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Abstract
The scenic value of landscapes within Geoparks is often attributed to the geomorpho-
logical processes that have shaped them in the past or up to the present day, including 
landslides. However, these processes also pose significant threats to the integrity of ge-
osites and the safety of visitors, highlighting the need for risk prevention and mitigation 
plans for geohazards. The Caminhos dos Cânions do Sul Geopark (southern Brazil) lacks 
landslide inventories and susceptibility maps, essential for conducting practical geohazard 
risk analyses. This study addresses this gap by compiling a landslide inventory of the 
major events over the past 30 years, using a rule-based Object-Based Image Analysis 
(OBIA) approach, and assessing the susceptibility for four modeling domains within the 
Geopark using the Information Value method. Seven independent variables (aspect, slope, 
topographic wetness index, terrain ruggedness index, geomorphons, elevation, and curva-
ture) were selected, resulting in 120 combinations for each modeling domain. For each 
predisposing factor combination, model performance was assessed using the area under 
the Receiver Operating Characteristics (ROC) curve, and the conditional independence 
of variables was evaluated. The best models for each domain were selected based on the 
criteria of conditional independence, goodness of fit, and number of variables. The final 
landslide susceptibility map was produced by merging the best three models’ results. The 
resulting susceptibility classification indicates that many geosites are located in areas with 
moderate to very high susceptibility or within zones likely to experience material transport 
or deposition.

Keywords  Global Geoparks Network · Serra Geral Escarpment · Object-based image 
analysis · Information value method
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1  Introduction

UNESCO Global Geoparks are unified and well-delimited areas managed through a holistic 
economic and social sustainable development concept, with geotourism as its main driv-
ing activity (Jones 2008; Brilha 2018; Lee and Jayakumar 2021). Global Geoparks har-
bor important geosites, representing unique geological features, landscapes, and cultural 
heritage that should be preserved for future generations (Reynard 2009). Geoparks can 
be considered an outstanding initiative in promoting geosite conservation (Brilha 2018). 
Despite its role as a source of leisure, education, and income for its community, Geoparks’ 
landscapes can also pose hazardous situations for their visitors and inhabitants, particularly 
in areas with scenic value associated with active geomorphological processes (e.g., mass 
movements) (Dierickx et al. 2016; Reynard and Coratza 2016; Morino et al. 2022).

As with other UNESCO heritage sites, many of the global geoparks comprise areas prone 
to natural hazards and extreme weather events (Fukuoka 2014; Pavlova 2019). A survey 
with UNESCO geopark managers shows that landslides are present in 70% of the geoparks 
and represent one of the most frequent processes in these territories that can lead to risk 
situations (Dierickx et al. 2016). Therefore, in addition to the necessity to assess risk and 
create prevention and mitigation plans due to the natural characteristics of these territories, 
UNESCO geoparks can help countries achieve the Sustainable Development Goals (SDGs) 
of the 2030 Agenda and the Shimbara Declaration to ensure safe and resilient cities and 
prevent impacts caused by natural processes (EGN 2012; UN 2018; Fassoulas et al. 2018).

The UNESCO Global Geopark Caminhos dos Cânions do Sul (henceforth GCCS), 
located in Southern Brazil, has an area of approximately 3.000  km² and the occurrence 
of geomorphological processes deeply marks the landscape. Whether on its outstanding 
basaltic escarpment (Serra Geral) or its vast plains, it is possible to attest the power of these 
landscape-shaping processes, especially mass movements (shallow landslides, rockfalls, 
and debris flows), floods, and flash floods (Pellerin et al. 1997; Valdati et al. 2021; Vascon-
cellos et al. 2021; Paixão et al. 2021; Szymasnki et al. 2022; Sugiyama and Gomes 2023). 
Although this area has always been a popular tourist destination in the region, establishing 
the GCCS increased the region’s appeal for geotourism, leading to the installation of new 
infrastructure and a boost in the number of visitors. This situation prompted the necessity 
for geohazard risk prevention and mitigation plans.

However, landslide risk assessments can be time- and resource-consuming, especially 
for large areas such as geoparks, because they involve a series of preceding steps (e.g., 
susceptibility, hazard, and vulnerability analysis) (Van Westen et al. 2008). The first step 
to assess landslide risk can be the susceptibility assessment, defined in this research as the 
analysis of landslide spatial probability in an area, considering only the terrain characteris-
tics (Brabb 1984; Guzzetti et al. 1999). Given that scale is a critical factor when selecting 
the most appropriate method for susceptibility assessments, statistical methods are recom-
mended in the literature for regional-scale analysis across large areas due to the necessity of 
detailed information on the physical properties of soils and rocks for the use of physically-
based models (Soeters and van Westen 1996; Aleotti and Chowdhury 1999; Reichenbach 
et al. 2018).

One of the major advantages of statistical methods is that the investigator can validate 
the importance of the predisposing factors and decide on the input of the final maps (Aleotti 
and Chowdhury 1999; Corominas et al. 2014). Nevertheless, when modeling landslide sus-
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ceptibility across large areas, the spatial variability of lithological, geotechnical, and topo-
graphic characteristics should be considered (Lee et al. 2008; Blahut et al. 2010; Petschko 
et al. 2014). Distinct approaches for modeling heterogeneous domains have been proposed, 
mainly based on subdivisions of the area in relatively topographically homogeneous sectors 
(Lee et al. 2008; Blahut et al. 2010) and lithologically homogeneous domains at a given 
scale (Petschko et al. 2012, 2014).

For some GCCS municipalities (namely, Jacinto Machado and Timbé do Sul), previous 
research was carried out with bivariate statistically-based methods to understand landslide 
susceptibility with municipal planning and civil protection purposes (IPT, 2015a, b). Fur-
thermore, other studies analyzed mass movement hazard through physically-based meth-
ods in touristic areas of the GCCS (e.g., Franck and Kobiyama 2024). However, although 
some punctual qualitative efforts to recognize potential geohazards in the whole GCCS 
territory were made (Pimenta et al. 2018; Sugiyama and Gomes 2023), systematic landslide 
inventories and quantitative susceptibility mapping are still lacking, specifically focused 
on Geopark management. Statistically-based susceptibility assessments critically rely on 
landslide inventories that should be as complete and unbiased as possible (Dikau et al. 1996; 
Aleotti and Chowdhury 1999; Ardizzone et al. 2002), a type of dataset lacking for the GCCS 
territory, and that limits the application of regional-scale statistically based models.

The visual interpretation of aerial photography and/or orbital images is the most com-
mon technique for producing geomorphological inventories (Galli et al. 2008; Bucci et al. 
2021; Zhang et al. 2022). However, these techniques may be time-consuming when map-
ping large areas or producing multi-temporal inventories, and, in recent decades, various 
studies have employed automatic and semiautomatic methodologies, such as Object-based 
image analysis (OBIA) techniques, reducing reliance on visual interpretation (Lacroix et 
al. 2013; Amatya et al. 2021; Meena et al. 2021). Although not entirely objective, semiau-
tomatic methods can be a time-saving tool for large and heterogeneous areas once training 
sample collection is optional.

Therefore, this paper aims to produce a regional-scale statistically-based susceptibility 
assessment for the GCCS, capable of depicting the differences in landslide susceptibility 
and its predisposing factors across the different geomorphological domains that characterize 
the Geopark landscape. For this purpose, a set of landslide inventories of the major events 
that occurred in the last 30 years in the GCCS was produced by using archive satellite 
imagery and the OBIA technique. These products can contribute to establishing geohazard 
risk prevention and mitigation plans in the GCCS by providing the two essential prod-
ucts (inventories and susceptibility maps) necessary for a future quantitative landslide risk 
assessment.

2  Study area

The UNESCO GCCS is located in southern Brazil, spanning seven municipalities (Morro 
Grande, Timbé do Sul, Jacinto Machado, Praia Grande, Torres, Mampituba and Cambará 
do Sul) across two states (Rio Grande do Sul and Santa Catarina) (Fig. 1). The geological 
framework of GCCS reflects a series of geotectonic events related to the formation of the 
Paraná-Etendeka Basin and the breakup of the Gondwana Supercontinent, which occurred 
from the Ordovician to the Late Cretaceous (Milani et al. 2007). The primary geological 
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Fig. 1  Lithological map of the study area, nature conservancy units, geosites, and weather station of the 
GCCS
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units of this volcano-sedimentary basin are, in stratigraphic order from bottom to top, the 
Upper Permian Rio do Rasto Formation (comprising tabular sandstones interbedded with 
mudstones), the Upper Jurassic to Lower Cretaceous Botucatu Formation (medium-thick-
ness red sandstones), and the Cretaceous Serra Geral Formation Group (including basalt, 
rhyodacite, and dacite) (Wildner et al. 2008, 2014).

Erosional processes acting on these lithologies have led to the formation of four distinct 
geomorphological domains: (1) the Campos Gerais Highlands, located above 1,000 m in 
elevation, which are supported by magmatic rocks and characterized by an intense structural 
control over the drainage system, with predominant flat surfaces; (2) the Serra Geral Escarp-
ment, which marks the edge of the highlands and are also sustained by lithologies of the 
Serra Geral Group, presenting steep slopes and numerous joints and fractures; (3) the Serra 
Geral Patamares, a step-like relief formed by sedimentary rocks (Botucatu and Rio do Rasto 
formations) that connect the highlands and escarpment to the plains; and (4) the coastal 
plains, which are composed of tertiary and quaternary sediments, resulting from colluvial, 
fluvial, and coastal processes.

The geodiversity of this region is recognized through 30 official geosites, eight of which 
are of international significance (Fig. 2). These include canyons, waterfalls, paleoburrows, 
rock outcrops, and other distinctive landforms. Additionally, the GCCS encompasses 11 
nature conservation units (Fig. 1), highlighting its rich biotic and cultural diversity.

The municipalities of the GCCS are generally sparsely populated. According to the 
2022 demographic census, the municipality with the largest and most densely occupied 
population is Torres (41,751 inhabitants, 258 inhabitants/km²). The second most populous 
municipality is Jacinto Machado (10,624 inhabitants), while the other municipalities have 
populations of less than 10,000 inhabitants, such as Morro Grande and Mampituba, with 
approximately 3,000 inhabitants.

