
Applied Soft Computing Journal 184 (2025) 113783 

A
1

 

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc  

An Actor–Critic-based adapted Deep Reinforcement Learning model for 
multi-step traffic state prediction
Selim Reza a , Marta Campos Ferreira b , J.J.M. Machado c , João Manuel R.S. Tavares c ,∗

a Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
b INESC-TEC, Departamento de Engenharia e Gestão Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 
s/n, 4200-465 Porto, Portugal
c Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade 
do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

A R T I C L E  I N F O

Dataset link: Caltrans PeMS, PeMS-BAY and ME
TR-LA

Keywords:
Intelligent transportation systems
Multi-step ahead prediction
Actor–Critic network
Accumulation of errors
Denoising Autoencoder

 A B S T R A C T

Traffic state prediction is critical to decision-making in various traffic management applications. Despite 
significant advancements in Deep Learning (DL) models, such as Long Short-Term Memory (LSTM), Graph 
Neural Networks (GNN), and attention-based transformer models, multi-step predictions remain challenging. 
The state-of-the-art models face a common limitation: the predictions’ accuracy decreases as the prediction 
horizon increases, a phenomenon known as error accumulation. In addition, with the arrival of non-recurrent 
events and external noise, the models fail to maintain good prediction accuracy. Deep Reinforcement Learning 
(DRL) has been widely applied to diverse tasks, including optimising intersection traffic signal control. 
However, its potential to address multi-step traffic prediction challenges remains underexplored. This study 
introduces an Actor–Critic-based adapted DRL method to explore the solution to the challenges associated 
with multi-step prediction. The Actor network makes predictions by capturing the temporal correlations of 
the data sequence, and the Critic network optimises the Actor by evaluating the prediction quality using 
Q-values. This novel combination of Supervised Learning and Reinforcement Learning (RL) paradigms, along 
with non-autoregressive modelling, helps the model to mitigate the error accumulation problem and increase 
its robustness to the arrival of non-recurrent events. It also introduces a Denoising Autoencoder to deal with 
external noise effectively. The proposed model was trained and evaluated on three benchmark traffic flow and 
speed datasets. Baseline multi-step prediction models were implemented for comparison based on performance 
metrics such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results reveal that the 
proposed method outperforms the baselines by achieving average improvements of 0.26 to 21.29% in terms 
of MAE and RMSE for up to 24 time steps of prediction length on the three used datasets, at the expense of 
relatively higher computational costs. On top of that, this adapted DRL approach outperforms traditional DRL 
models, such as Deep Deterministic Policy Gradient (DDPG), in accuracy and computational efficiency.
1. Introduction

Traffic state prediction is a fundamental task of Intelligent Trans-
portation Systems (ITS) for managing traffic efficiently. This task in-
volves predicting future states based on past observations, enabling bet-
ter decision-making and resource allocation. Traditional methods, such 
as Autoregressive Integrated Moving Average (ARIMA) [1], Exponential 
Smoothing (ES) [2], Support Vector Regression (SVR), and K-Nearest 
Neighbours (KNN) [3] offer solutions for linear traffic time-series data 
but often fall short when handling complex, non-linear patterns present 

∗ Correspondence to: Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-
465 Porto, Portugal.

E-mail addresses: up202003355@fe.up.pt (S. Reza), mferreira@fe.up.pt (M.C. Ferreira), jjmm@fe.up.pt (J.J.M. Machado), tavares@fe.up.pt 
(J.M.R.S. Tavares).

in real-world traffic datasets. Deep learning (DL) models, particularly 
Long Short-Term Memory (LSTM) networks, have proven effective in 
capturing such patterns due to their ability to process sequential data 
and model long-term dependencies.

Single-step prediction has limited practical applicability and is rel-
atively manageable with these models. However, the limitations of 
single-step predictions underscore the growing need for multi-step-
ahead prediction [4], which is significantly more challenging to model. 
Attention mechanism-based transformers have been employed to tackle 
https://doi.org/10.1016/j.asoc.2025.113783
Received 30 January 2025; Received in revised form 7 August 2025; Accepted 9 A
vailable online 27 August 2025 
568-4946/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
ugust 2025

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/asoc
https://www.elsevier.com/locate/asoc
https://orcid.org/0000-0002-2877-2980
https://orcid.org/0000-0001-9505-5730
https://orcid.org/0000-0002-1094-0114
https://orcid.org/0000-0001-7603-6526
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
mailto:up202003355@fe.up.pt
mailto:mferreira@fe.up.pt
mailto:jjmm@fe.up.pt
mailto:tavares@fe.up.pt
https://doi.org/10.1016/j.asoc.2025.113783
https://doi.org/10.1016/j.asoc.2025.113783
http://creativecommons.org/licenses/by/4.0/


S. Reza et al. Applied Soft Computing 184 (2025) 113783 
these challenges successfully [5,6]. However, a fundamental limitation 
remains: accuracy declines as the prediction horizon extends. Con-
sequently, multi-step prediction using current DL-based models faces 
significant hurdles as errors accumulate over time, making sustaining 
accuracy over longer horizons increasingly challenging. On top of that, 
these models are sensitive to external noise and fail to maintain good 
prediction accuracy with the arrival of extreme events such as accidents 
and adverse weather conditions.

Deep Reinforcement Learning (DRL) has emerged as a popular ap-
proach in robotics, self-driving vehicles, and adaptive road traffic signal 
control, demonstrating remarkable resilience in discovering optimal 
policies to tackle complex tasks in these domains effectively [7–9]. 
Building on this success, exploring whether DRL can effectively address 
the challenges associated with traffic state prediction is worthwhile. 
Despite its potential, there is a significant gap in the literature regarding 
applying DRL to traffic state prediction problems. By contrast, few 
studies have focused on using DRL for general-purpose time-series prob-
lems, such as energy consumption and trade forecasting. To accomplish 
the objectives, these studies used advanced DRL architectures, such as 
Soft Update Duelling Double Deep Q-learning (SU-D3QN) and DDPG. 
However, beyond stability issues, DDPG’s reliance on a deterministic 
policy limited the exploration of diverse weight combinations, leading 
to suboptimal performance [10]. In addition, they were modelled for 
single-step predictions based on small datasets such as only 1000 
samples [11].

This research proposes an Actor–Critic-based adapted DRL model 
to address the abovementioned limitations, where the Actor network 
makes the predictions (actions), and improves its policies depending 
on the Critic’s judgements. At the same time, the Critic refines its 
evaluations based on the Actor’s actions. The Actor uses layers of 
LSTMs and Bidirectional Long Short-Term Memory (BiLSTM) to cap-
ture temporal correlations in the sequence and predict future time 
steps. The Critic network also employs LSTMs to estimate Q-values, 
which guide the Actor optimisation. This technique does not neces-
sarily represent a true DRL approach, but rather an adapted version. 
State-of-the-art baseline models were implemented for comprehensive 
performance comparisons, and three benchmark datasets were used 
for training and evaluation. Also, a state-of-the-art traditional DDPG 
model was developed and tested for comparisons. The experimental 
results demonstrated its superior performance, particularly for higher 
prediction lengths. The main contributions of this study are:

• This study presents a unique adapted DRL-based architecture 
for multi-step traffic state prediction, incorporating LSTM layers 
into Actor and Critic networks to efficiently capture temporal 
dependencies.

• The Actor focuses on making correct future predictions, whereas 
the Critic network reviews and refines these predictions using 
Q-values, leveraging RL paradigms.

• By integrating Supervised Learning and RL paradigms, the model 
outperforms baseline approaches in mitigating the error accu-
mulation problem and retaining good accuracy in the face of 
uncertainty from non-recurring events.

• It also introduces a Denoising Autoencoder to improve robustness 
to external noise.

This article is organised as follows: Section 2 overviews selected 
state-of-the-art methods, highlighting their performance and limita-
tions. In Section 3, the proposed model is described, followed by a 
description of the experimental setup and achieved results in Section 4. 
Section 5 discusses the overall performance of the proposed model and 
some of its features. Finally, conclusions are presented in Section 6.
2 
2. Related works

Traffic state prediction has garnered significant attention in im-
proving the efficiency of ITS, leading to the development of various 
methods. Many of these methods are focused on single-step predic-
tion, which bears substantial limitations in practical applications [12]. 
Modelling multi-step prediction, although desirable, is considerably 
more challenging than single-step prediction due to the previously 
mentioned reasons. The use of DRL methods in addressing these issues 
is underexplored, and hence, the literature contains limited research on 
their usage for traffic state prediction. A few studies have investigated 
its applicability to different time-series forecasting challenges. This 
section reviews recent developments in multi-step prediction models, 
including their fundamental advantages and disadvantages.

Traditionally, statistical models, like Auto Regressive Integrated 
Moving Average (ARIMA) models, have been widely used due to 
their interpretability and effectiveness in capturing linear relationships. 
However, these models often struggle with complex, non-linear patterns 
in real-world traffic state data [13]. Recent advancements in DL have 
introduced models capable of modelling such complexities. Among 
them, LSTMs and Gated Recurrent Units (GRUs) have emerged as 
powerful approaches for sequential data due to their ability to capture 
temporal dependencies [14]. LSTMs use memory cells to mitigate 
the vanishing gradient problem, allowing them to learn long-term 
dependencies effectively. Research has shown that LSTMs outperform 
traditional models in traffic state prediction tasks, such as in traffic 
speed prediction [15], traffic volume prediction [16], and traffic con-
gestion prediction [17]. However, these models process each sample 
at a time and thus might not be most effective in capturing long-term 
patterns. Hence, researchers explored attention mechanisms and Graph 
Neural Networks (GNN) to solve these limitations. For example, Du 
et al. [18] proposed an LSTM-based encoder–decoder architecture for 
multi-step traffic flow prediction. Their promising results are confined 
to short-term predictions only.

Due to the ability to extract long-term trends and dynamic de-
pendencies, transformers based on the attention mechanism are being 
employed extensively to address this limitation. Feng et al. [19] incor-
porated an attention mechanism with CNN and BiLSTM to enable pre-
dictions up to 60 min ahead. Despite this strategy demonstrating good 
enhancements, short-term forecasts surpassed long-term predictions. 
Sattarzadeh et al. [20] proposed a spatial–temporal Autoencoder model 
incorporating a transformer architecture to improve these drawbacks 
of vanilla transformers for a prediction length of up to 60 min. The 
transformer encoder–decoder architecture combining GRU, CNN, and 
residual connections outperformed the MAE, RMSE and MAPE base-
lines. However, it lacked sufficient experimental validation to prove 
the robustness to noise and non-recurrent events. To address these 
problems, Xue et al. [21] proposed an adaptive spatial–temporal trans-
former model. It introduced a multi-view temporal attention module to 
capture short- and long-term dependencies and an adaptive gated fu-
sion mechanism to achieve dynamic fusion of spatial–temporal features. 
Although it mitigated the influence of outliers, the prediction errors 
accumulated rapidly with increased prediction time steps. Another 
method was proposed by Liu et al. [22], which replaced the traditional 
multi-head self-attention mechanism with a time-environment-aware 
self-attention block and used a parallel spatial self-attention archi-
tecture to capture both short- and long-term patterns simultaneously 
to enhance the efficiency of conventional transformer-based models. 
However, it still suffered from the accumulation of errors while the 
prediction horizons increased.

