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ABSTRACT 

The Bamenda mountain region has one of the highest frequencies of landslides in Cameroon 
and the lowlands are prone to floods. The occurrence of these hazards is attributed to the 
estimated 2500 mm of rainfall that the area receives annually. The aim of this paper was to 
estimate the maximum rainfall the area is likely to receive in future and to examine some 
past extreme rainfall episodes that triggered landslides and floods and their return periods. 
The type I extreme value (Gumble) distribution was used to make these estimates through 
an Excel worksheet. From the model, it was predicted that the area could receive a 
maximum rainfall of about 87.7mm/day in 3 years, 116.97mm/day in 25 years, 
126.13mm/day in 50 years and 135.23/day in 100 year. Seven extreme rainfall episodes 
were identified within the 43 year study period with rainfall amounts ranging from 
99.5mm/day to 129.3mm/day. The extreme rainfall episodes initiated both landslide and 
floods and with return periods ranging between 7.3 years to 68.9 years. Predicting these 
extreme cases can be useful in the construction of dams and bridges and further research 
on rainfall thresholds for rainfall-induced hazards affecting the region.  
 

Keywords: Extreme rainfall, return periods, landslides, floods, NW Cameroon  
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RESUMO 

A região montanhosa de Bamenda tem uma elevada frequência de ocorrência de 
deslizamentos de terra e nas terras baixas ocorrem inundações com elevada frequência. A 
frequência de ocorrência destes processos é atribuída à elevada precipitação, estimada em 
2500 mm/ano. O objetivo deste trabalho consiste em estimar valores extremos de 
precipitação relativos a diferentes períodos de retorno que provocaram deslizamentos de 
terra e inundações, com recurso à função de distribuição de Gumble (tipo I). Com base 
neste modelo, estima-se que a precipitação máxima de cerca de 87,7 milímetros / dia em 3 
anos, 116,97 milímetros / dia em 25 anos, 126,13 milímetros / dia em 50 anos e 135,23 / dia 
em 100 anos constitui valores de referência. Sete episódios extremos de chuva foram 
identificados dentro do período de estudo de 43 anos com quantidades de precipitação 
variando de 99,5 milímetros / dia a 129,3 milímetros / dia. Os episódios de precipitação 
extrema que originam em simultâneo deslizamentos de terra e inundações têm períodos de 
retorno que variam entre 7,3 anos e 68,9 anos. Embora a área tem oito meses de chuva, 
estes processos estão diretamente relacionados com as chuvas diárias extremas, sendo 
difícil estabelecer uma boa correlação com as precipitações acumuladas. A definição de 
limiares críticos de precipitação é importante para a resolução dos problemas relativos aos 
riscos naturais que afetam a região. 
 

Palavras-chave: Precipitação extrema, Período de retorno, Deslizamentos de terra, 
inundações, NW Camarões 

 

 

1. Introduction 

Rainfall is the main cause of flash floods and landslides in many parts of the world. Most of 

these hazards are caused by extreme rainfall conditions during short periods of time 

(Modricka and Georgakakos, 2015; Staley et al., 2015; Reichenbach et al., 1998). Changes in 

hydrological conditions such as soil moisture and the variation in fluvial discharge depend 

on rainfall (Sharma and Nakagawa, 2005). The South West winds (monsoon winds) which 

blows across Bamenda mountain between  March and October accompanied by heavy 

rainfall (about 2500mm per year) is seen as the main cause of landslides and floods in the 

area. About 82% of the rain is received within four months (June – September) causing 

extreme wet conditions that results on floods in the river valleys and lowlands and 

landslides along steep slopes. There are about 189 rainfall-induced landslides within the last 

ten years (Afungang, 2015) that is believed to have caused 12 deaths and lots of material 

damage. Similarly, annual occurrences of floods in Bamenda town are on the rise (Nyambod, 
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2010) resulting to material and environment damage including human casualties. Some 

recent examples and statistics on damages attributed to flood hazard in the area include: 

the Mulang 2006 floods which drown two people; the Mougheb 2009 floods that swept 

houses and resulted to one death and most recently, the Sunday, 2 August 2015 flash floods 

that drowned 10 goats, sheep and fowls in Mulang and Ntasin neighbourhoods in Bamenda 

