for OCD infra-
structures and interfaces were initiated on recent years [21–23].
IEEE-ISTO 5001, The Nexus 5001 Forum Standard for a Global Embed-
ded Processor Debug Interface [24], was the first of these efforts and
is currently well documented and stable.

To better evaluate the advantages and limitations of real-time
fault injection on NEXUS compliant microprocessors, preliminary
work was performed using COTS devices. This approach was simi-
lar to other research works [8,25], and used a commercial target
microprocessor and a debugger.

The obtained results confirmed most of the expected benefits
and simultaneously identified some shortcomings, both in fault
triggering and performance. It proved that it is possible to insert
faults in memory without affecting the running application and
to use the trace information as an effective means of analyzing
the program flow, before and after fault activation. However, as
the fault injection campaigns must be run on the host machine,
the operating system (Windows or Unix) and physical connection
to the NEXUS compliant debugger (Ethernet or USB) lead to long
and non-deterministic memory access times. The consequence is
the occurrence of experiments with inconclusive results, since in
such cases the fault actually inserted does not emulate a single
bit-flip as intended. Depending on the targeted memory area, the
actual percentage of inconclusive fault insertions could be as high
as 50%, requiring additional debugging and result analysis for val-
idating each experiment.

The triggering source represents an additional source of prob-
lems. The use of trace data proved unreliable due to variable com-
munication delays, making it necessary to use an external trigger
signal. As a consequence, it was impossible to synchronize the fault
insertion and the events of the running application.

To overcome the identified problems, three solutions were
developed to enhance real-time fault injection capabilities: (1) a
debugger customized for fault injection, (2) higher bandwidth be-
tween the debugger and the OCD, and (3) the migration of some
capabilities into the OCD infrastructure itself.
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3. Proposed solutions

3.1. Target system

The CPU cores used on the target system were created using the
cpugenerator building tool [26], which produces a customizable
VHDL model of generic RISC cores, allowing configuration of all
buses, interrupt handling, indirect addressing, data and instruction
latency timings, and definition of custom instructions. Three appli-
cations were used as workload: (1) a matrix adder (MAdder), (2) a
vector sorter (VSorter) and (3) a generic LUT-based control algo-
rithm (XControl). All algorithms are memory intensive, can be
adapted to different bus sizes and memory areas, and are relatively
simple to debug. Only XControl requires external stimuli genera-
tion and I/O capabilities on the target. Each application was devel-
oped in two versions: normal and fault tolerant. Fault tolerance
was implemented by duplicating data in memory and performing
each arithmetic operation twice. The comparison of the results ob-
tained from each arithmetic operation provides a limited degree of
fault detection, with some overhead in execution time and mem-
ory requirements. This approach was selected as it can be easily
implemented in most COTS components.

The OCD infrastructure developed for our case study was de-
signed from scratch to be NEXUS compliant. As there is no manda-
tory implementation, we based it on the infrastructure present on
the MPC565 microcontroller, which is a well-documented device.
The version implemented on our target system is NEXUS Class 2
compliant with real-time memory access capability (sometimes
designated as Class 2+ compliant). The OCD interface uses an
AUX port, which provides two message data buses (MDI and
MDO) for OCD data input and output, along with independent
clock and control signals (MCKO, MCKI, MSEI and MSEO). The
OCD infrastructure is divided in three main modules and two bus
access modules as seen on Fig. 1. The thinner arrows represent
the control and status signals and the thicker arrows represent
data and trace information. The FI module represented is not in-
cluded in the original OCD – it is part of the OCD-FI version ex-
plained ahead in Section 3.2.3.

The Bus Snooper and Bus Master modules are responsible for
interfacing with the microprocessor buses. Their implementation
depends on bus configuration and collision management strate-
gies, and should be customized according to the selected configu-
ration architecture.

The Message Queuing and Management (MQM) module imple-
ments the NEXUS message handler and the OCD controller. It
translates all debugging operations into messages and vice versa,
Fig. 1. The OCD infrastructure.
manages the message queues and provides the necessary control
signals to the other modules.

The Read and Write Access (RWA) module is used to access both
OCD registers and CPU resources (memory and registers), and ac-
cess inputs and outputs as directed mapped addresses, as the
microprocessor does.

The Run Control and Trace (RCT) module is responsible for CPU
run control and OCD management. It receives commands from the
MQM and RWA modules and outputs trace data and watchpoint hit
signals.

The complete OCD infrastructure provides a common set of
debugging features and interface options that can be adapted to
different target systems, and upgraded to support additional fea-
tures or functional blocks.
3.2. Fault injection

3.2.1. Environment
Our proposed fault injection solutions were designed to achieve

the following objectives:

� Precise control over the fault location and injection instant
� Full observability of fault effects.
� The possibility of replicating experiments.
� Unintrusive to the target application.
� Real time operation (i.e. without stopping the target

application).