GNNs are also extensively employed to enable more context-aware 
and accurate multi-step predictions. For example, Zou et al. [23] intro-
duced a GNN-based model that leveraged spatial–temporal correlations 
in traffic states to tackle the aforementioned issue. Instead of generating 
one step at a time, their model predicted all desired future traffic 
states in a single forward pass, reducing error accumulation by avoiding 



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
reliance on intermediate steps. However, this approach required a fixed 
prediction horizon during training, requiring retraining for different 
horizons. Furthermore, it faced challenges adapting to dynamic, un-
foreseen changes in real-time, such as sudden traffic surges caused by 
accidents or weather conditions. Combinations of GNNs and attention 
mechanisms were also applied, such as by Zhao et al. [24], which 
introduced a Graph Spatial–Temporal Transformer (GSTT) model for 
multi-step traffic state prediction. This model integrated a multi-view 
Graph Convolutional Network (GCN) to capture the spatial patterns 
and a multi-head transformer network to model temporal trends and 
random disturbances. On the METR-LA dataset, the model achieved an 
MAE of 2.506 and 3.342 for prediction horizons of 15 and 45 min, 
respectively. While it demonstrated a slight reduction in the error accu-
mulation phenomenon, the MAE still increased by 25% when extending 
the prediction horizon from 15 to 45 min, indicating challenges in 
maintaining consistent accuracy over longer time horizons. Similarly, 
Luo et al. [25] proposed the Long-Short Term Transformer Network 
(LSTNN), which integrated a stacked 1D dilated CNN for modelling 
long-term trends, a dynamic GCN for periodic features, and a short-
term trend extractor to capture fine-grained temporal details. Using 
the METR-LA dataset, the model achieved an MAE of 2.42 and 2.96 
for prediction horizons of 15 and 60 min, respectively. Nonetheless, it 
exhibited an 18.24% rise in MAE as the prediction horizon increased, 
illustrating the issue of error accumulation. Hence, further improve-
ments could be made to enhance its performance over longer time steps. 
Similar problems persist in the methods proposed by Geng et al. [26] 
and Li et al. [27].

Although DRL methods, such as DDPG and Proximal Policy Op-
timisation (PPO), have demonstrated remarkable success in diverse 
domains, including finance [28] and robotics [29], they have been 
less explored in addressing the challenges of multi-step predictions. 
Nonetheless, Hassan et al. [30] presented an RL-based freight demand 
prediction model to enhance operational planning decisions, high-
lighting significant advantages, such as adaptability, dynamic respon-
siveness, and potential real-time application. However, its evaluation 
lacked thorough comparisons with other advanced DL models. Simi-
lar problems persist in the work by Li et al. [31], where an LSTM 
captured temporal dependencies in sales data and a DRL agent im-
proved inventory policies by predicting future sales patterns. To address 
these problems, LSTM-based Actor and Critic networks were proposed, 
achieving 5−52% of improvement compared to the baselines [32,33]. 
Yet, the accuracy needs further improvements, and no robustness test 
to external noise was performed. In these contexts, Ren et al. [34] 
improved the accuracy and robustness of short-term traffic prediction 
in cases involving traffic bursts caused by extraordinary events (SEs) 
such as concerts or sporting events in the Beijing Workers’ Stadium 
neighbourhood using a DDPG framework integrating the LSTM net-
works. However, these models are insufficient to address the mentioned 
drawbacks of the existing state-of-the-art.

The aforementioned studies indicate that the accumulation of error 
phenomenon and noise sensitivity persist in multi-step traffic state pre-
diction tasks and thus require new approaches. Therefore, this research 
proposes a hybrid method combining Supervised Learning and RL 
paradigms to investigate their abilities to address the abovementioned 
problems.

3. Methodology

The proposed model aims to overcome the challenges associated 
with multi-step ahead prediction, where prediction errors propagate 
over time. Although the DL-based models have successfully solved 
many of the current challenges, they still have bottlenecks. Hence, 
this research adapted the RL concepts with DL frameworks to over-
come them. This section presents a comprehensive formulation of the 
proposed model. As such, Table  1 presents important mathematical 
symbols and their descriptions necessary to understand the model 
formulation.
3 
3.1. Problem statement

Let us assume that 𝑋𝑡 = [𝑥𝑡−𝐿+1,… , 𝑥𝑡] is a past sequence of traffic 
states where 𝐿 represents input sequence length. Now, Suppose 𝑇  is the 
length of prediction steps; the objective is to predict the corresponding 
future sequence 𝑌𝑡+1∶𝑡+𝑇 = [𝑦𝑡+1, 𝑦𝑡+2,… , 𝑦𝑡+𝑇 ]. Hence, the proposed 
model aims to learn this mapping using: 

𝑌𝑡+1∶𝑡+𝑇 = 𝑓𝑚𝑜𝑑𝑒𝑙(𝑋𝑡; 𝜃), (1)

where 𝜃 represents the model’s parameters learned during training.

3.2. Long short-term memory

The LSTM models use a gating mechanism to address the vanishing 
gradient problem of Recurrent Neural Networks (RNN) and can capture 
long-term patterns in data sequences. An LSTM cell is made up of four 
basic components: (i) the input gate, (ii) the forget gate, (iii) the output 
gate, and (iv) the cell state update. Consider the preprocessed input 
𝑋 ∈ R𝑁×𝑇×𝐹 , where 𝑁 , 𝑇 , and 𝐹  indicate the number of samples, 
prediction steps, and features, respectively. At time step 𝑡, the input 
gate will process 𝑋𝑡 ∈ R𝐵×𝑇×𝐹 , where 𝐵 is the batch size to determine 
what information to store in the cell state 𝑐𝑡. It uses a sigmoid function 
𝜎 to determine which values are essential using: 

𝐼𝑡 = 𝜎(𝑊𝑥𝑖𝑋𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖). (2)

The forget gate determines which part of the previous cell state 𝑐𝑡−1 to 
forget according to: 

𝐹𝑡 = 𝜎(𝑊𝑥𝑓𝑋𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓 ). (3)

Here, 𝐹𝑡 is a vector comprised of values between [0, 1] with 0 (zero) and 
1 (one), meaning forget completely and retain completely, respectively. 
The candidate cell state 𝑐𝑡 computes the candidate values to add to the 
cell state. It uses the tanh activation function to scale them between 
[−1, 1] according to: 

𝑐𝑡 = tanh(𝑊𝑥𝑐𝑋𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐 ). (4)

The cell state is then updated by retaining old information with the 
help of 𝐹𝑡 ⊙ 𝑐𝑡−1 and incorporating new information using 𝐼𝑡 ⊙ 𝑐𝑡 as: 

𝑐𝑡 = 𝐼𝑡 ⊙ 𝑐𝑡 + 𝐹𝑡 ⊙ 𝑐𝑡−1, (5)

where ⊙ denotes the element-wise multiplication. Finally, the output 
gate and hidden state are computed using [35]:

𝑂𝑡 = 𝜎(𝑊𝑥𝑜𝑋𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜), (6)

ℎ𝑡 = 𝑂𝑡 ⊙ tanh(𝑐𝑡), (7)

where 𝑂𝑡 and ℎ𝑡 denote the output gate and hidden state at time step 
𝑡. The 𝐼𝑡, 𝐹𝑡, and 𝑂𝑡 parameters control the flow of information and, 
thus, enable the network to focus on relevant parts of a data sequence.

3.2.1. Bidirectional long short-term memory
An expansion of LSTMs that can process an input sequence forward 

and backwards is called a BiLSTM. This phenomenon enables the 
network to capture dependencies from both past and future contexts 
through [36]:

⃖⃖⃗ℎ𝑡 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐿𝑆𝑇𝑀(𝑋𝑡, ⃖⃖⃖⃖⃖⃖⃗ℎ𝑡−1), (8)
⃖⃖ ⃖ℎ𝑡 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝐿𝑆𝑇𝑀(𝑋𝑡, ⃖⃖ ⃖⃖⃖⃖⃖ℎ𝑡+1), (9)

ℎ𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡( ⃖⃖⃗ℎ𝑡, ⃖⃖ ⃖ℎ𝑡), (10)

where ⃖⃖⃗ℎ𝑡 and ⃖ ⃖⃖ℎ𝑡 are the hidden states of forward and backwards LSTMs, 
respectively.



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
Table 1
Description of important mathematical symbols used in the formulation of the proposed model.
 Symbol Meaning Symbol Meaning  
 𝑋𝑡 and 𝑌𝑡 An input and an output sequence of traffic states 𝑡 Time step  
 𝑁 Number of samples ⊙ Element-wise multiplication  
 𝐿 Length of an input sequence 𝑂𝑡 The output gate at 𝑡  
 𝑇 Length of the prediction steps ℎ𝑡 The hidden state at 𝑡  
 𝜃 Model’s learnable parameters 𝑊𝑖 Weight matrix  
 𝐹 Number of features 𝑏𝑖 Bias vector  
 𝐵 Batch size 𝑈𝑖 Dimensionality of the output space 
 𝑐𝑡 Cell state 𝑐𝑡 The candidate cell state  
 𝜎 The sigmoid function tanh The hyperbolic tangent function  
 𝑌𝑡 and 𝑌𝑝 True and predicted values 𝑠 and 𝑎 The state and action  
 𝛾 Discount factor 𝑠′ and 𝑎′ The next state and action  
 𝜆 The Weighting factor 𝑄 Q-values  
3.3. Actor model

The Actor network aims to produce the output sequence 𝑌𝑎 ∈
R𝐵×𝑇𝑜×𝐹  by processing the input sequence 𝑋𝑡 ∈ R𝐵×𝑇×𝐹  at time step 
𝑡 using a combination of LSTM and BiLSTM architectures. 𝑋𝑡 ∈ R𝐵×𝑇×𝐹

is passed through the first LSTM to capture the temporal features. 
Then, 𝑌𝑎1 is processed by a BiLSTM to improve the temporal context 
using both forward and backwards dependencies. The second LSTM 
layer further refines the learned temporal features. Afterwards, two 
Dense layers are used to make predictions. The Actor network can be 
formulated as:
𝑌𝑎1 ∈ R𝐵×𝑇×𝑈1 = 𝐿𝑆𝑇𝑀(𝑋𝑡), (11)

𝑌𝑎2 ∈ R𝐵×𝑇×2𝑈1 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑌𝑎1), (12)

𝑌𝑎3 ∈ R𝐵×𝑇×𝑈2 = 𝐿𝑆𝑇𝑀(𝑌𝑎2), (13)

𝑌𝑎4 ∈ R𝐵×𝑇×𝑈𝑑 = 𝑅𝑒𝐿𝑈 (𝑊𝑑𝑌𝑎3 + 𝑏𝑑 ), (14)

𝑌𝑎 ∈ R𝐵×𝑇𝑜×𝐹 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑌𝑎4), (15)

where 𝑈1, 𝑈2 and 𝑈𝑑 represent the dimensionality of the output space, 
𝑊𝑑 is the weight matrix, and 𝑏𝑑 is the bias vector.