II and III municipalities (CRTV News bulletin, 05/08/2015). These examples are just a few 

reminders of the effects of extreme rainfall in the area. The population boom in the area 

(Bamenda city) especially around the city centre has only made the job of the civil 

protection department more challenging and complicated. The city is fast grow with an 

estimated population of 58.400 in 1980 (Shende and Ndi, 2012) to about 269.530 today with 

a growing rate of 4.67 (MINDHU, 2005). The susceptibility of the area to landslides is largely 

due to the natural terrain characterised by steep slopes, abundant weathered material, high 

stream density and pore water pressure, although some landslide events have been 

attributed to anthropogenic activities. Human activities such as unplanned housing, poor 

infrastructure, construction on marshy land and the encroachment of the urban poor into 

marshy lands have increased the exposure of area to flood hazard. From this background, 

we considered that the prediction of extreme rainfall episodes can constitute part of the 

solution to this problem. The intermediate highlands are prone to landslides (translational 

and rotational landslides), while the volcanic mountains are affected by rock fall. The 

lowlands and parts of the eastern valleys are prone to floods (Fig. 1). 

Most often, the modelling of extreme random variables (e.g., Rainfall, wind speed) have 

been done using sophisticated distribution modelling methods such as Generalized Pareto 

Distribution (LI et al., 2005; Davison and Smith 1990; Joe 1987), Generalized Extreme Value 

distribution also known as extreme Frechet or value type II (Lan-Fen et al., 2012; Coles et al., 

2003; Nguyen et al., 2002), Weibull distribution (Weilbull, 1951), or a combination of the 

above (Coles et al., 2003). The application of different formulas to evaluate a single situation 

rather gives very different and contradictory results making the situation more confused. 

Although the Generalized Pareto distribution and the Generalized extreme value 

distribution had proven useful in modelling the occurrence of extreme daily precipitation 

and their return period (Elian et al., 2015), the practical and theoretical explanations are 

somehow difficult to master. 
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Fig. 1 - Location map of study area. 

 

The objective of this paper is to use a simple Excel worksheet to statistically model extreme 

rainfall using a Type I Gumbel distribution (Gumbel, 1958) to estimate the maximum 

amount of rainfall to be received at different periods in the Bamenda mountain region. It is 

also to examine some extreme rainfall episodes that triggered both landslides and floods 

and estimate their probable reoccurrence time. The use of Excel is to demonstrate how 

extreme values modelling usually done through sophisticated statistical software can be 

carried out in a simpler manner. 

 

 

2. Data description  

Daily rainfalls from the Bamenda weather station (Fig. 1) from 1970 to 2013 were used in 

the study. Annual maximum of daily rainfall also defined as bloc-maxima (Lan-Fen et al., 
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2012; Gumbel, 1958) is calculated from the rainfall time series dataset with the assumption 

that these represent extreme episodes which are most likely to cause floods and landslide 

hazards. The annual rainfall and annual maximum daily rainfall for the hydrological year 

1970-71 to 2012-13 (March – February) are presented in a bi-logarithm graph (fig. 2). The 

annual maximum rainfall ranged from 129.3mm (1998-99) to 60.3mm (2005-06) 

hydrological year. Natural hazards caused by extreme rainfall are mostly related with the 

daily extremes while monthly extremes reflect most favourable periods for the event. From 

fig. 2, the former (left) is the total rainfall amounts and the later (right) is annual maximums 

of daily precipitation. 

 

 

Figure 2 - Annual precipitation (left) and Annual maximum daily rainfall (right) from 1970-2013 
hydrological year. MAP is the mean annual precipitation. 