The experimental environment was designed to implement and
evaluate the various fault injection alternatives, maintaining a
common architecture and reusing most components with mini-
mum modifications, as presented in Fig. 2.

The Input/Output (I/O) module is required only by applications
using external inputs or outputs (e.g. XControl) and the FI module is
implemented only on the OCD-FI configuration. All environment
variants use the same debugger and 32-bit CPU target, differing
only in terms of OCD configuration, namely on the MDI bus band-
width and on the presence/absence of a FI module.

The fault model consists of bit-flip faults, which are inserted at
specific moments during program execution, in order to emulate
the SEU effects. Faults can be injected in all resources accessible
by the OCD, including memory, internal registers and IO registers.

Better performance can be achieved by determining beforehand
the value that will be present on the target memory cell at the fault
insertion instant (herein referred as predetermination), but this
requires:

� Complete knowledge of the program flow up to the fault injec-
tion instant.
� Full observability of external inputs.
� Precise control of the fault injection instant and location.
Fig. 2. Fault injection environment.
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If predetermination cannot be guaranteed, it is necessary to
read the target memory cell data immediately before the fault
injection instant, in order to determine which faulty value shall
be inserted to emulate an SEU. Each scenario offers various alterna-
tives for this purpose, depending on relevant performance
requirements.

Table 1 presents the experimental scenarios that were used
during our fault injection experiments. The name of each scenario
indicates the specific options selected, e.g. (B) basic OCD configura-
tion, (E) extended OCD configuration, (OF) offline fault injection,
Table 1
Fault injection scenarios.

Scenario Bandwidth Predetermination of the fa

1 BOF MDI = 2, MDO = 8 YES
2 BOF+ NO
3 EOF MDI = 8, MDO = 8 YES
4 EOF+ NO
5 BRT MDI = 2, MDO = 8 YES
6 BRT+ NO
7 ERT MDI = 8, MDO = 8 YES
8 ERT+ NO
9 OCD-FI MDI = 2, MDO = 8 YES
10 OCD-FI+ NO

Table 2
Offline fault injection (BOF and EOF).

# Step Description

1 Set-Up The microprocessor is reset and the target
A fault injection script is downloaded into
A breakpoint is set on the target (on the OC

2 Fault triggering The triggering condition is one of the follow
– an external halt signal received by the
– a breakpoint hit signaled by the OCD (t

3 Fault activation
(predetermination)

Upon the occurrence of the triggering cond

3+ Fault activation (no
predetermination)

Upon the occurrence of the triggering condit
(via the OCD)
The debugger applies a data mask to determ

4 Fault insertion The debugger transmits to the OCD:
– the target memory cell address
– the data value to be written

5 Resume The debugger instructs the target micropro

Table 3
Real time fault injection (BRT and ERT).

# Step Description

1 Set-Up The microprocessor is reset and the target
A fault injection script is downloaded to th
A watchpoint is set on the target (on the O

2 Fault triggering The triggering condition is one of the follow
– an external signal received by the debu
– a watchpoint hit signaled by the OCD (

3 Fault activation
(predetermination)

Upon the occurrence of the triggering cond

3+ Fault activation (no
predetermination)

Upon the occurrence of the triggering condit
(via the OCD)
The debugger applies a data mask to determ

4 Fault insertion The debugger transmits to the OCD:
– the target memory cell address
– the data value to be written
(RT) real-time fault injection, (+) no faulty value predetermination
required and (FI) fault injection module present.

The FI Method column specifies if faults are injected with the
microprocessor halted (offline) or operating at full speed (real-
time). The Set-Up delay column indicates the time required for
downloading to the OCD all data necessary to each fault experi-
ment. Set-Up can be performed while the target application is run-
ning, but it must be concluded prior to the occurrence of the
triggering condition. The (fault) insertion delay column indicates
the time interval between the occurrence of the triggering condi-
ulty value Fault injection method Delays (CLK cycles)

Set-Up Insertion

Offline 22 35
22 44

6 9
6 18

Real time 22 35
22 44

6 9
6 18

57 2
57 4

application runs from the start
the debugger
D)

ing:
debugger
o the debugger)

ition the debugger activates a memory write operation using preset values

ion the debugger uses a preset target memory cell address to retrieve its contents

ine the faulty data value to be written into memory

cessor to resume execution (via OCD)

application runs from the start
e debugger
CD)

ing:
gger
to the debugger)

ition the debugger activates a memory write operation using preset values

ion the debugger uses a preset target memory cell address to retrieve its contents

ine the faulty data value to be written into memory
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tion and the actual insertion of the faulty value (see Tables 2 and 3
for further details).