The initial LSTM handles raw sequential input 𝑋𝑡 ∈ R𝐵×𝑇×𝐹 , ex-
tracting short-term relationships while keeping the temporal dimension 
for the following layer. The BiLSTM collects context from previous 
and future time steps in 𝑌𝑎1 ∈ R𝐵×𝑇×𝑈1 , which improves the model’s 
capacity to learn long-range bidirectional patterns. The second LSTM 
consolidates all time steps into a fixed-length context vector to output 
𝑌𝑎3 ∈ R𝐵×𝑇×𝑈2 , reducing dimensionality before Dense layers turn the 
high-level features into the final prediction. The first Dense layer with 
ReLU transform 𝑌𝑎3 ∈ R𝐵×𝑇×𝑈2  through a linear operation followed 
by a non-linear activation to output 𝑌𝑎4 ∈ R𝐵×𝑇×𝑈𝑑 . The objective is 
to enhance the abstraction of high-level features and incorporate non-
linearity to facilitate the learning of complex mappings. The final Dense 
functions are used as an unconstrained output layer for regression, 
yielding 𝑌𝑎 ∈ R𝐵×𝑇𝑜×𝐹 .

The aforementioned sequence of layers was chosen by extensive 
experimental studies focusing on preventing underfitting and overfit-
ting while maintaining manageable computational expenses. On top of 
that, this hierarchical structure was designed to enhance its robustness, 
i.e., to tackle the sensor errors efficiently.

3.4. Critic model

The Critic network evaluates the quality of the Actor’s predictions 
by computing the Q-values to reflect how good the predictions are. It 
consists of an LSTM and two Dense layers according to:
𝑌𝑐1 ∈ R𝐵×𝑈𝑐1 = 𝐿𝑆𝑇𝑀(𝑋𝑡), (16)

𝑌𝑐2 ∈ R𝐵×𝑈𝑐2 = 𝑅𝑒𝐿𝑈 (𝑌𝑐1𝑊𝑐1 + 𝑏𝑐1), (17)

𝑄 ∈ R𝐵×1 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑌𝑐2𝑊𝑐2 + 𝑏𝑐2), (18)
4 
where 𝑈𝑐1 and 𝑈𝑐2 represent the dimensionality of the output space, 
𝑊𝑐1 and 𝑊𝑐2 are the weight matrix, and 𝑏𝑐1 and 𝑏𝑐2 are the bias vector. 
Here, 𝑌𝑐1 returns only the final hidden state for each sequence in the 
batch. Hence, the Critic model learns to assign Q-values that correlate 
with prediction errors.

The Critic network is now less complex than the Actor because it just 
needs to evaluate the states. The LSTM captures the temporal features 
from the input sequence 𝑋𝑡 and returns 𝑌𝑐1 ∈ R𝐵×𝑈𝑐1 , which is its 
compressed representation. The first Dense layer with ReLU transforms 
𝑌𝑐1 ∈ R𝐵×𝑈𝑐1  using a linear operation. It is followed by a non-linear 
activation to learn complex value functions effectively. It acts as a 
feature extractor for the Critic’s value estimation to provide 𝑌𝑐2 ∈
R𝐵×𝑈𝑐2 . The final Dense layer with linear activation outputs a scalar Q-
value 𝑄 ∈ R𝐵×1 which estimates the anticipated return from the states 
and is trained by a regression mechanism.

3.5. Reinforcement learning framework

The Actor network learns the policy, i.e., which action to take, and 
the Critic evaluates the quality of the action. The training process uses 
the gradient ascent to improve the Actor’s policy. The Actor relies on 
the Critic for assistance, yet operates independently in its optimisation 
process. The Critic is trained using pure supervised regression, whereas 
the Actor employs gradient ascent to optimise the predicted Q-value.

This research does not explicitly define the concept of a traditional 
RL agent, where it engages with the environment, executes actions, 
receives rewards, and acquires knowledge from experiences, but rather 
implicitly. The agent is the amalgamation of the Actor and Critic, who 
collaborate to acquire a policy.

Furthermore, the environment is implicit, and the training data 
serves the purpose. If 𝑋 ∈ R𝐵×𝑇×𝐹  represents the input sequence, then:
𝑆𝑡𝑎𝑡𝑒 = 𝐼𝑛𝑝𝑢𝑡 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖.𝑒., 𝑋 ∈ R𝐵×𝑇×𝐹 , (19)

𝐴𝑐𝑡𝑖𝑜𝑛 = 𝐴𝑐𝑡𝑜𝑟(𝑋 ∈ R𝐵×𝑇×𝐹 ). (20)

In conventional RL, the Q-value denotes the anticipated cumulative re-
ward for executing an action in a state according to a policy. However, 
this research uses a non-conventional way to compute the Q-values, 
adapted for Supervised Learning tasks. Here, an action has no bearing 
on the Q-values. Rather, it calculates the current state’s quality to 
produce precise predictions and is computed as: 
𝑄(𝑠) = 𝐶𝑟𝑖𝑡𝑖𝑐(𝑋 ∈ R𝐵×𝑇×𝐹 ), (21)

where 𝑠 represents the state and unlike 𝑄(𝑠, 𝑎), the Q-value is a function 
of only 𝑠. The reward function is not explicitly defined, though it is 
implicitly a combination of Supervised Learning with RL principles 
defined as: 
𝑅𝑒𝑤𝑎𝑟𝑑 = −𝑀𝑆𝐸(𝑦, 𝑎) +𝑄(𝑠), (22)

where 𝑦 presents true values, 𝑎 represents actions. Now, in tradi-
tional RL, the Q-value is updated using temporal difference (TD) learn-
ing [37]. It involves (i) computing the TD target using 𝑅𝑒𝑤𝑎𝑟𝑑 +



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
𝛾 max𝑎́ 𝑄(𝑠́, 𝑎́), (ii) calculating the loss between the target and 𝑄(𝑠, 𝑎), 
and (iii) minimising loss using gradient descent to update Q-value. This 
research uses similar steps except for the computation of the TD target; 
here, the ground truth 𝑦 serves as the target. Also, the discount factor 
𝛾 is not explicitly defined but implicitly set to zero. Hence, the Q-value 
update is a supervised regression procedure in which the Critic learns 
to predict the imminent reward. The proposed mechanism is not a true 
RL approach but a simplified DRL adaptation.

3.6. Proposed model

The proposed model combines the representational ability of DL 
with the RL decision-making framework. For an input sequence 𝑋 ∈
R𝐵×𝑇×𝐹 , a conventional DL-based model learns the temporal correla-
tions aiming to predict an output sequence 𝑌 ∈ R𝐵×𝑇𝑜×𝐹 , where 𝑇𝑜 is 
the prediction length. Thus, during training, it computes the difference 
between the actual and predicted sequences using a loss function, such 
as Mean Squared Error (MSE), defined as: 

𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑌𝑡,𝑖 − 𝑌𝑝,𝑖)2, (23)

where 𝑁 is the number of samples. The objective is to make the value 
of 𝐸 as small as possible. Thus, the gradient of 𝐸 is used to update the 
model’s weight during back-propagation. In summary, a conventional 
DL-based model is optimised by minimising the value of 𝐸.

The proposed model uses an evaluation mechanism where the Actor 
makes predictions, and the Critic judges the prediction quality based 
on Q-values. The higher the Q-value, the better the prediction perfor-
mance. For an input sequence 𝑋 ∈ R𝐵×𝑇×𝐹  at time step t, the Actor 
network generates the prediction using: 
𝑌𝑡 ∈ R𝐵×𝑇𝑜×𝐹 = 𝐴𝑐𝑡𝑜𝑟(𝑋𝑡). (24)

Then, the Critic network evaluates the prediction using the Q-value, 
which estimates the quality of the Actor’s actions. It reflects how well 
the Actor’s predictions align with the actual output. A higher Q-value 
suggests better predictions. Therefore, for a time step 𝑡, the Q-value can 
be computed as: 
𝑄(𝑠) ∈ R𝐵×1 = 𝐶𝑟𝑖𝑡𝑖𝑐(𝑋𝑡). (25)

Accordingly, during training, the network computes the predicted Q-
values by combining the MSE loss, i.e., intermediate rewards and the 
Critic’s estimate of long-term value using: 
𝑃𝑄 = −𝑀𝑆𝐸(𝑦, 𝑎) + E[𝑄(𝑠)], (26)

where 𝑃𝑄 represents the predicted Q-values. The Actor tries to max-
imise it by using −𝑃𝑄 as the loss function during training, thus lever-
aging the Critic’s guidance. Also, during training, the Critic learns how 
to associate Q-values with the predictions from the Actor network. Fig. 
1 illustrates the full architecture of the proposed model according to 
the formulations mentioned above.

In summary, in this study, the Actor Network is a policy model that 
produces anticipated actions, i.e., output sequences derived from the 
preprocessed data input. At the same time, the Critic Network assesses 
these actions by calculating their Q-values. The feedback loop works as 
follows: (i) the Actor’s loss is calculated as the negative of the predicted 
Q-value, i.e., 𝑃𝑄, which combines an MSE between predicted and actual 
values, and the mean Q-values from the Critic, promoting behaviours 
that enhance accuracy and Q-value; (ii) the Critic’s loss is the MSE 
between the Q-value and the actual target values, enhancing its ability 
to evaluate the quality of the Actor’s actions; and (iii) both networks 
are updated via gradient descent, i.e., the Actor’s gradients are designed 
to maximise the Critic’s Q-values, while the Critic’s gradients minimise 
its prediction error. The optimised network makes the final predictions. 
This adversarial dynamic, where the Actor improves its policy based on 
the Critic’s evaluations and the Critic refines its evaluations based on 
the Actor’s changing actions, is central to the adapted DRL model.
5 
3.6.1. Loss functions
Let us assume that 𝑌𝑡 ∈ R𝐵×𝑇×𝐹  is the ground truth or the target 

values, 𝑌𝑝 ∈ R𝐵×𝑇×𝐹  is the predicted values, and 𝑄𝑡 ∈ R𝐵×1 is the 
predicted Q-values. Thus, for multi-step-ahead prediction, if MSE is 
used as the loss function, then 𝐿𝑝𝑟𝑒𝑑 is computed as: 

𝐿𝑝𝑟𝑒𝑑 = 1
𝐵

𝐵
∑

𝑖=1

𝑇×𝐹
∑

𝑗=1
(𝑌𝑡,𝑖,𝑗 − 𝑌𝑝,𝑖,𝑗 )2. (27)

Consequently, as stated above, the Actor network aims to maximise 
the Q-value while minimising the prediction error. The objective is: 
𝐿𝑎𝑐𝑡𝑜𝑟 = −E[𝑄(𝑠)] + 𝜆𝐿𝑝𝑟𝑒𝑑 , (28)

where 𝜆 is the weighting factor. On the other hand, the Critic evaluates 
the Actor’s predictions by applying the MSE loss function between the 
target 𝑦𝑖 and the Q-value 𝑄(𝑠𝑖) using: 

𝐿𝑐𝑟𝑖𝑡𝑖𝑐 =
1
𝐵

𝐵
∑

𝑖=1
(𝑦𝑖 −𝑄(𝑠𝑖))2. (29)

3.7. Data preprocessing

The raw data needs to be preprocessed to ensure proper model train-
ing. First, a normalisation step ensures that all the features have the 
same scale, facilitating faster convergence and better learning during 
training. It can be accomplished by rescaling each feature based on its 
minimum and maximum value using [38]: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
, (30)

where 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 represents the minimum and maximum feature 
values. Each feature in the dataset is transformed into a range [0, 1] to 
prevent large value ranges from dominating the learning process.

