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 A B S T R A C T

This survey provides a comprehensive overview of Video Anomaly Detection (VAD), focusing on identifying 
robust and interpretable methods for detecting anomalous events. It emphasizes the limitations of traditional 
supervised and unsupervised approaches and highlights the advantages of weakly supervised learning, in which 
models operate with minimal or no explicit anomaly annotations. A key contribution of this survey is its 
analysis of multi-modal data — integrating visual, audio, and textual modalities — for enhanced anomaly 
detection. It underscores how audio cues enrich visual features and how textual information during training 
fosters semantically richer representations. This multi-modal approach demonstrates improved generalization, 
better detection of subtle anomalies, and interpretable explanations of detected events, marking a paradigm 
shift in the field, Video Anomaly Understanding (VAU).

Synthesizing advancements from benchmarks to methodologies, this work advocates for a centralized 
platform to enable systematic comparisons across diverse datasets, standardized evaluation metrics, and 
reproducible ablation studies of novel components. Such a framework would streamline the integration of 
innovations, address version control and foster transparency, bridging the gap between isolated methodological 
advances and system-level robustness. By prioritizing contextual understanding, causal reasoning, and real-
world interpretability, this initiative aims to elevate weakly supervised VAD beyond detection, ensuring models 
contextualize and explain anomalies in practical deployments.
. Introduction

Detecting, identifying and understanding anomalies in video data 
tands as a critical challenge across diverse applications, from security 
urveillance and healthcare monitoring to autonomous systems and 
ndustrial safety [1].
This survey establishes a unified framework for weakly supervised 

ideo anomaly detection (WVAD) and its evolution into emerging 
aradigms, addressing the limitations of both unsupervised methods 
reliant on normalcy assumptions) and fully supervised approaches (re-
uiring costly frame annotations). We systematically trace how WVAD 
 powered by video-level labels — has matured through multi-modal 
usion and vision–language models (VLMs) to tackle real-world chal-
enges: data scarcity, open-world generalization, and interpretability 
emands [2,3].
Crucially, we position open-set [4,5], open-vocabulary [6,7], and 

raining-free VAD [8–10] as natural extensions of WVAD aiming for 
eneralization in dynamic, multi-scenario environments with class im-
alance, and evolving anomaly patterns.

∗ Corresponding author.
E-mail addresses: barbosa@tuta.com (R.Z. Barbosa), hugo.soares@fe.up.pt (H.S. Oliveira), tavares@fe.up.pt (J.M.R.S. Tavares).

To address these challenges, this survey synthesizes innovations 
in feature representation, anomaly criteria, and learning paradigms, 
while emphasizing the role of new benchmarks and metrics in driv-
ing progress [3,11]. We highlight the transition from single-modality 
visual analysis to integrated frameworks that combine audio, text, 
and spatial–temporal reasoning—approaches exemplified by recent 
datasets [12–15]. These resources demand models to not only detect, 
classify and locate anomalies but also describe and reason about their 
context, causality, and implications, presenting a shift that underscores 
the growing intersection of VAD with video–language understanding 
(VLU).

1.1. Previous surveys

Early surveys [16,17] focused on traditional machine learning tech-
niques, emphasizing handcrafted features such as optical flow, back-
ground subtraction, and motion trajectories in single-scene appear-
ances. These approaches, while foundational, often needed to be im-
proved in their ability to handle complex, high-dimensional video 
data.
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Table 1
Resume of the surveys for video anomaly detection.
 Survey VAD domain Supervision Multimodal Description  
 A comprehensive review on 
deep learning-based methods 
for video anomaly detection 
(2020) [18]

Supervised, Semi Supervised 
and Unsupervised for Video 
Surveillance

3 7 Focused on Traditional Feature extractors 
(SIFT, SURF), Supervised, Semi-Supervised and 
Unsupervised.

 

 A survey of single-scene video 
anomaly detection (2020) [16]

Supervised 7 7 Focused on Probabilistic, Temporal CNN 
Patterns, Hidden Markov methods

 

 A Comprehensive Survey of 
Machine Learning Methods for 
Surveillance Videos Anomaly 
Detection (2023) [19]

Supervised, Semi-Supervised 
and Unsupervised for Urban 
Video

3 7 Focus on traditional Machine Learning models, 
such as Support Vector Machines, Recurrent 
Neural Networks and CNN.

 

 Weakly Supervised Anomaly 
Detection: A Survey (2023) 
[20]

Tabular & Video 3 7 Focus on Weakly Supervised, With Multiple 
Instance, Active Learning and Graph Learning 
approaches for VAD.

 

 Generalized Video Anomaly 
Event Detection: Systematic 
Taxonomy and Comparison of 
Deep Models (2023) [2]

Generalized methods 
approaches

3 3(9 works) Identifies several works across unsupervised, 
weakly-supervised, and supervised paradigms, 
establishing an application-oriented taxonomy.

 

 Networking Systems for Video 
Anomaly Detection: A Tutorial 
and Survey (2024) [1]

Video IoT and Smart cities 3 3(13 works) Systematically organizes 
unsupervised/weakly-supervised methodologies 
while analysing future trajectories to advance 
networked video anomaly detection.

 

The advent of deep learning marked a significant shift in the field, 
with more recent surveys (Table  1) exploring the use Generative Ad-
versarial Network (GAN)s, Long Short Term Memory (LSTM)s, Con-
volutional Neural Network (CNN)s, more recently, transformers for 
VAD. These studies highlighted the transition from supervised learning, 
which relies heavily on labelled data, to unsupervised (relying solely 
on normal data) and weakly supervised methods designed to mitigate 
the scarcity of anomaly annotations. Some surveys have also addressed 
domain-specific challenges, such as detecting anomalies in crowded 
scenes, medical imaging videos, and autonomous driving scenarios.

While prior surveys catalogue techniques and routes (Table  1), 
they lack a unified framework to connect traditional WVAD with 
modern LLM-driven paradigms addressing open-world challenges. They 
often focus narrowly on either feature extraction techniques or specific 
learning paradigms, without fully integrating the broader multi-modal 
aspects of anomaly detection. Furthermore, the role of interpretability, 
particularly for sensitive applications where explainable decisions are 
crucial, still needs to be explored in prior literature.

This survey builds on the foundational insights of GVAD and NSVAD 
by shifting the focus toward the evolution of VAD methodologies 
from unimodal visual analysis to multimodal frameworks that integrate 
audio, text, and contextual reasoning. While GVAD systematically cat-
egorized deep learning approaches for generalized anomaly detection 
and NSVAD pioneers the first comprehensive tutorial bridging AI, IoT, 
and computing communities, this work addresses the evolution of 
weakly supervised methods towards interpretable solutions, empha-
sizing the integration of multi-modal data, open-world settings and 
train-free inference.

The Table compares recent surveys in VAD, highlighting their use of 
unimodal and multimodal data. Most surveys discussed here adopt mul-
timodal approaches, incorporating visual and additional data (e.g., au-
dio, text) to improve anomaly detection.

Unimodal methods typically use only visual data. On the other 
hand, other surveys explore how weak supervision can be applied to 
unimodal and multimodal data in anomaly detection tasks.

Overall, the surveys reflect a clear trend towards integrating multi-
ple modalities (visual, audio, textual) in anomaly detection to enhance 
performance, improve generalization, and address limitations inherent 
in using a single modality.

1.2. Contributions

This survey advances VAD research through three key contributions:
2 
(1) Methodological Evolution: Tracing the progression from early 
ranking-based techniques to modern VLM-driven frameworks, 
with a focus on weak supervision, under an abnormality cri-
terion-centric taxonomy. This organizes methods by their core 
anomaly-defining principles (e.g., feature magnitude deviation, 
spatiotemporal inconsistency, semantic misalignment), elimi-
nating redundancy across paradigms. This synthesis integrates 
multi-modal advances (audio, text, vision) and benchmark-
driven demands for contextual reasoning.

(2) Unified Concepts: Organizing VAD components, including fea-
ture extractors, modulators, learning and optimization strate-
gies, and benchmarking practices, to facilitate reproducibility 
and comparative analysis.

(3) Gap Analysis & Future Pathways: Highlighting the interplay be-
tween methods and unresolved challenges, such as cross-domain 
generalization, privacy-sensitive and edge deployments. The sur-
vey concludes with a roadmap for the development of adap-
tive, reproducible, and explainable VAD systems grounded in 
real-world constraints.

By integrating advances in feature representation, benchmark de-
sign, this survey highlights how recent datasets and evaluation
metrics — such as GPT-Guided Reasonability scores and QA-based
anomaly localization — demand models to detect, describe, and reason 
about anomalies, not merely classify them.

This work serves as a bridge between foundational WVAD research 
and the next frontier of multimodal, context-aware anomaly under-
standing. It advocates for a standardized evaluation framework that 
considers development and deployment in complex real-world scenar-
ios.

Section 2 defines WVAD fundamentals and details literature search 
methodology; Sections 3 and 4 analyse feature extractors and bench-
marks; Section 5 presents our taxonomy-driven review; Sections 6 and
7 discuss edge and privacy challenges; Section 8 concludes.

2. Foundations/definition of video anomaly detection

Video Anomaly Detection (VAD) aims to identify events in video 
sequences that deviate from normal or typical patterns, that may cause 
human and animal threats, security problems and economic losses. 
Anomalies are typically defined relative to contextual norms, making 
their detection inherently dependent on environmental and temporal 
factors. Anomalies can manifest as:
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• Behavioural: Deviations in the behaviour of individuals or groups
such as loitering, fights, or sudden movements.

• Object-Based: The presence of unexpected objects, such as aban-
doned luggage or unauthorized vehicles.

• Scene-Based: Sudden changes in the scene, such as fire or acci-
dents.

These context-dependent anomalies make their detection crucial in 
various applications such as security surveillance, healthcare monitor-
ing, autonomous driving, and industrial process control [1,2]. Some key 
characteristics of VAD are:

• Context-Dependent: An event may be anomalous in one context 
but normal in another. For example, a person running might be 
typical in a park but unusual in a hospital corridor.

• Rarity: Video anomalies are typically infrequent, leading to chal-
lenges in collecting sufficient labelled data for supervised learn-
ing.

• Representation Diversity: Anomalies can span multiple modal-
ities, such as visual cues (e.g., sudden motion or unusual ob-
jects), audio signals (e.g., loud crashes or screams), or textual 
information (e.g., subtitles or metadata).

• Dynamic Nature: Anomalies often involve temporal variations, 
making it necessary to analyse sequences of frames rather than 
individual ones.

• Uncertainty: Anomalies may not have well-defined boundaries, 
making them harder to detect and categorize.

• Real-World Deployment:  often adds spatial–temporal complex-
ity (e.g., dynamic backgrounds, occlusions) and domain shifts 
(e.g., lighting, camera angles).

This context sensitivity anomalies necessitate robust modelling of 
both local patterns (e.g., motion trajectories) and global semantics 
(e.g., scene-specific expectations), posing several challenges for their 
correct detection, namely:

• Class Imbalance: Normal events dominate datasets, while
anomalies are scarce.

• Lack of Annotations: Labelling anomalies in videos is time-
consuming and subjective.

• Multi-Modality Integration: Combining visual, audio, and tex-
tual data effectively.

• Interpretability: Providing clear explanations for why an event 
is considered anomalous.

These challenges highlight the research inclinations towards weakly 
supervised VAD (WVAD), which operates on coarse-grained annota-
tions [12,21,22], balancing practicality and performance, making it 
preferable for real-world deployment where detailed annotations are 
scarce. It states a paradigm shift from early approaches reliance solely 
on normality modelling to detect deviations, often failing in complex, 
real-world scenarios due to limited semantic understanding.

However, these methods struggle with abnormality generalization 
and open-world anomalies. Recent advancements include open-set 
VAD [4,5] distinguishes seen vs. unseen anomalies, open-vocabulary 
VAD [6,7] incorporates the classification into its specific semantic 
labels, and train-free paradigm [8–10], adapting pre-trained models 
without retraining. These approaches address WVAD’s limitations while 
emphasizing interpretability and real-world robustness.

2.1. WVAD

WVAD methods typically operate under three core assumptions: (1) 
normality is defined by learned priors from majority-class data, (2) 
anomalies are rare and distinct in feature space, and (3) weak super-
vision (e.g., video-level labels) can guide models to infer fine-grained 
anomaly patterns.
3 
The following two seminal works have significantly shaped the field 
of Weakly-supervised Video Anomaly Detection (WVAD).

Multiple Instance Regressor (MIR) [21] (Fig.  1), frames the 
WVAD as a Multiple Instance Learning (MIL) task under a weak 
regression problem [23], alongside the release of the weakly supervised 
UCF-Crime (UCFC) dataset. The authors trained a 3-layer dense Multi 
Layer Perceptron (MLP) model to assign anomaly scores directly to 
segment-level features extracted from a Convolutional 3D Network 
(C3D) [24], pre-trained on Sports1M [25] dataset.

The training is guided by a modified hinge-based loss named rank-
ing loss, which encourages the maximum anomaly score over instances 
in a positive bag (video containing anomalies) to be higher than in a 
negative bag (anomaly-free video). This ensures a considerable distance 
between selected abnormal and normal samples from each pair of bags. 
However, this strategy has inherent limitations:

• Focus on a Single Anomaly: The ranking loss only considers the 
segment with the highest anomaly score, disregarding other po-
tential anomalies within a video. This can be problematic when 
multiple anomalous events occur or an anomaly spans multiple 
segments.

• Neglecting Temporal Context: The ranking loss does not explic-
itly consider the temporal relationships between segments, po-
tentially missing important contextual information for anomaly 
detection.

• Sensitivity to Initial Scores: Relying solely on the initial anomaly 
scores from the network can be problematic, as these scores might 
be unreliable in the early stages of training.

The overall cost function in MIR also includes sparsity constraints 
and temporal smoothness terms to encourage the model to focus on 
a few anomalous segments and produce temporally coherent anomaly 
scores. The MIL paradigm has been widely adopted in subsequent 
works, drawing inspiration from research in related fields such as 
weakly supervised object detection [26,27] and weakly supervised 
temporal action localization [28,29].

The work of Background Bias of AR models in WVAD (Back-
ground Bias) [30] explores the nature of anomalous events and their 
impact in different Action Recognition (AR) models/datasets. UCFC is 
re-annotated with spatiotemporal anomaly labels. NLNet [31] trained 
on original/trimmed versions shows high classification errors on
anomaly-free test sets, indicating background bias regardless of thresh-
olds.

Identical evaluation of T-C3D [32], Two-Stream Inflated 3D CNN 
(I3D) [33], Temporal Segment Networks (TSN) [34,35], and 3DRes-
Net [36] confirms background misclassification at clip/video levels. 
The Class Activation Mapping (CAM) [37] verifies non-anomalous spa-
tial regions drive high scores.

Bias originates from anomalies occupying minimal/non-foreground 
frame areas while background dominates. Weakly supervised models 
exploit background as predictive shortcuts, ignoring subtle anomaly 
cues, causing the background bias of from AR’s vanilla features for 
WVAD.

In response to these challenges, subsequent WVAD methods have 
explored various strategies to overcome the limitations of weak su-
pervision and the background bias problem, prompted researchers to 
critically examine the fundamental assumptions of WVAD. This intro-
spection led to a series of thought-provoking questions that have guided 
the development of more sophisticated methods:

(1) How can raw features be effectively modulated to enhance the 
separability between irregular-length anomalous and normal 
segments within a video while minimizing false alarms.

(2) How can confident features and scores be selected for optimiza-
tion, ensuring alignment with the relevant spatial–temporal cues 
of both abnormal and normal events, while accounting for the 
characteristics of real-world anomalies under weak supervision?
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Fig. 1. MIR framework [21].
Source: Taken from [1].
Fig. 2. Overall pipeline of (UWS4VAD) [38].
(3) How can the loss function be designed to effectively guide 
the learning process, addressing the limitations of the ranking 
loss and incorporating additional information or constraints to 
improve anomaly detection performance?

Driven by these questions, researchers have explored diverse meth-
ods, leading to a rich landscape of WVAD. These methods often lever-
age a combination of techniques to effectively learn from weakly 
labelled data and distinguish between normal and abnormal events 
(Fig.  2). These techniques include:

• Feature Modulation modules, often employing convolutional or 
self-attention layers, transform raw features extracted from back-
bone networks into more discriminative representations high-
lighting anomalous patterns.

• Attention Mechanisms to focus on the most relevant segments or 
features, guiding the model’s attention towards salient cues for 
anomaly detection.

• MIL, commonly used in WVAD, treats videos as bags of instances 
(segments) and learns to distinguish between normal and abnor-
mal bags. This approach effectively leverages weak video-level 
labels to guide the training process.

• Novel Optimization techniques to better separate normal and abnor-
mal events in a latent space, often using pair-based loss functions 
to encourage separation.

These techniques are often combined in hybrid frameworks, creat-
ing systems that balance efficiency and robustness. Recent advance-
ments emphasize semantic integration (e.g., text-based prompts [39–
41]), cross-modality alignment (e.g., audio–visual fusion [42]) or addi-
tional annotation signals (e.g. glance [43]) to improve interpretability 
and generalization.

This progression highlights the shift from rigid, task-specific models 
to flexible, multimodal frameworks, setting the stage for the survey’s 
focus on abnormality criteria as a unifying taxonomy.
4 
2.2. Abnormality criteria as a guiding principle

In this study, we group the most prominent works in VAD using 
a taxonomy that clusters common approaches, identifies main differ-
ences, and highlights potentialities and limitations, enabling systematic 
comparison and identification of research gaps.

The concept of the Abnormality Criteria (AC) defines the character-
istics to exploit in the context of a video with abnormal events present 
at random. It depicts the model’s priorities and focuses on the input 
features to score confidently. Therefore, it can portray the anomaly 
definition through the model’s lens. It guides the design of data cu-
ration/sampling, model’s architecture, feature engineering and training 
objectives, and ultimately shaping the anomaly detection, classification 
and reasoning process.

These methods can be categorized based on their underlying AC, 
providing a structured overview of the field:

• Magnitude: Methods that leverage the assumption that abnormal 
events exhibit higher feature magnitudes than normal events.

• Background & Normality: Methods that focus on suppressing back-
ground information or explicitly modelling normality to detect 
deviations.

• 2-Stage & Label Noise: Methods that employ two-stage training 
schemes to generate and refine pseudo-labels, mitigating the im-
pact of label noise.

• Anomaly Erase, Suppress, and Salience: Methods that emphasize 
the extraction and analysis of salient features, often incorporating 
erasure or suppression techniques to focus on less conspicuous 
anomalies.

• Temporal Dynamics: Methods that exploit temporal variations and 
dynamic changes in video features as indicators of anomalous 
events.

• Multi-modal: Methods that integrate audio, visual, and potentially 
textual information to enhance anomaly detection.
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Fig. 3. Distribution of the works into the subgroups according to the defined taxonomy.

Fig. 4. Explored feature extraction architectures paradigms in visual and audio 
modalities, and their adaption in WVAD.

• LLM/VLM: Methods that leverage Large Language Models (LLMs) 
or Vision–Language Models (VLMs) to enhance semantic under-
standing. Utilizes natural language prompts, often with minimal 
supervision, to detect diverse and unseen anomalies via Image or 
Video Captioning or Visual Question Answering.

• Misc: Methods that do not neatly fit into the previous categories 
or represent promising new directions for future research.

This structured categorization defined in Fig.  3 reveals how WVAD 
methods evolve from isolated modality modelling to holistic frame-
works that balance detection accuracy with semantic understanding. 
It synthesizes current methodologies and enables a deeper understand-
ing of the trade-offs between different paradigms. This taxonomy not 
only organizes existing methods but also identifies gaps in privacy-
preserving design and edge deployability.

Moreover, our survey extends beyond conventional reviews by em-
phasizing the integration of multi-modal data and advocating for more 
interpretable and generalizable anomaly detection models, aligning 
with new benchmarks. Through this lens, we aim to bridge existing 
gaps and provide a roadmap for future research in VAD.

The following sections will delve into each criterion, dissecting 
methodological nuances and their implications for real-world deploy-
ment. Sections 3 and 4 analyse feature extractors and benchmarks, 
while Section 5 presents our taxonomy-driven review. Edge and privacy 
challenges are discussed in Sections 6 and 7, with concluding insights 
in Section 8.

3. Feature representations

Deep learning models for image, audio, or video understanding 
(VU) tasks typically consist of two core components: a backbone net-
work that extracts hierarchical features from raw inputs (images/video 
frames), and a task-specific head optimized for the target task.
5 
This modular design enables flexible adaptation to diverse modal-
ities and tasks, including VAD, which transforms raw video data into 
meaningful, task-agnostic embeddings that capture spatial, temporal, 
and semantic patterns. These Feature Extractor (FE)s often draw inspi-
ration from and adapt architectures developed in the fields of image 
and Video Understanding (VU), where significant advancements have 
been made in tasks such as image classification, object detection, and 
Action Recognition/Location.

This section establishes the foundational landscape of audio and 
video feature extraction in multimodal learning, tracing their evolution 
from classical architectures to modern multimodal approaches, and 
their adaption in WVAD systems (Fig.  4). By dissecting the architectural 
paradigms in both modalities, it clarifies how advancements in feature 
representation, from convolutional networks to vision–language mod-
els, inform the design and performance in VAD methods. This evolution 
is identified as a critical enabler for WVAD and VAU.

3.1. Visual representation backbones

The evolution of backbone architectures for VU has followed a 
similar trajectory to traditional image classification, with adaptations 
to accommodate the extra temporal dimension. This trend is visible 
in both CNN or transformer-based networks, where backbone architec-
tures are adapted from those for image-related tasks. The first works try 
to extend the modelling through the temporal axis. In contrast, others 
factorize spatial and temporal domains to achieve a better speed–
accuracy tradeoff since joint spatio-temporal modelling is challenging 
to optimize.

CNNs have been the standard foundation for computer vision tasks 
since the introduction of AlexNet [44]. Since then, deeper and more 
effective convolutional neural networks have been proposed, such as 
VGG [45], Inception [46–49] and ResNet [50,51]. Apart from structural 
improvements, individual convolution layers have also received en-
hancements, such as depthwise convolution present in MobileNet [52–
54] and EfficientNet [55,56], and deformable convolution DefConv [57,
58].

Recent advances in Natural Language Processing (NLP) [59] have 
brought backbone innovations in the computer vision field with the 
appearance of Vision Transformer (ViT)s models. Self-attention mecha-
nism has been used to replace 2D convolution layers in ResNet [60–62] 
or to complement CNN backbones [31,63–66].

ViT [67] takes this idea further by directly applying the Trans-
former architecture to image inputs. ViT splits an image into fixed-
sized patches and provides the sequence of linear embeddings of these 
patches as input to a Transformer. However, the global attention mech-
anism in transformers leads to quadratic complexity concerning the 
input size and lacks inductive bias. Several new improvements to the 
original implementation have been proposed to address these limita-
tions, even hybrid approaches that incorporate explicit convolution 
or desirable properties of convolution. DeiT [68] is one example that 
applies a teacher–student strategy to allow training on smaller datasets.

SwinTransformer [69,70] introduces a hierarchical representation 
and computes self-attention locally within non-overlapping windows, 
achieving linear computational complexity. Other works extend the 
idea of local self-attention by designing different shapes of attention 
windows or introducing soft local constraints to attention maps [71,
72].

Adopting depth-wise separable convolution from [52] is also com-
monly employed as a feature backbone in [73–75]. The work of [76] ex-
tends the Inception family into the Transformers structure, while [77] 
incorporates insights from convolutional and Transformer design pat-
terns. Other works focus on tackling the memory-inefficient opera-
tions and redundancy present Multi-Head Self Attention (MHSA) with 
deployment requirements in mind [78–83]
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Fig. 5. I3D network from [33].

3.1.1. Convolution temporal based models
This section delves into the application of CNN’s for capturing tem-

poral video information. It will explore how traditional 2D CNN archi-
tectures have been adapted to handle the temporal dimension, leading 
to the development of 3D CNNs and other innovative approaches for 
video feature extraction.

The most straightforward approach to model temporal relationships 
uses 3D convolutional layers, such as C3D [24], which directly performs 
convolution in the space formed by frame height, width, and video 
duration or frames by a direct extension of 2D convolution for joint spa-
tial and temporal modelling at the operator level. WVAD introductory 
work, MIR [21] used a C3D pre-trained on Kinetics-400 dataset [33] to 
extract video features from fc6 layer activations. Several works employ 
the same methodology such as [84–98]

Another common architecture is the I3D proposed by [33], which 
builds upon the success of 2D CNNs for image classification to cap-
ture video information [47]. The Kinetics-400 dataset for AR is also 
introduced. The method starts by adding an extra dimension over the 
temporal axis of 2D backbone convolution filters and then converting 
the images into a video sequence with repeated copies. This enables 
effective bootstrap 3D filters from 2D pre-trained CNNs models trained 
on ImageNet (Fig.  5). Moreover, the network has two streams [99], 
trained separately, with the final being averaged, enabling the model 
to harness scene and object structure from the RGB branch and motion 
information from the optical-flow branch.

Despite the superior performance of I3D compared to C3D, 3D 
CNNs have high computational complexity and memory requirements, 
hindering their practical application in resource-constrained environ-
ments [100]. Solutions to overcome these memory requirements in-
clude combining 2D and 3D convolutions [101–103], decomposing 3D 
convolution into 2D convolution by a temporal operation [104,105], 
using zero-parameter operations to model temporal relationships [106–
108], and modelling long and short-term temporal dynamics using 
separate network architectures [109,110].
CNN ’s in WVAD —. It has been a common practice in WVAD to rely on 
I3D as the feature source, mainly for its public availability from works 
as [22,89], and the consistent improvements provided over the 3 ×
3 × 3 convolution-based C3D network. The I3D process relies heavily on 
pre-training, while C3D has few layers and is trained on small datasets, 
leading to a higher semantic feature content [21,84,88,89,93–98].

In that sense, there has been a lack of effective ablation studies 
per VAD community of latter architectures from the VU field to tackle 
efficiency and representativity. Although some works attend to that and 
provide results from different feature sources, they enable us to draw 
some conclusions.

Graph Convolutional Label Noise Cleaner (GCLNC) [84], Contrastive
Attention (CAVAD) [91], and Weakly Supervised Anomaly Location 
(WSAL) [111] employ a BN-Inception [47] version of TSN [34,35] 
showing better results when compared to C3D/I3D.

WSAL goes further on comparing both I3D [33], R(2+1)D [104] and 
TSN, concluding that TSN surpasses the performance of CLAWS+ [92], 
with 3DResNet [36] showing better results compared to C3D.
6 
3.1.2. Transformer temporal based models
Proposed initially for language translation [59], the Transformer 

architecture has revolutionized various fields, including Computer Vi-
sion (CV). Its ability to capture long-range dependencies and model 
global context has made it a powerful tool for video understanding 
tasks. However, adapting Transformers to the unique challenges of 
video data requires careful consideration of computational efficiency 
and incorporating inductive biases.

This section explores the application of transformer-based models 
to video understanding, highlighting their strengths and limitations 
in capturing temporal information. We will also discuss the emer-
gence of Vision-Language Model (VLM)’s, which leverage the power of 
Transformers to learn joint representations of visual and textual data, 
opening up new possibilities for anomaly detection.