The proposed solutions were designed to handle real-time fault
injection in memory elements, as this is mandatory to reach high
values of fault coverage, with maximum compatibility and mini-
mum intrusiveness. However, it is possible to further enhance
the OCD-FI infrastructure to support architecture-specific issues
and provisions for extending the basic design were considered.
Two such extensions were developed for situations where depend-
ability requirements would demand higher coverage, even if
degrading performance. Specifically, the OCD-FI (RTREG) extension
adds real time access to internal registers, and the OCD-FI (EDAC)
extension enables fault injection on memories protected by hard-
ware fault tolerance mechanisms. The two OCD-FI scenarios specif-
ically adapted to evaluate these extensions are presented in
Section 3.2.4.

3.2.2. Customized debugger
The customized debugger consists of one controller core and

two memory banks for data input and output, as represented in
Fig. 3. It provides full support for the execution of scripted com-
mands and automatically reacts to messages or signals from the
OCD. This is an important feature lacking in most debuggers, as it
is not required for common debug operations.

The host machine uploads scripts (fault injection campaigns) to
the debugger input memory and later downloads the trace data,
taking no part in the fault injection process itself. Direct control
is possible through specific signals, which may replace the input
or output memories (or both), as source of commands and destina-
tion of data.

The output memory can be used to store not only trace data, but
also OCD responses and error messages. The input memory size de-
fines the number of fault experiments that can be executed on a
single script (campaign), and the output memory size defines the
amount of trace data that can be stored. The stored data and the
knowledge of the running application code, enable the exact recon-
struction of program flow. A communications manager is included
in the controller core to translate commands into messages, man-
age the AUX port and store the messages received from the OCD.
The width of the data buses defines the transmission delay re-
quired by each message. There are also debugger specific com-
mands that make it possible to insert delays, react to messages
from the OCD and autonomously execute bit-flip operations on
data words. The execution steps required for each fault injection
Fig. 3. Customized debugger.
experiment are listed in Tables 2 and 3, for the offline and real-
time scenarios.

The choice between steps 3 and 3+ depends on the possibility of
predetermining the contents of the target memory cell prior to
fault insertion, and is made by the fault injection script used.

3.2.3. OCD-FI
Improving the fault injection performance can also be accom-

plished by enhancing the functionality of the OCD. The OCD infra-
structure with fault injection support (OCD-FI) was presented in
[27,28], and proposes a workbench that is similar to the custom-
ized debugger described in the previous section. As the debugger
and target CPU core are identical, the main difference is the pres-
ence of an extra fault injection (FI) hardware module embedded
into the OCD circuitry.

Apart from the setup of fault insertion data (triggering and loca-
tion) and external analysis of the results, the autonomous OCD-FI
solution enables full control of fault activation and insertion, with-
out the need for external signals. Fig. 4 presents a simplified view
of the full OCD and FI module, including the control signals, data
paths and registers used during the fault injection process.

The thick black arrows represent data exchange with external
components (bus management modules are not represented for
the sake of simplicity). The thick white arrows represent the
main OCD-FI internal data paths used; SD represents the setup
data, TD the trace data and FID the fault injection data. The
Trigger control signal is used to confirm the occurrence of a
watchpoint, RW is used for reading and updating the RWA reg-
isters and Exec for requesting the insertion of the faulty value
into memory.

As our fault model is limited to bit-flip fault insertions, it only
requires the execution of an XOR operation, between the data read
by the RWA module immediately before the fault triggering in-
stant, and the data mask preloaded on the FI module, which defines
the bit(s) to flip. Due to performance requirements, the data link
between the FI and RWA modules must be implemented via a ded-
icated bidirectional bus (FID).

The FI module reuses the OCD event detection (RCT) and mem-
ory writing (RWA) capabilities to automatically activate fault
insertion upon the occurrence of a watchpoint. Once enabled, the
FI module takes control of the entire OCD-FI infrastructure until
the fault is inserted. Trace data generation is not affected during
the entire process, continuing to operate as if a real SEU had
occurred.

The FI module was designed to be adaptable to OCD infrastruc-
tures in general and NEXUS compliant devices in particular. It
requires the OCD to implement (1) Watchpoint support; (2) Real-
time memory access and (3) Memory read/write preloading
capability.

If the required operations are available, the FI module imple-
mentation requires no substantial modifications to the OCD infra-
structure, and is able to read the target memory and modify its
contents. Using the OCD-FI for autonomous fault injection requires
preloading of the target address (memory or register), and either
(1) the data to be inserted or (2) a data mask defining the bit(s)
to flip. If not predetermined, the faulty value can be generated
upon the occurrence of the triggering condition. The faulty value
is subsequently written back to the target cell. The sequence of
steps to inject a fault is described in Table 4.

Steps 3 or 3+ are once again chosen by the fault injection script
that configures the OCD-FI according to the intended scenario, en-
abling or disabling the predetermination capability. Inserting faults
into internal registers requires the watchpoint to be replaced by a
breakpoint, and the FI module to request that normal operation be
resumed after fault insertion (this signal is ignored when inserting
faults in real time).