 

 

The 2009/2010 hydrological year had the highest number of rainy days (268 days) with 

2377.5mm of rainfall and 1988/1989 was the lowest (154 days with precipitation) with 

1934.4mm of rain (fig. 2 left). But the highest annual rainfall was in 1999/2000 (2811.8mm) 

and the least was in year 1973/1974 (1930.8mm). These statistics shows years with extreme 

rainfall variations. Daily rainfall distribution shows some extreme episodes which can 

probably cause hazardous events. The extreme rainfall episodes identified on figure 3 are 

those extremes that caused both landslides and floods in the area.  
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Figure 3 - Daily rainfall for Bamenda weather station. Extreme events associated with landslides and 
floods include: (1) 14th July 1971 (99.5mm), (2) November 3rd 1973 (100.1mm), (3) July 4th 1983 

(104.8mm), (4) August 6th 1983 (102.9mm), (5) August 29th 1994 (118.3mm), (6) the June 30th 1998 
(129.3mm), and (7) 7th August 2009 (112.1mm). 

 

 

3. Modelling extreme rainfall amount 

The role of rainfall as one of the main triggers of landslides has been widely demonstrated 

(e.g., Bai et al., 2014; Giannecchini et al., 2012; Dahal and Hasegawa, 2008). Rainfall is also 

known to be the most common cause of flash floods (Modricka and Georgakakos, 2015; 

Archer and Fowler, 2015). Many authors have worked to establish thresholds for landslide 

initiation (e.g., Tiranti and Rabuffetti, 2010; Guzzetti et al., 2008; Chleborad et al., 2006; 

Wilson and Wieczorek, 1995) and the threshold for floods (Modricka and Georgakakos, 

2015; Robert et al., 1999) or both of them (e.g., Staley et al. 2015; Reichenbach et al., 1998). 

The peak period of landslide triggering during a storm has also been predicted (e.g., Chi-

Wen et al., 2015; Glade et al., 2000). But very few authors have focused to know the 

maximum rainfall that can be received at a given time which is important to determine the 

probabilities of occurrence of these events. The occurrence of a landslide event depends on 

the amount of rainfall received, the intensity and duration of the episode and the soil 

humidity.  Based on the amount of rainfall that initiated past landslides and floods, the Type 

I (Gumble) distribution usually used in estimating extreme values of random variables was 

used to model the maximum amount of rainfall (X) considering the annual maxima (AMR) in 



 GOT, n.º 9 – Revista de Geografia e Ordenamento do Território (junho de 2016) 

GOT, nr. 9 – Geography and Spatial Planning Journal (June 2016) 

 

11 

 

the study area. Rainfall was assumed to have a Gumble distribution (�, �). Thus estimating 

the values in this distribution involved calculating the scale parameter (�) and the location 

parameter (�) of the distribution. To do this, the annual maximum rainfall denoted by V was 

sorted from the lowest to the highest. The probability of maximum rainfall (Pv) in the study 

area was calculate using the Gringorten probability function which is stated as;  

�� = (� − 0.44)/(� + 0.12)  (Gringorten, 1963)   (1) 

Thus, Pv was estimated as (fx) = (m-0.44)/(n+0.12). 

V M n Pv -ln(Pv) -ln(-ln(Pv)) 