Finally, the data is transformed into sequences using a sliding 
window approach. Each input sequence consists of 𝐿 past time steps, 
and the target is to predict the next 𝑇  time steps. Assume that 𝑋𝑡 =
[𝑥𝑡−𝐿+1,… , 𝑥𝑡] represents the input sequence; then, 𝑌𝑡+1∶𝑡+𝑇 =
[𝑦𝑡+1, 𝑦𝑡+2,… , 𝑦𝑡+𝑇 ] is the multi-step ahead target sequence, which 
creates input–output pairs for multi-step prediction by sliding a fixed-
length window across the dataset. Each cycle generates an input 
sequence of length 𝐿 and an output sequence of length 𝑇 . This method 
ensures temporal consistency, meaning input–output pairs remain in 
chronological sequence. It also generates sequences without duplicating 
data, improving data storage efficiency. Nonetheless, it may lead to 
some data loss as it eliminates the dataset’s final samples to match 
the sequence lengths, which might provide challenges for short-term 
prediction.

4. Experiments

The proposed model requires extensive processing power to train. 
An NVIDIA DGX Station, including four NVIDIA Tesla V100 Tensor 
Core GPUs and 128 GB of RAM, was used. The code was developed 
using the open-source TensorFlow machine learning framework and 
CUDA (version 11.2) for GPU processing.

4.1. Code implementation

The proposed model was implemented in several steps using the 
TensorFlow platform. The data preprocessing involved filling in missing 
values using the forward-fill and backwards-fill techniques [39] to 
ensure temporal consistency. The dataset was scaled with the MinMaxS-
caler from sklearn.preprocessing to improve convergence during train-
ing. Input–output sequences were generated using a sliding window 
approach based on input and output time step lengths.

The architecture design incorporates a DRL framework consist-
ing of Actor and Critic networks. The Actor network used several 



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
Fig. 1. Architecture of the proposed Actor–Critic-based adapted DRL model for multi-step traffic state prediction tasks.
LSTM layers, including a BiLSTM according to the formulation of 
Section 3.3, to capture sequential dependencies and temporal patterns 
using the tensorflow.keras.layers module. Dense layers with ReLU acti-
vations from tensorflow.keras.activations module enhanced the feature 
extraction process. The Critic network, designed to evaluate the Actor’s 
predictions, used an LSTM layer followed by Dense layers according to 
Section 3.4 from the tensorflow.keras.layers module, to estimate scalar 
reward signals to guide the Actor during training.

During training, the DRL framework optimised the Actor network 
to maximise Q-values while the Critic network minimised the pre-
diction errors. The gradients for both networks were computed using
tensorflow.GradientTape, and the updates were applied via the Adam 
optimiser using tf.keras.optimisers module. Performance metrics, such 
as MAE and RMSE, were used to monitor the model’s outcomes.

4.2. Datasets

The proposed model was trained and evaluated using three publicly 
available traffic state datasets: the PeMS-BAY, METR-LA [40] and 
PeMS [41] datasets:

(a) PeMS-BAY dataset: It contains six months of traffic speed data 
collected from 325 sensors in the San Francisco Bay Area in the USA. 
The data collection lasted from January 1, 2017, to June 30, 2017, with 
52,116 samples. The DateTimeIndex runs from 2017-01-01 00:00:00 
to 2017-06-30 23:55:00. This dataset consists of 325 columns, each 
reflecting readings from a specific sensor, with sensor IDs ranging from 
400001 to 414694, and does not contain any missing values.

(b) METR-LA dataset: It contains historical traffic speed data from 
207 sensors throughout Los Angeles County, California, in the USA. The 
data collection occurred between March 1, 2012, and June 27, 2012, 
generating 34,272 samples. The DateTimeIndex ranges from 2012-03-
01 00:00:00 to 2012-06-27 23:55:00. This dataset also has 207 columns 
containing sensor IDs ranging from 773869 to 769373, and does not 
contain any missing values.

(c) PeMS dataset: It consists of traffic flow measurements acquired 
over 23 days, 19 h, and 5 min, from January 1, 2012, 00:00:00 to 
January 24, 2012, 19:05:00. It includes 6854 data entries and 154 
features. The first column contains the timestamps of each data point, 
with no missing values. The remaining 153 columns represent traffic 
flow data acquired by three individual sensor IDs, mainly 200, 201, 
6 
and 300. A few sensor columns contain minimal missing values, with 
a maximum of one per column.

4.2.1. Anomaly analysis
This study employed an anomaly detection [42] analysis indepen-

dently on the PeMS-BAY and METR-LA datasets, utilising an LSTM 
Autoencoder model [43]. The reconstruction error was computed for 
both datasets, and abnormalities were detected by establishing a thresh-
old at the 95th percentile of the reconstruction error distribution. The 
datasets had an anomaly rate of 5.00%, as shown in Fig.  2. These find-
ings indicate the challenges a model faces in detecting and predicting 
unexpected patterns in traffic data with comparable sensitivity.

4.3. Model training and evaluation

The presented model was trained in two stages: (i) the Actor learned 
to make predictions that maximise the Critic’s Q-value while minimis-
ing prediction error, and (ii) the Critic learned to evaluate the Actor’s 
predictions reliably. Gradients are computed so that the two models 
can be updated. Fig.  3 illustrates the training process of the proposed 
model. Here, Actor_vars and Critic_vars represent trainable weights of 
the Actor and Critic networks, respectively. The datasets were split into 
train, validation, and test sets with a ratio of 70:10:20%, respectively, 
to perform extensive experiments within the current context.

4.3.1. Hyperparameters
A Random Search method [44] was used to fine-tune the model’s 

hyperparameters based on the search space of Table  2. It performed 
the task by randomly selecting combinations. Unlike grid search, it 
explored the parameter space more effectively by prioritising random 
selection over evaluation, resulting in lower computational costs. The 
evaluation criterion used during the hyperparameter tuning was the 
validation MAE, which was selected for its direct and interpretable 
assessment of prediction accuracy in time series prediction tasks. The 
upper limit of trials was set to 50, and the method required 41 to 
acquire the optimal set of hyperparameters. Here, Units_LSTM1_Actor, 
Units_BiLSTM_Actor, Units_LSTM2_Actor, Units_LSTM_Critic,
Units_Dense, LR_Actor, and LR_Critic represent the number of units of 
the first LSTM layer, the BiLSTM layer, the second LSTM layer of the 
Actor network, the LSTM units of the Critic network, the units of the 



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
Fig. 2. Reconstruction error, i.e., Anomaly Detection, for the (a) PeMS-BAY and (b) METR-LA datasets.
Fig. 3. Illustration of simplified training process of the proposed model for an 
epoch.

Table 2
Hyperparameter search space explored in this study (the values of the obtained 
optimal hyperparameters are in bold).
 Hyperparameter Values  
 Units_LSTM1_Actor 32, 64, 96, 128, 160, 192, 224, 256, 312 
 Units_BiLSTM_Actor 32, 64, 96, 128, 160, 192, 224, 256, 312 
 Units_LSTM2_Actor 32, 64, 96, 128, 160, 192, 224, 256, 312 
 Units_LSTM_Critic 32, 64, 96, 128, 160, 192, 224, 256, 312 
 Units_Dense 32, 64, 96, 128, 160, 192, 224, 256, 312 
 LR_Actor 𝟏𝐞−𝟒 , 5𝑒−4 , 1𝑒−3  
 LR_Critic 𝟏𝐞−𝟒 , 5𝑒−4 , 1𝑒−3  

Fully Connected layers, and the learning rate of both networks. The 
values of the obtained ideal hyperparameters are indicated in bold in 
Table  2.

The values in the search space were selected based on best practices 
reported in relevant literature before being passed into the fine-tuner. 
The Actor network’s first LSTM and BiLSTM layers performed best 
with 312 memory units. However, its second LSTM layer required 128 
memory units. For the Critic network, 64 memory units provided the 
optimal performance. The optimal learning rate for each network was 
1𝑒−4.
7 
4.4. Performance metrics

The performance of the proposed model was evaluated using stan-
dard metrics for traffic state prediction, mainly (i) Mean Absolute Error 
(MAE) and (ii) Root Mean Squared Error (RMSE). Assume that 𝑥𝑖 and 
𝑦𝑖 represent true and predicted values, respectively. MAE measures the 
average magnitude of the errors in a set of predictions without consid-
ering their direction. It indicates the average deviation of predictions 
from the actual values according to [45]: 

𝑀𝐴𝐸(𝑥, 𝑦) = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑥𝑖 − 𝑦𝑖|| . (31)

RMSE penalises larger errors more heavily, measuring overall pre-
diction accuracy. It calculates the square root of the mean of the 
squared deviations between 𝑥𝑖 and 𝑦𝑖 using [45]: 

𝑅𝑀𝑆𝐸(𝑥, 𝑦) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2. (32)

4.5. Results

The results of the proposed model were obtained following com-
prehensive training and evaluation using three state-of-the-art datasets 
as aforementioned. Also, it was necessary to implement state-of-the-art 
baseline models to make extensive performance comparisons. Hence, 
five previously published similar algorithms were implemented to serve 
this purpose. These models were chosen based on their popularity and 
ability to model multi-step predictions, and were trained and evaluated 
using the same settings as the proposed model. The selected models for 
comparison are:

(a) LSTM-BiLSTM [46]: The authors amalgamated LSTM, BiLSTM, 
and Dense layers to tackle multi-step-ahead traffic flow prediction 
challenges. A comparable model was developed, trained, and evaluated 
using the same datasets used in this study.

(b) CNN-LSTM [47]: This method combined CNN, LSTM, and Dense 
layers to enhance the prediction accuracy. An identical model was 
developed, trained, and evaluated on the same datasets used in this 
study.

(c) Encoder–Decoder [48]: A multi-step-ahead traffic speed pre-
diction model was proposed using an LSTM-based Encoder–Decoder 
architecture. A Time-Distributed Dense layer was used to make the final 
prediction. This model was implemented, trained, and evaluated using 
the same datasets used in this study.