The Transformer consists of two distinct modules: encoder and 
decoder, each composed of several stacked Transformer layers. The 
encoder represents the source language sentence that is then attended 
by the decoder, which translates it into the target language. The Trans-
former excels at learning interactions of non-local contexts of the whole 
sequences at once, allowing for parallelization while removing the 
locality bias of traditional architectures like CNNs. However, the lack of 
inductive biases requires large amounts of data or several architectural 
modifications to accommodate the high redundancy of spatio-temporal 
information in videos. Furthermore, they scale quadratically with se-
quence length 𝑇  (i.e., 𝑂(𝑇 2)) due to the pair-wise affinity computation, 
which is exacerbated by the high dimensionality of the video.

The success of image Transformers has led to numerous transformer-
based architectures for VU tasks. These works extend the design ideas 
of CNNs in the context of ViTs [100]. Some works perform spatial–
temporal local self-attention [112–115], while [116] combine self-
attention and convolution, employ 1D temporal attention [117],
SqueezeTime [118] squeezes the temporal axis for a lightweight back-
bone targeting mobile video understanding.
Transformers in WVAD —. Despite the abundance of innovative
transformer-based architectures for VU, their application in WVAD 
remains relatively limited. Works that have experimented with Video 
Swin Transformer (VSwin) [113], MSL [94] and MGFN [119], showed 
no relevant improvements over I3D, although further ablation studies 
are needed to inspect the anomalies-only subset.

3.1.3. Vision–language models
The appearance of massive web-scale multi-modal paired datasets, 

such as [120,121], with hundreds of millions of noisy image–text 
pairs, enabled foundational VLM like Contrastive Language-Image Pre-
training (CLIP) [122], ALIGN [123], FLAVA [124], OpenCLIP [121], 
BLIP [125], EVA-CLIP [126,127] and FLIP [128]. These models employ 
a dual-encoder architecture that learns to align visual and language 
representations of image–text pairs using a contrastive loss and train-
ing (Fig.  6), producing strong and generalizable joint representation 
features that excel in zero-shot transfer learning.

Further works have focused on improving the dataset curation, 
training objective and exploring different encoder architectures. DFN
[129] introduced data filtering, SigLIP [130] replaced softmax con-
trastive loss with sigmoid-based optimization, and SigLIP2 integrated 
caption-based pretraining [131] with DINOv2-style self-distillation
[132]. UMG-CLIP [133] achieved multi-granular alignment (image/
region/pixel).

MobileCLIP [134] optimized FastViT [83] for low-latency via multi-
modal reinforcement leveraging knowledge transfer from an image cap-
tioning model, while ViTamin [135] re-evaluated vision encoders under 
CLIP, proposing hybrid architectures beyond vanilla ViT [67]. Tem-
poral extensions like VideoCLIP [136] aligned overlapping video–text 
pairs, and ActionCLIP [137] reframed action recognition as video–text 
matching.
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Fig. 6. Contrastive pre-training from [122].

LLMs: The evolution of LLMs has been driven by compact archi-
tectures and data-centric optimizations, with pioneering models like 
LLaMA [138–140], Vicuna [141], InternLM [142,143], demonstrating 
that smaller, well-designed models can rival larger counterparts. Ef-
ficiency breakthroughs emerged through diverse strategies: Phi [144–
146] leveraged curated ‘‘textbook-quality’’ data for lean training,
Gemma [147,148] distilled knowledge from larger models, and
MiniCPM [149] redefined scaling laws for sub-7B parameter regimes. 
Pruning methods like LLM-Pruner [150] achieved parameter reduction 
without sacrificing capability, while Qwen [151–153] established ver-
satile backbones for downstream VLM integration through architectural 
upgrades and expansive token training.
Efficient VLMs. Building on efficient LLMs, LLaVA [154,155] and
LLaVA-NeXT [156–159] established parameter-efficient alignment rec-
ipes. MobileVLM [160,161] compressed visual tokens via lightweight 
adapters, while Phi-4 [162] and Gemma 3 [163] extended their LLM 
counterparts into multimodal domains. SF-LLaVA [164] combined
LLaVA-NeXT 7B [156] with SlowFast [109] for training-free video 
understanding. FastVLM [165] introduces FastViTHD, a hybrid vision 
encoder that optimizes high-resolution VLM performance by scaling 
input images to balance token count, latency, and accuracy without 
token pruning, while LLaVAOneVision [166] unified image–text–video 
processing. VILA [167] focuses on pre-training techniques optimized 
for efficient edge deployment (Jetson Orin).

Following the Qwen series [168,169], Qwen2.5-VL [170] frame-
work utilizes window attention and dynamic FPS sampling in the 
vision encoder to enable efficient, high-resolution video processing at 
native input resolution, unifying image and video representation by 
integrating multi-modal RoPE.

Training efficiency is advanced by Aquila-VL-2B’s curated 40M 
dataset [171] (builds upon LLaVA-OneVision architecture [166], with 
Qwen-2.5-Instruct [172]/SigLIP [130] as the language/vision tower), 
and SAIL-VL(2B-8B)’s scalable Supervised Fine-Tuning (SFT) curricu-
lum learning strategy [173].

Haplo-VL [174] fused multimodal embeddings early, Flash-VL 2B
[175] merged SigLIP2, AIMv2, and Qwen-2.5-1.5B via tiling, token 
compression, and advanced data and training schemes. FluxViT [176] 
dynamically optimized tokens under compute budgets using UnMasked 
Teacher [177] pretraining.

NVILA [178] introduces an efficiency-oriented VLM framework 
built on VILA [167], employing a ‘‘scale-then-compress’’ strategy in 
space-and-time, integrates SigLIP [130] and Qwen2 [152] as vision and 
token encoders, optimized through dataset pruning (DeltaLoss) and FPS 
mixed-precision training, achieving lower latency and higher through-
put than conventional VLMs like Qwen2-VL and LLaVA-OneVision.
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Engineering for resource-efficient inference, SmolVLM [179] intro-
duces a family of memory-efficient VLM (256M/500M/2.2B param-
eters, with single-image inference RAM usage of 0.8/1.2/4.9 GB), 
enabling adoption in various edge downstream applications. NanoVLMs
[180] simplifies further in an educational VLM implementation.

More recently through train-free frameworks, LiveVLM [181] pro-
poses a streaming-oriented KV cache to process video streams in 
real-time, while HoliTom [182] combines inner-LLM token merging 
and outer-LLM pruning strategies. Also, new benchmarks focusing on 
causality [183] and emergency detection [184] are of great interest for 
future studies in VAD.

The constant evolution of Vision–Language Models (VLMs), tracing 
developments from CLIP-style contrastive learning frameworks to archi-
tectures that integrate Large Language Models (LLMs). This progression 
encompasses advances in efficient backbone designs, hybrid archi-
tectures, and model compression strategies aimed at optimizing the 
trade-off between performance and computational efficiency. For de-
tailed technical discussions, we refer to recent comprehensive surveys 
in the field [100,185–193].
VLMs in weakly-supervised VAD. CLIP’s adoption in CLIP-TSA [194], 
UMIL [195], and AnomalyCLIP [196] demonstrated VLM features’ su-
periority over ImageNet-trained models. CNN-ViT [98] fused CLIP with 
CNN features for anomaly subspace discrimination. BLIP-2 is employed 
in [8,197,198]. Nevertheless, there is still room to explore different 
lightweight encoders trained under other schemes and datasets, to 
compare how discriminative is the yielded space for anomalous events.

3.2. Audio feature representation

The acoustic landscape of our daily lives is rich with informative 
cues about the physical events unfolding in our surroundings. Envi-
ronmental sounds, or everyday sounds, are ubiquitous in outdoor and 
indoor environments, generated by human and non-human activities. In 
real-world surveillance scenarios, anomalous events often have distinct 
audio signatures that can aid their identification, such as gunshots, 
screams, or breaking glass [199]. Beyond surveillance settings, sound 
plays a crucial role in various other environments present in online con-
tent. Within computational methods for analysing and understanding 
sound, Sound Event Recognition (SER) aims to automatically identify 
and categorize sounds occurring in our daily lives [200]. To that end, 
SER and Environmental Sound Classification (ESC) are tasked with a 
strong relevance to VAD.

3.2.1. Audio convolution-based features
CNN’s have proven highly effective in extracting meaningful rep-

resentations from audio data, enabling significant progress in tasks 
like environmental sound classification and speech recognition. This 
section explores the application of CNN’s to audio feature extraction, 
highlighting key architectures and advancements in the field.

In the search for deeper embeddings, CNNs have been widely used 
in audio. There are two formats in which audio can be represented: the 
raw digital signal or its time–frequency version, a visual representation 
of the audio frequencies concerning time.
Learning from raw audio signals —. Early CNN-based approaches for au-
dio processing focused on directly learning from raw audio waveforms. 
These methods employed 1D CNN architectures to capture temporal 
patterns and variations in the audio signal.

In the works of [201–204] a 1D CNN architectures are used to 
handle audio input without pre-processing, operating the raw input 
signal at different time scales, or with the input being initialized using 
gamma tone filter banks. In [205], a context-aware Active Learning 
framework for low-level feature selection and classification is proposed 
to achieve fast and accurate audio event annotation and classification 
on the UrbanSound8K dataset [206].
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Spectrogram-based representations —. The spectrogram, a visual repre-
sentation of audio frequencies over time, has become a dominant input 
format for audio processing.

A spectrogram can be generated using the Short-Time Fourier Trans-
form (STFT) [207], which belongs to the family of Fourier-related 
transforms. The STFT is computed by splitting the input signal into 
overlapping frames, multiplying each frame by a window function, 
and applying the Fast Fourier Transform (FFT) to each frame. The 
resulting spectrogram can be further processed by applying Mel filter 
banks and a logarithmic operation to extract log-mel spectrograms. 
Mel-frequency cepstral coefficients (MFCC) can also be obtained from 
the spectrograms. The Mel scale is a perceptual scale of pitches [208], 
correlated to the human auditory system’s frequency response.

With the image audio representation formed, well-known CNNs 
architectures from image domain tasks can be used as baselines. Firstly,
[209] starts by operating on Mel-scaled spectrograms only. On [210], 
data augmentation techniques are evaluated. In the work [211], three 
networks operate on the raw audio, spectrograms, and the delta STFT 
coefficients. [212] employs a similar strategy using two networks with 
Mel-spectrograms and MFCC’s as inputs.

Leveraging pre-trained models and transfer learning —. The availability of 
large-scale audio datasets, such as the general-purpose AudioSet [213], 
and pre-trained image recognition models from ImageNet has enabled 
the use of transfer learning for audio feature extraction. This approach 
involves initializing audio CNN’s with weights learned from ImageNet 
or AudioSet, significantly improving performance and reducing training 
time.

One example is the work of [214] where the ImageNet pre-trained 
models (DenseNet [215], ResNet [50], and Inception-v1 [46]) are sued 
and fine-tuned them on different audio datasets, ESC-50 [209] and 
UrbanSound8K [206].

ESResNet [216] proposed a Siamese-like multichannel processing 
model using ResNet [50] as backbones with log-power spectrograms 
as input. In a subsequent work, [217] proposed a trainable time-
frequency transformation based on frequency B-spline wavelets [218], 
using ResNeXt [51] as the backbone, setting the state-of-the-art on 
US8K. Both works obtained better results when the network was ini-
tialized on ImageNet and pre-trained on AudioSet.

PANNS [219] introduced a set of ResNets and MobileNets trained 
on raw AudioSet [213] recordings as versatile transfer learning systems. 
PSLA [220] proposed different training techniques, including ImageNet 
initialization, data augmentation, label enhancement, and an ensemble 
of various models using EfficientNet [55] as the backbone. Among 
these techniques, ImageNet pre-training seems to be the key ingredient, 
without which the performance decreases dramatically.

Addressing audio-specific challenges —. Researchers have also focused 
on addressing challenges specific to audio processing, such as shift-
invariance and distortion introduced by subsampling operations in 
CNN’s.

SINet [221] addressed the issue of subsampling operations in CNNs, 
which can lead to shift invariance and distortion problems [222]. Train-
able low-pass filters are adopted by [223], and adaptive polyphase sam-
pling is used by [224] in the max-pooling layers of a VGG model [45] 
variants while applying mix-up augmentation, achieving competitive 
results without pre-training on the FSD50k dataset [225].

DENet is proposed by [226] using a surveillance-oriented recurrent 
convolutional architecture that takes raw waveforms as input and 
learns the evolution of frequencies-of-interest over time, with experi-
ments performed on the MIVIA datasets [199]. The proposed DENet 
architecture utilizes SincNet [227] as the backbone, and it introduces 
a denoising-enhancement (DE) layer that applies an attention map on 
the components of the band-filtered signal.
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3.2.2. Audio transformer-based features
Transformer-based models, originally designed for NLP have also 

made significant inroads into the field of audio processing. This sec-
tion explores the application of Transformers to audio feature extrac-
tion, highlighting their strengths and challenges in capturing temporal 
information and learning meaningful representations from audio data.
Purely attention-based models —. Audio Spectrogram Transformer (AST)
[228] introduced the first purely attention-based audio classification 
model by treating Mel-spectrograms as a sequence of patches, in-
corporating pre-trained vision transformers ViT [67] and DeiT [68], 
achieving better results than CNNs in AudioSet tasks, although costly 
to train from scratch.
Transformers for raw audio —. Researchers have also explored the use 
of Transformers for processing raw audio waveforms, aiming to capture 
temporal dependencies directly from the signal without relying on 
spectrogram representations.

Audio Transformer [229] proposed learning upon raw signals with-
out pre-training, evaluated on FSD50K [225], improving Transformer 
architectures with techniques such as pooling and multi-rate signal 
processing, and learning an adaptable time–frequency front-end rep-
resentation for audio understanding.
Addressing computational complexity —. Patchout fast spectrogram
Transformer (PaSST) [230] reduced the computation and memory 
complexity of Transformer training by applying Patchout to input 
sequences, improving generalization. Uses a modified version of both 
ViT and DeiT [67,68] with weights initialized from ImageNet and 
trained on AudioSet. Positional encoding is disentangled into time and 
frequency components, enabling inference on variable-length audio 
snippets. PaSST+ [231] further examined different approaches to ex-
tract general audio representations from PaSST under the HEAR [232] 
evaluation tool, concluding that mid-level features provide a more 
abstract representation beneficial for audio downstream tasks.
Multi-modal and contrastive learning —. Multi-modal and Contrastive 
Learning approaches have emerged as powerful techniques for learning 
robust audio representations by leveraging information from other 
modalities, such as text or video. Different modalities can acceler-
ate compact learning in a single target modality by exploiting cross-
modality structure.

The work of [233] contrastively induced audio representations from 
waveforms and log-mel spectrograms, allowing to learn better repre-
sentations by maximizing the agreement between different augmented 
views of the same audio. It adopts PANNS [219] as the spectro-
gram encoder backbone and different unsupervised speech backbones 
as raw audio encoders. It is trained on AudioSet, with good gener-
alization for ESC-50 [209] without fine-tuning. The work of [234] 
extends [233] to include correspondence with video frames, showing 
better learned audio representations. Both methods benefit from several 
Audio augmentations and larger batch sizes.
Knowledge distillation —. Because pre-training large-scale models re-
quires large quantities of data and can be computationally expensive, 
another research direction has been distilling information from exist-
ing models trained on different modalities for which more data are 
available.

The work of AudioCLIP [235] combines ESResNeXt [217] with a 
pre-trained CLIP [122]. The trimodal hybrid architecture is trained 
on the AudioSet dataset using audio, video frames, and textual la-
bels, resulting in minimum improvements over the baseline encoder in 
UrbanSound8K [206] and ESC-50 [209] datasets.

Wav2CLIP [236] used CLIP [122] in a two-step approach: first, an 
audio encoder is pre-trained on VGGSound by distilling CLIP image 
embeddings through videos, then fine-tuned to downstream tasks with 
frozen audio encoders. While no clear improvements were observed 
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Table 2
Summary of the identified works on audio feature extractor configurations.

Input Method Image
 Init

Audio
 Pre-Train

CNN

R CNN with RAW [201–205]
7R+S MS-CNN [211]

[209,210,212],
SINet, DENet [221,226]
RCNN, PSLA [214,220] 3 7

CNNAED, PANNs [219,240] 7 3S
ESResnet [216,217],
EfficientAT [238,238] 3

TRF

R AT [229] 7

S AST [228], PaSST [230,231]
3S AudioCLIP, Wav2CLIP [235,236]

R+S RSCLIP, RSVCLIP [233,234]
R: Raw audio signals; S: Spectrogram.
for downstream tasks, the embeddings derived from CLIP enable cross-
modal text/audio-to-audio retrieval for the VAR task [237]. Moreover, 
in contrast to AudioCLIP [235], they did not learn the visual encoder 
but distilled CLIP into an audio model, resulting in one joint embedding 
space for three different modalities.
Efficient audio transformers —. Researchers have focused on develop-
ing efficient and high-performing audio Transformers, combining the 
strengths of CNN’s and Transformers.

EfficientAT [238] is the ultimate example of that, with the focus 
on a low-complexity general-purpose audio embedding extractor based 
on a MobileNetV3 [54] architecture, complemented with Squeeze-
and-Excitation layers. It is trained on AudioSet with initialization on 
ImageNet, using a Knowledge Distillation (KD) scheme with an ensem-
ble of PaSST [230] models as the teacher. A range of models with 
varying complexities and spectrogram resolutions were introduced, 
from low-complexity models for edge devices to larger models, by 
scaling the model’s width.

In [239], authors investigated the performance of EfficientAT with 
different levels of embeddings on downstream tasks using the HEAR
[232] evaluation tool. Further refinements were made by replacing the 
original blocks with a Dynamic Inverted Residual Block [238], proving 
to be efficient, high-performing and easy-to-fine-tune audio models. It 
achieves state-of-the-art on AudioSet and competitive results in general-
sounds-related tasks while balancing the efficiency of CNNs efficiency 
and the Transformer’s superiority to scale up with large-scale datasets.
Audio feature extraction for WVAD —. Despite the advances in audio 
representation learning, the only audio embeddings available for the 
XD-Violence (XDV) dataset [22] are those provided by their authors. 
These embeddings were obtained using the VGG (configuration E) 
version of CNNAED [240], which pre-trains on a large-scale dataset of 
70M YouTube videos (5.4M training hours). Recently, AVadCLIP [42] 
implemented Wav2CLIP as the audio FE.

Those works exploring distillation learning [236,238,238], attend 
on computational cost [230] and resort to signal processing enhance-
ments of networks [217,221,229] showed promise as candidates to 
extract audio embeddings.

Table  2 summarizes the identified works and the different FE con-
figurations.

3.3. Feature extractor summary

The evolution of FEs for VU has largely mirrored image classi-
fication, with adaptations to accommodate the additional temporal 
dimension. This trend is evident in both CNN and transformer-based 
networks. Early works attempted to extend modelling through the 
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temporal axis, while later ones factorized spatial and temporal do-
mains to achieve a better speed–accuracy tradeoff. This section has 
discussed various architectures, from the classic CNNs like AlexNet and 
VGG, to the more recent transformer-based models like ViT and Swin 
Transformer.

In the context of audio representation, SER and ESC are of great 
relevance to VAD. The spectrogram is the most common input represen-
tation for audio, although raw digital signals are also used. CNNs have 
been widely used for audio tasks, with architectures like [216,217,221] 
operating on spectrograms, while being lightweight. More recently, 
transformer-based architectures have been introduced for audio tasks, 
such as the [229] operating on raw signals and [230] on spectrograms. 
The work of [238] unifies both types of architecture, showing promise.

It is also important to note that real-world surveillance scenarios of-
ten have distinct audio signatures that can aid in identifying abnormal 
events. Works like [226] can integrate VAD in those situations. How-
ever, their integration with VAD requires a new UCFC-like benchmark 
containing audio signals in videos, for instance ECVA [241].

Transfer learning and pre-trained models have played a significant 
role in feature extraction for visual and audio data. The release of 
large-scale datasets like AudioSet and ImageNet has enabled the pre-
training of models, which can then be fine-tuned for specific tasks. This 
approach has been particularly effective in audio tasks, with models 
like ESResNet and EfficientAT showing superior performance when 
initialized on ImageNet and pre-trained on AudioSet. Regarding the 
integration of VLM, works like Wav2CLIP [236], provide insights on 
how to integrate image, audio, and text data in a joint space.

In the context of WVAD, FEs for visual data have seen a similar 
shift from CNN-based architectures, C3D and I3D to transformer-based 
ones, VSwin and ViT. Only CNNAED [240] has been used to obtain 
audio embeddings for audio data. Pre-training and transfer learning 
have also been key to successfully applying these models. Integrating 
new proposals with WVAD, we can expect to see further advancements 
in the performance of VAD systems.

4. Datasets/benchmarks

Benchmark datasets are crucial in computer vision research, defin-
ing the problem scope and providing a fair comparison of different 
algorithms. In VAD, datasets reflect how the research community has 
interpreted and addressed real-world anomaly detection needs over 
time.

Table  3 summarizes the key characteristics of these datasets, high-
lighting their scene diversity, anomaly types, and annotation levels.

Early datasets often focused on public security applications with 
static cameras in restricted environments. This led to simple scenar-
ios, artificial anomalies and limited scale, ultimately hindering the 
development of more generalizable VAD models.
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Table 3
Summary of key characteristics of VAD datasets.
 Dataset Scene Anomaly types Annotation Modality Eval

metric
#Videos/Length  

 Classical datasets
 Subway Indoor Wrong way, loitering Temp Visual AUC 2/3h  
 UMN Indoor/Outdoor Staged panic Temp Visual AUC 5  
 UCSD-PED Outdoor (Campus) Pedestrian (bike, etc.) F/P Visual AUC 90/0.1h  
 CUHKAvenue Outdoor (Campus) Staged F/P Visual AUC 35/0.5h  
 ShanghaiTech Outdoor (Campus) Staged (Pedestrian) F/P Visual AUC 437/–  
 Recent Datasets
 UCF-Crime Surveillance (YT) 13 real-world types Weak:

Video-Train
Frame-Test

Visual AUC 1900/128h  

 XD-Violence In/Outdoor Fight/Shoot/Riot
Abuse/CarAcc/Explos

Weak Vis/Audio AP 4754/217h  

 UBnormal Synthetic/29 22, Open-set, unseen Pixel Visual AUC
RBDC+TBDC

543/2.2h  

 NWPU Surveillance/43 28 scene-dependent Frame-Test Visual AUC
Anticipation

547/16h  

 UCF/XDV-AR Multiple UCF+XDV Video Caption Vis/Text/Audio R@K,MdR,SumR –  
 HAWK Diverse (7 sets) Real-world Video Captions

+QA(Video 
Human-Centric)

Vis/Text BLEU1-4
GPT-Guided

16000/–  

 UCFA Surveillance UCF Event Caption Vis/Text BLEU1-4,METEOR,
ROUGE-L,CIDEr,
IoU+AUC

1854/122h  

 MSAD Diverse/500 35 human,
20 non-human

Weak Visual AUC 720/248h  

 HIVAU-70K Multiple UCFA+XDV Frame
+Video/Event/Clip 
Caption
+QA(VEC Capt, 
Desc, Reason)

Vis/Text AUC,AP+
BLEU1-4,METEOR 
ROUGE,CIDEr

5443/–  

 ECVA Real-world/21 
(YT)

100 Event Capt,Reason
+Importance Curves

Vis/Text/Audio AnomEval 2240/88h  

 M-VAE Multi-scene 11 events, 14 scenes
CUVA,

Frame+
QA(Event 
Quadruples)

Vis/Text Macro-F1,
T5/GPT-basedÜ
mAP@tIoU+F2,FNRs

1000/32.50h  

 UCFVL Surveillance UCFA QA(Detect+Classf
+Temp Ground
+MCQ+Event Desc)

Vis/Text Acc+IOU+
GPT4o-BASED

1699/88.2h  

 VADD In/Outdoor 18 (UCFC
Throwing Action 
[242]
Road-Accident)

Weak Visual AUC,AP 2591/–  

 UCFDVS Surveillance Motion-based-UCFC Event-frames Event AUC,FAR –  
 VANE Real+Synthetic 5 types

(e.g., pass-through, 
disappearance)

MC-Video QA Vis/Text VQA Acc 325/–  

 Surv.VQA-589K Surveillance 18 (UCFA,MSAD
MEVA,NWPU)

Frame+
Event Caption+
589K 
QA(Det+Clas+Subj+
Desc+Cause+Result)

Vis/Text VideoGPT+ based 3030/159h  

R@K: Recall at K; MdR: Median Rank; SumR: Sum of all Recalls; RBDC: region-based detection criterion; TBDC track-based detection criterion;
BLEU: Bilingual Evaluation Understudy; METEOR: Metric for Evaluation of Translation with Explicit Ordering;
ROUGE: Recall Oriented Understudy of Gisting Evaluation; CIDEr: Consensus-based Image Description Evaluation.
AUC: Area Under the ROC Curve; AP: Average Precision; METEOR: Metric for Evaluation of Translation with Explicit ORdering; IoU: Intersection over Union.
FAR: False Alarm Rate; mAP: Mean Average Precision; Acc: Accuracy (overall correct predictions).
4.1. Early datasets

• Subway [243]: Captures events at entrance and exit gates of a 
subway station, focusing on anomalies like walking in the wrong 
direction and loitering. Its indoor setting and limited anomaly 
types restrict its generalizability.

• UMN [244]: Records staged crowd panic and escape events in 
indoor and outdoor scenes. Its artificial nature and lack of spatial 
annotations limit its relevance to real-world scenarios.
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• UCSD-PED [245]: Focuses on pedestrian anomalies (e.g., biking, 
skateboarding) captured from two viewpoints on a university 
campus. Its simple scene and easily detectable anomalies have led 
to saturated model performance, hindering further development.

• CUHKAvenue [246]: Similar to UCSD-PED, it captures staged 
anomalies on a university campus, providing both frame-level and 
pixel-level annotations. However, its focus on a single scene limits 
its generalizability.
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• ShanghaiTech [247]: introduce multi-view perspectives from 13 
distinct surveillance cameras with varying angles across univer-
sity campus locations, capturing over 270,000 training frames and 
130 annotated abnormal events. It includes pixel-level ground 
truth for anomalies.

4.2. Recent datasets

The limitations of early datasets spurred the creation of more recent 
datasets that better reflect the open-set nature of real-world anomalies:

• UCF-Crime [21]: A large-scale real-world dataset with over 1900 
surveillance and online videos spanning 13 anomaly categories
(Abuse, Arrest, Arson, Assault, Burglary, Explosion, Fighting, Rob-
bery, Shooting, Stealing, Shoplifting, Vandalism, and Road Accident). 
It offers diverse indoor/outdoor scenes and includes temporal 
annotations for test videos.

• XD-Violence [22]: Introduces audio–visual modality for multi-
modal VAD. The dataset includes 2405 violent and 2349 non-
violent videos, with 3954 for training and 800 for testing, to-
talling 4754 videos from diverse sources (e.g., movies, surveil-
lance). Frame-level temporal annotations are provided for the test 
set.

• UBnormal [248]: A synthetic dataset for supervised open-set 
VAD, featuring virtual scenes with fine-grained pixel-level an-
notations. It enables controlled evaluation of models on unseen 
anomalies and includes a dedicated validation set for tuning. 
UBnormal facilitates open-set research, but introduces domain 
adaptation challenges when transferring to real-world data.