Fig. 2  (a) Geosite Morro do farol, an outcrop of Serra Geral Group and Botucatu Formation, displaying a 
singular lithology (peperites) formed by the interaction between the sands of the ancient desert (Botucatu) 
and the volcanic flows; (b) Geosite Toca do Tatu, a paleoburrow dug into Botucatu sandstones; (c) Ge-
osite Canion da Fortaleza, a canyon developed through the fractures of the basaltic rocks, on which differ-
ent basaltic flows are visible; (d) The landscape of the GCCS is marked by the presence of the Serra Geral 
Escarpment, with considerable elevation range; (e) evidence of hydrodynamic processes on the plains. 
Source: (c) Yasmim Fontana

 

1 3

17443



Natural Hazards (2025) 121:17439–17469

The presence of the escarpment, with an elevation range of more than 1,000 m, signifi-
cantly influences rainfall patterns, promoting the occurrence of orographic precipitation. In 
the GCCS, the average annual rainfall is 1,823 mm, as recorded at a weather station located 
in the highlands. However, no weather station exists on the escarpment itself. Previous stud-
ies have shown a 30% increase in annual rainfall over a vertical distance of just 150 m (from 
70 to 220 m), with 2,519 mm recorded at 220 m (Valdati 2000). Consequently, persistent 
rainfall in the headwaters is not uncommon, often resulting in generalized hydrodynamic 
processes and landslides (Fig. 2). A notable example of this is the 1995 rainfall event, which 
triggered hundreds of landslides and debris flows, leading to the loss of 29 lives (Pellerin 
et al. 1997).

3  Materials and methods

3.1  Data and software

Different data sources were used to produce the landslide inventories and susceptibility 
maps. For the inventories, SPOT (Satellite pour l’Observation de la Terre) and RapidEye 
archive images were used. Images were made available in the frame of the CNES SPOT 
World Heritage Programme and the Planet Education and Research Program (Planet Team 
2017), respectively. Elevation data (30 m spatial resolution) was derived from the Forest 
and Buildings Removed Copernicus Digital Elevation Model version 1.2 (DEM) (Hawker 
et al. 2022), used both during the inventory production and susceptibility modeling steps.

The most detailed geological map for the study area is available at a 1:500,000 scale, 
and using this product to define modeling domains could lead to oversimplified results 
(Wildner et al. 2008, 2014). Nevertheless, a geomorphological map at a 1:250,000 scale is 
available (IBGE, 2023) and was used to determine the three modeling domains (highland, 
escarpment, and plains) for the landslide susceptibility modeling. The abovementioned map 
was produced by a systematic field survey and geomorphological interpretation of orbital 
imagery, resulting in a standardized product for the Brazilian territory. The geomorphologi-
cal units comprise landforms with altimetric and physiographic resemblance due to similar 
lithological, tectonic, and paleoclimatic histories (IBGE 2009).

All processes were performed by SAGA GIS (Conrad et al. 2015) and the R statistical 
software (R Core Team 2019). We used custom functions in the R language for variable 
weighting, evaluation of model fit, and conditional independence diagnosis. The latter was 
based on Agterberg and Cheng (2002), and the code implemented in ArcSDM (Sawatzky et 
al. 2009), available at https://github.com/gtkfi/ArcSDM/tree/master.

3.2  Landslide inventory mapping

The generalized events were identified from official registers (in the case of the 1995 event) 
and the visual analysis of multitemporal orbital imagery available on Google Earth. When 
landslides were identified on a given date, SPOT and RapidEye databases were queried to 
acquire post-event imagery (Table 1). Three major events were identified inside the Geopark 
territory, one with the precise triggering date reported and two with uncertain triggering 
dates (the first triggered between 2005 and 2007, and the second between 2009 and 2011). 
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Remote sensing data (Table 1) was processed to obtain local statistical measures from the 
post-event images (contrast, entropy, energy, and variance) (Zhang 2011) and morphometric 
terrain attributes were derived from the DEM (catchment area, slope, topographic wetness 
index, aspect, curvature, and geomorphons).

The approach for landslide inventory mapping was based on a two-level Object-Based 
Image Analysis (OBIA) using the seeded region growing algorithm (Adams and Bischof 
1994). The first segmentation was performed at a coarser level (i.e., with a larger band-
width value), aimed at removing areas not affected by landslides and with homogeneous 
land cover. After removing the non-affected areas, a fine-level segmentation was performed 
using smaller bandwidth values to refine landslide polygon borders. Landslides were dif-
ferentiated from non-affected regions at both levels using a rule-based classification. Rules 
were based on local statistical measures and DEM derivatives (mean and standard devia-
tion for both) and defined from manually digitized landslide polygons inside a 1.5 km² area 
(one area per inventory). After the fine-level segmentation and classification, a preliminary 
inventory was obtained and compared to the manually digitized landslides with a confusion 
matrix to obtain the proportion of true positives (TP), true negatives (TN), false positives 
(FP), false negatives (FN), user and producer accuracies, and overall accuracy. User accu-
racy (UA) (Eq. 1) refers to the commission error and denotes the proportion of pixels cor-
rectly classified in a given class. Producer accuracy (PA) (Eq. 2) is related to the omission 
error and denotes the proportion of correctly identified landslides from the manual inven-
tory. Overall accuracy (OA) (Eq. 3) is the proportion of correctly identified classes across 
the analyzed data (i.e., considering both landslides and non-landslides).

	
UA = TP

TP + FP
� (1)

	
PA = TP

TP + FN
� (2)

	
OA = (TP + FN)

(TP + TN + FP + FN) � (3)

.
Afterward, false positives were removed, landslide polygon borders were corrected when 

necessary, and non-detected landslides were manually digitized. A further classification of 
the preliminary inventory was performed using the geomorphons layer to differentiate areas 
affected by shallow landslides on the slopes and valley bottoms affected by debris flows 
and other hydrodynamic processes (hereafter, landslides refer to shallow translational land-
slides). We considered a given landslide polygon to be affected by debris flows and other 

Platform and sensor Spatial 
resolution

Acquisi-
tion date

Inventory I SPOT3, HRV (High-Reso-
lution Visible)

10 m 06/04/1996

Inventory II RapidEye, MSI (Multi-
spectral Imager)

5 m 05/05/2007

Inventory III RapidEye, MSI 5 m 21/09/2011

Table 1  Remote sensing data for 
the landslide inventories
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hydrodynamic processes if its overlaid areas were classified as valley geomorphons. Land-
slide polygons in other geomorphons were considered shallow landslides, rupture, trans-
port, and deposition zones, mapped as a single polygon. After this step, a further visual 
interpretation was carried out to ensure the consistency of the separation process. Landslide 
initiation points were automatically derived from the DEM for each shallow landslide poly-
gon, assuming the initiation point as the highest elevation pixel inside each polygon (Ama-
tya et al. 2022). Finally, the initiation points were randomly partitioned into two subsets 
(training and test), each with 50% of the landslide population. The initiation points were 
used in the susceptibility analysis as the pixel corresponding to the location of the initiation 
point in vector format.

3.3  Modeling of heterogeneous areas

Based on the geomorphological units the GCCS territory was subdivided into four differ-
ent areas for modeling purposes: (1) Total Area (TA); (2) Highland and Escarpment Area 
(HSA); (3) Plains and Escarpment Area (PLSA); and (4) Escarpment Area (SA) (Fig. 3). 
Although the Serra Geral Patamares is delimited separately in the official map, its charac-
teristics are similar to those of the escarpment, especially regarding the geomorphological 
processes. Therefore, they were included in the escarpment (SA) modeling domain.

Considering that the landslide initiation points occur on the escarpment area, the escarp-
ment area was necessarily included in all subdivisions. Based on the geomorphological 
units, the subdivision aimed to analyze whether the construction of a model for the whole 
area would be satisfactory or if the modeling based on different domains would generate 
more fitted results for Geopark management.

Fig. 3  Geomorphological compartments and modeling domains (TA = Total Area; PLSA = Plains and Es-
carpment Area; HSA = Highland and Escarpment Area; SA = Escarpment Area)
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3.4  Predisposing factors

Predisposing factors were derived from the Digital Elevation Model (DEM) and comprised 
seven morphometric parameters (Table 2). The selection of predisposing factors and their 
categorization were based on our knowledge of the study area and the literature about land-
slide controlling factors (Table 2). The option to include only topography-related variables 
in the models is justified by the modeling in heterogeneous domains, whose limits are intrin-
sically related to lithological and tectonic controls.

3.5  Susceptibility modeling and validation

The Information Value (Yin and Yan 1988) was deployed to weigh each class of the predis-
posing factors. The Information Value (IV) of a class i of a predisposing factor x is given 
by the relation of the landslide-affected area in class i (Si), the area of class i (Ni), the total 
landslide-affected area (S), and the total area (N) (Eq. 4).

	
IV xi = ln

Si

/
Ni

S/
N

� (4)

Predisposing 
factor (unit)

Brief rationale for selection

Aspect 
(degrees)

It can be a proxy for slope morpho-
structural properties (e.g., dip angle). 
It can also influence moisture content 
due to differential exposure to rain-
fall and/or solar radiation.

Corominas 
et al. (2014)
Messenzehl 
et al. (2017)
Zêzere et al. 
(2017)

Slope angle 
(degrees)

The determinant factor for landslide 
triggering. Theoretically, shear stress 
increases with increasing slope angle.

Bierman and 
Montgomery 
(2019), Mc-
Coll (2015)

Geomorphons 
(-)

Differentiates landforms that can be 
associated with landslide deposition 
zones (e.g., depressions and valleys) 
and rupture zones (e.g., hollows and 
slopes).

Steger et 
al. (2021) 
Zhang et al. 
(2020)

Curvature (-) Indicator of slope hydrology, with 
a tendency of flow convergence in 
concave slopes and divergence in 
convex ones.

Dietrich and 
Montgomery 
(1998); Lac-
erda (2007)

Elevation (m) Can exert influence due to the in-
crease in potential energy as a result 
of the elevation difference

Corominas 
et al. (2014)

Terrain Rug-
gedness Index 
(TRI) (-)

Indicate relief heterogeneity, which 
can reflect differences in potential 
energy, similarly to elevation, but 
considering neighboring mapping 
units.

Corominas 
et al. (2014);
Bordoni et 
al. (2020)

Topographic 
Wetness Index 
(TWI) (-)

It can be considered a proxy for slope 
moisture retention and saturation 
zones.

Beven and 
Kirby (1979)
Seibert et al. 
(2007)

Table 2  Selected predisposing 
factors for the susceptibility 
analysis
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.
When the IV of a class i assumes negative values, the class is not useful in explaining 

the landslide distribution, and it can be assumed that it is favorable to slope stability (Zêzere 
et al. 2017). Conversely, when the IV of class i is positive, variable xi is relevant to explain 
the landslide distribution (with higher positive values indicating higher association) (Pereira 
et al. 2012; Zêzere et al. 2017). If landslides are absent in a given class xi, Eq. 1 cannot be 
computed. In such cases, the IV was set to the lowest IV obtained for the predisposing fac-
tor x, subtracted by 0.001. The final IV is determined by the sum of all thematic maps, with 
each class reclassified according to its IV. The weighting of the predisposing factors was 
performed using the landslide training subset.