(d) Autoformer [49]: The authors presented a decomposition ar-
chitecture that included an auto-correlation mechanism for discover-
ing traffic state relationships and aggregating their representations at 
the subseries level. An identical model was developed, trained, and 
evaluated from scratch on the three datasets used in this study.

(e) PatchSTG [50]: The authors presented a spatial–temporal patch 
learning model leveraging the transformer architecture that efficiently 



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
Table 3
Performance of the proposed and baseline models for different prediction time 
steps (3–24) on the PeMS test dataset based on the MAE and RMSE scores (best 
values in bold).
 Models MAE RMSE

 3 6 12 18 24 3 6 12 18 24  
 LSTM-BiLSTM 1.86 2.20 2.78 4.12 4.33 4.47 5.62 6.90 7.69 8.61 
 CNN-LSTM 3.53 3.25 3.44 3.26 3.30 5.93 5.60 5.81 5.51 5.62 
 Encoder–Decoder 3.44 3.24 3.28 3.32 3.29 5.80 5.50 5.54 5.64 5.55 
 Autoformer 3.46 3.43 3.41 3.43 3.46 5.83 5.83 5.79 5.76 5.82 
 PatchSTG 2.62 2.59 2.67 2.84 2.70 4.68 4.86 4.86 4.89 4.88 
 Proposed 3.42 2.80 2.60 2.65 2.54 5.74 4.58 4.25 4.34 4.20 

Table 4
Performance of the proposed and baseline models for different prediction time 
steps (3–24) on the PeMS-BAY test dataset based on the MAE and RMSE scores 
(best values in bold).
 Models MAE RMSE

 3 6 12 18 24 3 6 12 18 24  
 LSTM-BiLSTM 3.58 3.69 4.01 4.18 5.72 6.57 6.95 7.38 7.77 9.57 
 CNN-LSTM 3.04 3.35 3.19 3.65 4.50 5.26 5.87 5.64 6.54 7.92 
 Encoder–Decoder 2.98 3.12 3.20 3.45 3.49 4.86 5.22 5.41 5.82 6.05 
 Autoformer 3.32 3.41 3.53 3.76 3.70 5.61 5.92 6.14 6.51 6.42 
 PatchSTG 2.69 2.76 2.90 2.98 2.96 4.80 5.04 5.43 5.57 5.56 
 Proposed 3.19 2.97 2.82 2.68 2.90 5.35 4.90 4.60 4.33 4.75 

divided the input data into spatial and temporal patches to capture 
local and global dependencies in both dimensions. It achieved remark-
able accuracy and computing efficiency by leveraging transformer-
based methods and patch embeddings. A similar model was developed, 
trained, and tested for comprehensive comparisons.

Table  3 displays the performance of the proposed model along with 
the selected baselines obtained for the PeMS traffic flow test dataset for 
different prediction lengths, i.e., 3 to 24 time steps, using the MAE and 
RMSE metrics. In this table, the best results are highlighted in bold. For 
higher prediction horizons, i.e., 12, 18, and 24 time steps, the proposed 
model outperformed its counterparts by achieving 2.62 to 5.93% lower 
MAE values than the second-best model. In terms of RMSE, it obtained 
a 5.8 to 13.93% improvement compared to the second-best model. 
However, for a prediction length of 3 time steps, the proposed model 
showed higher errors in terms of MAE and RMSE than its counterparts.

Table  4 presents the obtained results of the models under study 
regarding MAE and RMSE for different prediction lengths on the PeMS-
BAY traffic speed test dataset. In this table, the best results are rep-
resented in bold. The proposed Actor–Critic obtained an MAE value 
of 2.97, 2.82, 2.68, and 2.90 for 6, 12, 18, and 24 prediction time 
steps, respectively. As to statistics, 2.02 to 10.07% improvements in 
MAE were achieved compared to the second-best PatchSTG model. 
However, it underperformed the PatchSTG model for 3 and 5 time 
steps prediction lengths by 15.67 and 7.07% higher error. On the other 
hand, in terms of RMSE, compared to the second-best model, 2.78, 
15.26, 22.26, and 14.57% improvements were observed for 6 to 24 time 
steps, while the proposed model also exhibited a 10.29% decrease in 
performance for a prediction length of 3 time steps.

Table  5 presents the performance of the considered models for 
prediction horizons of 3 to 24 time steps in terms of MAE and RMSE 
on the METR-LA traffic speed test dataset. For the three time-step 
prediction lengths, the Autoformer model demonstrated the best MAE, 
which is 1.66% lower than the proposed model. However, in other 
prediction lengths, the proposed model comprehensively outperformed 
its counterparts both in terms of MAE and RMSE by achieving 21.29% 
average improvement relative to the second-best model.

Visualising the proposed model’s capacity to capture temporal pat-
terns on the test dataset across various network locations is necessary. 
Fig.  4 plots its prediction performance on the PeMS traffic flow test 
8 
dataset with a prediction duration of 24 steps. The proposed archi-
tecture was modelled to simultaneously predict the traffic states of 
153, 325, and 207 sensors in the three datasets used. This figure 
illustrates the actual (in blue) and predicted (in red) traffic states of 
four randomly chosen sensors’ first 48 time steps. The more similar the 
two plots are, the better the performance. Consequently, these plots 
help to visualise the proposed model’s ability to achieve state-of-the-art 
prediction accuracy for longer prediction horizons.

Scatter plots are particularly advantageous in this context as they 
offer a distinct visual evaluation of prediction accuracy, i.e, the closer 
the points are to the 45-degree diagonal line, the better the perfor-
mance. Fig.  5 illustrates scatter plots of four randomly selected sensors 
comparing the actual and predicted (in blue) values obtained by the 
proposed model for an output length of 24 time steps on the PeMS 
traffic flow test dataset. The ideal prediction is represented by the 
45-degree diagonal lines (in red), and the closer the blue dots are to 
the red lines, the better the prediction accuracy. For instance, if the 
actual traffic flow at a specific time step is 45 vehicles and the model 
predicts 44.5, the coordinate (45, 44.5) will be positioned slightly 
below the diagonal line, demonstrating a minor prediction error. From 
this illustration, it can be observed that the predicted values are closer 
to the ideal prediction lines, demonstrating the excellent performance 
of the proposed model. However, for the sensors of subplots (a) and (c), 
the prediction errors were less significant compared to the subplots (b) 
and (d). This indicated that different locations in a road network have 
different traffic characteristics, and the proposed model’s performance 
was not uniform throughout the network.

5. Discussion

In contrast to single-step prediction, which offers merely a short-
term perspective, multi-step ahead prediction facilitates proactive mea-
sures by elucidating the anticipated evolution of the road network 
throughout different time steps. However, it is more challenging to 
model such problems because of the mentioned phenomenon [51,52]. 
Numerous DL-based models, such as LSTMs, GNNs, and transformers, 
have been proposed to address these problems. However, these models 
are sensitive to external noise and unable to maintain good prediction 
performance due to the arrival of non-recurrent events. Additionally, 
the errors accumulate with the increase in prediction lengths.

DRL has demonstrated tremendous abilities to enhance the perfor-
mance of dynamic decision-making tasks such as intersection traffic 
signal control [9,53]. However, they have been explored less in man-
aging multi-step traffic state prediction problems. This study proposed 
an Actor–Critic-based model to address the issues mentioned above. 
Conventional DL models are optimised by minimising the loss function 
computed by the difference between the actual and predicted sequences 
during training. The models aim to make the loss as small as possible, 
and their gradient is used to update the model’s weights during back-
propagation. On the contrary, the proposed model works so that the 
Actor network is modelled to make predictions, and the Critic network 
evaluates the prediction quality based on Q-values. Here, the Actor 
network, on the one hand, aims at maximising the Q-value while, on the 
other hand, minimising the prediction error. Also, the Critic network 
learns to generate Q-values based on the observed Actor network’s 
prediction performance. Three state-of-the-art datasets were used for 
model training and evaluation. Five related state-of-the-art previously 
published models were also implemented, trained, and evaluated using 
the same datasets for comprehensive performance comparisons.

The results demonstrated that the proposed model requires exten-
sive computational resources to complete training while outperforming 
the baselines on most commonly used metrics, particularly for higher 
prediction lengths. However, short-term prediction, i.e., 3 and 6 time 
steps, showed less impressive performance. That phenomenon could 
have occurred for a variety of reasons. Both the Actor and Critic used 
LSTMs and had overly complex architectures. It could result in (i) 



S. Reza et al.

Fig. 4. Traffic flow prediction for an output length of 24 time steps on the PeMS test dataset obtained by the proposed model for four distinct sensors: (a), (b), 
(c), and (d). (The 𝑥-axis and 𝑦-axis represent time steps and traffic flow, respectively. The blue lines demonstrate the true values; the predicted values are in 
red. The grey band represents the confidence intervals around the projected values, i.e., ±1 Standard Deviation (SD). The smaller the band, the more precise the 
predictions.)

Fig. 5. Scatter plots comparing the actual and predicted traffic flows for a step ahead of 24 time steps on the PeMS test dataset obtained by the proposed model. 
(The plots represent predictions for four different sensors, (a), (b), (c), and (d), with the red dashed line indicating the ideal case of perfect predictions.)

Applied Soft Computing 184 (2025) 113783 

9 



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
Table 5
Performance of the proposed and baseline models for different prediction time steps (3–24) on the METR-LA test dataset in terms of MAE and RMSE scores (best 
values in bold).
 Models MAE RMSE

 3 6 12 18 24 3 6 12 18 24  
 LSTM-BiLSTM 4.87 5.80 6.21 7.38 8.16 8.75 9.36 9.81 10.28 11.47 
 CNN-LSTM 6.57 6.69 7.65 8.66 10.96 11.70 12.55 14.05 15.67 18.69 
 Encoder–Decoder 5.79 6.41 6.89 7.57 7.96 10.67 12.26 13.04 13.84 14.49 
 Autoformer 4.74 6.91 7.53 7.47 7.81 8.95 11.24 12.10 13.72 14.52 
 PatchSTG 4.83 5.33 5.88 6.47 6.84 7.23 7.72 8.13 8.51 8.91  
 Proposed 4.82 4.59 3.98 4.09 3.79 8.09 7.35 5.94 5.97 5.75  
Table 6
Performance of the proposed and DDPG models for different prediction time steps (3–24) on the PeMS dataset regarding MAE and RMSE scores.
 Models MAE RMSE Time (s/it) 
 3 6 12 18 24 3 6 12 18 24  
 DDPG 11.31 11.78 11.34 11.22 11.47 19.66 20.16 19.79 19.72 19.94 365.68  
 Proposed 3.42 2.80 2.60 2.65 2.54 5.74 4.58 4.25 4.34 4.20 59.49  
 

overfitting of training data, (ii) inefficiency in learning simple short-
term patterns, and (iii) vanishing gradients caused by deep recurrent 
layers. Additionally, it might lack short-term feature extraction skills. 
Finally, the training technique individually treated data samples in 
each sequence, which may have limited batch normalising benefits 
and resulted in unstable gradients. These issues can be addressed by 
introducing the attention mechanism in the Actor–Critic networks.