Fig. 4. OCD and FI module.

Table 4
Fault injection steps using the OCD-FI.

# Step Description

1 Set-Up The microprocessor is reset and the target application runs from the start
A fault injection script is downloaded to the debugger
A watchpoint is set on the target (on the OCD)
The OCD-FI fault injection mode is enabled and preloaded with the required data

2 Fault triggering The triggering condition is:
A watchpoint hit signaled internally by the OCD-FI

3 Fault activation (predetermination) Upon the occurrence of the triggering condition the OCD-FI activates a memory write operation using preset values

3+ Fault activation (no
predetermination)

Upon the occurrence of the triggering condition the OCD-FI uses a preset target memory cell address to retrieve its
contents
The OCD-FI applies a data mask to determine the faulty data value to be written into memory

4 Fault insertion The OCD-FI directly inserts the faulty data in the previously addressed memory position
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3.2.4. Extensions
The fault injection environment and methodology described so

far were designed to handle real-time fault injection on NEXUS
compliant devices, targeting either unmodified COTS devices or
those requiring only minor modifications, incurring on minimum
silicon overhead and no performance penalties. If additional fault
injection capabilities are required for dependability evaluation,
the OCD-FI infrastructure can be extended to add extra features,
or to interface with additional components. In general, such exten-
sions are adapted to each specific problem, and may degrade per-
formance and eventually require additional modifications to the
target CPU or OCD. Two scenarios where such extensions may be
required are (1) targets equipped with hardware fault tolerance
mechanisms, and (2) situations where real-time fault injection in
internal registers is critical.

3.2.4.1. Error detection and correction (EDAC). In many critical sys-
tems, hardware fault tolerance is implemented by adding EDAC
mechanisms between microprocessor and memory. Such solutions
add extra bits to protected memories using special error correcting
codes (e.g. Hamming codes). EDAC mechanisms generate the extra
bits on write operations and check them on read operations.
Depending on the number of extra bits, it is possible to detect
and correct a variable number of errors [29].

To accurately evaluate EDAC-based fault tolerance features, it
must be possible to emulate SEU effects by inserting single bit-flip
errors into memory without affecting any other data or EDAC bits.
As OCD infrastructures usually access memory through the EDAC
mechanism, fault injection as envisaged is not possible, since single
bit-flip errors are automatically corrected. The extension to the
OCD-FI requires the ability to generate both the data to be written
into memory and the codes used for error detection and correction.
Fig. 5 presents the common OCD and CPU memory access buses
and the alternate configuration required by the OCD-FI (EDAC).

This extension requires the OCD-FI to be able to use both config-
urations, operating as a common OCD when being used for debug
purposes, or when faults target non-protected areas. The OCD-FI
(EDAC) extension is enabled and configured when the fault injec-
tion experiment is Set-Up, and should be used whenever the fault
targets EDAC protected memory areas.

3.2.4.2. Real time register access (RTREG). The problem of real-time
fault injection on internal registers is more complex and requires
modification of the microprocessor register file to allow simulta-
neous read and write operations. The RTREG extension requires
additional collision control logic and predetermination of the
faulty value to be inserted, as illustrated in Fig. 6.

The collision manager must ensure that the fault is injected only
when the target register is not already being accessed for writing,
and that the outputs are immediately updated if being accessed for
reading. Once the triggering signal is received, the OCD-FI (RTREG)
waits for an opportunity to insert the faulty value into the target



Fig. 5. Typical and OCD-FI (EDAC) interfaces.

Fig. 6. Modified register file.
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register, signaled by the collision manager. This procedure may
cause problems with some combinations of triggering instants
and target registers, which may prevent the faulty value insertion
before the microprocessor accesses the relevant register. Since
delaying a microprocessor action is undesirable under real time
operation, the application code must be previously analyzed to ex-
clude fault experiments that would cause such collisions. This
mechanism has additional limitations, as it adversely affects the
microprocessor dynamic performance (i.e. maximum operating
frequency), and it is not possible to access intensively used regis-
ters (i.e. program counter). It can however be useful in situations
where real-time fault injection in internal registers is more impor-
tant than performance, and where the coverage limitations are
acceptable.
4. Experimental results

4.1. Basic, extended and OCD-FI scenarios

4.1.1. Fault injection campaign execution
All modules were implemented in VHDL and synthesized using

Xilinx’s ISE version 7 [30]. All simulations were run on post place-
and-route models using Modelsim 6 [31]. Synthesis was executed
identically for all components using balanced area versus perfor-
mance settings.
Table 5
Fault injection results (in.%).