After computing the IV of each variable xi, model fit was evaluated independently with 
the training subset for all possible combinations of predisposing factors. For each model-
ing domain, 120 combinations were computed, resulting in 480 models. The rationale of 
this combination procedure was to provide insights into potential differences in the main 
landslide-controlling factors in each modeling domain. Model fit was evaluated for each 
model using the Receiver Operating Characteristics area under the curve (ROC AUC) 
(Swets 1988; Bradley 1997; Fawcett 2006). ROC curves relate the sensitivity and the false 
positive rate derived from contingency matrices computed with different cutoff values (Frat-
tini et al. 2010). ROC AUC represents the overall model accuracy, with values ranging from 
0.0 (the model classifies all mapping units as either false positive or false negative) to 1.0 
(perfect prediction); a 0.5 value indicates that the model is not better than a random predic-
tion (Swets, 1988; Bradley 1997). In the literature, ROC AUC as a model fit metric tends 
to be ranked as poor fit (values under 0.7); fair (0.7 to 0.8); good (0.8 to 0.9); and excellent 
(0.9 or higher) (Fressard et al. 2014).

3.6  Conditional independence diagnosis

Bivariate statistical models assume the existence of conditional independence between the 
landslide predisposing factors (Bonham-Carter et al. 1989; Van Westen 1993), and the viola-
tion of this assumption can lead to overestimations of landslide spatial probability. (Blahut 
et al. 2010; Pereira et al. 2012). Therefore, conditional independence in the abovementioned 
480 combinations was assessed with the Agterberg-Cheng Conditional Independence Test 
(ACCIT) (Agterberg and Cheng 2002). The ACCIT evaluates the presence of conditional 
independence based on the predicted training points (T) and the actual observed occurrences 
(n), applying a one-tailed test of the null hypothesis that T-n = 0. Following Pereira et al. 
(2012), the posterior probabilities and their standard deviation for each of the predisposing 
factor classes were obtained by the Weights of Evidence. (Bonham-Carter 1994) and the 
ACCIT was scaled from 0 to 1. An ACCIT value lower than 0.40 indicates high condi-
tional dependence among the predisposing factors and that the model should be rejected. 
The aforementioned posterior probability values were obtained using the landslide initiation 
points of the training subset described in the inventory mapping section.

3.7  Selection of the best landslide susceptibility models

For each modeling domain, the best model was selected based on model fit and whether 
the hypothesis of conditional independence could be accepted. By the best model, we con-
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sidered those with ACCIT above 0.40 and a higher AUC ROC. In the case of models that 
satisfy the conditional independence hypothesis and have very similar values of AUC ROC, 
the best model was considered to be the one with fewer variables (Pereira et al. 2012). The 
selected models were then subject to a predictive capacity assessment using the test sub-
set of the landslide inventory, containing 50% of the occurrences. Predictive capacity was 
assessed through the area under the prediction rate curve. (Chung and Fabbri 1999, 2003), 
a plot that relates the proportion of correctly classified landslides and the proportion of the 
study area predicted as susceptible.

After establishing model predictive skills, the landslide susceptibility maps were classi-
fied into 10 classes containing an equal number of terrain units to perform the visual com-
parison. Following Vakhshoori and Zare (2018), to compute the final map, each selected 
model was classified into five susceptibility classes (Very Low, Low, Moderate, High, and 
Very High), corresponding, respectively, to 40%, 20%, 20%, 10%, and 10% of its modeled 
area. This approach was chosen instead of using equal-area classification (e.g., 20% for each 
class) to avoid overestimating the extent of very high susceptibility zones. Afterwards, the 
final landslide susceptibility map for the entire territory of the Geopark was obtained by 
merging the individual susceptibility maps, already classified, of the three subdivided mod-
els (HSA30, PLSA65, SA30). Once the escarpment area was present in all three models, the 
final model was constructed utilizing only one geomorphological compartment from each 
modeling area (e.g., only the results of the highland area from the selected HSA model were 
displayed in the final map).

4  Results

4.1  Landslide inventories

A total area of 1.437 km² was inventoried using a rule-based classification of satellite imag-
ery, and 19,36 km² of mass movement areas were identified (Fig. 4). Inventory I has the larg-
est affected area (14,6 km²), and the overall accuracy is 88,89%. In contrast, for Inventory 
II and Inventory III, respectively, the affected area was 2,19 km² and 2,57 km², and overall 
accuracies of 97,23% and 98,39% (Table 3). The classification could identify most mass 
movement-affected areas, and non-detected areas related mostly to the shade of the slopes 
and small and elongated scars. Manually removed false positives were associated with agri-
culture in the plains areas and rock outcrops on the escarpment.

After separating the mass movement types, we identified 12,2 km² and 7,13 km² affected 
by debris flows and other hydrodynamic processes and landslides, respectively. The mass 
movement events mapped in Inventory II and Inventory III also affected areas outside the 
Geopark’s boundary in three different municipalities (Siderópolis, Nova Veneza, and Mor-
rinhos do Sul). Therefore, these areas were not included in the modeling steps. Thus, con-
sidering only the landslides inside the Geopark, 667 initiation points were automatically 
extracted from the DEM corresponding to the highest elevation pixel inside each landslide 
polygon. Only 666 points were considered and partitioned into equal training and test sub-
sets (333 points each).
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4.2  Information value method

For all the different modeling domains (TA, HAS, PLSA, SA), the class of slope angle that 
presented the highest information value is the one above 45°. However, the classes between 
30° and 45° also show high values (Table 4). North, Northeast, and East-facing slopes pre-
sented the highest information values (IV); for TA and HSA, the highest value is for the East 
aspect, whereas for PLSA and SA, it is Northeast. Flat areas and the Southwest aspect bear 
a weak relation with the landslide distribution, displaying negative values.

Almost all curvature classes exhibited positive values, indicating some relation with the 
landslide distribution, except for straight/straight curvatures for TA. The convex/concave 
curvatures displayed the highest IV for all the modeling domains. The information values of 
the elevation were higher for TA and HSA in the class from 600 to 800 m, while for PLSA 
and SA, the most important classes related to landslide distribution were the ones ranging 

Table 3  Landslide-affected area and accuracies for each inventory
Landslide-affect-
ed area (km²)

Debris flow and other 
hydrodynamic processes 
affected area (km²)

User Ac-
curacy (%)

Producer Ac-
curacy (%)

Over-
all Ac-
curacy 
(%)

Inventory I 6,62 7,98 73,99 60,61 88,89
Inventory II 0,37 1,82 83,78 64,75 97,23
Inventory III 1,48 2,43 89,19 63,44 98,39

Fig. 4  Landslide inventories of 1995, 2005/2007, and 2009/2011 events

 

1 3

17450



Natural Hazards (2025) 121:17439–17469

Predisposing factor Class TA HSA PLSA SA
< 15 -3.545 -3.234 -3.148 -1.890
15–20 -0.418 -0.403 -0.608 -0.180
20–25 0.698 0.707 1.221 1.180

Slope angle (degrees) 25–30 1.935 1.940 2.077 2.029
30–35 2.531 2.533 2.530 2.580
35–40 2.877 2.877 2.965 2.975
40–45 2.945 2.945 3.049 3.083
> 45 3.330 3.330 3.482 3.401
N 1.126 1.257 1.956 2.273
NE 1.386 1.616 1.999 2.383
E 1.416 1.776 1.717 2.257

Aspect (-) SE 0.604 0.951 0.881 1.524
S 0.309 0.525 0.557 0.913
SW -0.703 -0.602 -0.836 -0.534
W -0.703 -0.602 0.624 0.800
NW 0.977 1.086 1.687 2.048
Flat -0.703 -0.602 -0.836 -
V/V 1.159 1.173 1.748 1.795
R/V 1.576 1.598 2.280 2.274
X/V 2.058 2.065 2.591 2.640

Curvature (-) V/R 0.334 0.410 1.031 1.254
R/R -0.383 0.151 0.083 1.313
X/R 1.154 1.183 1.911 1.981
V/X 1.219 1.248 1.521 1.637
R/X 1.282 1.317 1.876 1.913
X/X 1.448 1.488 2.051 2.104
< 200 -0.652 -0.628 -0.167 -0.143
200–400 -0.652 -0.628 -0.166 -0.143

Elevation (m) 400–600 1.950 1.950 2.009 1.992
600–800 2.776 2.776 2.814 2.847
800–1000 0.840 0.840 3.135 3.083
1000–1200 0.287 0.287 3.094 3.137
> 1200 1.843 1.852 1.835 1.766
Flat -1.588 -1.570 -1.525 -1.411
Summit -1.588 -1.570 -1.525 -1.411
Ridge 1.382 1.394 1.884 1.896
Shoulder -1.588 -1.570 -1.278 -1.235

Geomorphons (-) Spur 2.354 2.365 2.569 2.550
Slope 1.843 1.854 2.047 2.069
Hollow 1.818 1.821 2.010 2.078
Footslope -1.551 -1.502 -1.525 -1.411
Valley -0.975 -0.974 0.410 0.004
Depression -1.588 -1.570 -1.525 -1.411

Table 4  Information values for each predisposing factor and modeling domain. Classes with the highest 
information value are highlighted in bold type
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between 800 and 1200 m. For the geomorphons, TRI, and TWI, the most significant classes 
were the same across all modeling domains (Table 4).

4.3  Evaluation of model fit

For each modeling domain, the combinations of two and five variables resulted in 21 mod-
els. Combinations of three and four variables resulted in 35 models, seven models with six 
variables, and a single model with all seven variables.

The results of the ROC AUC indicate better performance for HSA and TA modeling 
domains, with all the produced models above 0.75 and a mean of over 0.91. The SA (AUC 
ROC mean equal to 0.84) was the modeling domain with the lowest ROC AUC values 
(Fig. 5). Usually, the models with fewer variables presented the highest dispersion of ROC 
AUC values, with higher dispersion for the two-variable models (21 combinations for each 
modeling domain). Nevertheless, the two-variable combinations did not show any outliers. 
Also, the lowest ROC AUC values are usually for models with two variables. Still, some 
combinations can display high values, and combinations with more variables do not neces-
sarily present the highest values of AUC ROC. Table 5 shows, for all modeling domains, the 
models with the highest and lowest ROC AUC values for each number of variables.

Regarding the ACCIT results, all the models with seven variables displayed values equal 
to zero, showing that the combination of all the predisposing factors violates the conditional 
independence assumption and should be rejected (ACCIT < 0.4). The models with four to 
six variables presented wider distribution and higher dispersion of ACCIT values (Fig. 5). 
Moreover, considering the number of combinations, there is a tendency for models with 
fewer variables to display higher values of ACCIT. None of the two- and three-variable 
models presented ACCIT values lower than 0.6, showing higher independence between the 
predisposing factors for these models. Also, for all the modeling domains, the models with 
four variables have more than 75% of the combinations with values higher than 0.5, while 
for models with six variables, all the results of ACCIT are lower than 0.3.