5.1. Comparisons with DDPG

A state-of-the-art DDPG model was implemented following a con-
ventional RL approach, combining Actor–Critic methods with DL to val-
idate the proposed model comprehensively. It includes an environment 
mimicking traffic data interactions, assigning states, and evaluating 
actions with MAE as rewards. The DDPG agent employs various neural 
networks: (i) Actor to predict actions, i.e., multi-step predictions, (ii) 
Critic to evaluate action quality through Q-values, combining state 
and action inputs, (iii) Target networks, i.e., Target-Actor and Target-
Critic to stabilise training via soft updates, (iv) Exploration using the 
Ornstein–Uhlenbeck (OU) noise [54], which adds temporally correlated 
noise to actions during training, and (v) Replay Buffer to store experi-
ences, i.e., state, action, and reward for batch sampling. The training 
technique consists of three steps: (i) updating the Critic network to 
minimise the TD error between predicted and target Q-values, (ii) 
updating the Actor to maximise Q-values via policy gradient ascent, 
and (iii) softly updating the Target networks to ensure stability. After 
training, the agent provides predictions that are evaluated using MAE 
and RMSE.

Table  6 tabulates the performance comparisons between the DDPG 
and the proposed model for 3 to 24 prediction time steps based on the 
PeMS dataset. Time (s/it) represents training time in seconds per epoch 
or iteration. Although the DDPG was free from the error accumulation 
problem, it underperformed compared to the proposed model in all 
prediction lengths, both in MAE and RMSE. On top of that, it required 
significantly more computational costs.

While the proposed model took 59.49 s for every epoch and
achieved convergence at around 120 epochs, the DDPG required around
500 epochs and 365.68 s per epoch to complete training. These out-
comes were obtained for the PeMS traffic flow dataset with only 6854 
entities and 153 sensors. The other used datasets, i.e., PeMS-BAY and 
METR-LA, are much bigger in size and dimensions. Hence, the DDPG 
took even more computational resources for those cases. Suppose the 
DDPG was trained on the PeMS-BAY dataset with 52,116 entities and 
325 sensors. For a prediction length of 24 time steps, the dimension of 
the action space would be 7800 (24 × 325), whereas for a conventional 
DDPG agent that aims to optimise the traffic signal controlling scheme, 
the action space dimension is up to four [55,56]. This phenomenon 
10 
might have some adverse effects because (i) DDPG utilises the OU noise; 
however, in high-dimensional spaces, noise becomes useless, resulting 
in gibberish predictions; as a result, the agent failed to engage in 
significant exploration and became locked in suboptimal policies, and 
(ii) minor errors in the Actor are exacerbated by the Critic, resulting in 
divergence, and (iii) agent rarely converges on an appropriate policy. 
A potential solution to these problems might be an Autoencoder to 
compress actions and a Hierarchical DDPG.

5.2. Computational costs

This study also investigated the proposed model’s computational 
cost and the considered baselines. The outputs exhibited that the pro-
posed approach significantly improved its prediction accuracy at higher 
computational costs. Fig.  6 illustrates the performance comparisons 
between the proposed model and a model similar to the Actor network 
regarding MAE and RMSE. From this figure, one can confirm that the 
proposed model based on an adapted DRL approach provided better 
prediction accuracy than a conventional Supervised Learning approach. 
However, it required 6.29 times more training time to achieve conver-
gence and 1.5 times more epochs to obtain optimal outputs compared 
to the PitchSTG model. On top of that, it required 1.11 times more 
average memory usage during training. Table  7 presents the compar-
isons of computational costs of the models under consideration. These 
increases in computational costs were primarily due to the presence of 
two separate neural networks, i.e., the Actor and Critic networks, and 
the iterative way of their optimisation. Also, because the Actor and 
Critic networks were optimised simultaneously, the proposed model 
required more epochs to obtain optimal performances because of the 
slower convergence. In terms of statistics, the total computational costs 
of the proposed model would be around 10.47 times higher than those 
of the PitchSTG model.

If the computational complexity of a conventional DL model is 
(𝑁 ⋅𝑈 ⋅𝑇 ), where 𝑁 , 𝑈 and 𝐿 denote the number of layers, dimension 
of the hidden states and sequence length, respectively, then, for the 
proposed model, the computational complexity would increase to at 
least ((𝑁𝑎𝑐𝑡𝑜𝑟+𝑁𝐶𝑟𝑖𝑡𝑖𝑐 ) ⋅𝑈 ⋅𝑇 ), where 𝑁𝐴𝑐𝑡𝑜𝑟 and 𝑁𝐶𝑟𝑖𝑡𝑖𝑐 are the number 
of Actor and Critic networks’ layers, respectively.

Several strategies can be followed to reduce the computational 
costs. For example, reducing the input–output sequence length and only 
selecting a handful of sensors. However, these would reduce the pre-
diction accuracy, as was shown in the Results section for a prediction 
length of three time steps. Also, the model would be less effective if 
fewer sensors were considered. Another method is batch processing, 
which uses a batch of input samples through a neural network simul-
taneously during training or inference, rather than processing samples 



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
Fig. 6. Traffic flow prediction performance of the proposed model and a conventional DL architecture similar to the Actor network for different prediction lengths 
on the PeMS test dataset. (The MAE and RMSE values obtained in both cases were used to construct this bar chart.)
Table 7
Computational complexity comparisons between the models under study based 
on the PeMS dataset for a prediction length of 24 time steps.
 Models Time (s) Memory (MiB) Parameters (M)  
 LSTM-BiLSTM 381.22 1725.79 2.55  
 CNN-LSTM 271.35 639 0.13  
 Encoder–Decoder 88.47 599 0.10  
 Autoformer 117.73 703 0.14  
 PatchSTG 1134.67 2699 4.6  
 Proposed 7138.76 2986.79 Actor: 2.56; Critic: 0.06 

Table 8
Comparison between the originally proposed model and the model which used 
a light-weighting technique based on the PeMS dataset for a prediction length 
of 24 time steps.
 Feature Original Light-weighting Change (%) 
 MAE 2.54 3.38 +33.07  
 RMSE 4.20 5.68 +35.24  
 Time (s) 7138.76 243.81 −96.58  
 Actor’s parameters (M) 2.56 0.27 −89.45  

one at a time, to use parallel computation. It would increase computa-
tional efficiency by better using GPUs, lowering memory overhead, and 
stabilising gradient updates by averaging losses across batches, result-
ing in faster convergence. Furthermore, optimisation techniques such 
as pruning and quantisation could be explored for lower computational 
costs.

In this study, a model light-weighting technique was investigated by 
including (i) a Depth-Wise Separable Convolution layer, (ii) decreasing 
the LSTM units from 312 to 128 and 128 to 64, and (iii) employing 
Dropout layers with a dropout rate of 0.2 in both Actor and Critic 
networks following the Input layer. It significantly reduced the com-
putational costs. The training time was reduced from 7138.76 s to 
243.81 s based on the PeMS dataset for a 24-timestep prediction length. 
However, the MAE and RMSE grew from 2.54 to 3.38 and 4.20 to 5.68, 
respectively, as shown in Table  8.

5.3. Robustness to noise and non-recurrent events

The current state-of-the-art models are sensitive to external
noise [57] and fail to maintain good prediction accuracy with the 
arrival of non-recurrent events such as adverse weather, accidents 
and public events [58]. To address these issues, a simulation of the 
arrival of non-recurrent events was performed by adding several sudden 
spikes and dips to the test dataset to observe the proposed model’s 
performance. The idea was to mimic sharp increases and decreases 
11 
in traffic flows, usually due to those events, as illustrated in Fig.  7. 
This figure depicts the traffic flow for the first 250 samples from 
the test dataset of a randomly selected sensor. Four spikes and dips 
were created by increasing/decreasing the existing flow values by 2.5 
times and 0.3 times to obtain a new test dataset. The proposed model 
was evaluated on the original and simulated test datasets. The results 
demonstrated that it can cope with the arrival of non-recurrent events 
by maintaining good prediction accuracy.

Table  9 presents the obtained MAE and RMSE values on different 
simulated scenarios of non-recurrent events. Three cases were consid-
ered: (i) sharp increase, (ii) sharp decrease, and (iii) a combination 
of both. Due to these scenarios, the MAE and RMSE values fluctuated 
by a maximum of 1.96 and 4.52%, revealing the achievements of the 
robustness goal.

On the other hand, to address the issue of noise sensitivity, this 
study examined the proposed model on the test dataset, which was 
added with various levels of Gaussian random noise. Table  10 presents 
the results of this investigation based on the traffic flow PeMS test 
dataset for a prediction length of 24 time steps. With the increase in 
noise level from 0 (zero) to 0.3, the MAE and RMSE rose sharply, 
indicating that the proposed model is sensitive to various noise levels, 
which is a drawback of the proposed approach and was addressed by 
incorporating an LSTM-based Denoising Autoencoder model.

5.3.1. Denoising Autoencoder
A Denoising Autoencoder model was introduced to eliminate noise 

from data sequences, improving the robustness against random noise. 
The encoder contained two LSTM layers with 128 and 64 units, fol-
lowed by a Dense layer with ReLU activation, which compressed input 
sequences into a lower-dimensional latent representation. The decoder 
reconstructed the original sequence from the latent space utilising 
a Dense layer, two LSTM layers (64 and 128 units), and a Time-
Distributed Dense layer to align with the input dimensions. The model 
used a RepeatVector layer to restructure the latent representation be-
fore LSTM decoding, ensuring dimensional compatibility for sequence 
generation. The Adam optimiser minimises the MSE between recon-
structed outputs and original clean sequences during training. The 
denoising task forced the model to learn robust feature representations, 
requiring it to discern between signal and noise in the data sequences.

The experimental results showed significant robustness improve-
ments compared to the previously obtained ones, as is tabulated in 
Table  11. Here, for different noise levels, i.e., 0.00 to 0.50, the MAE 
and RMSE were computed with and without introducing the Denoising 
Autoencoder. Without the denoising technique, the proposed model’s 
MAE increased dramatically from 2.54 to 41.40 for increasing noise 
levels. Similar increments were observed for RMSE. However, when 



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
Fig. 7. Graphical illustration of sudden sharp increase and decrease in traffic flows represented by several spikes (green dots) and dips (orange dots) on the 
PeMS test dataset.
Table 9
Evolution of the model’s performance with the arrival of non-recurrent events based on the PeMS test dataset for a 24-step 
prediction horizon.
 Traffic flow MAE (Original) MAE (Simulated) RMSE (Original) MAE (Simulated) 
 Sudden increase 2.54 2.57 4.20 4.29  
 Sudden decrease 2.54 2.57 4.20 4.27  
 Combined 2.54 2.59 4.20 4.39  
Table 10
Exploration of the sensitivity of the proposed model on various noise levels 
based on the PeMS test dataset for a 24-step prediction horizon (values in 
bold correspond to the best performance).
 Noise level MAE RMSE 
 0.00 (Original) 2.54 4.20  
 0.10 9.61 12.28 
 0.20 17.88 22.59 
 0.30 26.30 32.76 

Table 11
Exploration of the sensitivity of the proposed model on various noise levels 
based on the PeMS test dataset for a 24-step prediction horizon after incor-
porating a denoising Autoencoder. The headers ‘After’ and ‘Before’ denote 
the performance metrics obtained with and without the introduction of the 
Denoising Autoencoder, respectively.
 Noise level Before After

 MAE RMSE MAE RMSE 
 0.00 2.54 4.20 2.89 6.15  
 0.10 9.61 12.28 2.93 6.27  
 0.20 17.88 22.59 2.99 6.39  
 0.30 26.30 32.76 3.11 6.61  
 0.40 33.35 41.85 3.28 7.01  
 0.50 41.40 51.96 3.66 8.32  

the Denoising Autoencoder was applied, it stabilised significantly, with 
MAE and RMSE values ranging from 2.89 to 3.66 and 6.15 to 8.32, 
respectively, concerning the used noise levels.