Scenario MAdder VSorter

Non-FT SW-FT Non-FT

UERR NERR DERR UERR NERR UERR NERR

OFF 19 81 28 13.9 58.1 98 2
BRT 19.4 80.6 28.3 13.8 57.9 98.1 1.9
ERT 19.2 80.8 28.1 13.9 58 98 2
OCD-FI 19 81 28 13.9 58.1 98 2
BRT+ 19.5 80.5 28.4 13.8 57.8 98.2 1.8
ERT+ 19.3 80.7 28.2 13.8 58 98.1 1.9
OCD-FI+ 19.1 80.9 28.1 13.9 58 98 2

a As the XControl application requires the use of external I/Os, predetermination is no
Due to debugger memory limitations, each fault injection cam-
paign consisted of 10 experiments, injecting one bit-flip fault that
emulates a single SEU. One hundred campaigns were executed on
each scenario using our three target applications (MAdder, VSorter,
XControl) in their normal and fault tolerant versions. Each cam-
paign required 2 KB of input memory and 256 KB of output mem-
ory on the debugger.

Tables 5 and 6 present the results of the fault injection cam-
paigns, classified by scenario and target application. All the scenar-
ios that use offline fault injection (BOF, BOF+, EOF, EOF+) returned
exactly the same results, which are presented on the first line of
Table 5 (OFF row). Fault effects were classified into the following
categories:

� UERR: undetected error – an erroneous final result not detected
by the (eventual) fault tolerance routine (all errors will be UERR

if there is no fault tolerance routine)
� DERR: detected error – the fault tolerance routine detected an

error during execution. The application ended with an error
detection signal.
� NERR: no error – the application ended correctly. This result

includes both the errors that are still present in memory when
the experiment ended and those overwritten by the running
application.

Fault classification was performed after campaign execution,
analyzing the contents of the debugger output memory. Trace
information and the results of each application were compared
with expected values to identify the occurrence of errors and their
detection.

The execution of all experiments listed above and the results
obtained led to the following conclusions, relative to the controlla-
bility and observability of our proposed solutions:

� The instant when the fault is inserted depends upon the delay
between the occurrence of the trigger condition and the actual
fault insertion operation. As this delay is constant and known
for each configuration, it is possible to achieve precise control
of fault insertion.
XControl

SW-FT Non-FT SW-FT

DERR UERR NERR UERR NERR DERR UERR NERR

97 2 1 Not possiblea

96.8 2 1.2
96.9 2 1.1
97 2 1
96.7 1.9 1.4 29.3 70.7 29.1 1.5 69.4
96.8 1.9 1.3 29.6 70.4 28.9 1.2 69.9
96.9 1.9 1.2 29.8 70.2 28.8 1.1 70.1

t practical, making fault injection campaigns impossible for the indicated scenarios.



Table 6
Occurrence of INC results (in.%).

Scenario MAdder VSorter XControl

No FT SW-FT No FT SW-FT No FT SW-FT

OFF 0
BRT 3.1 4 0.9 2.2 Not possible
ERT 1.4 2.3 0.6 1.1
OCD-FI 0.2 0.2 0.1 0.2
BRT+ 3 4.8 1.2 2.8 2.1 3.2
ERT+ 2 3.7 0.8 2.1 1.5 2.4
OCD-FI+ 0.4 1.7 0.2 1.2 0.3 1.3

1 Dynamic performance refers to the maximum operating frequency, as indicated by
the VHDL synthesis tool.
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� All experiments can be repeated on similar scenarios (i.e. using
the same target application), on exactly the same conditions,
and replicated as often as necessary.
� It is possible to use the trace information generated by the OCD

to reconstruct program flow. Fault effect classification can be
executed via the OCD using trace data and memory reads.

Overall, our proposed real time methodology allows a high de-
gree of controllability over the fault injection process and adequate
observability for fault classification, even when operating in real
time.

4.1.2. Analysis of fault injection results
The analysis of the fault injection results leads to some interest-

ing conclusions relative to software fault tolerance efficiency, and
to the effects of real-time fault injection. The following conclusions
are worth of mention:

� When faults are injected while the target is halted (offline), the
fault classification results are identical for all scenarios and
when using real-time fault injection (with or without the FI
module), the fault classifications results are only marginally dif-
ferent from one scenario to another.
� The effects of the injected faults are strongly dependent on the

target application, and undetected errors are much higher for
the VSorter application, due to its more intensive use of
memory.
� The use of software fault tolerance substantially reduces the

occurrence of undetected errors, namely for the VSorter (98%
reduction) and XControl (96% reduction) applications. This
reductions is less important in the case of MAdder (28% reduc-
tion), due to the lower refresh rate of the results.
� The percentage of correct results actually decreases when soft-

ware fault tolerance is used, due to the larger memory area
required and subsequent higher vulnerability to memory faults.
However the percentage of undetected errors decreases
significantly.