Predisposing factor Class TA HSA PLSA SA
Terrain Ruggedness Index (TRI) (-) 0–0,92 -2.611 -2.579 -2.034 -1.445

0,92 − 3,69 -2.611 -2.579 -2.034 -1.445
3,69 − 6,46 1.429 1.437 1.656 1.621
6,46 − 9,24 2.706 2.708 2.780 2.808
> 9,24 3.184 3.184 3.295 3.273

Topographic Wetness Index (TWI) 2,93 − 4,57 3.136 3.139 2.977 3.069
4,57 − 7,73 1.641 1.652 2.087 2.101
7,73 − 10,9 -0.733 -0.690 0.056 0.206
10,9–14,06 -0.733 -0.690 0.056 0.206
14,06–17,23 -0.733 -0.690 0.056 0.206
> 17,23 -0.733 -0.690 0.056 0.206

Legend: TA = Total Area, PLSA = Plains and Escarpment area, HSA = Highland and Escarpment area, 
SA = Escarpment area. Negative values indicate a weak relationship between the information value class 
and the occurrence of landslides. Positive values indicate a strong relationship between the class and the 
occurrence of landslides. The higher the positive values, the stronger the relationship

Table 4  (continued) 
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Fig. 5  (a) ROC AUC values and number of variables; (b) ACCIT results and number of variables; (c) 
Selected models (circled in black) according to ACCIT and ROC AUC values. The red line corresponds 
to the threshold of acceptable conditional independence among the predisposing factors
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Table 5  Landslide susceptibility models with the lowest and highest ROC AUC value for each modeling do-
main, according to the number of predisposing factors. Best performing models are highlighted in bold type
Model N. of 

factors
Landslide predisposing factors ACCIT ROC 

AUC
TA 1 7 Aspect, Curvature, Elevation, Geomorphons, Slope, TRI, TWI 0.000 0.954
TA 2 6 Aspect, Curvature, Elevation, Geomorphons, Slope, TRI 0.000 0.956
TA 8 6 Curvature, Elevation, Geomorphons, Slope, TRI, TWI 0.040 0.945
TA 9 5 Aspect, Elevation, Geomorphons, Slope, TRI 0.433 0.956
TA 29 5 Aspect, Curvature, Elevation, Geomorphons, TWI 0.041 0.927
TA 30 4 Aspect, Elevation, Geomorphons, TRI 0.661 0.957
TA 64 4 Aspect, Curvature, Geomorphons, TWI 0.640 0.897
TA 65 3 Aspect, Geomorphons, Slope 0.667 0.955
TA 99 3 Aspect, Curvature, TWI 0.710 0.850
TA 100 2 Aspect, Slope 0.727 0.953
TA 120 Aspect, Curvature 0.726 0.784
HSA 1 7 Aspect, Curvature, Elevation, Geomorphons, Slope, TRI, TWI 0.000 0.945
HSA 2 6 Aspect, Curvature, Elevation, Geomorphons, Slope, TRI 0.000 0.948
HSA 8 6 Curvature, Elevation, Geomorphons, Slope, TRI, TWI 0.250 0.933
HSA 9 5 Aspect, Curvature, Elevation, Geomorphons, TRI 0.055 0.949
HSA 29 5 Aspect, Curvature, Elevation, Geomorphons, TWI 0.128 0.914
HSA 30 4 Aspect, Elevation, Geomorphons, TRI 0.561 0.949
HSA 64 4 Aspect, Curvature, Geomorphons, TWI 0.560 0.877
HSA 65 3 Aspect, Elevation, Slope 0.659 0.947
HSA 99 3 Aspect, Curvature, TWI 0.667 0.822
HSA 100 2 Aspect, Slope 0.691 0.945
HSA 120 2 Curvature, TWI 0.695 0.753
PLSA 1 7 Aspect, Curvature, Elevation, Geomorphons, Slope, TRI, TWI 0.000 0.925
PLSA 2 6 Aspect, Curvature, Elevation, Geomorphons, Slope, TWI 0.000 0.929
PLSA 8 6 Curvature, Elevation, Geomorphons, Slope, TRI, TWI 0.175 0.911
PLSA 9 5 Aspect, Elevation, Geomorphons, Slope, TWI 0.188 0.933
PLSA 29 5 Curvature, Elevation, Slope, TRI, TWI 0.506 0.902
PLSA 30 4 Aspect, Elevation, Geomorphons, Slope 0.424 0.932
PLSA 64 4 Aspect, Curvature, Geomorphons, TWI 0.535 0.872
PLSA 65 3 Aspect, Geomorphons, Slope 0.670 0.932
PLSA 99 3 Curvature, Geomorphons, TWI 0.722 0.834
PLSA 100 2 Aspect, Slope 0.735 0.917
PLSA 120 2 Aspect, Curvature 0.733 0.787
SA 1 7 Aspect, Curvature, Elevation, Geomorphons, Slope, TRI, TWI 0.000 0.879
SA 2 6 Aspect, Curvature, Elevation, Geomorphons, TRI, TWI 0.003 0.889
SA 8 6 Curvature, Elevation, Geomorphons, Slope, TRI, TWI 0.280 0.857
SA 9 5 Aspect, Elevation, Geomorphons, TRI, TWI 0.494 0.888
SA 29 5 Curvature, Elevation, Slope, TRI, TWI 0.560 0.841
SA 30 4 Aspect, Geomorphons, TRI, TWI 0.646 0.884
SA 64 4 Aspect, Curvature, Geomorphons, TWI 0.595 0.820
SA 65 3 Aspect, Geomorphons, TRI 0.669 0.880
SA 99 3 Curvature, Geomorphons, TWI 0.679 0.765
SA 100 2 Aspect, TRI 0.685 0.856
SA 120 2 Curvature, Geomorphons 0.686 0.705
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Considering the number of variables, the ACCIT and ROC AUC results, four different 
models were selected, one for each modeling domain (Fig. 5). The TA30 was selected as the 
best model for the TA domain. This model was created with four variables (aspect, elevation, 
geomorphons, and TRI), presenting an ACCIT value of 0.661 and ROC AUC of 0.957. The 
same set of variables was chosen as the best model for the HSA domain (HSA30), however, 
the ACCIT and ROC AUC values were slightly lower than for the TA domain (respectively, 
0.561 and 0.949). For the PLSA domain, the selected model (PLSA65) was composed of 
only three variables (aspect, geomorphons, and slope), displaying ACCIT equal to 0.670 and 
a ROC AUC value of 0.932. In the case of the SA domain, the model SA30 was selected, 
presenting ACCIT and ROC AUC values, respectively, of 0.646 and 0.884. This model was 
generated by the combination of aspect, geomorphons, TRI, and TWI.

All the selected models displayed reasonable predictive capacities, with the highest val-
ues for TA30 and the lowest for SA30 (Fig. 6). The AUC of prediction rate curves for the 
selected models of TA, HSA, PLSA, and SA are, respectively, 0.938, 0.924, 0.920, and 
0.868. Through visual inspection, it is possible to note some major changes in the classifica-
tion of the escarpment slopes (represented in all models) (Fig. 7). In this compartment, the 
TA30, HSA30, and PLSA65 models presented a greater generalization of the most suscep-
tible areas, whereas the SA30 model provided a better depiction of these areas.

To produce the final susceptibility map for the GCCS, we merged the HSA30, PLSA65, 
and SA30 models, already classified into five classes (Very Low, Low, Moderate, High, 
and Very High), excluding the escarpment area of HSA30 and PLSA65. In this way, the 
final map of the geopark presents the highland modeled through HSA30; the plain through 

Fig. 6  Prediction curve of the selected models
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Fig. 7  Selected models classified into ten landslide susceptibility classes
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PLSA65; and the escarpment through SA30 (Fig. 8). The final map of the GCCS displays 
59,5% of Very Low susceptible area, 19,7% of Low, 12,1% of Moderate, 5,4% of High, and 
3,3% of Very High. Additionally, many geosites are located in areas classified as Very High 
(geosites 8 and 19), High (geosite 9), and Moderate (geosites 2, 3, 12, 15, 16, 20, and 27) 
(Fig. 8).

5  Discussion

5.1  Landslide inventories

The landslide inventories displayed considerably high overall accuracies (all above 0.85), 
indicating that both the segmentation tuning and the definition of the classification rules 
were effective. The accuracy difference between Inventory I (derived from SPOT-3 imag-
ery) and the other two inventories (derived from RapidEye imagery) is noteworthy. We 
attribute this difference to the different spatial resolutions of the datasets used (10 m and 
5 m, respectively). Among the two inventories produced with RapidEye imagery, there is 
a slight difference in the accuracy, which can be related to the total landslide-affected area 
in Inventories II and III (0.37 km² and 1.48 km², respectively) and differences in the char-
acteristics of the event. Inventory II contains a significant number of affected areas related 
to shallow landslides, elongated and with reduced width, that are highlighted in previous 
studies as difficult to detect (Amatya et al. 2021; Bonini et al. 2022). On the other hand, 
Inventory III contains mostly affected areas related to debris flows and other hydrodynamic 

Fig. 8  Final landslide susceptibility map and location of geosites
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processes, which display a consistent spectral behavior and geometry (occupying the valley 
bottom in a more or less continuous manner).

Regardless of the preference in the literature for the use of temporal partition in the 
case of multi-temporal inventories (Zêzere et al. 2017) there was a significant disparity 
between the number of landslide initiation points contained in Inventory I and its counter-
parts: summed, Inventory II and Inventory III have 162 initiation points within the boundar-
ies of the GCCS, while for Inventory I have 505 initiation points. Therefore, we opted for 
a random spatial partition instead of a temporal one, since the discrepancy in the number 
of landslides triggered in each of the generalized events could provide misleading results 
due to the imbalance between training and test subsets if a temporal partition criterion were 
employed.

Also, considering the distinct characteristics of the mapped landslide events and the 
images’ spatial resolutions, we considered initiation points more suitable than the whole 
landslide scar area. This is due to the fact that in the 1995 event (the one with the largest 
landslide-affected area), the landslide scars, in some cases, covered almost the entire slope, 
and the SPOT HRV image (10 m resolution) did not allow the correct separation between 
initiation and transport areas. Including transport and deposition areas in the susceptibility 
modeling could produce inaccuracies in the final maps once the influence of some classes 
of predisposing factors is overrated, as well as the high susceptibility areas in the territory 
(Petschko et al. 2014). On the other hand, the number of initiation points is underestimated 
for the 1995 event since many coalescent scars may contain more than one rupture zone. 
However, once more, image resolution was an obstacle when trying to detect and individu-
alize landslides (Fig. 9).

The existence of protected areas and the steeper terrains of the escarpment impose some 
obstacles to the occupation of the slopes. In that way, the greater population density within 
the GCCS is concentrated in the plains, in some cases distant from the escarpment. There-
fore, many landslide events are not reported, or when they are, they are misclassified as 
floods or flash floods due to changes in the process dynamics along their path and when they 
reach urban agglomerations. This is a common situation in sparsely occupied areas since 
the official reporting of landslides is mainly done when damage occurs. (Steger et al. 2021). 
Additionally, the absence of high temporal resolution imagery for the territory in the early 
2000s makes it difficult to ascertain some events’ precise date of occurrence (Inventory II 
and Inventory III).