• NWPU [249]: It contains 43 scenes and 28 anomaly classes: 
single-person anomalies (e.g., climbing fence), interaction anoma-
lies (e.g., stealing, snatching bag), group anomalies (e.g., protest, 
group conflict), scene-dependent anomalies (e.g., cycling on foot-
path, wrong turn, photographing in restricted area), location 
anomalies (e.g., car crossing square, crossing lawn), appearance 
anomalies (e.g., dogs, trucks) and trajectory anomalies (e.g., jay-
walking, u-turn). Makes a total of 547 videos, 124 test videos with 
anomalies and 316 training videos. The first dataset for video 
anomaly anticipation (VAA).

• VAR [237]: Extends UCF-Crime and XD-Violence with text/au-
dio annotations, enabling cross-modal video anomaly retrieval 
(VAR) via natural language or audio queries. 8 bilingual annota-
tors (Chinese/English) reviewed videos to generate scene-specific
anomaly/normal captions. For similar anomalies, two annota-
tors per category detailed differences. Captions doubly quality-
checked. For complex XD-Violence videos, annotations used audio 
descriptions due to dense content, leveraging audio–visual align-
ment, enabling cross-modal retrieval. It supports efficient offline 
search for specific anomalies in large-scale video archives

• HAWK [197]: A unified dataset integrating seven benchmarks 
(crime (UCF-Crime), campus (ShanghaiTech and CUHK Avenue), 
pedestrian walkways (UCSD Ped1 and Ped2), traffic (DoTA), and 
human behaviour (UBnormal)), totalling 8000 anomaly videos 
with GPT-4-generated descriptions and QA pairs. Annotations 
follow a two-step process: dense captioning via tools (e.g., Intern-
Video, GRiT), then GPT-4 synthesis for anomaly-specific descrip-
tions and 5W2H-style QA pairs. Data is structured as <VIDEO>:
{DIS: <DESCRIPTION> | QA: <QUESTION> → <ANSWER>}. 
Evaluation uses both text-level (BLEU, ROUGE) and GPT-guided 
metrics (Reasonability, Detail, Consistency), supporting context-
aware, open-ended anomaly understanding across diverse scenar-
ios. HAWK enhances practical applicability, enabling models to 
handle varied user inquiries while maintaining robust anomaly 
detection across complex, real-world scenes.
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• UCFA [250]: UCFA extends UCF-Crime as the first large-scale 
multimodal dataset for Temporal-Specific Video Generation
(TSGV), Video Captioning (VC), Dynamic Video Captioning
(DVC), and Multimodal Anomaly Detection (MAD) tasks. It con-
tains 1854 high-quality surveillance videos, annotated with over 
23,000 sentence-level descriptions and 0.1s-precision timestamps 
by trained annotators under structured guidelines. It provides 
110.7 h of data with concise, event-specific language. UCFA 
emphasizes fine-grained temporal grounding and domain rele-
vance, supporting advanced tasks like captioning and query-based 
retrieval in dynamic, low-quality surveillance contexts. Dataset 
splits and ethical protocols are included to promote reproducible 
research. Ethical considerations and dataset splits (train/val/test) 
are detailed to support reproducible, responsible research in this 
emerging field.

• Multi-Scenario AD (MSAD) [12]: Addresses diverse surveillance 
challenges with broader scenarios/viewpoints. Contains 35
human-related anomalies (e.g., fighting, people falling, shop rob-
beries) and 20 non-human-related anomalies (e.g., water leaks, 
factory fires, tree falls) across crime, pedestrian, and industrial 
domains. High-resolution fixed-camera footage (1920 × 1080, 30 
fps), excluding low-quality clips, moving cameras, and Personally 
Identifiable Information (PII). The dataset addresses imbalanced 
anomaly distributions (e.g., ‘‘Fighting’’ at 4.2% in water inci-
dents) and includes detailed statistics on frame numbers, video 
durations, and anomaly-type distributions (e.g., continuous vs. 
abrupt motion patterns). Evaluation protocols assess generaliz-
ability/adaptability (cross-scenario performance) and practical 
applicability (real-world robustness), with train/test splits tai-
lored to these goals. Privacy and ethical considerations are cen-
tral: face/vehicle blurring, restricted academic access via agree-
ments, and pre-extracted features (I3D, SwinTransformer) to min-
imize data exposure. This design enables robust testing of VAD 
models in cross-scenario adaptation while balancing accuracy 
with privacy preservation.

• VAD-Instruct50k [251]: Built via a three-stage semi-automatic 
pipeline: (1) Data Collection gathers 5547 untrimmed videos from 
UCFC and XDV, filtered for quality; (2) Annotation Enhancement
applies efficient single-frame labelling (2.35/video), generates 
pseudo-event clips (10–20s), and adds multimodal captions us-
ing Video-LLaVA; (3) Instruction Construction prompts LLaMA3-
70B to synthesize 51,567 explainable QA pairs with natural lan-
guage rationales (e.g., ‘‘Why is this abnormal?’’), manually fil-
tered for quality. The dataset offers fine-grained temporal supervi-
sion and rich semantic context, combining precision with scalable 
human-LLM collaboration.

• HIVAU-70K [13]: A hierarchical benchmark built from UCFC and 
XDV (a follow up work from VAD-Instruct50k) with 70,000+ an-
notations across three temporal levels: clip-level perception (short-
term visual understanding), event-level reasoning (anomaly clas-
sification and description), and video-level analysis (causal ex-
planations). It comprises: (1) Video Decoupling — 55,806 clips 
(5–20s) from 11,076 events in 5443 videos, manually annotated 
by five experts in 20 h ; (2) Free-text Annotation — clip-level 
captions via LLaVANext-Video and UCFA [250], and event/video-
level summaries (Judgment, Description, Analysis) via recursive 
LLaMA3-70B prompting; (3) Instruction Construction—task-aligned 
prompts (Caption, Judgment, Description, Analysis) to support 
anomaly reasoning in VLMs. Covering short- to long-term context 
with balanced normal/anomalous content, HIVAU-70K enables 
interpretable, multi-scale anomaly detection and reasoning (see 
Figs.  7–10).

• Exploring the Causation of Video Anomalies (ECVA) [241]: 
An extension of CUVA [252], ECVA benchmark, a comprehensive 
dataset designed to advance causal reasoning in video anomaly 
understanding by addressing three dimensions: what (anomaly 
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type and description), why (underlying cause), and how (sever-
ity via temporally dynamic importance curves). ECVA comprises 
2240 real-world videos spanning 21 categories and 100 subcate-
gories, totalling 88.16 h, with meticulously curated annotations 
including free-text explanations, temporal event boundaries, and 
severity curves—a clever way to visualize anomaly severity over 
time, computed by (1) generating event descriptions, (2) rank-
ing severity via GPT, (3) calculating frame-text similarity with 
CLIP, and (4) fusing scores. As raw curves can be noisy, a post-
process improves precision using a voting mechanism over Video 
Captioning (VideoChat), Video Entailment (SEVILA), and Video 
Grounding (UniVTG), followed by wavelet smoothing. Evaluation 
is conducted via AnomEval, a metric assessing VLMs through:

– Basic Reasoning: Coverage of key entities and logical coher-
ence.

– Consistency: Binary scoring using GPT to compare
responses.

– Hallucination: Robustness testing via edited videos.

AnomEval achieves 82%–89% alignment with human judgment, 
surpassing traditional metrics like BLEU and ROUGE. ECVA sup-
ports fine-grained, causality-aware anomaly detection in long-
form videos.

• Multi-scene Video Abnormal Event extraction and localiza-
tion (M-VAE) [253]: is a instruction tuning dataset, derived 
from the CUVA benchmark (preliminary version of ECVA) [252] 
using its reason, result, and description tasks, built via a two-
stage pipeline: a spatial understanding dataset by sampling 20K 
frames/images each from Ref-L4 [254], HumanML3D [255] (25K 
1s clips), RSI-CB [256], and COCO [257], paired with handcrafted 
instructions to extract spatial cues (e.g., actions, objects, back-
ground); and generate abnormal event quadruples (subject, event 
type, object, scene) from 5 Q-A tasks via ChatGPT prompting and 
manual filtering.
The dataset spans 1k videos (800K frames) with 1.68 abnormal 
events/80s duration per video on average, covering 11 event 
types (Fighting, Animals, Water, Vandalism, Accidents, Robbery, 
Theft, Pedestrian, Fire, Violations, and Forbidden) and 14 distinct 
scene categories (School, Shop, Underwater, Street, Road, Boat, 
Wild, Forest, Residence, Bank, Commercial, Factory, Lawn and
Other), validated with Kappa = 0.87. CUVA timestamps are used 
for localization (8 FPS, 800K frames, avg. 1.68 events/video). 
Evaluation includes Macro-F1 (element/pair/quadruple extrac-
tion), mAP@tIoU (0.1–0.3), F2 score, and FNRs, emphasizing 
low false-negative rates and statistical significance (t-tests). Sher-
lock enables interpretable, fine-grained abnormal event detection 
across diverse real-world scenes.

• UCVL [14]: is constructed by integrating the UCFC and UCFA 
datasets, refining 1829 videos (into 1699 total/1030 train/369 
validation/300 test) with anomaly labels and segment-level de-
scriptions. Leveraging Qwen2-72B [169] to generates QA pairs by 
summarizing UCFA annotations and formulating scenario-specific 
questions, while GPT-4o ensures answer accuracy through de-
tailed prompting, the dataset generates 16,990 QA pairs across six 
task types: anomaly detection (True or False, TF), anomaly classifi-
cation (AC), anomaly temporal grounding (TG), multiple-choice ques-
tions (MCQ), event description (ED), and anomaly description (AD). 
Annotations combine human-labelled timestamps and event sum-
maries from UCFA with LLM-synthesized questions. To mitigate 
bias and ensure fairness, the dataset excludes personally identifi-
able information and employs diverse scenario sampling. Evalu-
ation benchmarks eight open-source MLLMs (0.5B–40B parame-
ters) [166,169,258], assessing performance via a hybrid scoring 
system: pattern matching for MCQs and GPT-4o-based evaluations 
for open-ended responses (ED, AD). Finetuning protocols validate 
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model adaptability (e.g., LLaVA-OV-7B increases scores by 6.2%), 
with results highlighting gaps in MLLMs’ anomaly perception and 
guiding future research toward robust, interpretable surveillance 
systems.

• VADD [259]: Video Anomaly Detection Dataset is as an extension 
of UCF-Crime with 2591 videos (2202 train, 389 test) spanning 18 
classes, including underrepresented anomalies like road accidents 
and dangerous throwing from UCFC, Throwing Action [242], and 
newly collected accident videos annotated, with video-level labels 
(train) and frame-level anomaly timestamps (test).

• UCFDVS [260]: First event-based VAD benchmark using Dy-
namic Vision Sensors (DVS). Captures asynchronous sparse event 
streams at high temporal resolution (1280 × 720, 242s/video). 
Unlike RGB, DVS encodes ON/OFF polarity changes, reducing 
redundancy and enhancing sensitivity to motion-related anoma-
lies. Preserves temporal precision, ensures model compatibil-
ity. Novel benchmark for motion-centric anomaly detection in 
low-light/high-speed scenarios.

• VANE [261]: evaluates VLM in detecting and localizing anomalies 
in real-world and synthetic videos. It includes 325 video clips 
(197 synthetic, 128 real) and 559 QA pairs, covering five anomaly 
categories: unnatural transformations, appearances, pass-through, 
disappearance, and sudden appearance. Real-world samples de-
rive from UCFC, UCSD Pedestrian, and Avenue; synthetic videos 
use closed/open-source text-to-video diffusion models (e.g., Open-
Sora [262], VideoLCM [263]). QA pairs follow a multiple-choice 
video QA format, targeting subtle inconsistencies such as abrupt 
object removals or unnatural motion patterns. Built through 
a three-stage pipeline: (1) Annotators label subtle anomalies 
in synthetic and real-world videos, ensuring precise temporal 
alignment; (2) GPT-4o generates descriptive captions for videos, 
leveraging annotated frames to highlight anomalies; and (3) 
Custom prompts guide GPT-4o to produce QA pairs, balancing 
simplicity and complexity to test reasoning, localization, and 
contextual understanding.
Benchmarked on nine Video-LMMs (e.g., LLaVA-NeXT, MiniGPT4-
Video, Goldfish), it reveals poor open-source model accuracy 
(e.g., LLaVA-NeXT: 11.59% on SORA videos) and struggles with 
synthetic anomalies (e.g., 10.57% on VideoLCM). Closed-source 
models show marginally better stability. Human evaluation scores 
19.44% on UCSD-Ped2, underscoring difficulty. VANE-Bench
bridges gaps in evaluating LMMs for real-world/synthetic anoma-
lies, with applications in misinformation detection and security 
systems. The hybrid design (real + synthetic) and MC-Video QA 
format enable robust testing, available under a non-commercial 
license.

• SurveillanceVQA-589K [15]: is the largest open-ended video 
question-answering (VQA) benchmark tailored to real-world
surveillance scenarios, from UCFA [250] authors, containing
589,380 QA pairs across 12 cognitively diverse task types: tem-
poral reasoning, causal inference, spatial understanding, anomaly 
interpretation, factual summarization, behaviour/spatial–tempora
analysis, object interaction, motion dynamics, contextual descrip-
tion, event localization, safety-critical implications, and struc-
tured anomaly detection. Spanning 18 abnormal event categories 
(UCFC + Fire, Object/People Falling, Pursuit, Water Incidents), 
integrating four surveillance datasets (MEVA [264], NWPU [249], 
MSAD [12] and UCFA [250]), includes 3030 videos (159.18 h 
total) with 80%–20% train–test splits at the clip level.
The dataset is constructed through a five-step pipeline integrating 
human annotators and large vision–language models (LVLMs):

– Human-Labelled Annotations: Video clips segmented with 
manual spatiotemporal labels—precise timestamps, event 
descriptions (object interactions, motion patterns), and
anomaly intervals.
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– LVLM-Labelled Annotations: LLaVA-Video-7B-Qwen2 gen-
erates supplementary event narratives and scene summaries; 
validated against human labels for consistency.

– Integrated Annotations: Human/LVLM outputs fused via 
timestamp alignment and description merging; discrepan-
cies resolved by majority voting/expert review. Output: 
synchronized timestamps (e.g., [35.1, 41.0]) + enriched 
descriptions.

– QA Generation: Qwen-Max-7B creates QA pairs (6 normal/6 
abnormal tasks). Question types: Temporal: ‘‘When did the 
SUV leave?’’, Causal: ‘‘Why did the woman grab guns?’’,
Spatial: ‘‘Where were individuals standing?’’. Answers video-
grounded (e.g., ‘‘Two motorcycles left right’’).

– Evaluation: 8 LVLMs (0.5B–7B) tested on 4 metrics: Contex-
tual Integration, Detail Orientation, Temporal Understand-
ing, and Causal Reasoning.

– Key findings: Anomaly reasoning gaps & low scores on 
structured tasks. Fine-tuning boosts general understanding, 
not complex reasoning

Ethical considerations include blurring faces/license plates, fair 
compensation for annotators, and bias mitigation through di-
verse scenario inclusion (e.g., varying weather, lighting, demo-
graphics). This structured approach ensures high-quality, cogni-
tively diverse QA pairs that challenge models to handle real-
world surveillance complexity, from nuanced event descriptions 
to safety-critical anomaly detection.

The evolution of VAD datasets reflects the growing recognition of 
the complexity and diversity of real-world anomalies. Recent datasets, 
with their larger scale, more realistic scenarios, and richer annotations, 
provide a more challenging and relevant benchmark for evaluating and 
advancing VAD models.

5. A survey of WVAD methods

In the literature about WVAD, methods are characterized by a com-
bination of several key components. Such components include FEs that 
process input video from single or multiple modalities using various 
backbone architectures and Feature Modulators. The latter transforms 
raw features from FE into more discriminative representations. The 
Segment Selection (SS) is responsible for optimizing segments of in-
terest. This selection process can be based on different metrics and 
applied at different levels of the network, with or without the MIL 
scheme. The Loss function guides the learning process by defining 
the training objective to target the feature- and/or score-level, using 
only the video or pseudo-segment-level labels generated through an 
additional refinement stage.

The interactions between these elements, guided by the chosen AC, 
play a crucial role in shaping the overall anomaly detection system. 
These clusters e

The coming subsections will delve into a detailed exploration of 
these method clusters (Fig.  11), encompassing a wide spectrum of 
methods, focusing on specific datasets or input modalities to utiliz-
ing Vision–Language Model representations or incorporating multiple 
training stages. Some even define novel task settings within the broader 
VAD area. By examining each group’s key aspects, strengths, and 
limitations, a comprehensive overview of the current state of WVAD 
research will follow.

5.1. Vanilla scores

Several studies investigate the vanilla anomaly scores, output 
from the regressor network, as confident cues to select and optimize. 
Some works adopt the top-K selection as an alternative to the maximum 
definition imposed by the ranking loss of [21]. Others go further to 
embed and/or modulate input features.
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TCN-IBL [85] introduces a complementary inner bag loss to reduce 
intra-class distances and enlarge inter-class distances of instances simul-
taneously. This is achieved by iterating upon the ranking definition. A 
Temporal Convolutional Network (TCN) [265] is employed as a Feature 
Modulator (FM) to fuse information causally.

A Criss-Cross Attention [266] to aggregate the local Spatial-
Temporal Context (STA) is introduced by [93]. Through the recur-
rence of this operation, global correlations are captured. A bidirectional 
recurrent network is used as the Score Head, and a mutual cosine 
embedding loss [267] is employed to centre normal representations and 
identify representations that deviate from the norm. The MIL ranking 
loss integrates the overall cost, operating at the score level.

A Temporal Context Alignment Network (TCA) is proposed by
[95] as a new FM to capture temporal context at different scales, 
using a multiscale MHSA module. The method introduces a sparse 
continuous sampling strategy whereby input features are re-sampled in 
subsets of seven consecutive clips. It directly addresses the limitations 
of Segmentation. Furthermore, the ranking loss has been modified to 
consider each subset’s top-K anomaly scores as the optimization unit. 
It adds the sparse constraint and temporal smoothness terms.

Temporal and Abnormal Information (TAI) is considered in
[268], employing a FM composed of a combination of convolutional 
layers for short-term relations and a Global Context block [64] for 
long-term dependencies. This enables to achieve a balanced choice 
compared to those utilizing Non-local (NL) blocks [31]. An N-pair 
loss [269] is proposed to address the anomalous inner bag variance 
and provide a more extensive range of segments during optimization 
at both feature and score levels. It also provides insights about Deep 
Metric Learning (DML).

Table  4 summarizes the identified works.
For reference, metrics detailed throughout the next tables in this 

section will always be Area Under ROC Curve (AUC-ROC) for UCFC, 
and Average Precision (AP) for XDV, mentioned in original works. If 
more than one value is present, it will be referent to evaluation over the
Overall Set/Abnormal Only Set / False Alarm Rate (FAR), respectively.

Key Points of Vanilla Scores Methods: These methods focus on 
utilizing the raw anomaly scores output by the regressor network as 
the primary indicator for anomaly detection.

• IBL: Introduces an inner bag loss to refine the ranking objective 
and minimize intra-class distances while maximizing inter-class 
distances.

• STA: Employs criss-cross attention to capture spatial–temporal 
context and uses a mutual cosine embedding loss to centre normal 
representations.

• TCA: Develops a multiscale MHSA module for temporal con-
text aggregation and introduces a sparse continuous sampling 
strategy.

• TAI: Combines convolutional layers and a Global Context block 
for feature modulation and utilizes an N-pair loss to address inner 
bag variance.

While these methods offer valuable insights into the limitations of 
MIL and propose novel loss functions, different Segmentation processes, 
or top-K selections, their reliance on regressor scores solely trained on 
the video-level label as the primary AC to select relevant segments 
may hinder their ability to generalize. While incorporating more so-
phisticated techniques, many subsequent works still base their SS on 
this basic criterion. This highlights the need to explore alternative 
AC and refine the supervision process to improve the robustness and 
generalizability of VAD methods.

5.2. Temporal dynamics

Another line of research investigates the temporal dynamics for 
anomaly detection, guided by the hypothesis that anomalies  that
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Fig. 7. Image source from [13].
Fig. 8. Image source from [252].
occur infrequently among normal patterns result in notable changes in 
the time domain. Consequently, dynamic variations may serve as an 
indicator of an anomaly.

WSAL [111], a representative work for the surveillance task, ex-
plores temporal dynamics at different levels. The FE, TSN [34,35], 
accounts for the long-range temporal structure of the video through 
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sparse sampling. The High-Order Context Encoding module first em-
beds feature through a convolutional layer and then generates scores 
from intermediate features’ immediate semantic and dynamic varia-
tion cues. Training is conducted through a normal MIL configuration, 
whereby the margin between max-selected abnormal and normal in-
stances is augmented. WSAL is the first work to provide results for 
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Fig. 9. Image source from [14].
Fig. 10. Image source from [15].
the anomalous subset in WVAD, paramount for comprehending the 
approach’s influence on detecting genuine anomalies.

Dissimilarity Attention Module (DAM) [270] employs a Dissim-
ilarity Attention Module as the FM to capture abrupt changes in both 
channel and temporal dynamics. More specifically, dissimilarity among 
two consecutive clips, calculated either by Manhattan distance or cross-
covariance matrix, obtains both channel-wise and temporal-wise at-
tention maps, which are further processed by a many-to-one vanilla 
LSTM network to encode those channels which significantly changed 
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over the temporal scale. During the training phase, a weighted rank-
ing loss (wRL) assures the clip attention weights from the DAM and 
scores are aligned, including temporal smoothing and sparsity con-
straints [21]. As DAM captures local temporal dissimilarity among con-
secutive clips, it neglects global enhancement, thus making it effective 
for live applications.

Locality-aware Attention Network (LAN) [271] achieves causal 
consistency over the temporal dimension by mining temporal dynam-
ics in model architecture and loss formulation. The Locality-aware 
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Fig. 11. Works across taxonomy clusters.
Table 4
Summary of works using Vanilla approaches.
 Method FE FM MIL SS LT Metrics

 FL SL UCFC XDV 
 MIR C3D 

I3D
7 3 max 7 3 75.41 

77.92
7  

 IBL C3D Conv Layer 3 max/min 7 3 78.66 7  
 STA C3D Recurrent 

Criss-Cross Attention 3 max/min 3 3
81.60 7  

 I3D 83.00 7  
 TCA C3D Multi-Scale

3 3 Top-K 3
82.08/–/0.11 7  

 I3D MHSA 83.75/–/0.05 7  
 TAI I3D Conv layer + GC 3 multi-Top-K 3 3 85.73 7  
FE: Feature Extractor; FM: Feature Modulator; SS: Segment Selection; LT: Loss Target; FL: Frame-Level; SL: Score-Level.
Metrics: UCFC-AUCROC, XDV-AP, Overall/Abnormal Only/FAR.
Table 5
Summary of works that employ temporal dynamics.
 Method FE FM MIL SS LT Metrics

 FL SL UCFC XDV  
 DAM I3D Att+LSTM 3 max 7 3 82.67/–/0.3 7  
 LAN I3D Att 3 Top-Kwink 3 3 85.12/–/– 80.72 
 WSAL TSN Conv 3 wink 3 3 85.38/67.38/– 7  
FE: Feature Extractor; FM: Feature Modulator; SS: Segment Selection; LT: Loss Target; FL: Feature-Level; SL: Score-Level.
 
Attention Network (LA-Net) models long-range dependencies and re-
calibrates the locality preference of adjacent snippets using a self-
attention mechanism and Gaussian-like location prior as a bias term. 
A dense MLP extracts the final enhanced feature representation, and a 
causal convolution provides anomaly scores. LAN adopts Discriminative 
Dynamics Learning, using a dynamics ranking loss to amplify the 
variation of anomaly score magnitude between positive and negative 
bags and a dynamics alignment loss (KL divergence) to coordinate 
feature dynamics with score dynamics within each bag, in addition to 
the top-K MIL loss function. Note that this alignment’s impact varies 
across datasets, with a more significant impact in UCFC, highlighting 
the importance of dataset-specific design considerations.

Table  5 summarizes the Temporal dynamics works.
Key Points of Temporal Dynamics Methods:
These methods focus on leveraging temporal variations and dy-

namic changes in video features as indicators of anomalous events.

• WSAL: Emphasizes temporal dynamics at multiple levels, using 
TSN for feature extraction and a High-Order Context Encoding 
module to capture dynamic variations.
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• DAM: Employs a Dissimilarity Attention Module to capture abrupt
changes in channel and temporal dynamics, making it suitable for 
live applications.

• LAN: Achieves causal consistency over the temporal dimension 
through a Locality-aware Attention Network and a Discriminative 
Dynamics Learning approach, with a significant impact on the 
UCFC dataset.

Exploring temporal dynamics has led to diverse approaches, includ-
ing capturing dissimilarity between consecutive clips, modelling long-
range dependencies, and aligning feature and score dynamics. These 
methods highlight the importance of considering temporal context 
and dynamic variations for effective anomaly detection. However, the 
challenge of adapting these strategies to dataset-specific characteristics 
remains a key area for further research.

5.3. Magnitude

Another approach uses the feature magnitude as the AC, and selects 
confident features and scores based on their L2 Norm, also known 
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Fig. 12. MGFN [119] proposed method.
as Euclidean distance. This concept was introduced by Robust Tem-
poral Feature Magnitude Learning (RTFM) [89]. The underlying 
assumption is that the mean feature magnitude of abnormal snippets 
is more significant than that of normal snippets. The proposal RTFM 
loss function enforces large margins between the top-K segments, with 
the largest magnitudes from abnormal and normal videos at both 
feature and score levels. It also employs a combination of Pyramid of 
Dilated Convolutions (PDC) [272] and a NL module (NLNet) [31] to 
capture both global and local correlations of vanilla encoded features. 
Subsequent works have adapted various aspects of RTFMs approach, 
either architectural or following the same AC.

Transformer-Enabled Temporal Relation Learning (WSTETR)
[273] explores long-term temporal relations using a Transformer-
enabled temporal relation encoder. The input video features are en-
coded with sine and cosine functions of different frequencies and fur-
ther processed by a stack of Transformer encoder formed of multi-head 
relation aggregation (MHRA) layer and feed-forward layer from the 
original Transformer architecture [59]. This allows for learning multi-
ple types of temporal relations from different representation subspaces. 
WSTETR uses the same cost functions as RTFM [89].

MGFN [119] (Fig.  12) builds upon RTFMs assumptions regarding 
loss formulation but concludes that pushing abnormal feature magni-
tudes to be larger than normal ones is only valid for similar scenes, 
as other elements besides anomalies also influence the magnitude. The 
proposed FM consists of three modules: a Feature Amplification Mech-
anism (FAM), Glance Block (GB), and Focus Block (FB). FAM amplifies 
input features by adding the 1D-Convolution modulated feature norm. 
The Glance block uses MHSA with a Feed-Forward Network (FFN) to 
provide the network global correlations for each space through time. 
The Focus block employs self-attention convolution with a fixed kernel 
size and an FFN to learn local channel-wise. A Magnitude Contrastive 
loss uses the pairwise distance between top feature magnitudes as 
the metric to guide the training, ensuring that the selected feature 
representations of normal and abnormal videos are at least margin units 
apart. Similar representations of the selected top-K are divided into 
two bags, minimizing the distance between feature magnitudes. This 
approach allows for flexibility in feature magnitudes, not forcing all 
abnormal features in different scenes to be larger than normal ones 
while allowing a regular video with substantial movement to have 
larger feature magnitudes than an abnormal one.
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BERTMIL-RTFM [274] extends RTFM to incorporate video-level 
classification as a correction term for the final anomaly score, ef-
fectively improving both ranking and feature magnitude loss func-
tions. This method demonstrates the potential of leveraging additional 
video-level information to enhance anomaly detection, particularly on 
datasets like XDV.