In conclusion, our software fault tolerance provides adequate
error detection capabilities, but also reduces the probability of cor-
rect service, if used alone. Its effectiveness would benefit from the
adoption of fault removal capabilities, possibly by forcing the
application to restart upon error detection.

4.1.3. Real-time fault injection limitations
To evaluate the discrepancies between real-time fault injection

scenarios, additional experiments were carried out, and those
returning different results were replicated using extra debug oper-
ations, for this specific purpose. Each experiment was repeated
with added data trace or, if necessary, with breakpoints immedi-
ately after fault insertion. Although this approach would be time-
consuming for fault classification, it enables a finer analysis of
the fault injection methodology. Erroneous fault insertions were
classified as inconclusive (INC), and represent the cases where
the fault injection process was corrupted due to a microprocessor
write access to the target cell during fault injection. INC results oc-
cur in all three categories that were previously referred (UERR, DERR

and NERR). Table 6 presents the percentage of inconclusive results
found in each scenario.

The results shown above help us to understand the limitations
of real-time fault injection:

� The OFF configurations always produce the most reliable
results, as fault injection is performed when the target system
is halted.
� In some cases the CPU overwrites the target memory cell before

the fault injection operation is complete. This leads to an erro-
neous fault injection and these experiments should be dis-
carded (as an inconclusive result) for dependability evaluation
purposes.
� INC results become more probable as the delay between fault

triggering and fault insertion increases, and as such vary within
the scenarios and configurations that were considered. The use
of an OCD-FI configuration and predetermination of the faulty
value significantly reduces the occurrence of this type of results,
particularly if used together.

The results obtained confirmed that our proposed solutions are
an efficient alternative for injecting faults in memory, both in real
time and offline scenarios. The best configuration depends on the
target characteristics and dependability requirements. Offline fault
injection is preferable for simpler scenarios (i.e. MAdder), and real
time capabilities may be required for scenarios where external I/O
must be included in the fault injection process (i.e. XControl).

The minor fault classification inaccuracies caused by real-time
fault injection should be taken into account when analyzing
dependability results. The importance of such inaccuracies will
vary according to the target application and fault classification
requirements. Overall, the OCD-FI configuration offers consider-
ably better performance, and predetermination of faulty values
should also be used, whenever possible.
4.2. Extensions (EDAC, RTREG) to the OCD-FI scenario

4.2.1. OCD-FI (EDAC)
The target system used for this scenario included the hardware

EDAC mechanism between CPU and memory. The implementation
of the OCD-FI (EDAC) extension required modifications to the OCD
and to its interface. The EDAC mechanism itself requires additional
logic and memory resources, and the CPU dynamic performance1 is
slightly degraded. Table 7 presents the results obtained with the
OCD-FI (EDAC) extension, using only the non-fault-tolerant versions
of the target applications.

The execution of fault campaigns using the EDAC extension pro-
vided the following conclusions:

� The OCD-FI (EDAC) extension can be used to automatically
inject faults into memory blocks protected by hardware fault
tolerance mechanisms.
� The use of an EDAC fault tolerance mechanism effectively elim-

inates the effects of single bit-flip errors on the target system,
since they are all detected and corrected.

Hardware fault tolerance mechanisms like EDAC are increas-
ingly used and must be adequately tested. The ability to directly



Table 7
FI results for a target equipped with EDAC (in.%).

Predet. MAdder VSorter XControl

DERR UERR NERR INC DERR UERR NERR INC DERR UERR NERR INC

NO 39.6 0 58.8 1.6 98.3 0 0.8 0.9 29.9 0 69.1 1
YES 39.7 0 59.5 0.8 99 0 0.7 0.3 30 0 69.5 0.5

Table 8
FI results using the OCD-FI (RTREG) extension (in.%).

Scenario MAdder VSorter
No FT SW-FT No FT SW-FT

UERR NERR DERR UERR NERR UERR NERR DERR UERR NERR

OCD-FI (RTREG) 89 11 62 22 16 60 40 46 14 40
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insert faults into memory without disabling its protection is re-
quired for adequately classifying fault effects. Our proposed solu-
tion enables to access the memory via the EDAC mechanism or
to bypass it, which is useful not only for fault injection, but also
for debug and classification.

4.2.2. OCD-FI (RTREG)
Current OCD implementations do not allow the injection of reg-

ister faults in real time while the microprocessor is running, but it
is possible to minimize the time interval during which the micro-
processor needs to be halted. For real-time fault injection on inter-
nal registers, the OCD-FI (RTREG) infrastructure can be
implemented on the target device. One hundred customized fault
campaigns were selected from a larger set that was designed and
executed using this infrastructure. All faults were defined to target
the accumulator register for two reasons: its contents are easier to
predict using program code knowledge, and it makes a good exam-
ple, as it is the most intensively used register. All fault insertions
were manually generated to ensure adequate synchronization. This
procedure requires a prior study of the target application, in order
to determine the instruction addresses that can be used as fault
triggers. A given address will qualify if no change to the target reg-
ister occurs during the fault insertion. Table 8 presents the results
obtained using the OCD-FI (RTREG) extension.