The 1995 event was triggered by an exceptional weather phenomenon during which 
cumulonimbus clouds were observed with a basal height of around 500 m, shifting towards 
the slopes of the Serra Geral and creating persistent orographic rainfall on the headwaters 
(Pellerin et al. 1997). Usually, in the south of Brazil, these clouds have a basal height above 
1.000 m (Pellerin et al. 1997). Although the official records of this event indicate an estimate 
between 206 and 225 mm of rainfall, the weather station that provided the forecast was 
located more than 150 km from the affected area. In that way, there is no realistic estimate 
of the rainfall that triggered the 1995 event, as well as for the other events (Inventories II 
and III), whose precise date of occurrence is uncertain. Even if we could precisely ascertain 
the date of the two other events, the spatial density of the weather stations in the region and 
the absence of stations in the escarpment hinder the identification of the rainfall volume that 
triggered the events.
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5.2  Susceptibility assessment

The analysis of predisposing factors and their classes IVs highlights some important infor-
mation about the relief controls over landslides in the GCCS. The slope angle is one of the 
most frequently selected inputs for statistically-based models (Reichenbach et al. 2018). 
For all the modeling domains, the slope angle class above 25° displayed some explanatory 
power of the landslide distribution (IV > 1.0), particularly for the class above 45°. However, 
although the slope angle can be an important predisposing factor of landslides, in its simple 
form, it may not be able to capture the influence of slope gradient changes on slope stability 
in complex relief areas. In our case, the terrain ruggedness index (TRI) was more important 
in constructing the best models and showed less dependence on other parameters. In that 
way, only the PLSA65 was built with the slope angle among its predisposing factors. For 
all the other domains, the slope angle was not used in the selected models; instead, the TRI 
was used. The TRI provides information on local surface variability, which is an average of 
slope-adjacent neighbors. (Riley et al. 1999; Trevisani et al. 2023). The values of TRI are 
expected to be higher in unstable areas. They can be more effectively related to landslide 
distribution than simple metrics (i.e., slope and mean slope), especially for large failures 
(Reichenbach et al. 2018). Therefore, the TRI class above 9.24 displayed the highest IV for 
the selected models.

Fig. 9  (a, c) 1995 event in Jacinto Machado and Timbé do Sul municipality. It is possible to note that 
many landslides occurred close to the watershed divides. (b) SPOT image resolution makes it difficult 
to differentiate rupture, transport, and deposition zones of coalescent scars. Source: (a, c) Joel Pellerin
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However, it is important to note that the classes of the predisposing factors with the 
highest IVs do not necessarily correspond to the class where most landslides occur. The IV 
results from the relation of the affected area in a class of the predisposing factor to the total 
area of this same class. This can be verified through the difference in the classes with higher 
IVs of the same predisposing factor across different modeling domains. For elevation, TA 
and HSA modeling domains presented the highest IV for classes between 600 and 800 m, 
while for PLSA and SA, these values were higher (above 800 m for PLSA and 1000 m for 
SA). TA and HSA encompass the highland areas usually located above 1000 m. Thus, there 
is a larger area above this elevation threshold in these modeling domains; in this way, the IV 
is smaller for this class in TA and HSA. The elevation parameter was used only to compute 
TA30 and HSA30 models.

The aspect and geomorphons predisposing factors are present in all the selected models 
(Table 5). There is no consensus in the literature about the influence of aspect in landslide 
occurrence and distribution, although for some authors, the aspect can be considered one of 
the most important predisposing factors (Galli et al. 2008; Lee 2005), and in statistically-
based methods, it is the second most frequently used parameter (Reichenbach et al. 2018; 
Dias et al. 2021b). Previous research about the influence of aspect in statistical methods by 
Capitani et al. (2013) identified that aspect can significantly influence landslide distribu-
tion, especially for shallow landslides (superficial). As a simple morphometric variable, the 
aspect may be controlled by the influence of local conditions (Reichenbach et al. 2018). 
Considering the characteristics of GCCS territory, presenting many features, especially on 
the basaltic rocks, the aspect may act as a proxy variable related to structural controls over 
the slope’s geometric properties, such as the strata dip angle (Messenzehl et al. 2017; Zêzere 
et al. 2017).

For our area, the spurs were the geomorphons with the highest IV, followed by slope, hol-
low, and ridge. The classification shows that the flat, summit, footslope, valley, and depres-
sion landforms do not influence the landslide distribution. Spurs can display high slope 
angles, slopes, and ridges. Also, in the three mapped events, most of the landslide initiation 
points are located close to the watershed divides, a piece of information that can explain 
the higher IVs assumed by the abovementioned geomorphons. However, in the case of the 
hollows, there is also a relationship between slope and curvature that implies flow conver-
gence and, consequently, an enhanced predisposition to shallow landslides and debris flows 
(e.g., Zhang et al. 2020). The geomorphons are not commonly used in susceptibility studies, 
but some authors have found good results when relating geomorphons and landslide distri-
bution (Steger et al. 2021; Acosta-Quesada and Quesada-Román 2024). Geomorphons, as 
complex variables, can better explain the variability of terrain characteristics and perform 
better than basic variables (e.g., curvature). The curvature is the only predisposing factor 
that is not present in any of the selected models. However, this variable is highlighted as one 
of the most important for many studies conducted in Brazil (Fernandes et al. 2004; Vieira et 
al. 2018; Dias et al. 2021a; Bonini et al. 2022).

Among these more complex variables, the TWI class under 4.57 displayed high values 
for all the domains; however, this predisposing factor is present only in the SA30 model. 
This can be related to the fact that for the other modeling domains, the presence of classes 
with higher TWI is widespread compared to the escarpment area. The TWI is a variable 
that can indicate areas of potential water flow accumulation, often waterlogged (Moore et 
al. 1991; Różycka et al. 2017). In that way, lower values of TWI can be related to small 
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specific contribution areas, which favor rapid saturation during rainfall and are most often 
affected by landslides.

We assume that ACCIT proved to be an effective tool for analyzing the independence 
among the predisposing factors and the variables’ influence in the different modeling 
domains. Although information value studies have been widely carried out in the last 
decades, it is not common to assess the independence of predisposing factors, which is an 
assumption of the bivariate methods (Pereira et al. 2012). In Brazil, few studies have carried 
out a conditional independence diagnosis (e.g., Araújo et al. 2021). The presence of con-
ditional dependence among the independent variables does result in some overestimation 
of spatial probability (Agterberg and Cheng 2002), and we argue that future studies should 
include this type of test in their modeling protocols.

The adopted strategy, to model heterogeneous domains, proved to be effective for our 
study area, since we could realize that the selected predisposing factors behaved differently 
for each domain. In that way, not only do the selected models have different combinations, 
but also it is possible to notice that some classes of variables can better explain how the 
predisposing factors were selected in the respective domain. Petschko et al. (2014) found 
similar results by modeling geological domains separately, although, for our area, it was not 
possible to model the domains without the escarpment area. Moreover, previous studies in 
GCCS territory have already demonstrated that the analysis of mass movement susceptibil-
ity should be carried out considering the different characteristics of the geomorphological 
compartment, even for qualitative assessments (Sugiyama and Gomes 2023).

A careful interpretation of the landscape can exemplify the reasons for adopting differ-
ent modeling domains (Fig. 10). In the GCCS territory, the highlands are mainly formed 
by elevated and flat areas, except for the valleys carved by the drainage that mostly display 
structural controls. In the same way, the plains areas present gentle slopes (usually less than 
5°), and most existing rivers are typical of low-energy areas, forming extensive flood plains. 
In contrast with these flat areas, the escarpment presents highly steep slopes, in many cases 

Fig. 10  (a, b) The landscape of GCCS is marked by the contrast between the steeper slopes of the escarp-
ment (c) and the flat areas of the highlands (d) and plains. Source: (b) Fernando Daminani

 

1 3

17461



Natural Hazards (2025) 121:17439–17469

controlled by fractures and joints, where it is also possible to find canyons and waterfalls. 
This abrupt contrast between these areas results in different amounts of sediments available, 
energy (erosion power), and characteristics of the geomorphological process. Thus, it is not 
unexpected that landslide predisposing factors behave differently in each geomorphological 
compartment.

We assume that the final map obtained by merging the different domains is a satisfactory 
depiction of landslide susceptibility in the area, especially considering the characteristics of 
GCCS territory. Moreover, since the escarpment area was modeled separately, it is possible 
to differentiate the very susceptible areas, which for other of the produced models could be 
almost the whole escarpment. Thinking in Geopark management, this is a relevant achieve-
ment to help select the most critical areas to assess the hazard and create risk prevention and 
mitigation plans. Indeed, many geosites are located in moderately to very high susceptible 
areas or adjacent areas, which can be in the transport or deposition zones (Fig. 8).

On November 6, 2024, another landslide event occurred in the Serra Geral escarpment, 
in one of the watersheds affected by the 1995 event (Fig. 11). This event happened after the 
compilation of our landslide inventories and, therefore, these landslides were not included 
in the modeling steps. However, a quick assessment of the affected areas revealed that all 
the landslides occurred in areas classified as moderate to very high susceptibility in our map. 
Of the 23 landslides triggered, 14 were in areas classified as having very high susceptibility, 
seven in high susceptibility, and two in a moderate susceptibility area. It is important to note 
that many landslides triggered near watershed divides are placed close to the boundaries 

Fig. 11  (a) Planet Scope Image (14/11/2024) of the area affected by the 2024 event. The image highlights 
the affected areas and older scars from the 1995 event. (b) The 22 landslide-affected areas are classified 
as moderately to very susceptible. (c) Most of the shallow landslides occurred near the headwaters, char-
acterized by thin, elongated features. (d) At least six debris flows were triggered by this event, impacting 
a large area of the plains
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between different susceptibility classes. This may be related to the DEM resolution, which 
can influence the detailing of the susceptibility classification. Given that the 2024 landslides 
were not considered during model construction, the location of the majority of affected areas 
in the very high and high susceptibility classes supports the considerably high predictive 
capacity of the final models.

Four limitations of this study can be indicated: (1) there is some degree of subjectivity 
in the landslide affected-areas detection strategy, since the rules are defined by the user and 
they tend to be both site- and event-specific (i.e., the same set of rules may not perform well 
for different areas and/or landslide events); (2) the best DEM was available at medium spa-
tial resolution and this affects both the differentiation between landslides and hydrodynamic 
processes and the detailing of the susceptibility assessment; (3) as is the case with most 
global statistical models, the use of single weighting factors for the independent variables 
can be problematic in areas with complex geomorphological setting, and also some of the 
independent variables may have non-linear relationships with the dependent one that are 
not captured by the models; and (4) in the majority of the generalized events that occurred 
in our area the landslides on the slopes tend to trigger debris flows with long runouts, that 
remobilize the valley bottom materials and reach exposed elements far from the point where 
the shallow landslides were initiated (e.g., built infrastructure).