Multi-Timescale Feature Learning (MTFL) [259] is designed to 
capture anomalies of varying temporal durations by integrating fea-
tures from short, medium, and long temporal tubelets (8, 32, and 
64 frames, respectively). It employs a VSwin [113] to extract spatio-
temporal features at these scales, which are then fused via a multi-stage 
process: pairwise cross-attention (PFL) merges features across scales, 
1D convolutions (LTL) model local temporal dependencies, and self-
attention (GTL) captures global snippet correlations. A classifier gener-
ates anomaly scores using the same magnitude-based optimization [89] 
(binary cross-entropy, feature magnitude maximization, and temporal 
smoothness constraints). The method leverages pre-trained VST models 
(e.g., Kinetics-400 or VADD-augmented variants) to enhance feature 
discriminability, achieving state-of-the-art results on UCFC (89.78% 
AUC) and XDV (84.57% AP). To address data scarcity in anomaly detec-
tion, the authors propose VADD (Video Anomaly Detection Dataset), an 
extension of UCFC with 2591 videos (2202 train, 389 test) spanning 18 
classes, including underrepresented anomalies like road accidents and 
dangerous throwing. VADD incorporates data from UCFC, Throwing 
Action [], and newly collected accident videos annotated with video-
level labels (train) and frame-level anomaly timestamps (test). This 
expansion enables robust evaluation of complex, real-world anomalies, 
with MTFL achieving 88.42% AUC on VADD, outperforming adapted 
baselines like RTFM*. The dataset’s diversity and scale highlight MTFL’s 
ability to generalize across subtle contextual anomalies (e.g., burglary) 
and rapid motion events (e.g., throwing).

Table  6 summarizes the works focusing on Magnitude.
Key Points of Magnitude-based Methods:

• RTFM: Enforces large feature magnitude margins between normal 
and abnormal segments using PDC and NL blocks.

• WSTETR: Captures long-term temporal relations using a
transformer-based encoder while maintaining the magnitude-
based loss formulation of RTFM.
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Table 6
Summary of works that focus on magnitude.
 Method FE FM MIL SS LT Metrics

 FL SL UCFC XDV  
 RTFM C3D 

I3D
PCD+NL 3 mean Top-K 3 3 83.28 

84.30
75.89 
77.81

 

 WSTR I3D MHRA 3 mean Top-K 3 3 83.17 7  
 MGFN I3D 

VSwin
Conv & 
2*ConvMHSA

3 multi Top-K 3 3 86.98 
86.67

79.19 
80.11

 

 BERTMIL-RTFM I3D PCD+NL 3 mean Top-K 3 3 82.10 7  
 MTFL VSwin LTL 3 mean Top-K 3 3 89.78 85.57  
FE: Feature Extractor; FM: Feature Modulator; SS: Segment Selection; LT: Loss Target; FL: Feature-Level; SL: Score-Level.
• MGFN: Introduces a more flexible approach to magnitude, allow-
ing for variations in feature magnitudes across different scenes 
and using a contrastive loss to separate normal and abnormal 
feature representations.

• BERTMIL-RTFM: Extends RTFM by incorporating video-level 
classification as a correction term to refine anomaly scores. This 
dual supervision improves both ranking and feature magnitude 
losses, effectively leveraging global video context.

• MTFL: Captures multi-timescale anomalies by extracting spatio-
temporal features over short, medium, and long tubelets (8, 
32, 64 frames) using a Video Swin Transformer. Features are 
fused through cross-attention, temporal convolutions, and self-
attention, producing anomaly scores using magnitude-based ob-
jectives.

These methods leverage the assumption that abnormal events ex-
hibit higher feature magnitudes. While this assumption holds in some 
cases, it can be limiting, especially in diverse datasets like XDV, where 
other factors besides anomalies can influence feature magnitude.

5.4. Background & normality

Another approach in WVAD leverages the prevalence of normal 
events. This is achieved by constructing a reliable normality refer-
ence or capitalizing on the background’s influence on decision-making. 
These two branches interconnect, as the background in anomalous 
videos often equates to spatial information devoid of anomalous events. 
While some methods focus solely on noise-free normal videos, others 
exploit the abundant normal events present, even in videos labelled as 
anomalous.

Background —. Those addressing the background-bias problem [30] 
treat the task as a two-class problem: foreground and background. 
MS-BS [275] and BSME [276] address the background bias prob-
lem by treating WVAD as a two-class problem: foreground and back-
ground. These methods employ a two-branch background suppression 
approach, incorporating a Multi-scale Temporal Convolution Module to 
handle anomaly events of various lengths.

Multi Scale Background Suppression (MSBS) [275] proposes a 
two-branch background suppression method based on [277], an ap-
proach for the Temporal Action Localization task. It incorporates the 
Multi-scale Temporal Convolution Module from RTFM [89] as the FM. 
The base branch assumes that the background is present in every input 
feature, thus forcing the top-K mean of foreground scores to be close 
to the video-level label and the background to be close to 1. In the 
suppression branch, the filter module weights the input features to 
the temporal convolution module. The foreground class behaves the 
same as in the base branch, but the top-K mean background scores 
are now moved close to 0. This forces the filter to modulate features 
and suppress background information as input to the FM. An additional 
normalization loss is applied to the filter module to constrain its 
polarized weights. Moreover, the ranking loss from MIR [21] is used.

Background Suppression Motion Enhanced (BSME) [276]
further explores the background bias and proposes a background-
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suppressed and motion-enhanced network. It adopts the same compo-
nents as RTFM [89], as the global and local temporal FM, to generate 3 
attention maps, weighting the anomaly scores into 3 different attention-
based sequences. More specifically, a background-suppressed sequence 
captures background information, a discriminative features sequence 
accounts only for semantically ambiguous segments in the foreground 
and background, and an enhanced motion focuses on salient motions in 
the foreground. The training is performed under the MIL scheme, and 
the cross-entropy loss targeting the scores is applied over the average 
of the top scores for each of the three branches. To further align feature 
representations of FM, the modified feature magnitude ranking loss 
from [89] is applied over the average score-selected top-K features for 
all 3 branches.
Normality —. While some methods directly address the background 
bias problem, exposing the background as a new class, others focus on 
establishing a robust representation of normality.

CLAWS [87] (Fig.  13) exploits the noise-free nature of normal 
videos by designing an alternative training data pipeline and self-
attention network to beneficially suppress all the normality, both 
feature- and score-wise. More precisely, input clip-level features are the 
basic unit to form a batch, inheriting video labels and are randomly 
selected as train input. Doing so neglects the need for additional 
Segmentation and possible detour of information. It also augments 
the number of normal exemplars to train on, complementing the 
self-attention suppression mechanism.

The proposed network comprises an MLP with 2 dense layers, with 2 
additional connections responsible for weighting intermediate features. 
It proposed Clustering as Supervision to guide the train by grouping the 
intermediate feature representations into two clusters using K-means 
clustering. A clustering loss brings the clip’s features in a normal batch 
closer to the centre and far apart in an abnormal batch. The mean 
square error with sparsity and temporal smoothness as MIR [21] forms 
the loss parts that guide the prediction. The result is a model that learns 
to minimize highlights in the attention map, so normal information in 
features is suppressed so that low scores are produced, which, in return, 
high values are considered anomalies. CLAWS+ [92] improves upon 
this approach by using a cluster compactness loss to reduce intra-cluster 
variation and 3DResNet [36] as an additional FE.

Cross Evaluation Learning (XEL) [90] addresses the imbalanced 
data issue in WVAD datasets by using a Hard Instance Bank (HIB) to 
collect the segments with the highest scores from normal videos and 
updating the HIB by reiterating all normal features through the network 
at each epoch end. Two loss functions are applied: a validation loss 
to penalize HIB scores and a dynamic margin loss to augment the gap 
between the maximum segment-level scores of anomalous bags and HIB 
scores.

Normality Guided MIL (NGMIL) [96] leverages a memory bank 
of compact normality prototypes, computed using all normal segments 
across normal videos, to generate an attention map based on the cosine 
similarity between each segment and the prototypes. By applying an 
inverse version of this map over the scores, high scores are attributed 
to abnormal temporal instances, refining the anomalous scores. The 
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Fig. 13. CLAWS [87,92] proposed method.
training uses a Normality Clustering Loss, which brings each instance 
in the negative bag closer to the normal prototypes, and a triplet loss 
on the top-K and bottom-K representations based on refined scores to 
enhance positive-bag inter-class separability.

URDMU [278] (Fig.  14) extends the concept of memory banks to 
modulate both normal and abnormal events. As the FM, URDMU adopts 
MHSA with a temporal mask and extends memory banks to dual units 
(normal/
abnormal), where attention-driven combinations explicitly regulate 
uncertainty: normal inputs anchor certainty in the normal bank while 
suppressing abnormal prototypes; anomalous inputs conversely activate 
abnormal prototypes (label 1 for topk) and partially disrupting normal 
patterns (label 1 for inverted topk). A triplet loss further sharpens this 
divergence. Taking knowledge from [89], that normal and abnormal 
features are in opposite levels of magnitude, it is further observed that 
normal features exhibit fluctuations due to noises coming from camera 
switching, subject changing, etc. [119]. To this intent, it adapted a 
Normal data Uncertainty Learning (NUL), by assuming normal pat-
terns follow a Gaussian distribution, learning both mean feature and 
uncertainty variance to generate a latent space of normal variance, 
helping with unknown normal cases, as well as augmenting abnormal 
robustness by enlarging the magnitude distance of its mean in the 
normal latent space.

BNDFM [279] (Fig.  15) leverages the mean vector of the BatchNorm 
layer as a strong statistical reference of normality to introduce the 
Divergence of Feature from Mean (DFM) as a novel anomaly metric. 
DFM is calculated as the Mahalanobis distance [280] between features 
of hidden space and the normality prototype. As most of the seg-
ments within a batch are normal, the mean vector inevitably captures 
the feature distribution of normality. As a result, characteristics from 
abnormal segments will diverge from the mean vector, enabling the 
formulation of DFM as an efficient selection metric. The notion of the 
batch is further explored by adopting Sample-Batch Selection (SBS), 
batch-wise for abnormal segments and video-wise for normal instances, 
with the number of selected segments regulated according to the ab-
normal length distributions of each dataset. This approach enlarges 
the abnormal selection pool to contain all abnormal videos within a 
batch while maintaining modularity and coherence with the dataset. 
The same structure as URDMU [278] is used for the global and temporal 
FM, and the BatchNorm incorporates the Conv-based regressor in its 
intermediate layers. During optimization, the mean vector is an anchor 
for a triplet loss, encouraging the divergence of the top-K-selected 
abnormal segments and pulling the top-K normal segments closer to 
their anchor. Since the Score Head trains on certain normal data, it 
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eliminates label noise from abnormal videos. It enables segment-level 
score supervision by minimizing the magnitude of all normal scores 
within each batch. During inference, the Score Head predictions are 
enhanced with the DFM metric to form the anomaly scores, which have 
been proved to exhibit increased robustness to label noise since they are 
acquired in dense feature space. Considering both test sets, a detailed 
ablation study proved the complementary nature of the DFM metric and 
the triplet loss in yielding a discriminative hidden space. Audio features 
were concatenated for the XDV dataset, leaving room for further study.

Pro Discriminability VAD (ProDisc-VAD) [281] in an excep-
tional parameter efficiency method combines two novel components 
for CLIP’s feature discriminability. The Prototype Interaction Layer 
(PIL) models normality using a small set of learnable prototypes, which 
interact with video features via attention to establish a robust normality 
baseline while preventing dominance by normal data. The Pseudo-
Instance Discriminative Enhancement (PIDE) loss enhances feature 
separability by applying supervised contrastive learning exclusively 
to extreme-scoring segments (rgmax/argmin anomalies/normal), lever-
aging reliable pseudo-labels to mitigate noise. The total loss also 
integrates the video-level classification MIL loss for weak supervision, 
optimizing discriminative feature learning. Remarkably, ProDisc-VAD 
achieves competitive results on ShanghaiTech (ST) and UCFC using 
only 0.4M parameters — over 800× fewer than ViT-based methods 
like VadCLIP — while maintaining a lightweight model size (1.7 
MB) and fast inference (0.0009s per video). This efficiency stems 
from its focused design, avoiding complex architectures while syner-
gizing prototype-driven normality modelling and targeted contrastive 
learning, making it a practical solution for real-world surveillance 
applications.

Table  7 summarizes the works exploring Background and Normal-
ity.

Key Points of Background and Normality Methods: These meth-
ods highlight the importance of addressing background bias and mod-
elling normality in VAD.

• MSBS: Employs a two-branch architecture with a filter module to 
suppress background information.

• BSME: Utilizes a three-branch network to separate background, 
discriminative features, and motion information.

• CLAWS and CLAWS+: Introduce Random Batch Selector as a 
novel training pipeline and clustering-based supervision to sup-
press normal features and scores.

• XEL: Employs a hard instance bank to refine normal event repre-
sentation with a Validation loss and uses a dynamic margin loss 
to separate normal and abnormal scores.
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Fig. 14. URDMU [278] proposed method.
Fig. 15. BNDFM [279] proposed method.
Table 7
Summary of methods that explore Background and Normality.
 Method FE FM MIL SS LT Metrics

 FL SL UCFC XDV  
 MSBS I3D PCD+NL& 

Filter Module
3 Top-K 

Scores
3 3 83.53 7  

 BSME I3D PCD+NL 
& Conv1D

3 Top-K 
Scores

3 3 83.63 7  

 XEL C3D 7 3 7 3 3 82.60 7  
 CLAWS C3D 

3DRN
7 7 Batch 

Scores
3 3 80.94 

81.27
7  

 CLAWS+ C3D 
3DRN

7 7 K-Means 3 3 83.37/–/0.11 
84.16/–/0.09

7  

 NGMIL C3D 
I3D

7 3 Top-K 
Scores

3 3 83.43 
85.63

75.91 
78.51

 

 URDMU I3D 
(+VGG)

MHSA 3 Top-K Scores & 
Mem. Scores

3 3 86.97/–/1.05 81.66/–/0.65 
81.77

 

 BNDFM I3D
(+VGG)

Conv1D 
& MHSA

3 Top-K DFM 3 3 87.24/71.71/– 84.93/85.45/–
85.26

 

 ProDisc-VAD CLIP Prototype 
Att

3 Max&Min 3 3 87.12 7  

FE: Feature Extractor; FM: Feature Modulator; SS: Segment Selection; LT: Loss Target; FL: Feature-Level; SL: Score-Level.
20 
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• NGMIL: Leverages a memory bank of normality prototypes and a 
normality-guided Top-K SS strategy. Employs Clustering, Triplet 
and Ranking Loss, targeting both scores and features.

• URDMU: Utilizes memory modules to modulate both normal 
and abnormal events and incorporates normal data uncertainty 
learning.

• BNDFM: Introduces the DFM metric based on the BatchNorm 
layer’s mean vector and employs dynamic SS guided by a triplet 
loss.

• ProDisc-VAD: Combines a Prototype Interaction Layer (PIL) and 
a Pseudo-Instance Discriminative Enhancement (PIDE) loss to 
enhance feature space discriminability of both Score Head and 
Feature Modulator.

The exploration of background bias and normality modelling has 
led to diverse approaches, ranging from background suppression to 
memory-based normality representation. Although memory modules 
are expensive and prone to weak generalizability.

On the other hand, those who shine leverage inner network em-
beddings and batch-level processing to model normality and detect 
anomalies. BNDFM introduces the novel DFM anomaly metric based 
on BatchNorm statistics, while CLAWS learns to suppress normal in-
formation within the feature embedding space. Both methods employ 
pair-based loss functions and highlight the potential of batch-level anal-
ysis for anomaly detection. Notably, BNDFM’s SBS strategy overcomes 
limitations of traditional static SS methods.

5.5. 2-Stage & label noise

Another group of methods employs a two-stage training scheme to 
directly address the limitations of weak supervision and the unreliabil-
ity of scores to guide selection in early epochs. These methods generate 
confident pseudo labels in the first stage, enabling training with re-
duced label noise in the second stage. Despite explicitly employing 
pseudo-label generation, these methods can still mine various forms of 
AC.

GCLNC [84] treats WVAD as a supervised learning task under 
one-sided label noise and proposes a two-branch Graph Convolutional 
Network (GCN), leveraging feature similarity and temporal consistency 
of input features to clean label noise for iterative model training. 
Both C3D [24] architecture, pre-trained on the Sports-1M [25], and 
Temporal Segment Network (TSN) [34,35], pre-trained on Kinetics-
400 [33] are used a FE. However, training both a GCN and MIL is 
computationally expensive and progresses slowly.

A Self-Reasoning Framework (SRF) is proposed by [86], followed 
the noisy labelling stated in [84] and further using a K-means clustering 
algorithm to generate binary pseudo-labels to aid the training of a 
regression network, supervised by clustering distance and cross-entropy 
losses.

Multiple Instance Self-Training (MIST) [88] adopts the Segmen-
tation strategy of TCA [95] and trains a similar model as MIR [21] 
in the first stage. Then, under the supervision of generated anomalous 
pseudo-labels, a self-attention module and an additional Score Head are 
trained to minimize the cross-entropy loss function.

CAVAD [91] leverages the dominance of normalcy in WVAD and 
assumes the classifier’s reliability in learning normal features. In the 
first stage, a temporal Graph Convolution Network captures the tem-
poral context of input features. It generates a fused attention-weighted 
feature to update parameters in both the CA module and classifier 
with only video-level labels. In the second stage, similar to GANs, the 
attention block is fine-tuned to recognize more anomalous segments 
using video-level features based on the inverted attention map, trick-
ing the classifier into predicting normal videos. Attention consistency 
loss aligns attention weights with classifier segment scores, removing 
misclassified normal segments. The two loss functions are executed 
alternately using two optimizers to update different parameters in 
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each training iteration, first training the whole network, including the 
contrastive attention module and classifier with video-level features 
and labels, and then using the converted video-level features to refine 
the attention module through the classifier.

In a Self-Training MSL, [94] (Fig.  16) introduced a sequence se-
lection strategy by changing the [21] ranking objective to choose the 
sequence with the highest mean of anomaly scores.

In the first stage, video-level labels are used as initial snippet-level 
pseudo-labels to select sequences, and the model is optimized through 
the hinge-based MSL ranking loss. In the second stage, scores are 
directly used to select sequences, and the model is further optimized. 
The two-stage self-training strategy starts from a sequence length equal 
to the number of input segments. It gradually reduces the length by 
half to progressively improve its ability to detect anomalies at a finer 
granularity. MSL proposes a MHSA with a DepthWise Separable 1D 
Convolution (DW Conv1D) [52] as the linear projection, serving as 
the building blocks for both the FM and score head. As the FE is 
used as the transformer-based backbone, VSwin [113] is pre-trained on 
Kinetics-400 [33].

The work of [282] proposes a self-guiding MIR-based method (SG-
MIR), clustering abnormal bags into two using the K-means algorithm. 
The cluster module generates pseudo-labels based on their relative 
distance to the cluster centre, guiding the training of a bidirectional 
Recurrent Neural Network (RNN) regression module. A clustering loss 
is introduced to optimize the feature module, encouraging negative 
bag clustering centres to be close while keeping the boundary between 
clusters in positive bags distinct.

In a Completeness and Uncertainty Network (CUN) [283], it is 
explored the pseudo-labels generation process of MIST and MSL, to 
conclude it ignores both completeness of abnormal events, as positive 
bag may contain multiple abnormal clips, and the uncertainty of gener-
ated pseudo labels in the second stage, leading to a gradually deviating 
self-training process guided by noisy pseudo labels. To this end, in 
the first stage to tackle completeness, a parallel multi-regression head 
network is trained under MIL scheme with ranking loss with a ranking 
loss and a diversity loss, which minimizes the cosine similarity of the 
distribution between any two heads to enforce the predicted score to be 
distinct from each other. In the second stage, an uncertainty estimation 
leveraging Monte Carlo Dropout [284] is used to discard low-confident 
samples as pseudo-segment-level labels in optimizing the regressor.

An Unbiased-MIL (UMIL) framework is proposed in [195], where 
VAD is streamlined through an end-to-end process that involves fine-
tuning the FE and regressor training. Leveraging a random augmented 
sample selection method, UMIL deals with videos in their raw frame 
format, which allows for the incorporation of self-training via data 
augmentation from FixMatch [285]. In the first stage, the classifier 
builds on the fine-tuned X-CLIP-B/32 model [286] from Kinectics-
400 [33], is pre-trained using only video-level labels under the MIL 
scheme. A prediction history for each snippet informs the formation of a 
confidence set. Any remaining snippets form an ambiguous set, further 
divided into two clusters using a pairwise-trained cluster head. These 
clusters guide the final classifier in optimizing anomaly prediction. 
Extensive ablation studies were conducted on both UCFC and TAD 
datasets, focusing on abnormal class-wise metrics as introduced by the 
authors in [111].

In a Long-Short Temporal Co-Teaching (LSTC) framework, [97] 
employs two tubeless-based spatiotemporal Transformer networks to 
learn from short and long-term clips, mining both fine-grained spa-
tial features and global temporal dependencies. Tubelets, or patch 
clips, are embedded as tokens, passed through multiple Transformer 
layers, and a regression layer to predict anomaly scores for input 
clips. The co-teaching strategy [287] is introduced to enhance both 
networks’ training while being more robust to label noise compared 
to self-training strategies [84,88,94]. In the first round, the short-term 
network takes short clip sequence features to generate pseudo labels by 
training under the supervision of the MIL ranking loss. The long-term 
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Fig. 16. Self-Training MSL [94] proposed method.
Table 8
A summary of works that employ a 2-stage approach.
 Method FE FM MIL LT Metrics

 FL SL UCFC XDV  
 GCLNC TSN Graph 

Conv
3 7 3 82.12 7  

 SRF C3D 7 3 3 3 79.54/–/0.13 7  
 MIST C3D 

I3D
SA 3 7 3 81.40/–/2.19

82.30/–/0.13
7  

 CA I3D Graph 
Conv

7 7 3 84.62 79.60  

 MSL I3D 
VSWIN

Conv 
MHSA

3 7 3 85.30
85.62

78.28
78.59

 

 SGMIR I3D Dense 
MLP

3 3 3 81.70 7  

 CUN I3D 
(+VGGish)

7 3 7 3 86.22 78.74
81.43

 

 UMIL X-CLIP 7 3 3 3 86.75/68.68/– 7  
 LSTC C3D 

I3D
MHSA 3 7 3 83.47

85.88
7  

FE: Feature Extractor; FM: Feature Modulator; LT: Loss Target; FL: Feature-Level; SL: Score-Level.
network takes the pseudo labels for supervision, adding a cross-entropy 
loss into the backward pass adjustment process.

Table  8 summarizes works that employ a 2-stage approach.
Key Points of Two-Stage and Label Noise Mitigation Methods:

By employing two-stage training schemes, these methods address the 
limitations of weak supervision and label noise in WVAD.

• GCLNC: Uses a graph convolutional network to refine noisy 
pseudo-labels.

• SRF: Generates binary pseudo-labels via clustering.
• MIST: Fine-tunes a self-attention module using pseudo-labels.
• CAVAD: Employs a two-stage adversarial approach to emphasize 
anomalous attention regions.

• MSL: Introduces a self-training strategy on sequences with a 
convolutional Transformer encoder.
22 
• SGMIR: Extends MIL ranking with a self-guiding clustering loss.
• CUN: Tackles incompleteness and uncertainty in pseudo-labels 
using multi-head prediction and Monte Carlo dropout.

• UMIL: Develops an unbiased end-to-end approach with random 
augmented sampling and cluster-based self-training.

• LSTC: Uses two Transformer networks for short and long-range 
clips with a co-teaching strategy for robustness to label noise.

These methods showcase various techniques for generating and 
refining pseudo-labels, including clustering, self-attention, adversarial 
training, and uncertainty estimation. The two-stage paradigm, with 
its initial pseudo-labelling followed by semi-supervised training, has 
proven effective in mitigating label noise and improving anomaly de-
tection performance. Although, the overall process requires additional 
and often complex steps in the training scheme.
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5.6. Anomaly suppression & erasure & salience

Another line of thought emphasizes extracting and analysing salient 
features to improve anomaly detection. These methods often incorpo-
rate an erasure process, which paradoxically involves removing the 
most anomalous segments or features identified during the initial se-
lection process. The rationale behind this approach is that the network 
must focus on less conspicuous regions of the input features by delet-
ing the most obvious anomalies. This may reveal subtler anomalies 
initially overshadowed by more prominent ones, leading to a more 
comprehensive understanding of the video content.
Suppression —. The Segment Anomaly Attention (SAA) [288] shifts at-
tention from obvious to subtle anomalies, blending components from 
RTFM [89] for feature modulation with a convolutional MLP to gen-
erate a soft, segment-level attention sequence. During the SS process, 
the attention sequence is leveraged to provide a threshold to suppress 
the most attentive parts, both raw scores and attention-weighted ver-
sions. The approach employs Multi-Branch Supervision (MBS), which 
uses extended video labels to supervise the original and suppressed 
versions. It implements constraints on video-level supervision (using 
Binary Cross Entropy (BCE) loss overall score versions) and the at-
tention mechanism. For the latter, the distribution of the anomalous 
attention is encouraged to align with the final anomalous scores. The 
attention sequence is minimized for normal videos, while a threshold 
step adjusts the similarity between the attention and score sequences 
for anomalous videos. After reaching the threshold, the similarity is 
calculated against a binary version of the scores. This adjustment allows 
the model to gradually shift its attention from obvious anomalies to less 
obvious ones throughout training. A normalization loss is introduced to 
account for the sparsity of video anomalies. This drives the model to 
pay more attention to the few anomalous segments in a video, rather 
than spreading its attention evenly across all segments.

SAA stands out for its significant impact on the performance of 
the XDV dataset compared to UCFC. It handles long anomalous events 
and fast movements/actions, outperforming URDMU [278]. Its method 
of co-interacting segment attention and scores during inference aligns 
with the conclusions of [94,274,279]. Despite its reliance on the ac-
curacy of regressor predictions and its primary focus on scores in 
its loss function, SAA still offers room for potential improvements in 
supervising the embedding space. The method also leverages audio sig-
nals, enhancing performance in scenes without visual cues for anomaly 
detection. However, careful consideration is needed due to the potential 
for noise introduction.
Erasure —. In a DEN [289] (Fig.  17) presents a dynamic erasing 
process to mitigate potential biases in selecting anomalous segments in 
MIL-based methods, accounting for large variability within abnormal 
videos. The method utilizes a multiscale temporal modelling module 
(MSTM) as their FM to identify events of varying durations. This 
module, inspired by RTFM [89,290], uses multiple 1D convolutional 
layers with different strides and kernel sizes, along with a positional 
matrix, to learn multiscale global-aware local representations.