The following conclusions are worth of mention:

� When targeting CPU internal registers in real time, triggering
must be adjusted to ensure that faults can be inserted before
the running application attempts to write on the target register.
� The instruction addresses that can be used as fault triggers

depend on the target microprocessor, the running application,
and the target register. The selection requires precise knowl-
edge of the application code and instruction delays. For the
accumulator register, using our workload applications, an aver-
age of 45% of the code space used qualifies for triggering.
Table 9
Silicon overhead and dynamic.

CPU core OCD OCD-FI EDAC

X
X X
X BOF/BRT
X BOF/BRT X
X EOF/ERT
X X
X With EDAC ext X
X With RTREG ext
X With both ext X
The use of the RTREG extension shows that the injection of
faults in internal registers is an important and complex problem.
Registers are very sensitive to errors, and in critical systems it
may be necessary to add extra hardware to protect them, and/or
to more effectively test their sensitivity to faults. In some critical
systems, adding on-chip support for register fault injection may
be useful and justify the added intrusiveness and performance
degradation.

4.3. Performance and overhead

4.3.1. Overhead
A Virtex-2 FPGA was used for experimental analysis due to the

high implantation of this FPGA family for microprocessor-based
systems, and the silicon overhead and the maximum operating fre-
quency achieved are summarized in Table 9. The use of more re-
cent and/or higher performance FPGAs causes an general increase
in performance and small variations of the synthesis results, but
has no effect on the fault injection process and the relative merits
of each fault injection solution are fundamentally the same on all
FPGAs. The reference scenario (shadowed line in the table) is the
case where only the CPU core and basic OCD infrastructure are
implemented, since this is the typical COTS situation.

The figures presented in Table 9 refer to a target CPU that is a
based on a RISC architecture using a limited instruction set. The
use of more complex microprocessors would lower the OCD over-
head, since the area required is mostly dependent on the debug
features implemented, and on target bus widths (that should re-
main constant).

In comparative terms, the extra overhead required for enhanced
input bandwidth on the OCD (ERT) is fairly large (over 6%). Since
the OCD-FI configuration presents much better results (less than
0.5%), it is preferable for real-time fault injection purposes. As
would be expected, the inclusion of an EDAC mechanism slightly
increases the microprocessor area, and also reduces its maximum
RTREG Logic area Overhead (%) Max f (MHz)
Eq. gates

53,926 75.4 37
55,018 76.9 32
71,527 100.0 36
72,619 101.5 32
76,127 106.4 36
71,842 100.4 36
73,184 102.3 32

X 76,392 106.8 27
X 77,484 108.3 25
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operating frequency. The degradation of these parameters, im-
posed by the EDAC and the RTREG versions of the OCD-FI infra-
structure, are however within acceptable limits, considering that
they are intended for safety–critical applications.

4.3.2. Comparison with other fault injection environments
For the fault model and the real-time requirements that were

considered, the most frequently used fault injection techniques
are either software or radiation based, although for our specific tar-
get system (available as a VHDL model), simulation based tech-
niques would also be possible. A comparison between these
approaches and our proposed solutions may be made as follows:

� Our solutions can be used either in simulation, in a programma-
ble device (FPGA) or in an integrated circuit (ASIC), fitting the
technology scenarios that cover the whole product develop-
ment cycle.
� Most hardware based real-time fault injection methodologies

would be more complex and expensive to implement, and
sometimes require a customized hardware version. Some of
our proposed solutions require modifications to the target hard-
ware, but their low overhead facilitates market acceptance.
� Relative to radiation based fault injection or other contactless

techniques, our proposed solutions have significant advantages
in terms of experiment controllability and replicability. Precise
control of fault location and injection instant is possible, facili-
tating experiment replication and deterministic results.
� Software based techniques are more intrusive, present similar

fault injection delays, and offer more limited coverage.
� The need to handle erroneous fault classification results is com-

mon to all fault injection techniques, and more so when operat-
ing in real time. As in other approaches, problems can be
minimized using statistical techniques or extra classification
operations, whenever possible.

Quantitative comparison of fault injection methodologies is al-
ways complex, due the specific nature of each methodology and
the considerable differences between target architectures and fault
injection techniques. As an indicative example, Table 10 presents a
list of measurable parameters for four fault injection techniques
that can be used on our target system, considering similarly sized
fault campaigns, but with unavoidable variations in terms of fault
model, triggering and results.