5.4. Accumulation of errors

Currently available models suffer from the accumulation of error 
phenomenon [59] because the prediction errors accumulate with the 
increase in prediction lengths. This drawback significantly reduces the 
effectiveness of multi-step prediction models, particularly for higher 
prediction time steps. Compared to the baselines under study, the 
12 
proposed model demonstrated more efficiency in reducing the accu-
mulation of the error phenomenon, particularly for higher prediction 
horizons. This improvement was achieved because of two main reasons: 
(i) non-autoregressive modelling, where all desired future states were 
computed in a single pass, and (ii) the ability to capture long-term 
temporal patterns more efficiently. Fig.  8 represents the stacked area 
plots highlighting the evaluation of the MAE and RMSE values over 
prediction time steps. It allows one to visualise the cumulative error 
contributions of the models under study based on the obtained MAE 
and RMSE values to show how each model’s performance aggregates 
over the prediction time steps. Based on this figure, one can realise 
that the proposed model outperformed the baselines, particularly for 
higher prediction steps in terms of MAE and RMSE values, which are 
indicated by the evolution of the areas’ sizes.

This study aimed to explore the DRL in multi-step traffic state 
prediction to address (i) sensitivity to external noise, (ii) maintaining 
good prediction accuracy when non-recurrent events arrive, and (iii) 
the accumulation of errors phenomenon. The proposed model demon-
strated that it is robust against sudden changes in traffic states and 
is less affected by the error accumulation problem. However, it is 
susceptible to external noise, which was tackled by incorporating a De-
noising Autoencoder. Also, its prediction accuracy was less impressive 
than the baselines for shorter prediction horizons, mainly for 3 time 
steps. Another drawback of the proposed model is the computational 
cost. Despite these issues, the presented adapted DRL approach should 
be explored further by the research communities to address various 
multi-step traffic state prediction problems.

6. Conclusion

This article presented a novel approach to address the multi-step 
traffic state prediction problem by proposing an Actor–Critic archi-
tecture. The Actor network serves as the base predictor by capturing 
the temporal dependencies in the input dataset. On the other hand, 
the Critic network judges the quality of the predictions with the help 
of Q-values learned during the model’s training. The Actor aims to 
maximise the Q-value and minimise the prediction error. The Critic 



S. Reza et al. Applied Soft Computing 184 (2025) 113783 
Fig. 8. Stacked area plots of the traffic flow prediction performance of the models under study in terms of (a) MAE and (b) RMSE metrics for different prediction 
lengths on the PeMS test dataset.
network learns to generate the Q-values associated with the corre-
sponding prediction error. The higher the Q-values are, the better the 
prediction accuracy. The proposed model demonstrated excellent per-
formance compared to state-of-the-art baselines through experimental 
validation on three state-of-the-art datasets, particularly for higher pre-
diction lengths. Regarding statistics, it obtained average improvements 
of 0.26, 3.21 and 21.29%, the MAE and RMSE metrics for the three 
used datasets, respectively. It demonstrated promising outcomes in 
minimising the accumulation of errors while maintaining accuracy in 
introducing non-recurrent events. On top of that, a Denoising Autoen-
coder was proposed, which helped the model overcome the sensitivity 
to external noise. This use of DRL paradigms combined with DL in 
solving multi-step prediction tasks opens new avenues for research. 
Future work could improve the model’s efficiency by reducing the com-
putational costs. Exploring advanced models, such as spatial–temporal 
GNNs and transformers, like the Actor network, could improve short-
term prediction performances. Moreover, comprehensive comparisons 
with more advanced methods can further validate the usefulness of the 
proposed model.

CRediT authorship contribution statement

Selim Reza: Writing – original draft, Methodology, Investigation, 
Formal analysis. Marta Campos Ferreira: Writing – review & editing. 
J.J.M. Machado: Writing – review & editing, Supervision, Concep-
tualization. João Manuel R.S. Tavares: Writing – review & editing, 
Supervision, Funding acquisition, Conceptualization.

Source code

The source code is available at GitHub Repository.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

The authors would like to thank ‘‘Fundação para a Ciência e a 
Tecnologia’’ (FCT) for the PhD grant with reference 2022.12391.BD 
was awarded to the first author, of which this work is a part. This article 
partially results from the project ‘‘Sensitive Industry’’, co-funded by the 
European Regional Development Fund (ERDF) through the Operational 
Programme for Competitiveness and Internationalisation (COMPETE 
2020) under the PORTUGAL 2020 Partnership Agreement.
13 
Data availability

The used datasets are publicly available at CaltransPeMS and PeMS-
BAYandMETR-LA.

References

[1] S. Deepan, M. Saravanan, Air quality index prediction using seasonal autore-
gressive integrated moving average transductive long short-term memory, ETRI 
J. (2024) e12658.

[2] F. Harrou, A. Zeroual, F. Kadri, Y. Sun, Enhancing road traffic flow prediction 
with improved deep learning using wavelet transforms, Results Eng. (2024) 
102342.

[3] X. Luo, D. Li, Y. Yang, S. Zhang, Spatiotemporal traffic flow prediction with KNN 
and LSTM, J. Adv. Transp. 2019 (1) (2019) 4145353.

[4] J. Deng, X. Song, I.W. Tsang, H. Xiong, The bigger the better? rethinking the 
effective model scale in long-term time series forecasting, 2024, arXiv preprint 
arXiv:2401.11929.

[5] J. Chen, L. Zheng, Y. Hu, W. Wang, H. Zhang, X. Hu, Traffic flow matrix-based 
graph neural network with attention mechanism for traffic flow prediction, Inf. 
Fusion 104 (2024) 102146.

[6] N.S. Chauhan, N. Kumar, A. Eskandarian, A novel confined attention mechanism 
driven bi-GRU model for traffic flow prediction, IEEE Trans. Intell. Transp. Syst. 
(2024).

[7] M. Taghian, S. Miwa, Y. Mitsuka, J. Günther, S. Golestan, O. Zaiane, Explain-
ability of deep reinforcement learning algorithms in robotic domains by using 
Layer-wise Relevance Propagation, Eng. Appl. Artif. Intell. 137 (2024) 109131.

[8] J. Zhang, J. Ge, S. Li, S. Li, L. Li, A bi-level network-wide cooperative driving 
approach including deep reinforcement learning-based routing, IEEE Trans. Intell. 
Veh. (2023).

[9] T. Wang, Z. Zhu, J. Zhang, J. Tian, W. Zhang, A large-scale traffic signal control 
algorithm based on multi-layer graph deep reinforcement learning, Transp. Res. 
Part C: Emerg. Technol. 162 (2024) 104582.

[10] Y. Fu, D. Wu, B. Boulet, Reinforcement learning based dynamic model combi-
nation for time series forecasting, in: Proceedings of the AAAI Conference on 
Artificial Intelligence, Vol. 36, 2022, pp. 6639–6647.

[11] H. Zheng, Y. Cao, D. Sun, M. Wang, B. Yan, C. Ye, Research on time series 
prediction of multi-process based on deep learning, Sci. Rep. 14 (1) (2024) 3739.

[12] Z. Wan, Y. Kang, R. Ou, S. Xue, D. Xu, X. Luo, Multi-step time series forecasting 
on the temperature of lithium-ion batteries, J. Energy Storage 64 (2023) 107092.

[13] Y. Liu, T. Feng, S. Rasouli, M. Wong, ST-DAGCN: A spatiotemporal dual adaptive 
graph convolutional network model for traffic prediction, Neurocomputing 601 
(2024) 128175.

[14] T. Fischer, C. Krauss, Deep learning with long short-term memory networks for 
financial market predictions, European J. Oper. Res. 270 (2) (2018) 654–669.

[15] C. Ounoughi, S.B. Yahia, Sequence to sequence hybrid Bi-LSTM model for traffic 
speed prediction, Expert Syst. Appl. 236 (2024) 121325.

[16] Z. Li, H. Xu, X. Gao, Z. Wang, W. Xu, Fusion attention mechanism bidirectional 
LSTM for short-term traffic flow prediction, J. Intell. Transp. Syst. 28 (4) (2024) 
511–524.

[17] K.N. Kumar, D. Roy, T.A. Suman, C. Vishnu, C.K. Mohan, TSANet: Forecasting 
traffic congestion patterns from aerial videos using graphs and transformers, 
Pattern Recognit. 155 (2024) 110721.

[18] S. Du, T. Li, Y. Yang, X. Gong, S.-J. Horng, An LSTM based encoder-
decoder model for MultiStep traffic flow prediction, in: 2019 International Joint 
Conference on Neural Networks, IJCNN, IEEE, 2019, pp. 1–8.

https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://github.com/SelimFEUP/DRL-for-Multi-step-Traffic-Prediction.git
https://pems.dot.ca.gov/
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb1
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb1
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb1
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb1
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb1
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb2
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb2
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb2
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb2
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb2
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb3
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb3
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb3
http://arxiv.org/abs/2401.11929
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb5
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb5
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb5
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb5
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb5
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb6
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb6
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb6
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb6
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb6
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb7
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb7
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb7
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb7
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb7
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb8
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb8
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb8
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb8
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb8
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb9
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb9
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb9
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb9
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb9
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb10
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb10
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb10
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb10
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb10
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb11
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb11
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb11
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb12
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb12
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb12
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb13
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb13
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb13
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb13
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb13
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb14
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb14
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb14
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb15
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb15
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb15
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb16
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb16
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb16
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb16
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb16
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb17
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb17
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb17
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb17
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb17
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb18
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb18
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb18
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb18
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb18


S. Reza et al. Applied Soft Computing 184 (2025) 113783 
[19] H. Feng, X. Zhang, Y. Xu, Multi-step ahead prediction of traffic speed based on 
attention-based CNN-LSTM-BiLSTM, in: 2022 5th International Conference on 
Data Science and Information Technology, DSIT, IEEE, 2022, pp. 1–6.

[20] A.R. Sattarzadeh, P.N. Pathirana, V.T. Huynh, Traffic state estimation with 
spatio-temporal autoencoding transformer (STAT model), IEEE Access (2025).