DEN’s dynamic erasing strategy is guided by a proposed complete-
ness metric. This metric measures the completeness of detection based 
on the segment similarity of an abnormal video and the sum of all 
normal videos in a batch. The segment-level features with the highest 
and lowest anomaly scores are selected to calculate the similarity in 
each video. If the calculated completeness is larger than zero, the 
video is considered to contain no further abnormal segments, and the 
erasure operation is not performed. Otherwise, prominent abnormal 
segments are erased. The erased features are treated as augmented 
abnormal video features and re-integrated into the network, compelling 
the model to extend its anomaly detection beyond the most prominent 
segments.

The loss function of DEN includes the hinge-based MIL ranking 
loss to encourage higher anomaly scores in anomalous video segments 
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than in normal ones. Additionally, a local variation term is included 
to favour a larger feature-wise variation in abnormal videos compared 
to normal ones. The overall loss function balances the unerased and 
erased loss with hyperparameters. Compared to SAA, whose suppress 
mechanism targets scores, the erasure is applied directly to features and 
processed again by the model.

While DEN’s dynamic erasing strategy improves the completeness of 
detected anomalies, selecting features for calculating similarity is based 
on regressor scores, which may not be entirely accurate, and the erasure 
threshold is a constant. Nevertheless, the method achieves competitive 
performance on both UCFC and XDV datasets while proving to be 
a more robust suppression mechanism than SAA. The proposed FM 
showed better performance than the widely used PDC and NL from 
RTFM, with no parameters count or gflops/macs given.

It also incorporates audio representations, yielding a more signif-
icant impact than SAA. However, as the audio representations are 
merely concatenated, the method may not fully leverage the potential 
benefits of this additional modality.
Salience —. Another particular work focuses on extracting salient fea-
tures efficiently, relying solely on the video labels to guide anomaly 
detection through a mechanism of ANMIL [291]. It investigated the 
impact of the FM on capturing the temporal relationships of features 
by randomly rearranging the temporal indexes of input features, using 
both MIR [21] and RTFM [89] methods as a baseline. The results 
indicated that capturing the temporal order between segments does not 
contribute to the accuracy of the anomaly detector. The observation led 
the authors to hypothesize that networks have a mechanism that can 
extract salient features over the entire feature map.

Building on this insight, ANMIL extends the network design from 
CLAWS [87,92] by incorporating a lightweight network with a self-
attention mechanism, vastly reducing the parameter count to 1.3% 
compared to RTFM. This mechanism aggregates spatial features over 
the temporal dimension, enabling it to handle variable-length inputs 
and making it apt for real-time applications. In contrast to CLAWS, 
which is trained to suppress features belonging to normal data, ANMIL’s 
attention maps are trained to produce strong video representations by 
emphasizing salient features over the entire feature map. Fig.  18 depicts 
the proposed network.

For the XDV dataset, ANMIL employs a bidirectional LSTM (bd-
LSTM) to obtain compact input features since the original network 
underperformed for both modalities. The results obtained with this 
framework provide insights into the role of temporal modulation in 
various approaches, particularly regarding the benefit of global mod-
elling across the whole segmented video. Even if the loss only targets 
video classification during optimization, good results were attained, 
especially on XDV, hinting once more for its power [274].

Comparatively, both SAA and ANMIL proposed networks can be 
viewed as extensions of the self-attention mechanism introduced in 
CLAWS, but applied to different anomaly criteria. While CLAWS sup-
presses normality, SAA shifts attention from the most obvious anoma-
lies to less conspicuous ones, and ANMIL enhances the salience of video 
representations. Both CLAWS and ANMIL cleverly utilize only the video 
labels during training. CLAWS expands normal exemplars via its Ran-
dom Batch Selector, while ANMIL focuses on creating strong video-level 
representations. However, CLAWS could benefit from integrating an 
erasure process similar to that in DEN to suppress normal information 
on abnormal videos better.

Table  9 summarizes the identified works.
Key Points of Anomaly Suppression, Erasure, and Salience 

Methods: These methods emphasize the importance of extracting and 
analysing salient features for anomaly detection.

• SAA: Employs a suppression strategy based on a learned atten-
tion sequence, gradually shifting attention from obvious to less 
conspicuous anomalies.
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Fig. 17. DEN [289] proposed framework.
Table 9
Summary of works that focus on Anomaly Suppression, Erasure, and Salience.
 Method FE FM MIL SS LT Metrics

 FL SL UCFC XDV  
 ANMIL I3D 7 7 7 7 7 82.99 84.91  
 SAA I3D

(+VGGish)
PDC+NL 3 7 7 3 86.19/68.77 83.59/84.19

84.23
 

 DEN I3D 
(+VGGish)

MSTM 3 7 3 3 86.33 81.66 
83.13

 

FE: Feature Extractor; FM: Feature Modulator; SS: Segment Selection; LT: Loss Target; FL: Feature-Level; SL: Score-Level.
Fig. 18. ANMIL [291] proposed network.

• DEN: Introduces a dynamic erasing process guided by a complete-
ness metric, forcing the model to attend to subtler anomalies.

• ANMIL: Leverages a self-attention mechanism to enhance the 
salience of video representations, relying solely on video labels 
for training.

These methods offer practical and easy-to-implement solutions, 
highlighting the potential of erasure and salience as anomaly criteria. 
They provide unique insights into the role of attention mechanisms 
and feature modulation in detecting prominent and subtle anomalies. 
Notably, SAA and DEN demonstrate the effectiveness of incorporating 
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audio information, while ANMIL showcases the power of lightweight, 
self-attention-based architectures for efficient anomaly detection. Fur-
ther research in this area could explore more sophisticated erasure and 
suppression strategies, the integration of multi-modal information, and 
the alignment of hidden feature representations with output anomaly 
scores.

5.7. Multi-modal

In a Multi-modal setup, different approaches explored ways of 
combining visual, audio, and sometimes language data to optimize 
detection performance. Some methods focus solely on multi-modal 
data, while others focus on a specific dataset, such as the XDV dataset, 
with little attention given to fusion methods.

5.7.1. Vision–audio
Holistic-Localized Network (HLN) [22] proposes a three-branch 

graph convolutional network (GCN) formed by a holistic branch captur-
ing long-range dependencies, a localized branch modelling short-range 
interactions, and a dynamic score branch. A Holistic and Localized 
Cue (HLC) approximator is introduced to enable online inference. The 
dynamic score branch computes a weighted sum of features based 
on predicted scores, while the HLC approximator uses previous video 
segments to generate predictions guided by HLN. The concatenated 
representations are projected to the label space, and the average of 
top-K selected scores is input to the BCE function, denoted as a video 
classification loss. The overall cost includes a KD loss to encourage 
the HLC to approximate the HLN output. It also introduced the XDV 
dataset, whose audio features were extracted using a pre-trained VGG, 
and video features with I3D. All the following works rely on those as 
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input features. The authors also released I3D features for UCFC, which 
enable standardized ablation studies.

Audio-Visual Fusion (AVF) [292] explores three ways to combine 
audio and visual signals. An attention module comprises co-attention 
and two self-attention mechanisms to extract multi-modal and uni-
modal dependencies. These dependencies are further concatenated to 
form enhanced visual and audio features. A fusion module is proposed, 
which applies an element-wise product between enhanced features, 
followed by power normalization. It is noted that using the L2-norm 
destroys the correlation between generated features at each time step, 
thus not recommended. An additional mutual learning module per-
forms self-attention only over input visual features. An MSE loss is 
applied over top-K scores with video labels to optimize Fusion and 
Mutual Learning modules. To align the output from both modules, the 
whole sequence is used into an MSE loss, thus prioritizing the visual 
information.

Cross-Modal Awareness-Local Arousal (CMALA) [293] proposes 
a multi-modal fusion mechanism to enhance visual information by 
computing cross-attention regarding audio. Modalities are temporally 
aligned by adding a self-adaptive position before the global attention 
map without affecting the original feature distribution. Such a mech-
anism enables the capture of local context while suppressing channel 
redundancy due to the properties of a Gaussian-like kernel function. 
It is both lightweight and flexible for variable-length videos, taking in-
spiration from [294], an audiovisual synchronization work. A temporal 
causal convolution layer with a kernel size equal to 7 is used as the 
Regressor network. During training, video labels and top-K scores are 
used to calculate the loss of the BCE.

Modality-Aware Contrastive Instance Learning with Self-
Distillation (MACILSD) [295] (Fig.  19) proposes a novel approach 
to tackle the challenge of audio–visual asynchrony and semantic mis-
match in multi-modal data. By leveraging a two-stream architecture, 
the model processes visual features through a self-attention block, while 
cross-modality attention handles audio–visual features. An additional 
dense layer on both streams functions as the regressor. The SS creates 
positive and negative pairs of embeddings for both modalities to be 
input into the InfoNCE loss function [296]. The underlying strategy 
clusters each input into violent or normal background representations, 
basing its selection upon visual and audio scores, with bottom-K 
representing the background present at all times. In contrast, the video-
level score moderates if a certain video in a batch will be regarded 
as abnormal or normal. The video-level score is the average sum of 
top audio/visual logits. While the abnormal selection is represented by 
the average of the selected 𝐾 features, the negative elements (normal 
and background) encompass the full selected 𝐾 features. This approach 
aligns with the argument that audio and visual abnormal instances with 
diverse positions could be semantically mismatched, such as express-
ing the beginning and ending of an abnormal event. By conducting 
average pooling only on the abnormal embeddings, MACILSD ensures 
that audio and visual representations express event-level semantics, 
alleviating the noise issue. The overall function is optimized to bring 
abnormal pairs closer together and push normal/background pairs 
further apart. Furthermore, having both stream networks with similar 
architectures enables the infusing of parameters from the visual into 
the audiovisual network via an exponential moving average strat-
egy [297]. Self-distillation transfers knowledge from the visual module 
to the audio–visual module, thereby ensuring modality noise reduction 
and robust modality-agnostic knowledge. The lightweight solution has 
0.347M (two-stream net) and 0.678M (MACIL and SD) parameters.

Multimodal Supervise-Attention Enhanced Fusion (MSAF) [298] 
proposes a MIL-based regressor [21] to aid the train of the multi-modal 
attention module, which is supervised by a segment-level BCE loss. 
Unimodal features undergo self-attention and cross-attention before 
being combined with their concatenated version through a Hadamard 
product. The 3 tensors are concatenated and then scored using a 
cascade of MLPs to predict anomaly scores. During training, a binary 
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cross-entropy calculate the error between pseudo-segment-level labels 
and predictions. The MLP supervisor is trained to enlarge, for both 
modalities, the margin between top-K scores in different bags, while 
anomaly features from different modalities are constrained to converge. 
On top of this, the cross-attended multi-modal feature calculates atten-
tion loss with pseudo-clip-level labels directly. An over-designed and 
unreliable supervision scheme with shallow performance.

HyperVD [299] (Fig.  20) addresses the limitation in existing graph 
representation-based methods [22,84] which learn in the Euclidean 
space, despite graph-like data’s propensity for a non-Euclidean latent 
structure [300,301].

It proposes projecting features directly into hyperbolic geometry via 
the Lorentz model [302], to then reuse a two-branch graph convolu-
tional network as FM, akin to HLN [22], for learning temporal relations 
and feature similarity. This approach better captures subtle semantic 
nuances often overlooked in the Euclidean space. Further, HyperVD 
explores various fusion methods to assert the modality’s dimensions, 
named detour fusion, which employs a 1D convolution MLP to match 
the dimension of RGB features with audio, inherently prioritizing visual 
information contribution to the network.

Multi Temporal Dynamic Aggregation (MTDA) [303] models 
global and local temporal relations using Multi-Head Attention (MHA), 
two inflated 1D convolutions with different expansion rates PDC, and 
channel-wise shifting [107] in a three-branch method. Concatenated 
features are added through a residual connection over original audio-
visual concatenated features, and an MLP regressor is supervised using 
BCE over top-K mean scores at the video level. The combination of 
various temporal enhancements is shown to complement each other. 
Notably, the combination of MHA and PDC is highlighted as a key 
component in the network’s performance. It is also noted that 2 heads 
in MHA is enough to modulate global relationships.

Multi-scale Bottleneck Transformer (MSBT) in [304], inspired 
by multimodal bottleneck transformer (MBT) [305], integrates three 
modalities (RGB, optical-flow, audio), where each independently en-
coded modality shares transformers to generate contextualized em-
beddings. The MSBT addresses information redundancy and modal-
ity imbalance via hierarchical cross-modal fusion: bottleneck tokens 
iteratively condense information across layers, transmitting features 
between modality pairs through cross-attention. This asymmetric fusion 
ensures focused interaction, while a weighting mechanism prioritizes 
informative fused features using learned bottleneck token relevance. 
To resolve temporal asynchrony and to take inspiration from [295], 
a Temporal Consistency Contrast (TCC) loss, based cosine similar-
ity, aligns fused features from different modalities at corresponding 
timesteps, contrasting them with temporally mismatched pairs. The 
training combines video-level classification loss with the TCC loss 
for joint optimization—a global transformer aggregates multimodal 
context before the final prediction.

In a Audio–Visual Collaborative Learning (AVCL) [306] ad-
dresses ambiguity by combining audio mutations and visual robustness 
through two core modules, The Audio–Visual Hard-case Separation 
(AVHS) module identifies ambiguous boundary regions by detecting 
abrupt audio score variations (via thresholded temporal differences) 
and refines them using visual consistency checks to filter false pos-
itives. The Multi-modal Mutual Learning (MML) module establishes 
bidirectional knowledge transfer via Kullback–Leibler divergence be-
tween single-modal (visual/audio) and fused multi-modal branches, 
mitigating modality-specific noise. The architecture employs Graph 
Convolutional Networks (GCN) to model intra-/inter-modality rela-
tionships, constructing cross-modality graphs where nodes represent 
visual/audio snippets and edges encode local/global dependencies. 
Optimization combines video classification loss, AVHS margin loss, and 
MML divergence loss, balanced by trade-off weights, to maximize inter-
class separation. When integrated as a plug-in module with MACIL-Self 
Distillation [295], AVCL enhances anomaly localization by resolving 
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Fig. 19. MACILSD [295] proposed method.
Fig. 20. HyperVD [299] proposed method.
Table 10
Summary of audio–visual works.
 Method FUSE FM MIL SS LT Metrics

 E M L FL SL UCFC XDV  
 HLN Concat 7 7 Graph Conv 7 Mean 

Top-K
7 3 82.44 78.64  

 AVF 7 Concat 
& Product

7 Aud/Vis SAtt 
& XMod Att 
& Vis SAtt

7 Mean 
Top-K

7 3 7 81.69  

 CMALA 7 Att 7 XMod Att 7 Mean 
Top-K

7 3 7 83.54  

 MACILSD 7 Att Concat Vis Att+ 
XMod Att

3 Aud/Vis 
Bot-K/Top-K

3 3 7 83.40  

 MSAF Concat Att 
Concat

7 Aud/Vis SAtt 
& XMod Att

3 Aud/Vis 
Top-K

7 3 7 80.51  

 HyperVD Concat 7 7 Hyperbolic 
GraphConv

7 Mean 
Top-K

7 3 7 85.67  

 MTDA Concat Sum 7 MHSA 
+PDC 
+TempShift

7 Mean 
Top-K

7 3 7 84.44  

 MSBT 7 Att & SA 
Concat

SA MBT 3 Mean 
Top-K

3 3 7 82.54 
84.32 
(+flow)

 

 AVCL 7 Graph 7 GCN 3 Max&Min 3 3 7 81.11 
83.98 (+SD)

 

FE: Feature Extractor; FUSE: Early Mid Late; Concatenation Summation Attention; SAtt: Self-Attention; XMod: Cross-modality; FM: Feature Modulator; SS: Segment Selection; LT: 
Loss Target; FL: Feature-Level; SL: Score-Level.
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transient edge cases, synergizing audio–visual cues, showing promises 
in scenarios with subtle boundary transitions.

Table  10 summarizes the various approaches to audio–visual fusion 
and anomaly detection.

Key Points of Audio–Visual Methods: These methods explore the 
integration of audio and visual information for anomaly detection, 
highlighting the importance of effective fusion strategies and temporal 
modelling.

• HLN: Introduces a three-branch GCN architecture and a KD ap-
proach for online inference. Despite its instance-level learning, it 
can be viewed as a deviation from traditional MIL due to its use 
of average top-K scores and a video-level BCE loss.

• AVF: Explores various fusion methods, including element-wise 
product and power normalization, and employs a mutual learning 
module to enhance visual features.

• CMALA: Proposes a lightweight cross-attention mechanism to 
fuse audio and visual information, emphasizing local context and 
temporal alignment.

• MACILSD: Addresses audio–visual asynchrony and semantic mis-
match using contrastive learning with the InfoNCE loss and incor-
porates self-distillation for knowledge transfer.

• MSAF: Utilizes a multi-modal attention module supervised by 
segment-level BCE loss and a MIL-based regressor to guide train-
ing.

• HyperVD: Projects features into hyperbolic geometry to capture 
subtle semantic nuances, and explores detour fusion to align 
modality dimensions.

• MTDA: Models global and local temporal relations using a com-
bination of multi-head attention, dilated convolutions, and tem-
poral shifting.

• MSBT: Uses a multimodal transformer integrating RGB, optical 
flow, and audio via shared encoders and hierarchical bottleneck-
based cross-modal fusion to reduce redundancy and address bal-
anced modality contributions, while enforcing temporal align-
ment of features across modalities via contrastive loss (TCC).

• AVCL: pioneers audio-guided boundary refinement, leveraging 
abrupt audio shifts to pinpoint ambiguous anomaly transitions 
and cross-validating them with visual consistency, while bidirec-
tional modality distillation (via mutual KL divergence) resolves 
noise-induced conflicts.

The choice of fusion strategy, temporal modelling techniques, and 
loss formulation significantly impacts performance. MACILSD stands 
out for effectively handling asynchrony and semantic mismatch, while 
CMALA offers a lightweight and efficient approach. However, the field 
faces challenges in evaluating the full XDV dataset, potentially obscur-
ing performance on specific anomaly types. Future research should pri-
oritize exploring alternative audio backbones, refining fusion strategies, 
and evaluating performance on anomaly-only subsets to gain a more 
in-depth understanding of audio–visual anomaly detection capabilities.

5.7.2. Vision-Language
Integrating Vision–Language models into WVAD opens up exciting 

avenues for research. These models enrich the discriminatory fea-
ture space by exploiting semantic relationships between vision and 
language, enabling a more in-depth understanding of video content. 
Several innovative methods have emerged, each presenting unique 
strategies and mechanisms. Those using CLIP-based methods as feature 
sources always leveraged the ViT-B/16 backbone from [122].

CLIP Temporal Self-Attention (CLIP-TSA) [194] introduces the 
CLIP model [122] with a ViT backbone, into WVAD. This FE captures 
visual features from each clip’s middle frame. Both temporal FM and 
optimization functions are the same, used per RTFM [89]. The key 
innovation is the Temporal Self-Attention (TSA), inspired by [307], 
which comprises three modules: the temporal scorer network, the top-
K score nominator, and the fusion process. First, the temporal scorer 
27 
network, a 2-layer MLP, transforms input features into a score sequence 
that is further cloned M times and perturbed through Gaussian noise. 
This process enables the creation of an empirical mean, forming the 
basis for the later calculation of the expectation error. Next, the top-K 
selected indices from each clone perturbed score are one-hot encoded 
and further averaged to produce a stack of 𝐾 soft vectors. Finally, 
from the element-wise multiplication over the vanilla feature results, 
a stack of 𝐾 perturbed feature vectors is independently summed up to 
form the input to FM. The gradient expectation is calculated during the 
backwards pass, and the network is encouraged to focus on segments 
with the highest scores. Even if the attention mask over input features 
effectively discards a small portion of information and guides the 
network towards a more accurate selection, it does so based on the 
video-level feature magnitude criterion.

Text-empowered VAD (TeVAD) [308] enhances the RTFM [89] 
FM to incorporate textual information, capturing both long and short-
range temporal dependencies between visual and text features. Unlike 
CLIP-TSA and UMIL, which primarily focus on visual features, TeVAD 
explicitly leverages the semantic relationships between vision and lan-
guage. It utilizes SwinBERT [309], a video captioning model pre-
trained on the VATEX [310] dataset, to generate textual descriptions 
for each video clip. TeVAD aims to improve anomaly detection by 
capturing a richer understanding of the video content by processing 
visual and text features through a similar temporal modelling pipeline. 
During training, the video classification loss from RTFM is applied to 
both the enhanced visual and textual features, as well as the final 
anomaly scores.

Prompt-Enhanced Learning for VAD (PEL4VAD) [39] presents an 
innovative three-component method consisting of a Temporal Context 
Aggregation module, Prompt-Enhanced Learning (PEL), and a score 
smoothing process during inference. The TCA module improves upon 
previous authors’ work [293] from audio–visual by using a masking 
window to obtain locally calibrated features. The two global and local 
reweighed features are further fused in a balanced way by a learnable 
parameter. The resultant enhanced feature undergoes dimensionality 
reduction through a two-layer MLP, while a causal convolution acts as 
regressor layer. It is optimized by the BCE loss of average top-K scores 
for abnormal videos and max score for normal videos.

For PEL training, prompt representations are encoded through a 
pre-trained CLIP model over a specific dataset constructed concept 
dictionary through ConceptNet [311]. During optimization, anomaly 
scores activate the inner layer MLP to obtain video-level foreground 
and background representations. These are then aligned to their cor-
responding knowledge-based prompt feature. For an abnormal video, 
background/normal and foreground/abnormal alignments are made, 
while for a normal video, only the foreground is aligned with the 
normal prompt. This division strategy is similar to works on Back-
ground [275,276], Vanilla [268], Normality [282], where an anomaly 
prototype is constructed, and particularly the [295] on an audio–
vision. However, it extends binary labels to rich context text features, 
adding a layer of interpretability by feeding anomaly priors through 
external knowledge. During inference, a sliding window mechanism is 
implemented to smooth possible peaks in the anomaly scores from the 
camera jitter and other potential environmental perturbances.

CNN-ViT [98] proposes a blend of backbone structures, leveraging 
CNN-based (like C3D and I3D), and ViT-encoded visual features from 
CLIP to close the domain gap of existing pre-trained FE. Similarly 
to CLIP-TSA, it employs a Temporal Self-Attention module (TSA) to 
process features before modulation.

Although, does it differently in two ways. First CNN features have 
dimensions asserted by a low-variance-filter. Then, the proposed top-
K nominator bases its feature selection on attention scores calculated 
by the Mahalanobis distances of vanilla features. The remaining steps 
to obtain the selected feature map are the same as the original [307]: 
the generation of top stacked attention masks and its fusion with 
raw features. To handle the simultaneous presence of CNN and CLIP 
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Fig. 21. AnomalyCLIP [196] proposed method.
features, CNN-ViT selects each independently before merging them via 
addition. This fusion leads to the final enhanced feature map, which 
undergoes further processing by the PDC and NL network, mirroring 
the RTFM method. The training is guided by the same magnitude of 
video classification loss as CLIP-TSA, targeting scores and features.

AnomalyCLIP [196] (Fig.  21) jointly address both VAD and Video 
Anomaly Recognition (VAR) tasks. An end-to-end approach exploits the 
vision–text alignment in the CLIP feature space, employing a CoOp 
prompt learning strategy [312]. This strategy learns a set of directions 
in the CLIP latent space, calculated by determining the difference 
between each class’s textual prompt embedding and a normality proto-
type in the proposed Selector module. A sequence of token embeddings 
and learnable context vectors denotes each class. At the same time, the 
prototype is pre-computed as the global average of all CLIP encoded 
frames within regular videos in the dataset. Projected features into each 
class’s learned directions serve as class activations at the frame level. 
The magnitude of these activations is then summed within a segment to 
determine the segment-level anomalous class score. To mitigate the un-
balanced feature magnitude within different anomalous events, batch 
normalization is used instead of simple projection, ensuring that regular 
features remain close to the origin of the usual prototype. The training 
process follows the top-K MIL schema, guided by the selector’s segment-
level scores. AnomalyCLIP operates end-to-end, segmenting each video 
into a fixed number of segments and randomly selecting a set of 16 
consecutive frames to form each segment representation. While this 
setup effectively captures all video information, it necessitates offline 
operation. To guide training, AnomalyCLIP maximizes each anomalous 
class’s top-K segment scores for both module outputs, simultaneously 
maximizing the bottom-K average segment scores from the Tempo-
ral module and all standard frame scores from the Selector module. 
The Temporal module, equipped with an Axial Transformer [313], 
captures both short-term and long-term temporal dependencies within 
and between video segments, focusing on computational efficiency 
and robustness against overfitting. The final frame anomaly score for 
each class is the combination of results from the Selector module 
and the score from the Temporal module, yielding both abnormal 
and normal frame scores. Ablation studies conducted with Anomaly-
CLIP introduced the standard class-wise metrics of video AR into the 
anomaly detection area. The method showed clear improvement over 
inspiration methods [136,137] in recognizing anomalies in both UCFC 
and XDV, while maintaining competitive results in detection only in 
UCFC and a discrete improvement in XDV compared to even uni-modal 
methods [119].

Learn suspected Anomalies from event Prompts (LAP) [314] 
leverage text–visual fusion exploiting prompts by a dynamic dictionary 
and adaptive thresholds, improving TeVAD’s fixed captions, enable 
broader adaptability in novel scenarios.
28 
The proposed method is composed by three modules: (1) the Feature 
Synthesis combines visual features from CLIP/I3D with textual descrip-
tions generated by SwinBERT’s visual-to-text encoder, aligning them 
via SimCSE to form enriched spatio-temporal representations, produc-
ing corresponding semantic features; (2) the Multi-Prompt Learning 
(MPL) module aligns synthetic features with prompt-derived anomaly 
representations, by constructing a sentence-based prompt dictionary 
(e.g., ‘‘A man is shooting’’), extracting semantic embeddings through 
SimCSE and measuring snippet-prompt similarity via an anomaly ma-
trix, then aggregated into an anomaly vector; and (3) the Pseudo 
Anomaly Labelling (PAL) module assigns pseudo labels using dynamic 
thresholds, refining localization through semantic-textual alignment. 
The total loss combines VL MIL, MPL’s Triplet loss to separate normal 
(anchor), low-score abnormal (positive), and high-score (negative) fea-
tures across videos, enhancing cross-context discrimination, and PAL 
consistency, improving fine-grained anomaly detection.

LAP achieves good results with plug-and-play compatibility, boost-
ing existing methods, while additionally providing class-wise, cross-
dataset and open-set evaluations. Its efficiency stems from prompt-
tuning-based adaptation, avoiding full model retraining while leverag-
ing semantic priors for open-set anomaly generalization. Compared to 
TeVAD, which relies on fixed SwinBERT captions, text as auxiliary in-
put and temporal dependency modelling between RTFM features, LAP 
proactively integrates semantic prompts, aligns features globally via 
anomaly vectors, and generates pseudo labels using dynamic threshold-
ing, reducing ambiguity in weakly supervised settings. This approach 
improves open-set generalization — LAP’s AUC drops 0.6% on UCF-
Crime compared to TeVAD’s 1.2% — and avoids full-model retraining 
through its modular design, unlike TeVAD’s end-to-end pipeline.

