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A B S T R A C T

Person recognition through gait is a highly promising biometric technique, offering substantial advantages
over traditional methods. Despite its potential, gait recognition from images can be challenged by factors such
as variations in viewing angles, personal accessories, or clothing, which may alter specific gait characteristics.
A novel and innovative gait identification system with two main components was developed to address these
challenges. The first component focuses on the acquisition of gait sequences, using algorithms for detection,
tracking, and gait analysis from images. The gait analysis algorithm facilitates the extraction of high-quality
image sequences while determining the subject’s movement angle relative to the imaging camera. This is
essential for ensuring precise and consistent data for the identification process. The second component is
the person identification algorithm, which employs model-free approaches. This component includes various
approaches to integrate the angle information into four well-established models: GaitPart, GaitSet, GaitGL,
and GaitBase built using the CASIA-B dataset. The results demonstrated that angle information can refine
feature extraction when properly integrated into the model, achieving state-of-the-art results across the four
models. The GaitPart, GaitSet, and GaitGL models preferred late-stage angle integration, whereas GaitBase
performed better with early-stage integration due to its strong backbone. In the final phase of this study,
additional tests were conducted using the modified GaitBase model with angle information on the CASIA-
E dataset. These tests confirmed the model’s effectiveness and enabled a detailed analysis of the threshold
that differentiates gait sequences from the same person and those from different individuals. This threshold
enhances the system’s scalability by enabling it to determine whether a person has been previously observed.
Thus, this study developed an innovative and theoretically scalable system adaptable to a growing number
of users and locations, with potential applications in access control, security monitoring, and attendance
management.
1. Introduction

Gait recognition is a rapidly growing research area and a promising
biometric technique, offering significant advantages over traditional
methods such as face, iris, and fingerprint recognition (Harris et al.,
2022). Its key strengths include non-contact and discrete data collec-
tion, enabling the acquisition of walking patterns from a distance, even
at lower resolutions (Hawas et al., 2019). Additionally, gait patterns
are inherently more difficult to replicate than other biometric traits,
enhancing security. Recent advancements in sensing technologies and
deep learning have further propelled progress, enabling automatic
feature extraction and improved performance in gait-based identifica-
tion models (Khaliluzzaman et al., 2023). However, gait recognition
in images faces significant challenges due to variations in viewing
angles, i.e., cross-view conditions, changes in clothing, and the use
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of accessories, which can alter key gait characteristics and reduce the
performance of the computational method (Harris et al., 2022; Russel
et al., 2021). Developing a robust computational gait recognition model
that can effectively address these challenges remains an open research
problem (Khaliluzzaman et al., 2023). Motivated by these challenges,
new approaches to enhance the performance of computational gait
recognition systems are demanded. One crucial aspect often overlooked
is the data acquisition process, which is as essential as the used identi-
fication model itself. The quality of the acquired gait sequence images
directly impacts the model’s performance. In some applications, such as
‘‘tag and track’’ operations, it may be preferable to use all available data
instead of filtering for the highest quality sequences, as maintaining
continuous tracking is prioritized over detailed identification accuracy.
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However, ensuring high-quality image sequences is essential in access
control, security monitoring, and attendance management applications,
as these scenarios typically involve medium to long-term data storage.
The data can accumulate noisy image sequences without proper fil-
ering, undermining future recognition accuracy. To address this, this

study proposes a novel gait data acquisition algorithm that integrates
YOLOv8n (Jocher et al., 2023) for person detection, ByteTrack (Zhang
t al., 2022) for tracking and a Sequence Quality Analysis Module
SQAM). This ensures that the sequences used for identification are free
f image, i.e., frame, discontinuities, exhibit minimal body occlusion,
aintain consistent direction and orientation, and correspond to a per-

on actively walking rather than being stationary. Tracking and analysis
re performed only when the person is fully within the camera’s field
f view, ensuring complete and high-quality gait sequences. Once a
inimum acquisition time is met, the displacement angle of the person

elative to the camera is computed. The recognition system is enhanced
y ensuring sequence quality and using this displacement angle to
mprove the performance of state-of-the-art models. This study also

proposes leveraging this angle as an additional feature, enabling models
to handle cross-view conditions better, ultimately boosting the overall
recognition accuracy in complex environments.