[21] Z. Xue, L. Huang, Q. Ning, ASTTN: An Adaptive Spatial–Temporal Transformer 
Network for traffic flow prediction, Eng. Appl. Artif. Intell. 148 (2025) 110263.

[22] S. Liu, X. Wang, An improved transformer based traffic flow prediction model, 
Sci. Rep. 15 (1) (2025) 8284.

[23] G. Zou, Z. Lai, T. Wang, Z. Liu, Y. Li, MT-STNet: A novel multi-task spatiotempo-
ral network for highway traffic flow prediction, IEEE Trans. Intell. Transp. Syst. 
(2024).

[24] Z. Zhao, G. Shen, L. Wang, X. Kong, Graph spatial-temporal transformer network 
for traffic prediction, Big Data Res. 36 (2024) 100427.

[25] Q. Luo, S. He, X. Han, Y. Wang, H. Li, LSTTN: A Long-Short Term Transformer-
based spatiotemporal neural network for traffic flow forecasting, Knowl.-Based 
Syst. 293 (2024) 111637.

[26] Z. Geng, J. Xu, R. Wu, C. Zhao, J. Wang, Y. Li, C. Zhang, STGAFormer: Spatial–
temporal Gated Attention Transformer based Graph Neural Network for traffic 
flow forecasting, Inf. Fusion 105 (2024) 102228.

[27] Z. Li, J. Zhou, Z. Lin, T. Zhou, Dynamic spatial aware graph transformer for 
spatiotemporal traffic flow forecasting, Knowl.-Based Syst. 297 (2024) 111946.

[28] Y. Mao, et al., Deep reinforcement learning for trading: A survey, in: Proceedings 
of the 2020 International Conference on Artificial Intelligence and Statistics, 
AISTATS, PMLR, 2020.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy 
optimization algorithms, in: Proceedings of the 34th International Conference 
on Machine Learning, ICML, PMLR, 2017, pp. 37–45.

[30] L.A.H. Hassan, H.S. Mahmassani, Y. Chen, Reinforcement learning framework 
for freight demand forecasting to support operational planning decisions, Transp. 
Res. Part E: Logist. Transp. Rev. 137 (2020) 101926.

[31] C. Li, et al., Deep reinforcement learning for inventory management, Int. J. Prod. 
Res. (2019).

[32] Y. Li, P. Ni, V. Chang, Application of deep reinforcement learning in stock trading 
strategies and stock forecasting, Computing 102 (6) (2020) 1305–1322.

[33] J. Zou, J. Lou, B. Wang, S. Liu, A novel deep reinforcement learning based 
automated stock trading system using cascaded lstm networks, Expert Syst. Appl. 
242 (2024) 122801.

[34] Y. Ren, H. Jiang, N. Ji, H. Yu, TBSM: A traffic burst-sensitive model for 
short-term prediction under special events, Knowl.-Based Syst. 240 (2022) 
108120.

[35] K. Zhou, S.-K. Oh, J. Qiu, W. Pedrycz, K. Seo, J.H. Yoon, Design of hierarchical 
neural networks using deep LSTM and self-organizing dynamical fuzzy-neural 
network architecture, IEEE Trans. Fuzzy Syst. (2024).

[36] Y. Huang, X. Wan, L. Zhang, X. Lu, A novel deep reinforcement learning 
framework with BiLSTM-Attention networks for algorithmic trading, Expert Syst. 
Appl. 240 (2024) 122581.

[37] Y. Zhang, J. Liu, C. Li, Y. Niu, Y. Yang, Y. Liu, W. Ouyang, A perspective of 
q-value estimation on offline-to-online reinforcement learning, in: Proceedings of 
the AAAI Conference on Artificial Intelligence, Vol. 38, 2024, pp. 16908–16916.

[38] A. Mahmoud, A. Mohammed, Leveraging hybrid deep learning models for 
enhanced multivariate time series forecasting, Neural Process. Lett. 56 (5) (2024) 
223.

[39] R. Hyndman, Forecasting: Principles and Practice, OTexts, 2018.
14 
[40] Y. Li, R. Yu, C. Shahabi, Y. Liu, Diffusion convolutional recurrent neural 
network: Data-driven traffic forecasting, in: International Conference on Learning 
Representations, ICLR’18, 2018.

[41] C. Chen, Freeway Performance Measurement System (PeMS), University of 
California, Berkeley, 2002.

[42] S. Schmidl, P. Wenig, T. Papenbrock, Anomaly detection in time series: a 
comprehensive evaluation, Proc. VLDB Endow. 15 (9) (2022) 1779–1797.

[43] Y. Wei, J. Jang-Jaccard, W. Xu, F. Sabrina, S. Camtepe, M. Boulic, LSTM-
autoencoder-based anomaly detection for indoor air quality time-series data, IEEE 
Sens. J. 23 (4) (2023) 3787–3800.

[44] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. 
Learn. Res. 13 (2) (2012).

[45] Z. Xing, M. Huang, W. Li, D. Peng, Spatial linear transformer and temporal 
convolution network for traffic flow prediction, Sci. Rep. 14 (1) (2024) 4040.

[46] C. Ma, G. Dai, J. Zhou, Short-term traffic flow prediction for urban road sections 
based on time series analysis and LSTM_BILSTM method, IEEE Trans. Intell. 
Transp. Syst. 23 (6) (2021) 5615–5624.

[47] H.-J. Lee, D.-J. Park, Collision evasive action timing for MASS using CNN–
LSTM-based ship trajectory prediction in restricted area, Ocean Eng. 294 (2024) 
116766.

[48] S. Mostafi, T. Alghamdi, K. Elgazzar, Interconnected traffic forecasting using 
time distributed encoder-decoder multivariate multi-step LSTM, in: 2024 IEEE 
Intelligent Vehicles Symposium, IV, IEEE, 2024, pp. 2503–2508.

[49] H. Wu, J. Xu, J. Wang, M. Long, Autoformer: Decomposition transformers with 
auto-correlation for long-term series forecasting, Adv. Neural Inf. Process. Syst. 
34 (2021) 22419–22430.

[50] Y. Fang, Y. Liang, B. Hui, Z. Shao, L. Deng, X. Liu, X. Jiang, K. Zheng, Efficient 
large-scale traffic forecasting with transformers: A spatial data management 
perspective, 2024, arXiv preprint arXiv:2412.09972.

[51] K. Fu, H. Li, X. Shi, An encoder–decoder architecture with Fourier attention for 
chaotic time series multi-step prediction, Appl. Soft Comput. 156 (2024) 111409.

[52] E. Strøm, O.E. Gundersen, Performance metrics for multi-step forecasting measur-
ing win-loss, seasonal variance and forecast stability: an empirical study, Appl. 
Intell. 54 (21) (2024) 10490–10515.

[53] S. Swapno, S. Nobel, P. Meena, V. Meena, A.T. Azar, Z. Haider, M. Tounsi, A 
reinforcement learning approach for reducing traffic congestion using deep Q 
learning, Sci. Rep. 14 (1) (2024) 1–20.

[54] H. Jin, Z. Li, H. Cheng, Y. Xia, H. Hu, Sum-rate maximization for uplink multi-
user NOMA with improper Gaussian signaling: A deep reinforcement learning 
approach, IEEE Trans. Veh. Technol. (2025).

[55] G. Yang, X. Wen, F. Chen, Multi-agent deep reinforcement learning with graph 
attention network for traffic signal control in multiple-intersection urban areas, 
Transp. Res. Rec. (2025) 03611981241297979.

[56] H. Hu, S. Lin, P. Wang, J. Xu, Control of traffic network signals based on deep 
deterministic policy gradients, Appl. Intell. 55 (6) (2025) 381.

[57] Y. Liu, S. Rasouli, M. Wong, T. Feng, T. Huang, RT-GCN: Gaussian-based 
spatiotemporal graph convolutional network for robust traffic prediction, Inf. 
Fusion 102 (2024) 102078.

[58] X. Zheng, S.A. Bagloee, M. Sarvi, TRECK: Long-term traffic forecasting with 
contrastive representation learning, IEEE Trans. Intell. Transp. Syst. (2024).

[59] Y. Ji, Y. Luo, A. Lu, D. Xia, L. Yang, A. Wee-Chung Liew, Galformer: a 
transformer with generative decoding and a hybrid loss function for multi-step 
stock market index prediction, Sci. Rep. 14 (1) (2024) 23762.

http://refhub.elsevier.com/S1568-4946(25)01096-8/sb19
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb19
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb19
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb19
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb19
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb20
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb20
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb20
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb21
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb21
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb21
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb22
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb22
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb22
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb23
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb23
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb23
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb23
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb23
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb24
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb24
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb24
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb25
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb25
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb25
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb25
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb25
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb26
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb26
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb26
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb26
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb26
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb27
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb27
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb27
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb28
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb28
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb28
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb28
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb28
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb29
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb29
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb29
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb29
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb29
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb30
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb30
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb30
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb30
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb30
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb31
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb31
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb31
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb32
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb32
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb32
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb33
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb33
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb33
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb33
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb33
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb34
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb34
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb34
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb34
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb34
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb35
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb35
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb35
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb35
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb35
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb36
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb36
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb36
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb36
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb36
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb37
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb37
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb37
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb37
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb37
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb38
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb38
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb38
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb38
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb38
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb39
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb40
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb40
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb40
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb40
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb40
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb41
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb41
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb41
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb42
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb42
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb42
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb43
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb43
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb43
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb43
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb43
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb44
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb44
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb44
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb45
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb45
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb45
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb46
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb46
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb46
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb46
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb46
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb47
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb47
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb47
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb47
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb47
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb48
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb48
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb48
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb48
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb48
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb49
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb49
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb49
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb49
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb49
http://arxiv.org/abs/2412.09972
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb51
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb51
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb51
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb52
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb52
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb52
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb52
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb52
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb53
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb53
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb53
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb53
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb53
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb54
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb54
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb54
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb54
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb54
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb55
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb55
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb55
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb55
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb55
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb56
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb56
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb56
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb57
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb57
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb57
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb57
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb57
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb58
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb58
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb58
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb59
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb59
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb59
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb59
http://refhub.elsevier.com/S1568-4946(25)01096-8/sb59

	An Actor–Critic-based adapted Deep Reinforcement Learning model for multi-step traffic state prediction
	Introduction
	Related Works
	Methodology
	Problem Statement
	Long Short-Term Memory
	Bidirectional Long Short-Term Memory

	Actor Model
	Critic Model
	Reinforcement Learning Framework
	Proposed Model
	Loss Functions

	Data PreProcessing

	Experiments
	Code Implementation
	Datasets
	Anomaly Analysis

	Model Training and Evaluation
	Hyperparameters

	Performance Metrics
	Results

	Discussion
	Comparisons with DDPG
	Computational Costs
	Robustness to Noise and Non-recurrent Events
	Denoising Autoencoder

	Accumulation of Errors

	Conclusion
	CRediT authorship contribution statement
	Source Code
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