VadCLIP [40] (Fig.  22) introduces a dual-branch method that di-
rectly utilizes visual features for binary classification while using both 
visual and textual features for language–image alignment, as opposed 
to previous CLIP-based methods [194,195]. The Classification Branch 
(C-Branch) employs a TopK-based binary cross-entropy loss to dis-
till temporal anomaly scores by averaging the highest frame-level 
predictions. The Alignment Branch (A-Branch) aligns frame features 
with learnable text prompts (context tokens prepended to class la-
bels, e.g., learnable context "Fighting") and visual prompts 
(anomaly-focused feature aggregation via segment-level scores) to re-
fine CLIP’s text embeddings. Similarities between frame features and 
prompts are optimized via MIL-Align loss, which selects TopK frame-
text matches per class and applies temperature-scaled cross-entropy. 
A contrastive loss further diversifies prompt embeddings to avoid se-
mantic collapse. As the FM for temporal modelling, the Local–Global 
Temporal Adapter (LGT-Adapter) combines a windowed transformer 
(local dependencies) and a lightweight GCN (global dependencies). By 
employing a dual-branch structure: a classification branch for anomaly 
scoring and an alignment branch for enhancing text embeddings with 
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Fig. 22. VadCLIP [40] proposed method.
multimodal prompts, it allows CLIP’s representations to be effectively 
transferred to the VAD task and dynamically refine text embeddings 
with key multimodal features, strengthening the semantic alignment 
between video content and corresponding textual labels. For fine-
grained evaluation — a pioneering shift from frame-level regression 
to categorization-aware temporal localization — VadCLIP adopts mean 
Average Precision (mAP) across IoU thresholds (0.1–0.5), measuring 
both multi-category classification accuracy (e.g., distinguishing ‘‘fight-
ing’’ vs. ‘‘shoplifting’’) and temporal segment continuity (overlap be-
tween predicted and ground-truth anomaly intervals). This metric re-
flects how well localized anomalies align with their textual semantics, 
with VadCLIP achieving 24.70% average mAP on XDV, surpassing prior 
works (e.g., +4.49% over AVVD).

In a Spatio-Temporal Prompt (STPrompt) [315] improves upon 
dual-branch prompt learning strategy by VadCLIP [40] proposing a 
two-stream architecture: a temporal anomaly detection branch and a 
spatial anomaly localization branch, for both anomaly detection and 
localization (WSVADL).

For temporal detection, the method incorporates a spatial attention 
aggregation (SA2) mechanism, which calculates motion magnitude by 
applying L2 normalization to the temporal difference between a patch 
in the current frame and its adjacent frames, emphasizing abrupt 
changes in localized regions while suppressing static background noise. 
This motion-aware weighting prioritizes patches with significant tem-
poral deviations, enabling the model to aggregate spatial features by 
selectively attending to dynamic regions most likely associated with 
anomalies. As the FM, a lightweight transformer enhances the global 
context by modelling relative temporal distances instead of feature 
similarity, following OVVAD [6]. For joint optimization, STPrompt 
adopts the VL classification loss, a temperature-scaled MIL-Align loss 
for fine-grained frame-text matching, and a contrastive loss, the same 
as VadCLIP.

For spatial localization, the method utilizes LLM-generated text 
prompts to describe normal (e.g., common background objects) and ab-
normal (e.g., augmented category phrases) regions, enabling training-
free patch-level retrieval through CLIP-based similarity matching. This 
dual-branch design decouples spatio-temporal modelling, avoiding com-
plex annotations or auxiliary detectors. Evaluations on UCFC, ST, and 
UBNormal (UB) benchmarks on tasks, achieving high interpretability 
by localizing anomalies via heatmaps generated from text-patch align-
ments, demonstrating robustness and efficiency in weakly supervised 
settings.

Text Prompt with Normality Guidance (TPWNG) [316] inte-
grates learnable text prompts and visual–language alignment to en-
hance pseudo-label generation. First, the Text and Normality Visual 
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Prompt (NVP) fine-tunes CLIP’s [122] text encoder with ranking [21] 
and distributional inconsistency losses by prepending learnable con-
text vectors to event category labels, enabling domain-specific align-
ment between textual descriptions and video frames. It also aggre-
gates visual&text prompt features from normal videos using similarity-
weighted pooling to create a normality reference, helping suppress 
interference from normal frames in abnormal videos during text–video 
alignment. The Pseudo-Label Generation (PLG) module computes and 
fuses abnormal/normal text-frame similarity scores with a guidance 
weight, applying a threshold to prioritize regions where abnormal text 
aligns strongly. To train the classifier, Temporal Context Self-Adaptive 
Learning (TCSAL) replaces standard Transformer attention with a soft-
masked mechanism, dynamically adjusting span lengths via a learnable 
parameter to focus on relevant time windows (e.g., short spans for 
abrupt anomalies, longer spans for gradual events). At the same time, 
a piecewise mask function weights attention scores, ensuring adap-
tive focus on critical temporal dependencies while ignoring irrelevant 
frames.

A Prompt-Enhanced MIL (PE-MIL) [41] (Fig.  23) processes multi-
modal (video/audio) features through a Temporal Feature Fusion (TFF) 
module, which models long- and short-range dependencies via self-
attention and dynamic position encoding, following TCA module from 
PEL4VAD. A Scale-Aware Prediction Head generates multi-scale
anomaly scores using causal convolutions and GELU activations.
Abnormal-Aware Prompt Learning (APL) integrates semantic priors 
into visual features to address the insufficiency of binary labels in 
capturing diverse anomalies. First, event-context separation isolates 
anomaly-related snippets from their surrounding context using scaled 
anomaly scores, amplifying high-confidence regions. Next, abnormal-
aware prompts are constructed by augmenting textual class annotations 
(e.g., ‘‘explosion’’) with learnable prompt vectors, which are optimized 
via a prompt constraint loss to maintain semantic consistency with 
the original labels. These prompts are encoded into text features 
using a frozen language model (e.g., CLIP’s text encoder). A dynamic 
cross-modal alignment module then computes fine-grained relevance 
scores between the isolated event/context visual features and the text 
prompts, guided by an event relevance reasoning mechanism that 
enforces semantic coherence (e.g., aligning ‘‘fire’’ with ‘‘explosion’’ con-
texts). This alignment is optimized via a KL divergence loss, ensuring 
visual features absorb semantic cues to distinguish diverse anomalies. 
APL injects class-specific semantics into the model by iteratively refin-
ing prompts and their alignment, enabling it to detect varied anomalies 
without explicit frame-level supervision.

Simultaneously, the Normal Context Prompt (NCP) — learned via a 
two-stage training strategy — summarizes normal patterns to decouple 
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Fig. 23. PE-MIL [41] proposed method.
anomalies from their context, enhancing boundary clarity by enriching 
ambiguous context features during inference. The training combines 
video-level MIL loss (binary cross-entropy on top-K scores), APL loss 
(KL divergence for cross-modal alignment), and prompt constraint loss 
(semantic consistency), followed by NCP fine-tuning with mean square 
error. Evaluated on UCFC, ST, and XDV, PE-MIL achieves good per-
formance by leveraging semantic prompts and context refinement to 
detect diverse anomalies with precise temporal boundaries.

Injecting Text Clues (ITC) [317] (Fig.  24) addresses false alarms 
and incomplete localization through a dual-branch architecture that in-
tegrates text clues for enhanced cross-modal learning. The Text-Guided 
Anomaly Discovering (TAG) branch leverages a hierarchical matching 
scheme, combining text–video matching (TVM) to align video-level 
embeddings (based on threshold segment-level scores) with anomaly-
category text queries and text-snippet matching (TSM) to directly 
measure local snippet-text similarities (weighted trough segment-level 
scores), enhanced by learnable prompts and CLIP-based embeddings. 
The segment-level scores (pp) act as a bridge between TSM and TVM, 
as both strategies leverage the same anomaly-aware scores to filter 
irrelevant contexts and amplify critical cues, ensuring consistency 
across granularities.

Complementing this, the Anomaly-Conditioned Text Completion 
(ATC) branch employs a generative task where masked anomaly de-
scriptions are reconstructed using Transformer blocks with anomaly-
conditioned attention, forcing the model to gather event semantics 
from relevant snippets. A dual-branch mutual learning strategy enforces 
consistency between the anomaly scores of both branches via MSE loss, 
ensuring complementary knowledge transfer.

The framework is jointly optimized through a combination of MIL 
loss, cross-modal matching losses (TVM, TSM), text reconstruction loss 
(ATR), and mutual learning loss. By integrating discriminative (TAG) 
and generative (ATC) objectives, ITC reduces false alarms through 
hierarchical text-visual alignment and improves localization complete-
ness via semantic reconstruction. Evaluations on UCF-Crime and XD-
Violence benchmarks demonstrate notable performance, with signif-
icant improvements in AUC (e.g., +1.46%) and average mAP (e.g., 
+2.13%), validating its effectiveness in capturing discriminative
anomalies while maintaining temporal integrity.

The Text-Driven Scene-Decoupled (TDSD) [318] (Fig.  25) frame-
work addresses weakly supervised video anomaly detection by inte-
grating vision–language models (e.g., CLIP) to extract scene and ob-
ject semantics, enabling scene-dependent anomaly identification. At its 
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core, TDSD employs a Text-Driven Scene-Decoupled Module (TDSDM), 
which decomposes scene understanding into two orthogonal compo-
nents: Context Semantic Injection (CSI) and Object Semantic Injection 
(OSI). CSI leverages CLIP’s text encoder to generate contextual scene 
descriptions (e.g., ‘‘shopping mall corridor’’) by cross-attending to a 
predefined set of scene categories (e.g., Places365). These contextual 
embeddings are fused with spatiotemporal features (extracted via I3D) 
to enrich scene-aware representations. OSI extends this by generat-
ing object-level semantic features (e.g., ‘‘motor scooter’’) using CLIP’s 
zero-shot capability, cross-attending to 1000 object categories from 
ImageNet-1K. This dual injection ensures the model captures both 
global scene context and fine-grained object interactions, critical for 
distinguishing normal vs. anomalous events in scene-specific settings 
(e.g., detecting a thief in a store). To enhance feature discriminability, 
TDSD introduces a Fine-Grained Visual Augmentation (FVA) module, 
which applies spatial–temporal attention to amplify subtle anoma-
lies in local regions. The framework is trained weakly supervised, 
relying solely on video-level labels (normal/abnormal) without frame-
level annotations. Design choices prioritize computational efficiency by 
reusing pre-trained CLIP weights and avoiding task-specific fine-tuning, 
while cross-attention mechanisms dynamically align visual and textual 
features to minimize modality gaps.

MELOW extends VadCLIP’s dual-branch framework by integrating 
Multi-scale Temporal Visual Modelling (MTVM) and specially Multi-
modal Evidential Collaborative Learning (MECL), addressing to the 
Open-World setting. The C-Branch uses CLIP’s visual features with 
MTVM — a Local-Global Temporal Adapter combining windowed 
transformers (local dependencies) and GCN (global similarity/position
relations) — to capture multi-scale temporal contexts, while the A-
Branch aligns MTVM-enhanced visual features with CLIP-derived tex-
tual embeddings.

The MECL module, under Subjective Logic Theory (SLT) [319], 
introduces a multimodal Evidential Deep Learning approach to address 
ambiguity in open-world detection by modelling uncertainty across 
visual, textual, and joint modalities. For each modality, non-negative 
evidence scores are computed for anomaly categories, converted into 
concentration parameters to parameterize a Dirichlet distribution. This 
distribution quantifies belief masses and uncertainty (reflects the lack 
of evidence). MECL dynamically prioritizes the most confident modality 
(visual/textual) per category and fuses joint-modal evidence via a 
weighted loss, penalizing high uncertainty and aligning predictions 
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Fig. 24. ITC [317] proposed method.
Fig. 25. TDSD [318] proposed method.
with reliable modalities. By treating predictions as subjective opin-
ions rather than deterministic outputs, MECL reduces overconfidence 
in ambiguous or unseen scenarios, enabling adaptive calibration of 
anomaly boundaries. This contrasts with prior single-modal EDL meth-
ods OpenVAD [4] Section 5.8, as MECL leverages cross-modal corre-
lations (e.g., textual descriptions refine visual uncertainty) to improve 
robustness in open-world settings.

For optimization, a joint-modality loss dynamically calibrates
anomaly boundaries by weighting evidence confidence, alongside Vad-
CLIP’s TopK video-level classification loss and MIL-Align. This frame-
work achieves open-world detection by generalizing to unseen anoma-
lies via uncertainty estimation and multi-scale temporal fusion.

Audio–Visual Anomaly Detection with CLIP (AVadCLIP) [42] 
(Fig.  26) leverages CLIP’s cross-modal alignment capabilities in an 
audio–visual collaboration, building upon VadCLIP dual-branch frame-
work, incorporates three components: (1) an adaptive audio–visual 
fusion module that dynamically combines visual (CLIP ViT-B/16) and 
audio (Wav2CLIP) features via lightweight projection networks, pri-
oritizing visual dominance while enhancing with audio cues; (2) an 
audio–visual prompt mechanism that enriches text embeddings with 
multimodal context by aligning global video features with class la-
bels, improving semantic specificity; (3) and an Uncertainty-driven 
KD (UKD) module that models feature uncertainty to synthesize ro-
bust unimodal representations when audio is missing. The UKD treats 
audio–visual fusion features as noisy observations of enhanced vi-
sual features from the student model, with additive Gaussian noise. 
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A Gaussian likelihood loss quantifies feature alignment uncertainty, 
while a three-layer CNN branch predicts variance to weight the distil-
lation loss. This uncertainty-aware formulation minimizes an adaptive 
MSE term, downweighting high-uncertainty features, avoiding overfit-
ting and improving generalization. It also employs the VadCLIP [40] 
two-branch framework (video-level classification and categorization 
alignment branches). Evaluated on XDV and CCTV-Fights, AVadCLIP 
achieves good performance while maintaining robustness in unimodal 
scenarios.

Table  11 summarizes the works employing Vision Language models.
Key Points of Vision–Language Methods: These methods leverage 

the power of Vision–Language models to enhance anomaly detection by 
incorporating semantic information from text.

• CLIP-TSA: Introduces a Temporal Self-Attention (TSA) module 
guided by feature magnitude to refine feature representations 
from CLIP.

• TeVAD: Augments the RTFM FM to incorporate text features, 
capturing temporal dependencies across both visual and textual 
modalities.

• PEL4VAD: Improves previous work [293] global/local temporal 
modelling and incorporates Prompt-Enhanced Learning (PEL) to 
leverage knowledge from a concept dictionary. To note the simple 
self-attention mechanism that provides lightweight global/local 
temporal modelling, contrasting to approaches like HLN, RTFM, 
URDMU and HyperVD.



R.Z. Barbosa et al. Information Fusion 126 (2026) 103388 
Fig. 26. AVadCLIP [42] proposed method.
• CNN-ViT: Combines CNN-based and ViT-encoded visual features 
from CLIP to bridge the domain gap, and utilizes a TSA module 
for feature refinement.

• AnomalyCLIP: Exploits the vision–text alignment in CLIP’s latent 
space using a CoOp prompt learning strategy, enabling both 
anomaly detection and retrieval.

• VadCLIP: Introduces a dual-branch method with learnable and 
visual prompts, utilizing visual features for binary classification 
and aligning visual and textual features for language–image un-
derstanding.

• LAP: Employs prompt-based learning using CLIP and pseudo-
labelling (PAL) guided by video-caption similarity. Combines 
visual-semantic synthesis and multi-prompt contrastive learning 
using an prompt dictionary to improve fine-grained anomaly 
detection and open-set generalization.

• TPWNG: Fine-tunes CLIP with Normality Visual Prompts (NVP) 
and learnable text prompts, generating pseudo-labels guided by 
contrasting normal/abnormal textual similarity scores to train 
an anomaly classifier. Introduces Temporal Context Self-Adaptive 
Learning (TCSAL) for dynamic attention over video timelines, 
enhancing detection of gradual or abrupt anomalies.

• PE-MIL: Fuses audio and video features using temporal attention 
and scale-aware anomaly scores, enhanced by Abnormal-Aware 
Prompt Learning (APL) to inject semantic class priors. It refines 
event-context alignment via CLIP-based text prompts and Normal 
Context Prompt to fit the captured normal distribution.

• STPrompt: A two-stream framework combining temporal detec-
tion via motion-prior spatial attention (SA2) to suppress static 
backgrounds and a lightweight transformer for global context, 
and spatial localization using LLM-generated text prompts for 
training-free patch-level retrieval via CLIP similarity.

• ITC: Injecting Text Clues (ITC) through a dual-branch frame-
work combines a discriminative Text-Guided Anomaly Discover-
ing (TAG) branch — which aligns video segments with textual 
anomaly queries via hierarchical CLIP-based matching — and a 
generative Anomaly-Conditioned Text Completion (ATC) branch, 
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which reconstructs masked anomaly descriptions to gather se-
mantic cues.

• TDSD: introduces a text-driven, scene-decoupled framework for 
weakly supervised video anomaly detection, combining Context 
Semantic Injection (CSI) (CLIP-based scene category fusion) and 
Object Semantic Injection (OSI) (zero-shot object feature extrac-
tion) with Fine-Grained Visual Augmentation (FVA) to enhance 
discriminability.

• MELOW: Extends VadCLIP’s dual-branch framework by integrat-
ing multi-scale temporal modelling and multimodal evidential 
learning (Dirichlet-based uncertainty fusion of visual–textual ev-
idence), enabling robust detection of unseen anomalies in open-
world settings.

• AVadCLIP: Builds on CLIP and VadCLIP by integrating adap-
tive audio–visual fusion, multimodal-enriched prompts, and an 
uncertainty-aware knowledge distillation module to handle miss-
ing or noisy modalities.

Vision–language models have significantly advanced the field of VAD 
by incorporating semantic information and enabling a more in-depth 
understanding of video content. The TSA module has proven effec-
tive in refining feature representations through its top-K nominator 
mechanism. The prompt-based learning strategies, like those in Vad-
CLIP, AnomalyCLIP, TPWNG, STPrompt, AVadCLIP, and especially, 
PEL4VAD, PE-MIL and ITC, demonstrate the potential of leveraging 
external knowledge for improved anomaly detection and classifica-
tion. The foundational dual-branch approach of VadCLIP for detection 
(coarse) and classification (fine) sets the direction for STPrompt’s addi-
tional train-free spatial anomaly localization, ITC’s hierarchical text–
video alignment & anomaly-conditioned text completion, MELOW’s 
multimodal evidence learning and AVadCLIP’s probabilistic uncertainty 
distillation strategy.

AnomalyCLIP’s success in jointly addressing anomaly detection and 
retrieval highlights the power of exploring CLIP’s latent space for 
multi-modal understanding. A key takeaway from AnomalyCLIP’s con-
tribution is that the latent CLIP space becomes discriminative when 
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Table 11
Summary of visual Language models.
 Method FE FUSE FM MIL SS LT Metrics

 E M L FL SL UCFC XDV  
 CLIP-TSA I3D 

CLIP
7 7 7 TSA 

PDC+NL
3 magn 

Top-K
3 3 84.66 

87.58
78.19 82.19  

 TeVAD I3D+ 
SwinBERT

7 3 7 PDC+NL 7 Magn 
Top-K

3 3 84.90 79.80  

 PEL4VAD I3D 7 7 7 SAtt 7 Top-K 
Scores

3 3 86.76/72.24/0.43 85.59/70.26/0.57 

 CNNVIT C3D 
(+CLIP) 
I3D 
(+CLIP) 
CLIP

3 7 7 TSA 
PDC+NL

3 Magn 
Top-K

3 3 85.78 
86.50 
87.63 
88.02 
88.97

7  

 Anomaly-
CLIP

CLIP 3 7 7 Axial 
Transf

3 7 3 86.36 78.51  

 VadCLIP CLIP 
(img&txt)

3 3 7 Local TE 
Global GC

3 Top-K 
Scores

3 3 88.02/70.23 84.51  

 LAP CLIP 
(img&txt)

7 3 3 PAL 3 AUC 
Top-K

3 3 87.7 82.6  

 TPWNG CLIP 
(img&txt)

3 3 7 7 7 Max&Min 3 3 87.79 83.68  

 PE-MIL I3D 
(+VGG)

3 3 3 TFF 3 Top-K 
Scores

3 3 86.83 88.05  

 STPrompt CLIP 
(img&txt)

7 3 7 Spatial 
Att

3 Top-K 
Scores

3 3 88.08 7  

 ITC CLIP 
(img&txt)

3 3 3 TC 3 Scores 7 3 89.04 85.45  

 TDSD I3D+CLIP 
(img&txt)

3 3 7 SA 3 Top-K 
Categ.&Scores

7 3 85.49
(UCF-SHT)

84.69  

 MELOW CLIP 
(img&txt)

3 3 3 LGT 
MSVM

3 Top-K 
Scores

3 3 87.80x 85.13  

 AVadCLIP CLIP 
(img&txt) 
(+Wav2CLIP)

7 3 7 Temp 
Transf 
GCN

3 Top-K 
Scores

3 3 7 85.53 86.04  

FE: Feature Extractor; FUSE: Early Mid Late; FM: Feature Modulator; SS: Segment Selection; Magnitude; LT: Loss Target; FL: Feature-Level; SL: Score-Level; TC: Temporal 
Convolution.
realigned with a pre-constructed standard prototype, also explored in 
NGMIL [96], main idea of relying on a divergence measure between 
abnormal and normal global representations (Section 5.4). This finding 
aligns well with BN-DFM [279], which bases its SS on an embedding 
space statistically rooted around a prototype.

However, further research is needed to explore more diverse prompt 
engineering techniques and backbones other than CLIP-ViT, solutions 
for dependency in vanilla segment-level scores (Section 5.1) and eval-
uate the generalizability of these methods across different datasets and 
anomaly types, to provide a more nuanced interpretation of video 
content and pave the way for further innovations towards explainable 
VAD.

5.8. Large language model and VLM for VAD

Integrating Large Language Models (LLMS) into VAD marks a
paradigm shift from conventional pattern-based approaches toward 
semantically guided reasoning, enabling models to interpret better, 
localize, and generalize abnormal events in unstructured video data.

The survey Quo Vadis, Anomaly Detection? [3] details the inte-
gration of Large Language Model (LLM) and VLM in VAD, highlighting 
their role in tackling core challenges. These include semantic inter-
pretability (e.g., VAD-LLAMA [320], LAVAD [8], HAWK [197]), tem-
poral modelling (e.g., OVVAD [6], Holmes-VAD [251]), few-/zero-shot 
detection (e.g.,VERA [321], Flashback [10]), and open-world general-
ization (e.g., OVVAD [6], Holmes-VAU [13], LAVAD [8], PLOVAD [7]). 
In this work, we complement the survey findings with a deeper anal-
ysis of recent advancements and broaden the scope by incorporating 
additional LLM-based approaches relevant to VAD problematic.
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Integrating LLM’s has begun to be explored by VAD-LLaMA [320] 
using Video-LLaMA [322] to provide textual explanations for detected 
anomalies, addressing the struggle with manual threshold selection 
by traditional anomaly-scoring methods. Existing video-based large 
language models (VLLMs) further face challenges in long-range con-
text modelling and require extensive labelled data for domain-specific 
tuning. To bridge these gaps, the authors propose VAD-LLaMA, a frame-
work integrating VLLMs into VAD to enable threshold-free anomaly 
detection with textual explanations. The core novelty lies in two com-
ponents: (1) a Long-Term Context (LTC) module that dynamically 
aggregates normal/abnormal clip features via cross-attention to en-
hance long-range context modelling, and (2) a three-phase training 
strategy that minimizes VAD data requirements by co-training the LTC-
enhanced detector (VADor) [] with frozen VLLM components and gen-
erating pseudo-instructions from anomaly scores. This approach elim-
inates manual thresholding while improving interpretability through 
natural language explanations. Experiments on UCFC (1900 videos, 
video-level weak labels) and TrafficAD (TAD) achieved AUC improve-
ments of up to +3.86 p.p and +4.96 p.p, respectively, with significant 
gains in anomaly-specific metrics (AUCAA). The LTC module proves 
critical, boosting performance on context-dependent anomalies like 
‘‘Arson’’ by leveraging long-term dependencies. It establishes a prece-
dent for efficiently adapting general-purpose VLLMs to specialized tasks 
with limited labelled data, broadening their applicability in multimodal 
reasoning domains.
Open-world. Open-World video anomaly detection addresses the 
critical challenge of identifying unforeseen anomalies in real-world de-
ployments, where models must contend with both known and novel ab-
normal events post-training. Traditional closed-set approaches, trained 
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on fixed anomaly categories, falter under semantic distribution shifts, 
leading to high false positives or missed detections. This open-set 
risk underscores the need for methods that balance discriminative 
power on known anomalies with robust uncertainty awareness to reject 
unknowns.

OpenVAD [4] addresses VAD in an open-world setting by unifying 
MIL with Evidential Deep Learning (EDL) and normalizing flows (NFs) 
under weak supervision. The proposed method leverages a dual graph 
convolutional network (GCN) to model temporal and feature-wise de-
pendencies, enhanced by triplet loss for discriminative embedding. 
EDL employs a Beta distribution prior to predict per-clip evidence, 
enabling uncertainty-aware selection of high-confidence anomalies (via 
thresholds on confidence and evidence) to mitigate label noise in MIL 
training. Concurrently, NFs learn the latent distribution of normal clips, 
synthesizing pseudo-anomalies by sampling low-density regions in the 
feature space, thereby bounding open-set risk. A multi-stage training 
protocol first optimizes feature embeddings and EDL classifier using 
MIL loss (Type II maximum likelihood) and triplet loss, then freezes 
the encoder to train NFs, and finally fine-tunes with selected clean 
anomalies and pseudo-anomalies. Evaluated on UCFC, XDV, and ST 
demonstrates robustness under varying ratios of known anomalies and 
limited supervision.

Open-Vocabulary VAD (OVVAD) [6] (Fig.  27) pushes the bound-
aries of VAD by utilizing pre-trained vision–language models (e.g. 
[122]-ViT) to detect and categorize both seen and unseen anomalies, 
taking advantage of their powerful zero-shot generalization ability. The 
framework decouples OVVAD into two synergistic tasks: class-agnostic 
detection (identifying anomalies) and class-specific classification (la-
belling anomaly types). A lightweight graph convolutional network 
models the temporal dependencies by constructing an adjacency matrix 
based on frame proximity. Through Semantic Knowledge Injection 
(SKI), a cross-modal alignment mechanism fuses textual embeddings of 
normal/abnormal scenarios generated via LLM prompts and encoded 
by CLIP’s text encoder with CLIP visual features via sigmoid-weighted 
similarity scores. A FFN is the regressor network trained under a top-K 
video-level classification loss. For categorization, a learnable prompt 
is employed, similar to the work of [39], and the similarity between 
aggregated video-level features and textual category embeddings IS 
used in a video-level cross-entropy loss. In a fine-tuning stage for un-
seen categories, a Novel Anomaly Synthesis (NAS) module is proposed 
by generating pseudo-anomalous videos via LLM-guided prompts and 
AIGC models (e.g., DALL-E). This approach holds promise, especially in 
a real-world UCFC, while suboptimal in scenarios requiring temporal 
modelling XDV, leaving the investigation room open-world settings by 
investigating class-wise performance.