60.3 1 43 0.012987 4.343805 -1.468751 

60.3 2 43 0.0361781 3.319301 -1.199754 

62.1 3 43 0.0593692 2.82398 -1.038147 

63.7 4 43 0.0825603 2.494226 -0.913979 

63.7 5 43 0.1057514 2.246664 -0.809447 

63.7 6 43 0.1289425 2.048389 -0.717054 

64.1 7 43 0.1521336 1.882996 -0.632864 

64.8 8 43 0.1753247 1.741116 -0.554526 

69.9 9 43 0.1985158 1.616887 -0.480503 

70.0 10 43 0.2217069 1.506399 -0.409722 

70.2 11 43 0.244898 1.406914 -0.341398 

71.4 12 43 0.2680891 1.316436 -0.274928 

71.4 13 43 0.2912801 1.23347 -0.209831 

73.0 14 43 0.3144712 1.156863 -0.145712 

73.7 15 43 0.3376623 1.085709 -0.082233 

74.1 16 43 0.3608534 1.019283 -0.0191 

75.3 17 43 0.3840445 0.956997 0.0439553 

75.9 18 43 0.4072356 0.898363 0.1071807 

80.0 19 43 0.4304267 0.842978 0.1708142 

80.4 20 43 0.4536178 0.7905 0.2350893 

81.6 21 43 0.4768089 0.740639 0.3002413 

82.4 22 43 0.5 0.693147 0.3665129 

82.5 23 43 0.5231911 0.647808 0.4341602 

84.1 24 43 0.5463822 0.604437 0.5034585 

84.5 25 43 0.5695733 0.562868 0.5747105 

84.5 26 43 0.5927644 0.522958 0.6482536 

84.9 27 43 0.6159555 0.484581 0.7244715 

85.6 28 43 0.6391466 0.447621 0.8038073 

85.9 29 43 0.6623377 0.41198 0.886781 

86.0 30 43 0.6855288 0.377565 0.974013 

86.5 31 43 0.7087199 0.344295 1.0662565 

86.8 32 43 0.7319109 0.312096 1.1644431 
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86.8 33 43    0.755102 0.280902 1.2697481 

89.0 34 43 0.7782931 0.250652 1.3836896 

93.0 35 43 0.8014842 0.22129 1.5082813 

93.0 36 43 0.8246753 0.192766 1.6462808 

96.1 37 43 0.8478664 0.165032 1.8016148 

96.1 38 43 0.8710575 0.138047 1.9801591 

99.5 39 43 0.8942486 0.111771 2.1912991 

100.1 40 43 0.9174397 0.086168 2.4514515 

104.8 41 43 0.9406308 0.061205 2.7935335 

118.3 42 43 0.9638219 0.036849 3.3009333 

129.3 43 43 0.987013 0.013072 4.3372765 

Table 1 - Excel worksheet computation of annual extreme rainfall for Bamenda mountain region, for 
the years 1970-2013 using Gumbel distribution 

Where: Pv = Probability of maximum annual rainfall in mm/day, -ln(Pv) = negative of the natural 
logarithm of Pv (Gringorten Estimation), -ln(-ln(Pv)) = negative of the natural logarithm of Pv, taken 

twice. 
 

The maximum annual rainfall (V) used to calculating the probabilities was obtained from 

daily rainfall records from the Bamenda Up station weather station. From table 1, the scale 

and location parameters were estimated by plotting -ln(-ln(Pv)) against Pv on a bi-logarithm 

scale (fig. 4). The different quantiles were obtained from computing Pv using the Per cent 

point distribution function.  

 

Figure 4 - Probability plot of Type I Extreme Value distribution of rainfall: The vertical axis (V) 
represents the quantiles of the data (maximum rainfall in mm/day) and the horizontal axis  (-In(-
In(Pv)) is the quantiles of the percent point Gumble distribution. The black line is linear Type I EV 

distribution. 
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It can be seen that the annual maximum rainfall (points on the graph) form an 

approximately straight line depicting a good distribution to the model used (Chambers et al. 

1983). The scale parameter is depicted by the slope of the linear curve (� =11.914) and the 

location parameter by the intercept (μ = 74.86). The fitted function R2 = 0.9795 shows a very 

good adjustment of the distributed points.  

 After determining the location and scale parameters of the Gumble distribution, it 

was now possible to estimate the extreme rainfall that the Bamenda mountain region can 

possibly receive over time. The inverse of the cumulative function also known as Percent 

Point Distribution (PPD) was used and denoted as (G);  

G(1/(1-1/R))        (4) 

The percent point is a probability that x is less than or equal to a given value. It was then 

expressed as; 

�� − ��{−�� ����}       (5) 

P is the probability of the desired quantile and from R above. The probability of each 

quantile was computed as; 

�� = 1 − (1 / Rp),     (6) 

Where: Rp is the return period for the desired period.  