The fault injection scenarios considered were derived from
those presented on Section 4, adapted to each fault injection tech-
nique, with the target system being the same for all experiments.
Execution time represents the total duration of all experiments,
including setup and data collection, but not data analysis which
is performed separately in all techniques. Fault coverage repre-
sents the percentage of memory elements where fault injection
is possible and controllability represents the minimal element
where faults can be inserted with precision. Costs were estimated
for the execution of all experiments, considering the OCD-FI as a
reference, and including manpower, software and hardware costs.
It is important to note that the presented values may vary consid-
erably for other fault injection environments or targets. For
Table 10
Fault injection techniques comparison.

Technique Execution
time

Fault
coverage (%)

Controllability Cost estimate

OCD-FI 17 min 92 Individual bit 100
SWIFI 22 min 55 Individual bit 85
Simulation 1 h52 min 100 Flip-flop 215
Radiation 3 h30 min 100 Memory block 3000
instance, fault coverage for SWIFI is lower than normal in our
example due to memory protection issues and simulation execu-
tion time and coverage can also vary a lot depending on the soft-
ware and/or target model used.
4.3.3. Real time features
The proposed solutions were designed for real time operation,

and are particularly advantageous when the fault injection exper-
iments are designed in such a way, either to increase representa-
tivity or due to technical constraints.

� As the proposed solutions require no modification to the target
applications or hardware, all workloads execute exactly as they
would if not performing fault injections. The OCD infrastruc-
tures are not used during normal execution, and their use for
fault injection adds no overheads or delays.
� Most traditional fault injection techniques are often unable to

cope with real-time requirements, which are supported by our
proposed solutions. Simulation based techniques or those
requiring halts to the target system are particularly hard to
use on real-time systems.
� Software based fault injection has been used in some scenarios,

mainly when it is possible to use the timing characteristics of
the operating system for near real-time fault injection. How-
ever, as task scheduling becomes tighter it becomes much
harder to insert faults without imposing a small delay, with
consequent loss of performance and representativity.
� Contactless techniques are non-intrusive by nature, and gener-

ally won’t affect target performance. However, the experiment
setup times are much higher due to the complexity of the fault
injection equipment. The main issue when using these tech-
niques is usually controllability, being impossible to target spe-
cific memory cells or adhere to precise fault injection timings.
� The use of OCD for real-time fault injection obviously requires

these capabilities to be available, but these are becoming
increasingly popular on modern devices, mainly microproces-
sor-based systems.
� When compared with similar NEXUS-based real-time fault

injection techniques [8], our proposed solutions offer enhanced
performance, with the subsequent minimization of inconclusive
experiments.

In short, we presented the reasons why we believe that our pro-
posed solution has the potential to be the best choice for fault
injection on critical real-time systems, particularly if included early
on the system design process.
5. Conclusions

OCD infrastructures offer a non-intrusive means of accessing
internal microprocessor resources, and provide a useful mecha-
nism for triggering and injecting faults, and for subsequently ana-
lyzing their effects. Performance becomes a fundamental issue
when dealing with real-time systems, demanding enhanced capa-
bilities from the debugging tools. Our proposed solutions and
experimental work brought into evidence that it is possible to
use OCD infrastructures for efficient real-time fault injection in
memory space and internal registers. Our work has shown that it
is possible to achieve precise control over the fault target, both
in time and space. Reusing already available OCD infrastructures
is an added-value in terms of performance, development costs
and required resources. Execution is generally fast, minimizing
the probability of inconclusive experiments, and enabling high
fault/second rates, when mass injection of faults is required. Intru-
siveness is minimal, as neither the target microprocessor nor the
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running application are modified, and modification of the OCD is
offered as an option. As an extra advantage, this solution allows
the entire fault injection scenario, including environment, fault
injector and target system, to be implemented on a single FPGA.
Although other solutions may provide better performance [17],
they usually require special resources or imply much larger silicon
overhead. The best configuration depends on dependability
requirements and on the target architecture – larger bandwidth
for debug messaging can considerably improve fault injection per-
formance, and the inclusion of on-chip fault injection capabilities
can further improve reaction time. The OCD-FI infrastructure can
be easily extended to cope with target-specific requirements. As
in many other situations, the best solution calls for a compromise
between required capabilities and acceptable overhead.

Some limitations are still present in our proposed solutions –
coverage is limited to the resources accessible by the OCD, but
these locations represent a high percentage of the area affected
by SEUs. The lack of an accepted standard may impose a consider-
able tuning effort to adapt the debugger and the FI module to each
particular case, but the trend towards OCD standardization will
facilitate this effort. Presently, NEXUS [24] is used in commercial
devices and already provides useful features for fault injection pur-
poses. However, different technologies may be adopted in the fu-
ture [21–23]. Assuming that watchpoints and data preloading are
available, our proposed solutions are flexible enough to be adapted
to different OCD infrastructures, and are adequate to support real-
time fault injection in current and future OCD-equipped micropro-
cessors. Ongoing research is focused on broadening our application
scope to different architectures and on improving fault coverage
issues.
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