Concerning the first one, we consider it a minor problem for our approach, given that the 
majority of landslide inventories in Brazil are produced by conventional visual interpreta-
tion, whose procedures may be less systematic than the ones employed in this study. About 
the second limitation, this data type is unavailable in most of Brazil in high resolution, like 
LiDAR Digital Terrain Models with wide territorial coverage. The third limitation is com-
mon to our study and the ones that employed global multivariate methods, such as logistic 
regression. It was mitigated by the use of heterogeneous modeling domains, allowing differ-
ent combinations of predisposing factors and weighting factors for each geomorphological 
compartment. Finally, the fourth and last limitation can be overcome in future studies that 
will strongly benefit from this work’s products to perform debris flow susceptibility and 
trajectory analysis (which was out of scope here).

6  Conclusions

This research produced inventories for three generalized mass movement events that occurred 
in the last 30 years in the Caminhos dos Cânions do Sul UNESCO Geopark (GCCS), using 
a semi-automatic Object-Based Image Analysis (OBIA) procedure. The events were identi-
fied in archive orbital images from 1996, 2009, and 2011. The results show that an area of 
12,2 km² was affected by debris flows and other hydrodynamic processes, and 7,13 km² by 
shallow landslides. Afterwards, a shallow landslide statistically based susceptibility assess-
ment was conducted for four different modeling domains based on the geomorphological 
compartments (total area, highland, escarpment, and plains). Seven different predispos-
ing factors were combined, resulting in 120 combinations for each modeling domain. The 
results show a better response of aspect and geomorphons (present in all four selected mod-
els), and for composite morphometric variables such as the TWI and the TRI.

The modeling strategy based on heterogeneous domains proved to be efficient in analyz-
ing different controls exerted by the predisposing factor classes in each geomorphological 
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compartment. Additionally, this strategy, combined with the conditional independence test, 
prevented a generalization of the very high susceptibility class and provided a robust model-
ing framework. The final map, composed by the combination of the three modeling domains 
corresponding to the geomorphological compartments, resulted in 59,5% of Very Low sus-
ceptibility area, 19,7% of Low, 12,1% of Moderate, 5,4% of High, and 3,3% of Very High.

Limitations due to data resolution (satellite imagery and DEM), the occurrence of cas-
cading landslides and hydrodynamic processes, and nonlinear relationships between depen-
dent and independent variables were identified and acknowledged.

Nonetheless, while acknowledging the study’s limitations, the final susceptibility map 
yielded satisfactory results, enabling the identification of 10 geosites predominantly situ-
ated within landslide-prone areas. These findings are expected to make substantial contribu-
tions to the development and implementation of geohazard risk prevention, mitigation, and 
management plans. Those plans can support the safeguarding of the GCCS geoheritage and 
the tourists, and are especially urgent due to the expected changes in landslide frequency 
and magnitude related to changes in rainfall patterns that are expected as a consequence of 
global climate change.

Therefore, the results presented in this paper can be useful for future studies to determine 
the temporal probability of landslides in the Geopark area. Since the weather station distri-
bution does not allow a feasible estimation of rainfall thresholds, this could be carried out 
by testing the most suitable rainfall measures from spaceborne sensors. This analysis could 
then support a spatially explicit hazard assessment capable of simulating runout areas and 
potential infrastructural and geoheritage impacts related to landslide occurrence.

Acknowledgements  We are thankful to the Graduate Programme in Physical Geography of the University of 
São Paulo. We are also thankful for the valuable comments provided by the two anonymous reviewers, wich 
significantly improved our paper, and the Editor’s careful handling of the manuscript.

Author contributions  All authors contributed to the study conception and design. Material preparation, data 
collection and analysis were performed by Marina Tamaki de Olveira Sugiyama, and José Eduardo Bonini. 
The first draft of the manuscript was written by Marina Tamaki de Oliveira Sugiyama and José Eduardo 
Bonini, and all authors commented on previous versions of the manuscript. All authors read and approved 
the final manuscript.

Funding  This research was funded by the São Paulo Research Foundation (FAPESP) in the frame of the 
grant #2021/04621-6, grant #2022/09132-6, and grant #2023/16080-5. 

Declarations

Competing interests  The authors have no relevant financial or non-financial interests to disclose.

References

Acosta-Quesada M, Quesada-Román A (2024) Landslides and flood hazard mapping using Geomorphologi-
cal methods in Santa ana, Costa Rica. Int J Disaster Risk Reduct 113:104882. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​
j​.​i​j​d​r​r​.​2​0​2​4​.​1​0​4​8​8​2​​​​​​​

Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647. 
https://doi.org/10.1109/34.295913

Agterberg FP, Cheng Q (2002) Conditional independence test for Weights-of-Evidence modeling. Nat Resour 
Res 11:249–255

1 3

17464

https://doi.org/10.1016/j.ijdrr.2024.104882
https://doi.org/10.1016/j.ijdrr.2024.104882
https://doi.org/10.1109/34.295913


Natural Hazards (2025) 121:17439–17469

Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull 
Eng Geol Environ 58:2144. https://doi.org/10.1007/s100640050066

Amatya P, Kirschbaum D, Stanley T, Tanyas H (2021) Landslide mapping using object-based image analysis 
and open source tools. Eng Geol 282:106000. https://doi.org/10.1016/j.enggeo.2021.106000

Amatya P, Kirschbaum D, Stanley T (2022) Rainfall-induced landslide inventories for lower Mekong based 
on planet imagery and a semi‐automatic mapping method. Geosci Data J 9:315–327. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​0​2​/​g​d​j​3​.​1​4​5​​​​​​​

Araújo JP, de Barella C, Fernandes CF NF (2021) Modelling landslide susceptibility using the weight of 
evidence method in a tropical mountains region. Geosciences 40:137–155. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​5​0​​1​6​/​G​E​​
O​C​I​E​N​​C​I​A​S​.​V​​4​0​I​1​​.​1​4​9​9​2

Ardizzone F, Cardinali M, Carrara A et al (2002) Impact of mapping errors on the reliability of landslide 
hazard maps. Nat Hazards Earth Syst Sci 2:314. https://doi.org/10.5194/nhess-2-3-2002

Beven KJ, Kirby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol 
Sci Bull 24:43–69

Bierman P, Montgomery D (2019) Key concepts in geomorphology, 2nd edn. W. H. Freeman
Blahut J, van Westen CJ, Sterlacchini S (2010) Analysis of landslide inventories for accurate prediction of 

debris-flow source areas. Geomorphology 119:36–51. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​g​e​o​m​o​​r​p​h​.​2​0​​1​0​.​0​​2​.​0​1​7
Bonham-Carter GF (1994) Geographic Information Systems for Geoscientists. Elsevier. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​

0​1​6​/​C​2​0​1​3​-​0​-​0​3​8​6​4​-​9​​​​​​​
Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modelling: a new approach to 

mapping mineral potential. In: Agterberg FP, Boham-Carter GF (eds) Statistical applications in Earth 
sciences. Geological Survey of Canada, Ottawa, pp 171–183

Bonini JE, Vieira BC, Martins TD (2022) Semiautomatic inventory and Geomorphological characterization 
of mass movements using high-resolution images and open-source software in the Ribeira de Iguape 
valley, Brazil. J South Am Earth Sci 119. https://doi.org/10.1016/j.jsames.2022.104029

Bordoni M, Galanti Y, Bartelletti C et al (2020) The influence of the inventory on the determination of the 
rainfall-induced shallow landslides susceptibility using generalized additive models. Catena (Amst) 
193:104630. https://doi.org/10.1016/j.catena.2020.104630

Brabb E (1984) Innovative Approaches for Landslide Hazard Evaluation. In: IV International Symposium on 
Landslides. Toronto, pp 307–323

Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. 
Pattern Recognit 30:1145–1159. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​S​0​0​3​1​-​3​2​0​3​(​9​6​)​0​0​1​4​2​-​2

Brilha J (2018) Geoheritage and geoparks. Geoheritage: Assess Prot Manage 323–335. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​
1​6​/​B​9​​7​8​-​0​-​​1​2​-​8​0​9​​5​3​1​-​​7​.​0​0​0​1​8​-​6

Bucci F, Santangelo M, Fiorucci F et al (2021) Geomorphologic landslide inventory by air photo interpreta-
tion of the high Agri Valley (Southern Italy). J Maps 17:376–388. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​7​​4​4​5​6​4​​7​.​2​
0​2​1​​.​1​9​4​​3​5​5​2

Capitani M, Ribolini A, Bini M (2013) The slope aspect: A predisposing factor for landsliding? Comptes 
Rendus Géoscience 345:427–438. https://doi.org/10.1016/j.crte.2013.11.002

Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm 
Eng Remote Sens 65:1389–1399

Chung CF, Fabbri AG (2003) Validation of Spatial prediction models for landslide hazard mapping. Nat 
Hazards 30:451–472. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​2​3​/​B​:​​N​H​A​Z​.​​0​0​0​0​0​0​​7​1​7​2​​.​6​2​6​5​1​.​2​b

Conrad O, Bechtel B, Bock M et al (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. 
Geosci Model Dev 8:1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

Corominas J, van Westen C, Frattini P et al (2014) Recommendations for the quantitative analysis of land-
slide risk. Bull Eng Geol Environ 73:209–263. https://doi.org/10.1007/s10064-013-0538-8

Dias HC, Gramani MF, Grohmann CH et al (2021a) Statistical-based shallow landslide susceptibility assess-
ment for a tropical environment: a case study in the southeastern Brazilian Coast. Nat Hazards 108:205–
223. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​0​7​/​S​1​​1​0​6​9​-​​0​2​1​-​0​4​​6​7​6​-​​Y​/​F​I​G​U​R​E​S​/​9

Dias HC, Hölbling D, Grohmann CH (2021b) Landslide susceptibility mapping in brazil: A review. Geosci 
(Basel) 11:425. https://doi.org/10.3390/geosciences11100425

Dierickx F, Pavlova I, Gaines S (2016) Natural hazards in UNESCO global geoparks. Eur Geoparks Maga-
zine 13:16–17

Dietrich WE, Montgomery DR (1998) Shalstab: A Digital Terrain Model for Mapping Shallow Landslide 
Potential. Technical Report, National Council for Air and Stream Improvement

Dikau R, Cavallin A, Jäger S (1996) Databases and GIS for landslide research in Europe. Geomorphology 
15:227–239. https://doi.org/10.1016/0169-555X(95)00072-D

EGN – European Geoparks Network (2012) 5th International UNESCO Conference on Geoparks – 
Shimabara Declaration5th International UNESCO Conference on Geoparks – Shimabara Declaration. 
Global Geoparks Network. https://www.europeangeoparks.org/?p=1974