The extreme rainfall expected at any period in future was calculated using the Gumbel 

Percent Point. Different return periods ranging from 3, 5, 10, 15, 25, 50 and 100 years was 

computed by applying the percent point function (PPF) to the quantiles above. The 

probabilities of extreme rainfall estimated by the PPF were defined as; 

PPF = � ∗ (− ln(− ln(��))) + μ 

The result of the modelling within different future time intervals is shown in table 2. 
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Rp (Years) �� -ln(��) -ln(-ln(��))  	(��/"#$
 
3 0.67 0.405464608 0.902722 87.06895 

5 0.8 0.223143551 1.49994 94.84771833 

10 0.9 0.105360516 2.250367 104.6220344 

15 0.93 0.068993229 2.673747 110.1365536 

25 0.96 0.040821995 3.198534 116.9719088 

50 0.98 0.020202707 3.901939 126.133751 

100 0.99 0.010050336 4.600149 135.2279437 

Table 2 - Extreme rainfall return periods and probabilities 

 

From table 2, the probability of an extreme rainfall episode is 0.67 in three years, 0.9 in 10 

years, and only increases to 0.98 in 50 years. By this we found out that the probability of 

having a particular amount of rainfall over a given region increases sharply to a certain point 

and then continuous rising at a lower rhythm. In a period of 25 years, the Bamenda 

mountain region is expected to receive an extreme rainfall episode of approximately 

117mm in 1 day and in the next 100 years this can rise up to 135.23mm in 1 day.  

  

3.1. Hazard-link rainfall episodes and reoccurrence time 

Historical records from Guedjeo et al. (2012), Eze and Ndenecho (2004), and Lambi (2004), 

shows that the frequency of landslides and floods is highest between the month of July and 

September (monsoon period) when the soils are saturated. Rainfall time series records 

show twenty-six extreme rainfalls in the last 23 years (1990-2013) with rainfall above 80mm 

in one day (fig. 3). Historical hazard data from reviews (Afungang, 2015) and field work 

carried out in 2009, 2010, 2013 and 2014 show many incidents where heavy rainfalls 

initiated landslides along the Bamenda and Sabga escarpments and floods in Bamenda town 

(lowlands) on the same day. Among these events, seven were quite extensive in terms of 

material damage and human casualties. Determining the return period of rainfall episodes 

that initiated past landslides is important in the prediction of future hazards (Bhandari et al., 

1991). The return period is a statistical function which determines how many trials on an 

average must be made, before an event of a greater probability can occur (Gumbel, 1941). 

These trials (events) were computed using the Gumbel law that was defined as; 

%	�&
 � '&()	'&( *	 +,-
. /0                        (6.2) 
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The reduced variable was defined as;  $ �  +,-
.  

For which the Gumbel distribution was defined as;  

%� = 1%$�2
3 = '&({− exp1−$�2
3}               (6.3) 

Hence: $�2
 = %,� (%2
 =  −7�{−7��%2
 }      (6.4) 

Where: μ is the location parameter, � is the scale parameter 

The mean and the standard deviation of the reduced variable of the extreme value type I 

(Gumble) distribution was 0.521 and 1.165 respectively. The return period and cumulative 

amount of rainfall expected for the eight episodes were defined by calculating the extreme 

probability using the alfa and beta values expressed as; 

� = �89::9<
= � − ��−>�+�:+?
ß  And ß = �89::9<

= � − A"�−>�+�:+?
  respectively  (6.7) 

These values were derived from the mean and standard deviation for each day with 

landslides and floods expressed as; M= 
89::9<

=       and      Sd= 
89::9<

=    respectively   (6.5) 

Where: � = Alfa value, ß = Beta value, M = Mean, Sd = Standard deviation, >� = logarithm 

�&�:+?  = Annual maximum rainfall for year 1 to n-year 

These values were calculated for 1970-71 to 2012-13 hydrological years. The mean value of 

the annual maxima precipitation (81.6) and the standard deviation (15.0) was calculated 

based on the annual maximum rainfall for one day (table 1). The alpha and beta value of the 

annual maxima was 74.91 and 12.87 respectively.  