LAnguage-based VAD (LAVAD) [8] introduces a training-free
anomaly detection framework that synergizes pretrained VLM’s and 
LLM. The method first generates frame-level captions using an ensem-
ble of BLIP-2 variants [323] (including Flan-T5-XXL and OPT-6.7B) 
to maximize caption diversity, then refines them by selecting the 
most semantically aligned caption per frame via ImageBind’s [324] 
cross-modal similarity between visual and textual embeddings. Tem-
poral context is modelled through sliding 10-s windows, sampling 1 
frame/sec, where Llama-2-13b [139] aggregates captions into scene 
summaries via task-specific prompts (e.g., ‘‘Summarize events in this 
surveillance context...’’). Initial anomaly scores from LLM reasoning 
are refined using video–text alignment, where scores from frames 
with semantically similar summaries (via ImageBind’s video/text en-
coders) are weighted by their cosine similarity. This approach uniquely 
addresses spatial–temporal ambiguity through cross-modal noise sup-
pression, LLM-guided temporal aggregation, and video–language cor-
respondence, establishing a new paradigm for zero-shot VAD.

HAWK [197] (Fig.  28) proposes a vision–language framework for 
open-world video anomaly understanding by explicitly incorporating 
motion cues, recognizing their significance in distinguishing anomalous 
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events. The architecture, based on Video-LLaMA [322], adopts a dual-
branch design — one for appearance and another for motion — based 
on frozen video encoders from BLIP-2 [323] (EVA-CLIP [126] and a pre-
trained Video Q-Former). Motion features are extracted via optical flow 
(Farneback algorithm [325]). To enhance anomaly focus, two auxiliary 
losses are introduced: (i) a video-motion consistency loss that aligns 
appearance and motion features, and (ii) a motion-language matching 
loss that associates motion features with parsed linguistic entities and 
verbs. The model undergoes a three-stage training process: (1) pre-
training on WebVid [326], (2) fine-tuning on the proposed curated 
anomaly dataset (8000 videos from seven benchmarks) with GPT-4-
generated descriptions and QA pairs, and (3) task-specific evaluation 
(using metrics as Text-Level benchmarks (e.g., BLEU, ROUGE) and 
GPT-Guided metrics). HAWK enables interactive tasks such as anomaly 
description and open-ended QA, showing one more promise across 
domains like surveillance and traffic. Its multimodal integration estab-
lishes a new paradigm for explainable and generalizable VAD, despite 
scalability challenges in real-world deployment.

Anomaly Shield (AnomShield) is proposed for Exploring the Cau-
sation of Video Anomalies (ECVA) [241,252] benchmark (2240 real-
world videos with 100 types of anomalies) to address 3 sub-tasks: the 
What (anomaly type/description), Why (cause), and How (severity via 
importance curves) of an anomaly.

The proposed AnomShield VLM integrates a novel pipeline for 
causal reasoning. It employs chain-of-thought prompting to identify 
anomaly-critical segments: (1) coarse sampling extracts uniform frames,
(2) captioning generates segment descriptions via a VLM, (3) retrieval 
leverages GPT to align descriptions with user queries, and (4) dense 
resampling focuses on key segments. These segments are processed 
by a bidirectional Mamba-based connector, which combines CLIP-L/14 
visual features with Mistral-7B’s [327] language capabilities, enhanced 
with spatiotemporal position embeddings. Training occurs in three 
stages: alignment of image–text features by freezing the Base LLM and 
visual encoder while pre-training the connector with the low-quality 
short-text data, adaptation of the connector to long-text narratives, and 
video-specific fine-tuning using Low-Rank Adaptation (LoRA) [328] on 
multiple datasets [329–331], ensuring robust multimodal integration.

Evaluation is conducted via the proposed AnomEval, a metric as-
sessing VLMs through basic reasoning (coverage of key entities and 
logical coherence), consistency (GPT-based binary scoring) and hallu-
cination (robustness to edited videos). AnomEval achieves 82%–89% 
alignment with human judgment, surpassing traditional metrics like 
BLEU and ROUGE. Experiments demonstrate excellence in causal rea-
soning (e.g., linking traffic accidents to red-light violations). At the 
same time, ablation studies confirm the necessity of both hard and soft 
prompts (for anomaly focus) (for spatiotemporal modelling). This work 
bridges video–language alignment with causal reasoning, offering a 
foundational framework for real-world anomaly understanding. ECVA, 
AnomShield, and AnomEval collectively advance the field by prioritiz-
ing interpretability, temporal granularity, and robustness, setting a new 
standard for future research.

Holmes-VAD [251], an interpretable framework integrating multi-
modal Large Language Model (LLM) towards unbiased and explainable 
VAD. The authors first construct VAD-Instruct50k, a novel multimodal 
VAD benchmark (VAD-Instruct50k) developed via a semi-automatic 
labelling pipeline, combining sparse single-frame temporal annota-
tions (applied to untrimmed videos from UCFC and XDV) with LLM-
synthesized explanations. The framework employs a three-stage archi-
tecture: a frozen video encoder from LanguageBind [332] to extract 
frame-level features, a lightweight temporal sampler to select high-
response frames using pseudo-label supervision from sparse annota-
tions, reducing computational overhead, and a VLM fine-tuned with 
LoRA adapters to generate natural language explanations for identified 
anomalies. Key innovations include the efficient annotation protocol 
balancing labelling costs with supervision quality, and the temporal 
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Fig. 27. OVVAD [6] proposed method.
Fig. 28. HAWK [197] proposed method.
 

sampler’s dual role in enabling hour-long video processing while feed-
ing salient segments to the LLM. Experimental validation demonstrates 
state-of-the-art performance (90.67% AP on XDV, 89.51% AUC on 
UCFC) alongside improved interpretability through human evaluations, 
establishing a new paradigm for explainable anomalies in long-form 
video analysis.

Holmes-VAU [13] (Fig.  29) upgrades the previous contribution 
of Holmes-VAD and VAD-Instruct50k [251] for hierarchical video 
anomaly understanding (VAU), consisting in classical temporal anomaly
detection and anomaly explainability, model’s ability to provide an 
anomaly-related response attending both visual perception (recog-
nizing main entities in the video) and anomaly reasoning (model’s 
judgment and analysis of the anomaly content). The proposed frame-
work has at its core an Anomaly-focused Temporal Sampler (ATS), 
which dynamically prioritizes anomaly-dense segments in long videos 
using a two-stage process: the anomaly scorer (UR-DMU [278] ar-
chitecture) generates frame-level anomaly probabilities. In contrast, a 
density-aware sampler converts these scores into a cumulative distri-
bution for non-uniform frame sampling. This sampling ensures com-
putational resources focus on critical regions (e.g., sudden collisions) 
while reducing redundancy in normal footage. The selected frames 
are processed by a multimodal LLM (InternVL2-2B [333]) fine-tuned 
with LoRA adapters on hierarchical instruction data, enabling natu-
ral language explanations of anomalies. The anomaly scorer is first 
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optimized during training using the annotated frame-level labels. At 
the same time, the LLM undergoes instruction fine-tuning through 
LoRA [328], both using the proposed updated benchmark HIVAU-70k’s 
multi-granular data (clip captions, event summaries, video analyses). 
The ATS’s adaptive sampling reduces inference latency by 4–8× com-
pared to uniform sampling while maintaining detection accuracy and 
efficiently analysing hour-long surveillance footage. Evaluation for 
anomaly detection is measured with AUC/AP on UCFC and XDV, while 
BLEU [334], CIDEr [335], METEOR [336] and ROUGE [337] for the 
quality of the reasoning text output by the model. By integrating 
temporal anomaly localization with hierarchical semantic reasoning, 
the framework provides both ‘‘when’’ (temporal detection) and ‘‘why’’ 
(textual explanation) insights, bridging low-level visual patterns and 
high-level contextual understanding.

Prompting VLMs for Open Vocabulary (PLOVAD) [7] (Fig.  30) 
proposes CLIP to detect and categorize both seen and unseen anoma-
lies in videos, addresses challenges of data scarcity and open-world 
generalization by leveraging prompt tuning and temporal modelling. 
The framework comprises two core modules: (1) a Prompting Module 
that generates domain-specific prompts (learnable vectors capturing 
task-specific knowledge) and anomaly-specific prompts (LLM-generated 
textual descriptions of anomalies, e.g., ‘‘fighting involves aggressive 
physical contact’’), enriching semantic understanding of diverse anoma-
lies; and (2) a Temporal Module using a graph attention network (GAT) 
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Fig. 29. Holmes-VAU [13] proposed method.

to model spatiotemporal dependencies across video frames, bridging 
the gap between static image features and dynamic video contexts. 
During training, PLOVAD aligns visual features (enhanced by temporal 
reasoning) with text embeddings from prompts via cross-modal loss, 
enabling the detection and categorization of anomalies without requir-
ing labelled data for unseen classes. By freezing the VLM backbone 
and tuning only lightweight components (prompts and GAT), PLOVAD 
achieves scalability, outperforming traditional weakly supervised meth-
ods on benchmarks like UCFC and ST in both open-vocabulary and 
weakly supervised settings.

The Sherlock model, a Global–local Spatial-sensitive Large Lan-
guage Model [253], proposes the M-VAE (Multi-scene Video Abnormal 
Event Extraction and Localization) task by extracting structured event 
quadruples (subject, event type, object, scene) with corresponding 
timestamps. The primary challenges — modelling global and local 
spatial information and addressing spatial imbalance — are tackled 
through a Global–local Spatial-enhanced Mixture of Experts (MoE) 
module, featuring four spatial experts (Action, Object Relation, Back-
ground, and Global Scene), and a Spatial Imbalance Regulator (SIR) 
with a Gated Spatial Balancing Loss (GSB) to mitigate data imbalance 
among experts. The model is trained on a custom M-VAE instruction 
dataset derived from the CUVA benchmark [252], comprising two 
stages: (1) pre-tunes Video-LLaVA [338] on high-quality datasets like 
Ref-L4 [254], HumanML3D [255], RSI-CB [256] and COCO [257] to 
enhance spatial understanding, while (2) fine-tunes the model on the 
M-VAE dataset to localize events and extract quadruples. Sherlock 
is benchmarked against advanced Video-LLMS (e.g., Video Chatgpt, 
Video-LLaVA) and performs better, achieving a 10.85% improvement 
in event extraction and 11.42% better localization (mAP@tIoU), with 
significantly lower false negative rates (FNRs)/higher F2 across all 
scenes.

Verbalized Learning Framework (VERA) [321] proposes a ver-
balized learning (VL) framework to support VAD without the need for 
manually crafted guiding questions for frozen visual–language models 
(VLMS). Instead, it introduces a data-driven learning objective that 
treats guiding questions as learnable parameters. These are optimized 
through feedback from a VLM using a binary video classification sub-
task, allowing the model to discover practical anomaly characterization 
questions from coarsely labelled datasets. This Characterization en-
ables efficient capture of video-specific temporal characteristics while 
avoiding detailed instance-level annotations. In the inference phase, 
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VERA follows a coarse-to-fine procedure: it first computes segment-
level anomaly scores by prompting the VLM with the learned guiding 
question, then refines those scores through softmax-weighted ensem-
bling based on scene similarity. Finally, it produces e-level scores by 
applying Gaussian smoothing and position-based temporal weighting, 
enabling accurate localization and interpretable VAD. The model is 
evaluated on the UCFC and XDV dataset with an average video length 
of 1.62 min.

EventVAD [9] acknowledges limitations of previous train-free in 
localizing anomalies with high temporal precision and combines event-
aware segmentation and VLM understanding. The proposed method 
combines four core components: an Event-Aware Dynamic Graph Con-
struction builds spatiotemporal graphs by fusing RAFT [339]-based op-
tical flow (capturing motion dynamics) and EVA-CLIP’s ViT-B/16 [126] 
semantic features (encoding visual context), with edges weighted by 
cross-modal similarity and temporal decay to prioritize short-term 
event correlations, segmenting videos into event units to enhance tem-
poral consistency. Second, Graph Attention Propagation (GANP) refines 
node features through orthogonal feature projection and iterative mes-
sage passing, amplifying inter-frame differences at event boundaries. 
Third, Statistical Boundary Detection identifies event transitions by 
combining abrupt feature-space jumps and directional changes in the 
manifold trough dissimilarity scores, with Savitzky–Golay filtering for 
signal smoothing and median absolute deviation (MAD) thresholding, 
adaptively segmenting videos into semantically coherent event units 
to avoid fragmented VLM inputs. Finally, in Event-Centric Anomaly 
Scoring, a VideoLLaMA2.1-7B-16F [340] analyses segmented events 
using hierarchical prompts, to first provide video descriptions and 
then generate frame-level anomaly scores, addressing long-tail frag-
mentation and improving interpretability, showing better performance 
compared to the 13B-parameter LAVAD.

Local Patterns Generalize Better for Novel Anomalies (LPG)
[198] (Fig.  31) proposes a vision–language framework for unsuper-
vised VAD that prioritizes semantically consistent local patterns to 
address open-set generalization. The pipeline begins by cropping re-
gions of interest (via YOLOv7 [341] or Qwen-VL [168]) and processes 
them through a two-stage approach: first, the Image–Text Alignment 
Module (ITAM) leverages BLIP-2’s frozen backbones [323] (EVA-CLIP 
and Q-Former) to extract text-informative spatial patterns (e.g., body 
joints, object parts) from cropped regions, encoding them as image 
tokens aligned with generic textual descriptions (e.g., ‘‘a person mov-
ing arms’’). These tokens capture domain-agnostic semantics, enabling 
recombination of known components to represent unseen anomalies. 
Next, the Cross-Modality Attention Module (CMAM) refines these pat-
terns by weighting image tokens based on their similarity to temporally 
coherent captions generated by the Temporal Sentence Generation 
Module (TSGM). TSGM integrates a State Machine Module (SMM) to 
propagate high-resolution textual context from prior frames (e.g., ‘‘a 
man pushing a stroller’’) into low-resolution or occluded observations, 
ensuring caption consistency across temporal variations. To model 
dynamics, motion vectors from H.265(HEVC)-encoded videos [342] are 
extracted and fused with spatial patterns in a Reconstruction Module 
(RM), which is trained exclusively on normal data to detect anomalies 
via reconstruction error, jointly optimizing spatial–temporal feature 
fidelity. Evaluated on ST, UB, NWPU Campus (NWPU), UCFC, and 
XDV, shows a framework trained using normal data is capable of 
detecting unseen anomalies, by exploiting vision–language alignment 
for robust open-set detection, where cross-modal attention suppresses 
noisy backgrounds while motion estimation flags irregular dynamics.

Flashback [10] introduces a two-stage paradigm for zero-shot, real-
time video anomaly detection by decoupling offline pseudo-scene mem-
ory construction and online caption-retrieval inference. In the offline 
phase, a frozen LLM (GPT-4o) generates 1M+ normal and anoma-
lous scene captions using structured prompts, which are embedded 
via a cross-modal encoder (e.g., ImageBind [324] and PerceptionEn-
coder [343]) and stored in memory. To enhance separation between 
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Fig. 30. PLOVAD [7] proposed method.
normal and anomalous embeddings, repulsive prompting is applied: 
normal captions are prefixed with ‘‘Normal’’ and anomalous ones with 
‘‘Anomalous’’, while lightweight templates further widen their feature-
space distance. Additionally, scaled anomaly penalization attenuates 
the magnitudes of anomalous embeddings to mitigate residual bias 
during retrieval.

During online inference, incoming video segments are encoded 
into embeddings and matched against the memory using similarity 
search (dot product), with top-K retrieved captions aggregated into 
segment-level anomaly scores. These scores are smoothed via Gaussian 
filtering to yield frame-level predictions. By eliminating LLM calls 
at inference — replacing autoregressive captioning with efficient re-
trieval — Flashback achieves 42.06 FPS on an RTX 3090, 34× faster 
than prior methods, while attaining 87.29% AUC on UCF-Crime and 
90.54%AUC/75.13% AP on XD-Violence. Key design choices, such 
as repulsive prompting (increasing normal/anomalous centroid angles 
from 8.12◦ to 33.29◦) and memory size optimization (1M captions 
vs. 10k), ensure robustness and scalability, balancing computational 
efficiency with strong zero-shot performance.
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Table  12 summarizes the works employing Large Language Model 
and Vision Language models. Methods designed for Zero-Shoot/Train-
Free are inherently Open-World, for others it means works attend to 
that setting specifically.

Key Points of LLM and Vision–Language VAD Methods: These 
methods leverage the multimodal reasoning capabilities of large Vision–
Language Models (VLMs) and Large Language Models (LLMs) to en-
hance anomaly detection with rich semantic understanding, enabling 
threshold-free detection, textual explanation, and causal reasoning.

• VAD-LLaMA: Integrates VLLMs with a Long-Term Context (LTC) 
module and a three-phase training strategy to enable threshold-
free anomaly detection with natural language explanations. Uses 
frozen VLLM components and pseudo-instruction generation to 
reduce labelled data requirements while enhancing interpretabil-
ity.

• OpenVAD: Tackles open-world VAD by unifying MIL with eviden-
tial deep learning (EDL) and normalizing flows (NFs) under weak 
supervision. Uses dual GCNs for temporal and feature modelling, 
EDL for uncertainty-aware anomaly selection, and NFs to syn-
thesize pseudo-anomalies from low-density regions. A three-stage 
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Fig. 31. LPG [198] proposed method.
Table 12
Summary of large language models and visual language models.
 Method OW Sup. FE FUSE FM LT UCFC XDV Description  
 VAD-LLaMA – Weak Video-LLaMA E, M, L LTC, pseudo-instr., frozen VLM SL ✓ – Threshold-free, NLE   OpenVAD ✓ Weak MIL, EDL, NF E, M Dual-GCN, ER, PS FL – – Weakly supervised, open-set   OVVAD ✓ Weak (VLM) CLIP + ViT E, L SKI fusion, PL, FFN SL – ✓ Zero-shot prompt-based   LAVAD ✓ Train-Free (L+VLM) BLIP-2, LLaMA-2, ImageBind E, M, L Caption, Sim score – – ✓ Training-free zero-shot   HAWK – Descrip. & Answer (L+VLM) Video-LLaMA, EVA-CLIP E, M Dual-branch, align. SL – ✓ GPT-based QA on anomaly   AnomShield – Descrip. & Answer (L+VLM) CLIP-L/14, Mistral-7B E, M CoT, causal analysis SL ✓ ✓ AnomEval: what–why–how   Holmes-VAU – Fully(frame-level) & Descript. L+VLM InternVL2-2B, UR-DMU E, M, L ATS, LoRA, hierarchy FL, SL – ✓ Efficient ‘‘when+why’’ explain.   PLOVAD ✓ Weak CLIP + GAT E, L Prompt + GAT temporal FL ✓ – Scalable, temporal context   Sherlock – Instruction Tuning Video-LLaVA, MoE E, M Event extraction, SIR FL, SL – ✓ Structured anomaly scene 

event quadruples & timestamps  
 VERA – Multi (L+VLM) CLIP + prompts E, L Verbal prompts, ens. FL ✓ ✓ Prompt-based question mining   EventVAD ✓ Train-Free (L+VLM) EVA-CLIP, VideoLLaMA2.1 E, M, L Graph Attention – ✓ ✓ Precise, long-tail aware   LPG – Weak (VLM) BLIP-2, Q-Former E, M Tokens, temp. caption FL – ✓ Local recomposition gen.   Flashback ✓ Train-Free ImageBind, PerceptionEncoder E, M RepulsivePprompting – – ✓ RT trough Pseudo-Scene Memory  
OW: Open-World, Sup.: Supervision, FE: Feature Extractor, FUSE: Fusion (E = Early, M = Mid, L = Late), FM: Feature Modulator, SS: Segment Selection, LT: Loss Target (FL = Feature, SL = Score), UCFC/XDV: Benchmark 
used, PL = Prompt Learning, ER = Evidential Reasoning, PS = Pseudo-synthesis, CoT = Chain-of-Thought, SIR = Spatial Imbalance Reg.
training scheme enhances robustness under limited supervision 
and open-set conditions.

• OVVAD: Uses CLIP-based vision–language alignment for open-
vocabulary anomaly detection and classification. Employs Seman-
tic Knowledge Injection (SKI), prompt learning, and a lightweight 
GCN for temporal modelling. Introduces NAS for unseen class 
generation via LLM prompts and AIGC.
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• LAVAD: Training-free, it fuses BLIP-2-based captioning with LLM 
reasoning (Llama-2) and ImageBind similarity scoring. Uses LLMs 
for contextual aggregation and video–text alignment for zero-shot 
anomaly detection with temporal reasoning.

• HAWK: Open-world framework combining appearance and mo-
tion branches. Integrates optical flow and motion-language
matching to enhance spatiotemporal reasoning. Trained using 
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WebVid pretraining and anomaly-specific fine-tuning with GPT-
generated descriptions.

• ECVA + AnomShield: Introduces a causality-focused bench-
mark and pipeline combining VLM-based captioning, GPT-based 
retrieval, and Mamba-based bidirectional reasoning for What–
Why–How anomaly understanding. AnomEval assesses reasoning 
and hallucination alignment with human judgment.

• Holmes-VAD: Introduces VAD-Instruct50k benchmark with LLM-
synthesized labels. Uses LanguageBind features and a temporal 
sampler to efficiently feed salient segments to a LoRA-tuned LLM 
for interpretable anomaly reasoning in long videos.

• Holmes-VAU: Enhances Holmes-VAD with hierarchical reason-
ing and temporal sampling. Anomaly-focused Temporal Sampler 
(ATS) and InternVL2 LLM enable fine-grained ‘‘when’’ and ‘‘why’’ 
insights using the proposed multi-granular HIVAU-70k bench-
mark data.

• PLOVAD: Uses CLIP with a prompting module and graph-based 
temporal modelling to detect and categorize both seen and unseen 
anomalies without labelled data for novel classes. A GAT module 
aligns visual and textual features across time for open-vocabulary, 
weakly supervised VAD.

• Sherlock: Tackles multi-scene video anomaly detection by ex-
tracting structured event quadruples using a global-local spatial 
mixture-of-experts and a spatial imbalance regulator.

• VERA: Introduces a verbalized learning approach where anomaly 
characterizations are treated as learnable guiding questions opti-
mized via binary video classification.

• EventVAD: Combines event-aware graph segmentation and
vision–language understanding using optical flow, CLIP features, 
and dynamic graphs to detect temporally coherent events.

• LPG: A VLM-based unsupervised VAD pipeline that learns local, 
semantically aligned spatial patterns and combines them with 
motion features for open-set generalization.

• Flashback: A zero-shot, real-time framework by decoupling LLM-
based pseudo-scene memory construction (offline) from caption-
retrieval inference (online), leveraging repulsive prompting (to 
widen normal/anomalous embedding separation) and scaled
anomaly penalization (to mitigate residual bias), achieving 87.29 
AUC on UCFC at 42.06 fps on consumer GPUs.

The evolution of VLMs has enabled transformative advances in 
WVAD, shifting from computationally intensive architectures (e.g., 3D 
CNNs like C3D/I3D) to lightweight, efficient designs. LLM-integrated 
VAD systems combine vision–language representations and natural 
language reasoning to support zero-shot detection, interpretability, and 
domain generalization, while enabling the curation of new and mul-
timodal benchmarks. These frameworks surpass manual thresholding 
and binary scoring, addressing both causality (‘‘Why’’), classification 
(‘‘What’’), and temporality (‘‘When’’) in anomaly understanding. Key 
challenges remain in scalability, fine-tuning costs, and the robustness 
of cross-modal alignment, especially in long-duration or ambiguous 
surveillance footage.

Future directions toward deployable, generalizable WVAD systems 
include integrating lightweight backbones (e.g., FastViTHD, HiLoViT)t, 
expanding datasets for open-world learning, and refining semantic 
alignment with motion cues and temporal reasoning. Unified bench-
marks with evaluation metrics for both class-wise detection and expla-
nation quality (e.g., BLEU, CIDEr, AnomEval) are essential to quantify 
progress in explainable and causally-aware VAD.

5.9. Misc

This section highlights several noteworthy WVAD approaches that 
either do not neatly fall into the previous categories or represent 
promising new directions for future research.
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REWARD [344] proposes an end-to-end WVAD framework that 
transforms video-level labels into frame-level pseudo-labels for binary 
classification, similar to ANMIL [291] and 2Stage-based methods (Sec-
tion 5.5). The method consists of a three-stage self-supervised pipeline 
designed to bypass memory limitations of metric-learning approaches 
like MIR [21]. Initially, a 𝑘kNN classifier compares features from 
anomalous videos to a nominal feature bank, identifying coarse pseudo-
labels with temporal smoothing. These are refined via an MLP classi-
fier trained on high-confidence segments. Final pseudo-labels enable 
joint fine-tuning of a transformer-based feature extractor (Uniformer-
32 [116]) and a binary classifier using BCE loss. By removing the 
need for feature aggregation and optimizing both components together, 
REWARD achieves real-time inference (32 frames @ 5 fps, 6.4 s win-
dow) while surpassing RTFM-based methods (Section 5.3). Notably, 
the authors exclude the first and last 20% of segments in UCF-Crime 
training videos to eliminate noise from static banners.

GlanceVAD [43] (Fig.  32) presents a paradigm shift in annotation 
efficiency with its ‘‘Glance Supervision’’ approach. It requires anno-
tators to mark only a single frame representing the anomaly, signifi-
cantly reducing annotation effort and subjectivity. Adapting Gaussian 
Splatting from 3D scene representation, they utilize Gaussian as the 
core anomaly representation, focusing on temporal kernel optimiza-
tion. The resulting 1D anomaly score serves as smoother pseudo-labels 
from sparse glance annotations. GlanceVAD seamlessly integrates with 
existing MIL-based weakly supervised methods, demonstrating signifi-
cant performance improvements over state-of-the-art VAD techniques. 
Achieving 91.96% AUC on UCFC and 89.40% AP on XDV, it showcases 
a strong balance between annotation cost and performance. While ac-
knowledging potential limitations in baseline method selection (RTFM 
and UR-DMU), the authors highlight their established performance in 
weakly supervised settings.

Video Anomaly Retrieval (VAR) [237]: This work introduces the 
task of VAR, shifting the focus from anomaly detection to retriev-
ing relevant videos containing specific anomalous events based on 
cross-modal queries, such as text descriptions. This approach addresses 
the practical need for efficiently searching large video archives for 
particular anomalies.

UCF-Crime Annotation (UCFA) [250]: Recognizing the limitations 
of traditional VAD methods in semantic understanding, a richly an-
notated version of the UCFC dataset is proposed, including 23,542 
fine-grained sentence descriptions and temporal annotations. The au-
thors demonstrate the dataset’s utility through comprehensive bench-
marking of multiple video–language understanding tasks, including 
temporal sentence grounding (TSGV), video captioning (VC), dense 
video captioning (DVC), and multimodal anomaly detection (MAD). For 
MAD specifically, they propose an enhanced TEVAD [308] framework 
that incorporates general and surveillance-specific Swinbert models 
for caption generation. Experiments show that state-of-the-art mod-
els trained on standard video datasets underperform on surveillance 
footage. However, domain-specific caption features from UCFA-trained 
models complement visual cues to boost anomaly detection, enabling 
multimodal learning for richer semantic understanding in surveillance 
contexts.

Explainable Video Anomaly Localization (EVAL) [345] is a trans-
parent VAD framework that detects and explains anomalies using 
exemplar-based nearest-neighbour matching and interpretable attr-
ibutes such as motion, appearance, and spatial context. It leverages pre-
trained models (e.g., MS-COCO) to extract semantic features and selects 
exemplar instances from normal videos for comparison. Anomalies are 
identified when test instances deviate from these exemplars in attribute 
space, with explanations tied to specific mismatches (e.g., a stationary 
car in traffic). While EVAL is effective and interpretable in simple 
scenes (e.g., Street Scene, UCSD Ped2), it has limited evaluation on 
complex interaction anomalies.