1 3

17465

https://doi.org/10.1007/s100640050066
https://doi.org/10.1016/j.enggeo.2021.106000
https://doi.org/10.1002/gdj3.145
https://doi.org/10.1002/gdj3.145
https://doi.org/10.5016/GEOCIENCIAS.V40I1.14992
https://doi.org/10.5016/GEOCIENCIAS.V40I1.14992
https://doi.org/10.5194/nhess-2-3-2002
https://doi.org/10.1016/j.geomorph.2010.02.017
https://doi.org/10.1016/C2013-0-03864-9
https://doi.org/10.1016/C2013-0-03864-9
https://doi.org/10.1016/j.jsames.2022.104029
https://doi.org/10.1016/j.catena.2020.104630
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/B978-0-12-809531-7.00018-6
https://doi.org/10.1016/B978-0-12-809531-7.00018-6
https://doi.org/10.1080/17445647.2021.1943552
https://doi.org/10.1080/17445647.2021.1943552
https://doi.org/10.1016/j.crte.2013.11.002
https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1007/s10064-013-0538-8
https://doi.org/10.1007/S11069-021-04676-Y/FIGURES/9
https://doi.org/10.3390/geosciences11100425
https://doi.org/10.1016/0169-555X(95)00072-D
https://www.europeangeoparks.org/?p=1974


Natural Hazards (2025) 121:17439–17469

Fassoulas C et al (2018) UNESCO Global Geoparks: living laboratories to mitigate natural induced disasters 
and strengthen communities’ resilience. In: Antronico, L. & Marincioni, F. (Eds.) Natural Hazards and 
Disaster Risk Reduction Policies, pp.175–197

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​
1​6​/​j​.​p​a​t​r​e​c​.​2​0​0​5​.​1​0​.​0​1​0​​​​​​​

Fernandes NF, Guimarães RF, Gomes RAT et al (2004) Topographic controls of landslides in Rio de janeiro: 
field evidence and modeling. In: Catena. Elsevier, pp 163–181

Franck AG, Kobiyama M (2024) Investigation and mapping of natural hazards areas related to mass move-
ments in a geopark, in Southern Brazil. J S Am Earth Sci 141:104926. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​j​s​a​m​e​
s​.​2​0​2​4​.​1​0​4​9​2​6​​​​​​​

Fratini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility 
models. Eng Geol 11:62–72. https://doi.org/10.1016/j.enggeo.2009.12.004

Fressard M, Thiery Y, Maquaire O (2014) Which data for quantitative landslide susceptibility mapping at 
operational scale? Case study of the pays d’auge plateau hillslopes (Normandy, France). Nat Hazards 
Earth Syst Sci 14:569–588. https://doi.org/10.5194/nhess-14-569-2014

Fukuoka H (2014) Landslides, geoparks and world heritage. Science reports of Nigata (Geology)
Galli M, Ardizzone F, Cardinali M et al (2008) Comparing landslide inventory maps. Geomorphology 

94:268–289. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​J​.​​G​E​O​M​O​​R​P​H​.​2​0​​0​6​.​0​​9​.​0​2​3
Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current 

techniques and their application in a multi-scale study. Cent Italy Geomorphology 31:181–216. ​h​t​t​p​s​:​​/​/​
d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​S​0​1​6​9​-​5​5​5​X​(​9​9​)​0​0​0​7​8​-​1

Hawker L, Uhe P, Paulo L et al (2022) A 30 m global map of elevation with forests and buildings removed. 
Environ Res Lett 17:024016. https://doi.org/10.1088/1748-9326/ac4d4f

IBGE – Instituto Brasileiro de Geografia e Estatística (2018) Geomorfologia 1:250.000. Banco de Dados e 
Informações Ambientais. https://bdiaweb.ibge.gov.br/#/home

IBGE – Instituto Brasileiro de Geografia e Estatística (2009) Manual técnico de geomorfologia. Rio de 
Janeiro

Carta de suscetibilidade a movimentos gravitacionais de massa e inundações: município de Timbé do Sul – 
SC. IPT – Instituto de Pesquisas Tecnológicas, Rigeo (2015a) https://rigeo.sgb.gov.br/handle/doc/15156

Carta de suscetibilidade a movimentos gravitacionais de massa e inundações: município de Timbé do Sul – 
SC. IPT – Instituto de Pesquisas Tecnológicas, Rigeo (2015b) https://rigeo.sgb.gov.br/handle/doc/15156

Jones C (2008) History of geoparks. Geol Soc Lond Special Publications 300:273–277. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
1​4​4​/​S​P​3​0​0​.​2​1​​​​​​​

Lacerda WA (2007) Landslide initiation in saprolite and colluvium in Southern brazil: field and laboratory 
observations. Geomorphology 87:104–119. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​g​e​o​m​o​​r​p​h​.​2​0​​0​6​.​0​​3​.​0​3​7

Lacroix P, Zavala B, Berthier E, Audin L (2013) Supervised method of landslide inventory using panchro-
matic SPOT5 images and application to the Earthquake-Triggered landslides of Pisco (Peru, 2007, 
Mw8.0). Remote Sens (Basel) 5:2590–2616. https://doi.org/10.3390/rs5062590

Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping 
using GIS and remote sensing data. Int J Remote Sens 26:1477–1491. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​8​0​/​0​1​4​3​1​1​
6​0​4​1​2​3​3​1​3​3​1​0​1​2​​​​​​​

Lee Y, Jayakumar R (2021) Economic impact of UNESCO global geoparks on local communities: compara-
tive analysis of three UNESCO global geoparks in Asia. Int J Geoheritage Parks 9:189–198. ​h​t​t​p​s​:​/​/​d​o​
i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​i​j​g​e​o​p​.​2​0​2​1​.​0​2​.​0​0​2​​​​​​​

Lee C-T, Huang C-C, Lee J-F et al (2008) Statistical approach to earthquake-induced landslide susceptibility. 
Eng Geol 100:43–58. https://doi.org/10.1016/j.enggeo.2008.03.004

McColl ST (2015) Landslide causes and triggers. In: Shroder JF, Davies T (eds) Landslide hazards, risks, and 
disasters. Elsevier, pp 17–42

Meena SR, Ghorbanzadeh O, van Westen CJ et al (2021) Rapid mapping of landslides in the Western 
Ghats (India) triggered by 2018 extreme monsoon rainfall using a deep learning approach. Landslides 
18:1937–1950. https://doi.org/10.1007/s10346-020-01602-4

Messenzehl K, Meyer H, Otto J-C et al (2017) Regional-scale controls on the Spatial activity of rockfalls 
(Turtmann valley, Swiss Alps) — A multivariate modeling approach. Geomorphology 287:29–45. ​h​t​t​p​s​
:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​g​e​o​m​o​​r​p​h​.​2​0​​1​6​.​0​​1​.​0​0​8

Milani E et al (2007) Bacia do Paraná. Bol De Geociências 15:265–267
Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: A review of hydrological, geomorpho-

logical, and biological applications. Hydrol Process 5:3–30. https://doi.org/10.1002/hyp.3360050103
Morino C, Coratza P, Soldati M (2022) Landslides, a key landform in the global geological heritage. Front 

Earth Sci (Lausanne) 10:864760. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​3​3​​8​9​/​F​E​​A​R​T​.​2​​0​2​2​.​8​6​​4​7​6​0​​/​B​I​B​T​E​X
Paixao MA et al (2021) Occurrence of Multi-Disasters in the Mampituba river basin, Southern brazil, during 

the COVID-19 pandemic. Int J Eros Control Eng 13:84–92. https://doi.org/10.13101/ijece.13.84

1 3

17466

https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.jsames.2024.104926
https://doi.org/10.1016/j.jsames.2024.104926
https://doi.org/10.1016/j.enggeo.2009.12.004
https://doi.org/10.5194/nhess-14-569-2014
https://doi.org/10.1016/J.GEOMORPH.2006.09.023
https://doi.org/10.1016/S0169-555X(99)00078-1
https://doi.org/10.1016/S0169-555X(99)00078-1
https://doi.org/10.1088/1748-9326/ac4d4f
https://bdiaweb.ibge.gov.br/#/home
https://rigeo.sgb.gov.br/handle/doc/15156
https://rigeo.sgb.gov.br/handle/doc/15156
https://doi.org/10.1144/SP300.21
https://doi.org/10.1144/SP300.21
https://doi.org/10.1016/j.geomorph.2006.03.037
https://doi.org/10.3390/rs5062590
https://doi.org/10.1080/01431160412331331012
https://doi.org/10.1080/01431160412331331012
https://doi.org/10.1016/j.ijgeop.2021.02.002
https://doi.org/10.1016/j.ijgeop.2021.02.002
https://doi.org/10.1016/j.enggeo.2008.03.004
https://doi.org/10.1007/s10346-020-01602-4
https://doi.org/10.1016/j.geomorph.2016.01.008
https://doi.org/10.1016/j.geomorph.2016.01.008
https://doi.org/10.1002/hyp.3360050103
https://doi.org/10.3389/FEART.2022.864760/BIBTEX
https://doi.org/10.13101/ijece.13.84


Natural Hazards (2025) 121:17439–17469

Pavlova I (2019) Disaster risk reduction at UNESCO global geoparks and biosphere reserves. J World Herit 
Stud 73–77

Pellerin J, Duarte GM, Scheibe LF et al (1997) Timbé do Sul - Jacinto Machado - Avaliação preliminar Da 
Extensão Da catástrofe de 23–24/12/95. Geosul 12:71–86

Pereira S, Zêzere JL, Bateira C (2012) Technical note: assessing predictive capacity and conditional indepen-
dence of landslide predisposing factors for shallow landslide susceptibility models. Nat Hazards Earth 
Syst Sci 12:979–988. https://doi.org/10.5194/nhess-12-979-2012

Petschko H, Bell R, Brenning A, Glade T (2012) Landslide susceptibility modeling with generalized additive 
models – facing the heterogeneity of large regions. In: Eberhardt E, Froese C, Turner AK, Leroueil S 
(eds) Landslides and engineered slopes. Protecting Society through Improved Understanding. Taylor 
& Francis

Petschko H, Brenning A, Bell R et al (2014) Assessing the quality of landslide susceptibility maps - Case study 
lower Austria. Nat Hazards Earth Syst Sci 14:95–118. https://doi.org/10.5194/NHESS-14-95-2014

Pimenta L, Freitas M, Sung L (2018) Plano integrado e participativo de Gestão de Risco de desastres do ter-
ritório do Projeto geoparque. Caminhos dos Cânions do Sul

Planet Team (2017) Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. 
https://api.planet.com

R Core Team (2019) R: A Language and environment for statistical computing. R-Project. ​h​t​t​p​s​:​/​/​w​w​w​.​r​-​p​
r​o​j​e​c​t​.​o​r​g​/​​​​​​​

Reichenbach P, Rossi M, Malamud BD et al (2018) A review of statistically-based landslide susceptibility 
models. Earth Sci Rev 180:60–91. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​J​.​​E​A​R​S​C​​I​R​E​V​.​2​​0​1​8​.​​0​3​.​0​0​1

Reynard E (2009) Geomorphosites: definitions and characteristics. In: Reynard E, Coratza P, Regolini-Bissig 
G (eds) Geomorphosites. Pfeil, Munich