The extreme probability for the extreme rainfall episodes that initiated landslides and floods 

(fig.3) and corresponding reoccurrence time was calculated through logistic regression 

analysis. The logistic regression equation is mathematically stated as; 

B� = 1 − exp �−'&(�−�−�+? − ß
�                (6.8) 

�+? = Maximum accumulated rainfall for a landslide event. 

Ep = Extreme probability 

The return periods calculated in years were expressed as; 
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C( � �
D8                     (6.9) 

Thus C( for each day over the 43 year period calculated for days with landslides was 

expressed as; 

C(�….? � �
D8:…..<

         (6.10) 

The return period (Rp) for each landslide was the maximum value obtained by dividing one 

over the extreme probability and was expressed as; 

C( � �
D8:
: �

D8<
          (6.11) 

 

Sequence 
of hazard 

events 

Dates with 
Landslides 
and floods 
events 

Rainfall on 
the day of 
event 
(mm/day) 

Extreme 
probability 

Return 
period 
(years) 

Average 
monthly 
rainfall 
(mm) 

Average rainfall 
for that year 
(mm) 

1 14/07/1971 99.5 0.13761 7.3 15.46 mm 165.2 mm 

2 03/11/1973 100.1 0.13178 7.6 3.64  160.9 mm 

3 04/07/1983 104.8 0.09343 10.7 14.91  198.02mm 

4 06/08/1983 102.9 0.10746 9.3 14.91  178.02mm 

5 29/08/1994 118.3 0.03378 29.6 16.83  210.03mm 

6 30/06/1998 129.3 0.01452 68.9 15.15 211.03 

7 07/08/2009 112.1 0.06205 14.3 12.52 198.13 

Table 3 - Extreme probability and return periods for major hazard events 

The selected cases above (table 3) are those extreme rainfall episodes that initiated both 

landslides and floods events in the study area. It can be seen that very high rainfall episodes 

(e.g., 129.3 mm in 1 day) caused floods and landslides with long return periods (68.9 years) 

and vice versa. From the table, it could be seen that rainfall on the day of the events was 

significantly higher than the average for those months and years. Though in principal these 

two landslides and floods respond differently to rainfall conditions (e.g., rainfall intensity, 

duration and amount), their occurrence can be triggered by extreme rainfall in one day. 

However, rainfall threshold for landslide events in the area have been established by 

Afungang and Bateira (In press) using the landslide inventory and corresponding rainfall on 

the day of the events.  
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4. Conclusion 

Following our first objective, we have demonstrated that extreme rainfall conditions can be 

computed using simple procedures (Excel worksheet) enabling everyone to arrive at a given 

result. The amount of extreme rainfall increases continuously with time while the 

probability of having extreme rainfall increases at a decreasing rate after a period of 10 

years. The model predicted 126.13mm in 1 day in 50 years which was almost the same 

rainfall amount (129.3mm in 1 day) received on June 30th 1998. Secondly, rainfall episodes 

from 90mm in 1 day are capable of triggering multiply hazards irrespective of the 

environmental fix factors that influence landslides and floods. The threshold value for 

landslides is in the area is estimated at CFG � 94.063 K,L.M�N (Afungang and Bateira, in 

press) which is somewhat below the minimum extreme value identified in this text. The 

Extreme rainfall shows only rainfall episodes where landslides and floods were initiated. 

Knowledge of expected rainfall in 100 years can be used by land use managers to improve 

on the management of existing Dams and the construction of new ones thereby turning the 

hazard situation into a resource. Construction plans for critical infrastructural such as 

bridges and houses especially on marshy lands can be improved upon.   
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