ComplexVAD [346] detects interaction-based anomalies using scene
graphs to model object relationships. Each frame is represented as 
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Fig. 32. GlanceVAD [43] proposed method.
a graph with nodes (objects) and edges (spatial–temporal relations), 
enriched with attributes like trajectory and pose (using Detectron2 for 
detection and pose, ByteTrack for tracking). Normal interactions are 
captured via exemplar node pairs and isolated nodes from nominal 
videos, filtered by distance metrics. Anomalies are flagged when test 
instances deviate from these exemplars, emphasizing interaction irreg-
ularities over single-object behaviour. Evaluated on a custom dataset 
of 217 videos, the method uses frame-level AUC, RBDC, and TBDC for 
performance assessment.

A Frequency Enhanced (FE-VAD) [347], addresses the limitation 
of existing methods that rely solely on spatio-temporal features and 
integrates temporal strengthening and a novel frequency-domain anal-
ysis: (1) A Temporal Strengthening Network (TSN) employs masked 
self-attention to model global dependencies and local 1D convolutions 
to refine temporal features, prioritizing future anomaly prediction by 
suppressing past influences. (2) A High–Low Frequency Enhancement 
Network (HLFN) decomposes features via Fourier transforms into high-
frequency (detail-sensitive) and low-frequency (global-context) compo-
nents, enhanced through Gaussian filtering and adaptive convolutions 
in both temporal and spatial domains. These complementary frequency 
features are fused and optimized via a High–Low MIL Loss, which dif-
ferentially weights snippet selection. During inference, a video-specific 
scaling and smoothing strategy dynamically adjusts anomaly scores 
using pseudo-labels derived from training data, refining frame-level 
predictions. Evaluated on ST, UCFC, and XDV, FE-VAD demonstrates 
that frequency analysis effectively complements spatio-temporal mod-
elling to detect subtle/local and persistent/global anomalies. The work 
pioneers frequency-domain integration in WSVAD, offering a robust 
solution for real-world surveillance systems requiring adaptability to 
diverse anomaly types.

VADMamba [348] pioneers the use of state space models (SSMs), 
specifically Mamba [349], for fast VAD. It combines frame predic-
tion and optical flow reconstruction in a hybrid framework. The pro-
posed VQ-Mamba Unet (VQ-Mau) compresses normal features via vec-
tor quantization (VQ) and uses Non-negative Vision State Space (NVSS) 
blocks with pre-activation (Relu → Conv → BN) to accelerate conver-
gence. A clip-level fusion strategy dynamically selects optimal anomaly 
scores (frame or flow-based) per video segment. Ablations confirm the 
efficacy of VQ and NVSS in balancing speed and performance, with 
Mamba’s linear scalability enabling efficient long-range modelling. Al-
though further evaluations on richer datasets are needed.

The UCFDVS [260] dataset represents the first event-based bench-
mark for VAD, utilizing Dynamic Vision Sensors (DVS) to capture 
asynchronous, sparse event streams with high temporal resolution 
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(1280 × 720, 242s/video). Unlike RGB data, DVS encodes *ON/OFF* 
polarity changes, reducing redundancy and enhancing motion sen-
sitivity, particularly useful for dynamic anomalies. To leverage this 
modality, the authors introduce a Multi-Scale Spiking Fusion Network 
(MSF) based on Spiking Neural Networks (SNNs), which are well-suited 
for processing discrete event data. MSF incorporates pyramidal dilated 
convolutions to extract multi-scale spiking features, a Spiking Graph 
Convolutional Network (GCN) to model global temporal dependencies, 
and a Temporal Interaction Module (TIM) to fuse historical and cur-
rent spike states. The work establishes a new direction for efficient, 
temporally-aware anomaly detection, showcasing the promise of event 
cameras and SNNs for real-time, motion-centric VAD.

The Poly-modal Induced VAD (Pi-VAD) [350] (Fig.  33) framework 
enhances WVAD by integrating five modalities — pose, depth, panoptic 
masks, optical flow, and text — into RGB analysis through a efficient 
two-module architecture, the Poly-modal Inductor.

At its core, the Pseudo Modality Generation (PMG) module synthe-
sizes modality-specific embeddings directly from RGB features using 
an encoder–decoder structure. The encoder, a 1D convolutional layer, 
projects RGB snippet features into a shared latent space, while five par-
allel decoder (linear layer + 1D convolution) generate pseudo-modality 
embeddings by translating latent representations. This design elimi-
nates reliance on external modality backbones during inference, relying 
instead on MSE reconstruction loss during training to align pseudo-
modalities with ground-truth embeddings extracted from pre-trained 
models (pose: YOLOV7-posewangYOLOv72022, depth: DepthAnythi-
ngV2yangDepth2024, panoptic mask: SAMkirillovSegment2023, opt-
ical-flow: RAFTteedRAFT2020, text modality ground-truths: VifiCLIPr-
asheedViFiCLIP2023). The shared encoder ensures cross-modal consis-
tency, while decoders distil task-specific cues, reducing redundancy and 
noise inherent in raw multimodal data.

The Cross Modal Induction (CMI) module aligns pseudo-modalities 
with RGB through a two-stage process: (1) snippet-level bi-directional 
InfoNCE loss (𝑎𝑙𝑖𝑔𝑛), enforces fine-grained alignment by maximizing 
cosine similarity for same-snippet pairs while repelling dissimilar pairs, 
and (2) distillation loss (𝑑𝑖𝑠𝑡𝑖𝑙𝑙) leverages a frozen teacher model — 
pre-trained on the WSVAD task — to guide the student by minimizing 
the MSE between the student’s refined multi-modal features (∗

𝑀 ) and 
the teacher’s RGB features (𝑡𝑒𝑎𝑐ℎ).

The Poly-modal Inductor processes the output representation from 
Student’s Block-i and injects the refined multi-modal feature into Stu-
dent’s Block i+1, regardless of the student’s specific block. It can be 
integrated throughout the teacher–student architecture (authors placed 
in initial/final blocks to capture low/high level multi-modal features).
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Fig. 33. Pi-VAD [350] proposed method.
Training uses a teacher–student setup: the teacher (pre-trained WS-
VAD model) remains frozen, while the student undergoes two phases: 
warm-up (𝑃𝑀𝐺 + 𝑎𝑙𝑖𝑔𝑛 + 𝑑𝑖𝑠𝑡𝑖𝑙𝑙) initializes modality synthesis/align-
ment, and task training combines MIL loss (𝑀𝐼𝐿) with auxiliary 
losses. At inference, only the Student and PI’s run, generating pseudo-
modalities solely from RGB (19.88 GFLOPs vs. 2561 GFLOPs for raw 
modalities) at 30 FPS, making it practical for CCTV and surveillance 
systems. PI-VAD achieves 90.33% AUC on UCF-Crime (+2.75% over 
RGB baselines) and 85.37% AP on XD-Violence, with depth (spatial 
context) as key contributor. Ablations show PMG+CMI jointly boost 
AUC by 5.67%, while distillation adds 1.45%. Efficiency and robust-
ness in real-world anomalies (e.g., explosions, shoplifting) validate its 
applicability.

The Latency-aware Average Precision (LaAP) [11] metric re-
defines VAD evaluation by prioritizing timely detection, crucial for 
real-world safety systems. Traditional metrics (AUC/AP), while ef-
fective for frame-wise classification, neglect the temporal nature of 
anomalies, failing to distinguish between early and late detections 
within an event.

LaAP integrates a time-decaying weighting mechanism into the 
precision–recall framework, penalizes delayed predictions and reward-
ing models that identify anomalies closer to their onset through adap-
tive scoring and sparse sampling. LaAP assumes that only one ab-
normal event exists in a video due to the sparsity of anomalies (not 
ready for XDV). Alongside LaAP, the authors tackle annotation bias 
through multi-round averaged AUC/AP, mitigating inconsistencies aris-
ing from subjective labelling practices. To further address dataset 
limitations, they introduce synthetic benchmarks (UCF-HN, MSAD-
HN) generated via diffusion models, which simulate normal behaviour 
within anomaly-prone scenes to rigorously test scene overfitting.

Ablation studies showed:

• Overfitting: Models like CLIP-TSA [194] and VadCLIP [40]
showed 44%–100% FAR on synthetic benchmarks, despite low 
FAR on original data, revealing heavy reliance on scene biases.

• Latency Matters: LaAP uncovered performance gaps invisible to 
AUC/AP; e.g., MGFN [119] and URDMU [278] lagged in timeli-
ness despite competitive comparable AUC/AP scores.

• Supervision Gap: Methods with extra supervision (e.g., Holmes-
VAU [13]) resisted overfitting, while weakly supervised models 
faltered, highlighting the need for robust training paradigms.
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• Annotation Bias Mitigation: Models like RTFM [89] and PEL [39] 
showed significant ranking shifts under averaged AUC/AP, vali-
dating the necessity of this approach for reliable evaluation.

By harmonizing temporally aware metrics with synthetically aug-
mented data, this work pioneers a holistic framework that bridges data 
quality and metric reliability, advancing the development of robust, 
generalizable VAD systems capable of nuanced temporal reasoning and 
scene-agnostic performance.

In sum. , these diverse approaches highlight the ongoing evolution 
of WVAD, expanding beyond traditional paradigms to encompass new 
tasks, annotation strategies, integrating powerful language models, new 
modalities and evaluation metrics. Exploring these emerging direc-
tions holds significant potential for advancing the field towards more 
efficient, interpretable, and adaptable anomaly detection systems.

6. Edge deployability considerations in weakly supervised VAD

Despite the increasing sophistication of Weakly Supervised VAD 
methods, their deployability at the edge is an essential dimension often 
overlooked in current reviews. Real-world surveillance systems rely 
on edge devices with constrained computational resources, memory, 
and power budgets [351]. Therefore, the practical utility of WSVAD 
techniques is tightly coupled with their ability to operate efficiently 
under such limitations.

Edge deployment imposes several critical requirements: low-latency 
inference, minimal memory footprint, model compression, and the 
ability to run without reliance on high-throughput cloud infrastruc-
ture [352]. Many state-of-the-art WSVAD models leverage deep archi-
tectures with millions of parameters, often requiring GPUS and substan-
tial bandwidth for video processing, making direct edge deployment 
difficult [353,354].

Edge VAD challenges in [355] highlights the increasing impor-
tance of edge devices for real-time video VAD in smart cities. It con-
trasts traditional, centralized approaches with edge-based solutions that 
offer greater efficiency, privacy, and scalability. The paper catego-
rizes existing methods, emphasizing the context-sensitive and time-
critical nature of VAD, while also noting key challenges of edge deploy-
ment, such as limited computational resources, energy, and memory 
constraints.
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Benchmarking is the focus of [352], discussing an end-to-end 
VAD detection system implemented on various NVIDIA Jetson edge 
devices, focusing on performance optimization and real-time analysis 
for surveillance applications. It highlights the efficiency and effective-
ness of these devices in real-time surveillance applications, employing 
a weakly supervised model previously identified, the RTFM [89] for 
benchmarking comparison.

Lightweight and robust framework for anomaly detection in large-
scale surveillance video data is presented in [356]. The approach 
combines 2D-CNNS for video feature extraction, autoencoders for rep-
resentation learning, and Echo State Networks (ESNS) for sequence 
modelling and anomaly detection. It was specifically designed for 
deployment on edge devices, the framework supports secure and intelli-
gent surveillance. When evaluated on challenging surveillance datasets, 
the method outperformed several existing approaches in terms of per-
formance and efficiency.

Vision Transformer Anomaly Recognition (ViT-ARN) framework
[357] enables anomaly detection and classification in smart city surveil-
lance videos through a two-stage process: a lightweight one-class neural 
network performs online anomaly detection, followed by classifica-
tion of detected events. To ensure edge compatibility, the model is 
compressed using geometric median-based filter pruning, and refined 
features are analysed via a multi-reservoir Echo State Network for 
recognizing complex anomalies like vandalism and traffic incidents.

Online Active Learning (OAL) is explored by [358], introducing 
a framework for deep neural networks on edge devices, using Singu-
lar Value Decomposition (SVD) to assess model quality and trigger 
retraining without ground truth or teacher labels. It supports efficient 
teacher–student knowledge distillation and intelligent frame selection 
to maintain real-time performance and reduce overfitting. Evaluated 
on human pose estimation and object detection tasks using models like 
YOLO and ResNet on NVIDIA Jetson NX, the approach significantly 
reduces unnecessary retraining.

Fast-DAVAD [359] framework addresses VAD on AIoT-enabled 
edge devices by tackling domain shift through multi-level adversarial 
domain adaptation in an unsupervised, lightweight manner. Designed 
for resource-constrained environments, it uses a Residual U-Net and a 
memory module to ensure low latency and maintain accuracy without 
relying on labelled real-world data. Experiments on public datasets and 
platforms like edge NVIDIA Jetson devices confirm its efficiency and 
performance compared to state-of-the-art methods.

EdANo-Vision [360] VAD system using edge computing for real-
time surveillance analysis, supported on NVIDIA’s Jetson Orin Nano 
8 GB. The edge device supports the I3D [33] model, which detects 
anomalies, providing probabilities and confidence percentages. The 
model processes video frames at 240 × 230 pixels and 30 FPS, and the 
system’s performance is evaluated using the UCFC dataset. The Inte-
grated edge-based anomaly detector effectively communicates detected 
anomalies to users.

Table  10 summarizes the various approaches focused on edge VAD 
(see Table  13).

Key Points of Edge VAD Methods: These methods leverage the 
power of small embedded devices to enhance anomaly detection in 
the edge devices, minimizing information flow and bandwidth, while 
maintaining VAD accuracy.

• Lightweight: Employs the RTFM model for anomaly detection, 
optimized for edge deployment on Jetson Nano with low power 
consumption (41.7 W). Prioritizes efficiency and real-time infer-
ence while maintaining competitive AUC (84.39).

• OAL: Proposes a teacher–student framework incorporating Sin-
gular Value Decomposition (SVD) and Echo State Networks. Fo-
cuses on unsupervised representation learning without explicit 
edge deployment, emphasizing low-rank modelling and temporal 
abstraction.
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• Fast-DAVAD: Utilizes a residual U-Net with multi-level adversar-
ial domain adaptation. Integrates an autoencoder reconstruction 
scheme and is deployed on Jetson hardware, balancing inference 
efficiency (7.14 W) with robust domain transfer capabilities.

• EdANo-Vision: Builds on I3D and Inflated 3D CNNs, enhanced 
with depth-wise convolution and 8-bit compression for hardware-
aware deployment on Jetson. Demonstrates a trade-off between 
accuracy (AUC 81.0) and power efficiency (15 W), targeting 
efficient high-dimensional spatiotemporal modelling.

Edge-oriented VAD systems prioritize lightweight architectures such 
as MobileNet or pruned models to meet the constraints of low-power 
hardware like Raspberry Pi or Jetson Nano. By processing data lo-
cally, they enhance privacy, reduce latency, and minimize bandwidth 
usage by transmitting only alerts or metadata. These energy-efficient 
systems support scalable, decentralized surveillance networks but face 
challenges in maintaining detection accuracy under computational con-
straints and in updating models on-device.

Emerging techniques—such as compression, feature distillation, and 
federated learning aim to improve adaptability and performance at the 
edge. Without assessing deployability, conclusions about a method’s 
real-world applicability remain incomplete. Future reviews and bench-
marks should incorporate edge-aware evaluations, including runtime 
efficiency, memory footprint, and performance on resource-constrained 
hardware.

7. Emerging privacy challenges in Weakly Supervised Video
Anomaly Detection (WSVAD)

As VAD becomes increasingly prevalent in domains such as surveil-
lance, healthcare, and smart cities, the adoption of weak supervision 
has facilitated more scalable and cost-effective model development. 
Nevertheless, this approach introduces significant privacy concerns that 
are frequently neglected. Weakly supervised VAD typically relies on 
large volumes of minimally annotated video data, which raises serious 
issues regarding data governance and personal identity protection [361,
362], something addressed in more recent benchmarks [12,15,261].

A key privacy risk arises from the nature of real-world video 
footage, which, unlike anonymized datasets, may contain personally 
identifiable information such as faces, gait patterns, vehicle license 
plates, and contextual details of private behaviour. Since weak su-
pervision reduces annotation requirements, it often involves using 
raw, unfiltered video, thereby amplifying privacy risks [363]. Even in 
cases where raw footage is not directly shared, model parameters or 
gradient updates may leak sensitive information via model inversion 
or membership inference attacks [364], or transfer attacks [365]. 
This is particularly concerning in high-stakes environments like hos-
pitals or public transport, where trust and data protection must be 
prioritized [366].

Another emerging concern is the lack of standardized frameworks 
for privacy-preserving weak supervision [367,368]. While techniques 
such as differential privacy, homomorphic encryption, and synthetic 
data generation are being explored in supervised contexts, their adapta-
tion to weakly labelled, sequential video data remains an open research 
area [368]. These methods must also balance the trade-off between 
privacy and anomaly detection performance, as over-sanitization of the 
data may obscure subtle but important behavioural deviations that are 
relevant to be detected [369].

Privacy-Preserving Video Anomaly Detection (P2VAD) survey
[368] identified those challenges addressing the growing concerns 
over personal privacy in surveillance-based VAD, which often captures 
identifiable information. Traditional VAD research lacks transparency 
and interpretability, hindering its real-world adoption. This article 
offers the first comprehensive review of P2VAD, defining its scope, 
categorizing existing approaches, and analysing their assumptions and 
effectiveness.



R.Z. Barbosa et al. Information Fusion 126 (2026) 103388 
Table 13
Summary of Edge-Oriented VAD Works.
 Method Power FM MIL SC Edge Metrics

 Watts GFLOPs UCFC XDV 
 Lightweight 7 41.733 Detection RTFM model 7 AUC Jetson 

Nano
84.39 7  

 OAL 7 7 Teacher-Student
& Singular Value 
Decomposition (SVD)
& Echo State Network

7 AUC 7 7 7  

 Fast-DAVAD 7.142 7 Residual U-Net 
& Multi-level 
adversarial domain

7 AUC Autoencoder
Reconstruct 
& Jetson

7 7  

 EdANo-Vision 15 7 I3D 
& Inflated
& 3D CNN

7 AUC Depth-wise
convolution 
& 8-bit 
Compression 
& Jetson

81.0 7  

Power: Approximate consumption; FM: Feature Modulator; MIL: Multiple Instance Learning; SC: Score Metric; Edge: Uses edge supervision or strategy used for 
deploy on edge hardware; SAtt: Self-Attention; XMod: Cross-modality; UCFC/XDV: Benchmark datasets.
Fig. 34. Ted-SPAD [370] proposed method.
Ted-SPAD [370] (Fig.  34) proposes a privacy-aware framework 
that anonymizes visual data in a self-supervised way while preserv-
ing anomaly detection accuracy. By introducing a temporally distinct 
triplet loss, the method enables the anonymization training of the 
model. Tested on three VAD benchmark datasets, ST, UCFC, and 
XDV [22], and [371] to evaluate the leakage of privacy attributes. 
Ted-SPAD achieves strong privacy-utility trade-offs, reducing private 
attribute prediction with minimal impact on anomaly detection perfor-
mance.

Moving towards human-centric VAD, [372,373] a novel dataset 
prioritizing privacy in human activity analysis, by enforcing the use of 
features, such as pose, trajectory, and optical flow, to protect individual 
privacy and prevent discrimination against minority groups. These 
features are alternatives to raw pixel data, potentially improving model 
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generalizability and performance. Alongside UCAL (Unsupervised Con-
tinual Anomaly Learning)—an innovative framework that empowers 
models to evolve continuously through incremental learning. This ap-
proach facilitates a seamless transition from offline training to dynamic 
real-world implementation, addressing the critical gap between static 
model development and adaptive deployment scenarios.

Recent efforts have turned toward systematically studying privacy 
across data, features, and system levels. However, existing work re-
mains fragmented and mainly focused on RGB-based methods, neglect-
ing privacy leakage and appearance bias. Although many works try to 
address the privacy problem in VAD, future research must prioritize 
the development of privacy-aware weakly supervised learning methods 
that incorporate anonymization, access control, and ethical auditing 
directly into the training pipeline. Furthermore, regulatory frameworks 
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like the GDPR and HIPAA underscore the need for transparency, con-
sent management, and risk mitigation strategies in any system that 
processes personal video data, regardless of the supervision level.

8. Overall conclusions and limitations

This survey has undertaken a comprehensive exploration of VAD, 
examining both the theoretical underpinnings and practical challenges 
of this rapidly evolving field. Tracing the trajectory of the paradigm of 
VAU, we reveal a dynamic convergence of methodologies—where once-
disparate components and abnormality criteria mostly in a hybrid set-
ting, and recently increasing the multimodal systems that incorporates 
textual cues, causal reasoning, and cross-modal alignment.

The experimental taxonomy proposed in this work yields valu-
able insights into how data curation, feature representations, sampling 
strategies, and optimization techniques collectively influence perfor-
mance across all stages of VAU. A defining trend is blending feature 
extraction and modulation with novel additions — such as language-
grounded encoders or multimodal vision–language models (VLMs) — 
augmenting traditional pipelines. This crisscross of plug-and-play mod-
ules signals the field’s maturation into a holistic ecosystem. Notably, re-
cent efforts explore dynamic sampling strategies, like the SBS (Sample-
Batch Selection) [279], which adaptively samples more relevant video 
segments, especially when combined with powerful image–text pre-
trained models or cutting-edge VLM encoders Section 3.1.3.

Despite these advances, several core challenges persist. Chief among 
them is the absence of unified, modular experimentation platforms. We 
advocate for a standardized, open-source framework to integrate plug-
and-play modules, network-agnostic methods, and supervision strate-
gies (e.g., weakly supervised, open-world, and LLM-driven). Such a 
framework would support ablation studies and modular benchmark-
ing while promoting cross-dataset evaluation to better assess model 
robustness across heterogeneous surveillance domains.

A significant obstacle to practical deployment remains the high 
False Alarm Rate (FAR), particularly prevalent in weakly supervised 
methods that rely on imprecise video-level labels, most of the time 
forgotten [39,86–88,95,270,278]. Models often struggle to localize 
anomalies without accurate temporal annotations, leading to unreli-
able detections and alert fatigue in real-world applications. Moreover, 
most current works prioritize coarse metrics like AUC or AP, over-
looking semantic interpretability, cross-scenario generalization, and 
anomaly-specific reasoning. Some works have begun incorporating 
class-wise metrics [39,40,43,111,195,196,279,288,320,350] and fine-
grained mAP [40,42,196,317] to address inter-class variability, and 
spatial anomaly location (Temporal Intersection-over-Union (TIoU))
[30,253,315], yet inconsistencies persist due to differing AP calculation 
methodologies. The method of calculating Average Precision (AP) — 
either via trapezoidal interpolation, which risks overestimation by 
assuming linear precision–recall (PR) segments, or the non-interpolated 
approach that weights precision at each recall threshold — critically 
impacts performance estimates in imbalanced datasets, with the latter 
offering a more conservative and reliable measure.

Emerging metrics like AnomEval [241], M-VAE [253] and LaAP [11]
build on these insights by integrating causal reasoning and temporal 
sensitivity, addressing gaps left by conventional metrics. LaAP explic-
itly rewards early anomaly detection through time-decayed scoring, 
while AnomEval introduces causal localization metrics to disentangle 
spurious correlations. These advancements highlight the need for en-
riched evaluation protocols that unify fine-grained mAP classification, 
GPT-4o-guided coherence analysis, and anomaly-specific reasoning.

Benchmarks also evolve to reflect real-world complexity, as seen by 
UCFA [250], MSAD [12], HIVAU-70K [13], M-VAE [253], UCFVL [14] 
and SurveillanceVQA-589K [15], diversify anomaly types, contexts 
and annotations/instructions, synthetic benchmarks (e.g., VANE [261], 
UCF-HN/MSAD-HN [11]) expose latent biases like scene overfitting 
through diffusion-generated normal videos. Incorporating multimodal 
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signals, particularly audio–language embeddings Section 3.2 into VAD 
pipelines [42,295], further promises to enhance detection fidelity, as 
seen in ECVA [241], and UCFDVS [260].

Existing frameworks based on Multiple Instance Learning (MIL) [21] 
remain influential, yet their reliance on discrete, non-differentiable op-
erations (e.g., top-k selection) using noisy selection criteria (e.g. scores, 
feature magnitude) often undermines stability and generalization.
These strategies typically neglect temporal context and smooth deci-
sion boundaries, making them problematic in noisy settings. Recent 
advances like REWARD [344] address these limitations by adopting 
end-to-end training with frame-level pseudo-labels, akin of 2-stage 
works (Section 5.5), bypassing the memory bottlenecks of metric learn-
ing losses [95,268,295,304,314] while enabling joint optimization of 
feature extractors/classifiers. A deeper analysis is necessary, along with 
the investigation of different alternatives that better capture temporal 
coherence and anomaly semantics (e.g. DEN’s dynamic erasing [289], 
AnomCLIP feature space vision–text alignment [196], batch-based DFM 
anomaly metric [279], MELOW’s Multimodal Evidential Collaborative 
Learning [5] and PEMIL’s Abnormal-Aware Prompt Learning [41]).

Furthermore, real-world deployment demands emphasize the need 
for efficient inference—recent works [10,344,350] highlight trade-offs 
between detection accuracy, computational throughput (FPS), Params, 
and MACS underscoring the importance of lightweight architectures 
and hardware-aware optimizations for edge/cloud deployment and 
real-time inference.

Looking forward, we propose an extension of our current work with 
UWS4VAD—a modular, extensible platform to advance the state of 
video anomaly understanding through:

• Unified Modular Architecture:
– Network-agnostic design supporting plug-and-play compo-
nents (feature extractors/modulators, loss functions, distil-
lation layers [42,295], teacher–student [350]).

– Multimodal data handling (RGB, audio, text, event) with 
hierarchical configuration for reproducibility.

– Flexible interplay between datasets, supervision paradigms 
(weak, glance, instruction, train-free), and optimization
strategies.

• Comprehensive Benchmark Suite:
– Standardized splits, cross-dataset protocols and open-world 
settings.

– Multi-granular evaluation: detection (AUC/AP/LaAP/F2/
FNR), classification (mAP), reasoning (AnomEval), scene 
overfitting (FAR), computational throughput (GFLOPs).

• Collaborative Research Hub:
– Centralized tracking of model performance with systematic 
results and cross-model comparison (plots, metrics, visual-
izations, att/embeddings maps).

– Version-controlled modules for inference/training with de-
ployment mechanisms addressing efficiency (edge/cloud).

– Documentation portal for WVAD/VAU advancements, inte-
grating community contributions.

The framework advocates a configuration-driven, reusable engine 
for end-to-end experimentation, bridging data, models, and evaluation 
into a single reproducible workflow.

This initiative invites the community to join development and con-
tributions of new methods, datasets, evaluation protocols, and real-
world applications. By fostering reproducibility, comparability, and 
interdisciplinary collaboration, we aim to shift VAD from a fragmented 
landscape of isolated methods into a robust, interpretable, and deploy-
able discipline.
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