Reynard E, Coratza P (2016) The importance of mountain geomorphosites for environmental education: 
examples from the Italian dolomites and the Swiss alps. Acta Geogr Slov 56:291–303. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​
1​0​.​3​9​8​6​/​A​G​S​.​1​6​8​4​​​​​​​

Riley SJ, De Gloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. 
Intermt J Sci 5:23–27

Różycka M, Migoń P, Michniewicz A (2017) Topographic wetness index and terrain ruggedness index in 
geomorphic characterisation of landslide terrains, on examples from the sudetes, SW Poland. Z Für 
Geomorphologie Supplementary Issues 61:61–80. https://doi.org/10.1127/zfg_suppl/2016/0328

Sawatzky DL, Raines GL, Bonham-Carter GF et al (2009) Spatial Data Modeller (SDM): ArcMAP 9.3 geo-
processing tools for spatial data modeling using weights of evidence, logistic regression, fuzzy logic 
and neural networks

Seibert J, Stendahl J, Sørensen R (2007) Topographical influences on soil properties in boreal forests. Geo-
derma 141:139–148. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​g​e​o​d​e​​r​m​a​.​2​0​​0​7​.​0​​5​.​0​1​3

Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schus-
ter RL (eds) Landslides, investigation and mitigation. National Academy, Washington D.C., pp 129–177

Steger S, Mair V, Kofler C et al (2021) Correlation does not imply geomorphic causation in data-driven land-
slide susceptibility modelling – Benefits of exploring landslide data collection effects. Sci Total Environ 
776:145935. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​s​c​i​t​o​​t​e​n​v​.​2​​0​2​1​.​​1​4​5​9​3​5

Sugiyama MT, de O, Gomes MCV (2023) Bacias hidrográficas Em Relevos escarpados: implicações Para a 
análise Da Suscetibilidade a corridas de Detritos. Revista Brasileira De Geomorfologia 24. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​2​0​5​0​2​/​r​b​g​.​v​2​4​i​3​.​2​2​6​9​​​​​​​

Swets JA Measuring the accuracy of diagnostic systems. Science 240:1285-93., Teza TS, Guth G (1988) PL 
(2023) Hacking the topographic ruggedness index. Geomorphology 439:108838. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​
1​6​/​j​.​​g​e​o​m​o​​r​p​h​.​2​0​​2​3​.​1​​0​8​8​3​8

Szymanski FD et al (2022) Análise de inundações Em Bacias Montanhosas no Sul do Brasil Por Meio de 
Monitoramento e modelagem. Revista Brasileira De Geografia Física v15(n3):1564–1582. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​
r​g​/​1​​0​.​2​6​​8​4​8​/​r​​b​g​f​.​v​​1​5​.​3​.​p​​1​5​6​4​​-​1​5​8​2

UN – United Nations (2018) The 2030 agenda and the sustainable development goals: an opportunity for 
Latin America and the Caribbean. United Nations, Santiago

Vakhshoori V, Zare M (2018) Is the ROC curve a reliable tool to compare the validity of landslide susceptibil-
ity maps? Geomatics. Nat Hazards Risk 9:249–266. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​9​​4​7​5​7​0​​5​.​2​0​1​8​​.​1​4​2​​4​0​4​3

Valdati J (2000) Riscos e desastres naturais: área de risco de inundação na sub-bacia do rio da pedra - Jacinto 
Machado/SC. Dissertation, Federal University of Santa Catarina

Valdati J, Ferreira DR, Villaça Gomes MC (2021) Determinação do Perigo de inundação a partir do Mapea-
mento Geomorfológico de Detalhe. Geosul 36:496–515. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​5​0​​0​7​/​2​1​​7​7​-​5​2​​3​0​.​2​0​2​​1​.​e​6​​7​
3​8​5

Van Westen CJ (1993) Application of Geographical Information Systems to landslide hazard zonation. The-
sis, University of Twente

1 3

17467

https://doi.org/10.5194/nhess-12-979-2012
https://doi.org/10.5194/NHESS-14-95-2014
https://api.planet.com
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1016/J.EARSCIREV.2018.03.001
https://doi.org/10.3986/AGS.1684
https://doi.org/10.3986/AGS.1684
https://doi.org/10.1127/zfg_suppl/2016/0328
https://doi.org/10.1016/j.geoderma.2007.05.013
https://doi.org/10.1016/j.scitotenv.2021.145935
https://doi.org/10.20502/rbg.v24i3.2269
https://doi.org/10.20502/rbg.v24i3.2269
https://doi.org/10.1016/j.geomorph.2023.108838
https://doi.org/10.1016/j.geomorph.2023.108838
https://doi.org/10.26848/rbgf.v15.3.p1564-1582
https://doi.org/10.26848/rbgf.v15.3.p1564-1582
https://doi.org/10.1080/19475705.2018.1424043
https://doi.org/10.5007/2177-5230.2021.e67385
https://doi.org/10.5007/2177-5230.2021.e67385


Natural Hazards (2025) 121:17439–17469

Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulner-
ability assessment: an overview. Eng Geol 102:112–131. https://doi.org/10.1016/j.enggeo.2008.03.010

Vasconcellos SM et al (2021) Flood hazard mapping in alluvial fans with computational modeling. Water 
Resour Manage 35:1463–1478. https://doi.org/10.1007/s11269-021-02794-7

Vieira BC, Fernandes NF, Augusto Filho O et al (2018) Assessing shallow landslide hazards using the TRI-
GRS and SHALSTAB models, Serra do mar, Brazil. Environ Earth Sci 77. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​
2​6​6​5​-​0​1​8​-​7​4​3​6​-​0​​​​​​​

Wildner W, Ramgrab GE, Lopes RC et al (2008) Geologia e recursos minerais do estado do Rio Grande do 
Sul. Rigeo. https://rigeo.sgb.gov.br/handle/doc/10301

Wildner W, Camozzato E, Toniolo JA et al (2014) Mapa geológico do estado de Santa Catarina. Rigeo. 
https://rigeo.sgb.gov.br/handle/doc/17996

Yin KL, Yan TZ (1988) Statistical prediction models for slope instability of metamorphosed rocks. Proceed-
ings of the 5th International Symposium on Landslides, Lausanne, 2: 1269–1272

Zêzere JL, Pereira S, Melo R et al (2017) Mapping landslide susceptibility using data-driven methods. Sci 
Total Environ 589:250–267. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​​1​0​​1​​6​​/​j​.​s​c​i​​t​o​t​​e​n​​v​.​​2​​0​1​​7​.​0​2​.​1​8​8

Zhang Y (2011) Texture-Integrated classification of urban treed areas in high-resolution color-infrared imag-
ery. Photogramm Eng Remote Sens 67:1359–1365

Zhang X, Lei Li, Xu C (2022) Large-scale landslide inventory and their mobility in Lvliang city, Shanxi 
province, China. Nat Hazards Res 2:111–120. https://doi.org/10.1016/J.NHRES.2022.05.002

Zhang Y, Chen N, Liu M et al (2020) Debris flows originating from colluvium deposits in Hollow regions 
during a heavy storm process in taining, southeastern China. Landslides 17:335–347. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​0​7​/​s​1​0​3​4​6​-​0​1​9​-​0​1​2​7​2​-​x​​​​​​​

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a 
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manu-
script version of this article is solely governed by the terms of such publishing agreement and applicable law.

1 3

17468

https://doi.org/10.1016/j.enggeo.2008.03.010
https://doi.org/10.1007/s11269-021-02794-7
https://doi.org/10.1007/s12665-018-7436-0
https://doi.org/10.1007/s12665-018-7436-0
https://rigeo.sgb.gov.br/handle/doc/10301
https://rigeo.sgb.gov.br/handle/doc/17996
https://doi.org/10.1016/j.scitotenv.2017.02.188
https://doi.org/10.1016/J.NHRES.2022.05.002
https://doi.org/10.1007/s10346-019-01272-x
https://doi.org/10.1007/s10346-019-01272-x


Natural Hazards (2025) 121:17439–17469

Authors and Affiliations

Marina Tamaki de Oliveira Sugiyama1  · José Eduardo Bonini1  · Tiago 
Damas Martins2  · Maria Carolina Villaça Gomes3  · Susana Pereira4,5  · Bianca 
Carvalho Vieira1

	
 Marina Tamaki de Oliveira Sugiyama
marinatamaki@usp.br

José Eduardo Bonini
jose.bonini@usp.br

Tiago Damas Martins
td.martins@unifesp.br

Maria Carolina Villaça Gomes
mcarolvg@gmail.com

Susana Pereira
sspereira@letras.up.pt

Bianca Carvalho Vieira
biancacv@usp.br

1	 Department of Geography, University of São Paulo, Avenida Professor Lineu Prestes, 338, 
Cidade Universitária, São Paulo State 05508000, Brazil

2	 Department of Geography, Federal University of São Paulo (UNIFESP), Avenida Jacu- 
Pêssego 2630, São Paulo State 08260001, Brazil

3	 Department of Geography, State University of Rio de Janeiro (UERJ), Rua São Francisco 
Xavier, 524, Rio de Janeiro State 20550013, Brazil

4	 Centre of Studies in Geography and Spatial Planning, Geography Department, Faculty of Arts 
and Humanities, University of Porto (UPorto), Via Panorâmica, s/n, Porto 4150-564, Portugal

5	 Center of Geographical Studies, Institute of Geography and Spatial Planning, University of 
Lisbon (ULisboa), Rua Branca Edmée Marques, Edifício IGOT, Lisboa 1600-276, Portugal

1 3

17469

http://orcid.org/0000-0001-9627-2403
https://orcid.org/0000-0001-6047-0141
https://orcid.org/0000-0002-1213-1441
https://orcid.org/0000-0002-7892-0240
https://orcid.org/0000-0002-9674-0964
https://orcid.org/0000-0001-7060-2830

	﻿Statistically-based regional landslide susceptibility assessment in the UNESCO global geopark Caminhos dos Cânions do Sul (Brazil)
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Study area
	﻿3﻿ ﻿Materials and methods
	﻿3.1﻿ ﻿Data and software
	﻿3.2﻿ ﻿Landslide inventory mapping
	﻿3.3﻿ ﻿Modeling of heterogeneous areas
	﻿3.4﻿ ﻿Predisposing factors
	﻿3.5﻿ ﻿Susceptibility modeling and validation
	﻿3.6﻿ ﻿Conditional independence diagnosis
	﻿3.7﻿ ﻿Selection of the best landslide susceptibility models

	﻿4﻿ ﻿Results
	﻿4.1﻿ ﻿Landslide inventories
	﻿4.2﻿ ﻿Information value method
	﻿4.3﻿ ﻿Evaluation of model fit

	﻿5﻿ ﻿Discussion
	﻿5.1﻿ ﻿Landslide inventories
	﻿5.2﻿ ﻿Susceptibility assessment

	﻿6﻿ ﻿Conclusions
	﻿References