More specifically, this work, whose developed source code is freely
available at https://github.com/diogobastos07/Innovative-Gait-Acquis
ition-System.git, lies in three main contributions:

1. Creating a scalable and innovative gait acquisition system based
on gait imaging analysis represents a fundamental contribution
of this work. The system employs YOLOv8n for person detection,
which was trained and evaluated on the CrowdHuman dataset
(Shao et al., 2018), and ByteTrack for tracking, along with an
implemented SQAM to ensure the acquisition of high-quality gait
sequences. Additionally, the system computes the displacement
angle of the individual being tracked relative to the imaging
camera, which can be used in various ways to support different
applications and improve identification accuracy.

2. This work introduces the integration of the subject’s displace-
ment angle relative to the imaging camera as a feature to en-
hance feature extraction in gait identification using model-free
approaches. A detailed comparative analysis was conducted us-
ing the GaitPart (Fan et al., 2020), GaitSet (Chao et al., 2021),
GaitGL (Lin et al., 2022) and GaitBase (Fan et al., 2023) models,
along with the CASIA-B dataset (Yu et al., 2006), demonstrating
how angle integration can be optimized across different archi-
tectures. This approach significantly contributes to the advance-
ment of gait recognition and provides valuable insights into
methods for incorporating metadata into complex deep-learning
models.

3. The final contribution is a comprehensive study to determine
a threshold for distinguishing between new and previously ob-
served subjects, addressing the open-set recognition problem.
This mechanism ensures the system can effectively handle reg-
istered and unregistered individuals, overcoming intra-class di-
versity and inter-class similarity challenges. By using the Gait-
Base_In model, which integrates the displacement angle in the
GaitBase architecture, in additional tests on the CASIA-E dataset
(Song et al., 2023), scalability in terms of the number of pro-
files/classes it can accommodate is enabled, making the system
adaptable to various real-world scenarios.

2. Related works

2.1. Gait sequence acquisition

Many gait acquisition systems focus on 3D data, such as motion
capture with markers or multi-camera setups generating 3D models
(Kidziński et al., 2020). While these systems provide precise insights
2
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into body movement, they are expensive, require significant infrastruc-
ture, e.g., specialized cameras, markers, or sensors, and are primarily
used in controlled environments for clinical gait analysis, rehabilita-
tion, or locomotion studies (Ripic et al., 2023). Their complexity and
need for controlled conditions often limit their broader application in
other fields.

In contrast, 2D camera-based systems and computer vision tech-
niques have become a cost-effective and efficient alternative, especially
in more general environments like security and access control. For
example, Salehian et al. (2019) utilizes detection and tracking algo-
ithms to capture images of pedestrians in a surveillance system. An

initial acquisition is performed, aimed at creating databases for re-
identification across cameras. Briefly, this initial acquisition starts when
a person is first detected and ends when the tracking algorithm no
longer recognizes them. This approach, which relies on initial detec-
tion and tracking, is adopted in pedestrian detection and recognition
systems. However, such articles often focus on training and evaluating
models using well-known datasets, where the data is typically manually
pre-annotated for recognition tasks, rather than exploring the capture
of high-quality gait sequences.

To the best of our knowledge, no gait acquisition system using
a single 2D camera explicitly ensures high-quality gait sequences by
considering factors such as active gait with minimal occlusion or in-
terruption. Furthermore, no existing systems are known to address the
consistency of gait sequences, which could be ensured by maintaining
a uniform sequence size, avoiding abrupt changes in direction, and pre-
serving a consistent orientation across frames. Additionally, calculating
the displacement angle relative to the camera, which could serve as an
additional feature for identification models, remains unexplored. These
aspects may be useful for creating reliable datasets that ensure the
quality of the sequences. This could enhance identification accuracy,
particularly in real-world scenarios where individual behavior tends to
be highly unpredictable.

2.2. Gait recognition

Gait feature representation refers to how human body image in-
ormation is encoded for identification, depending on model-based or
odel-free approaches.

Model-based approaches extract image features through geometric
representations like skeletons or anatomical landmarks. In the domain
of gait recognition, various model-based approaches have significantly
advanced the field. For example, Xu et al. (2021) propose a Local
Graphical Skeleton Descriptor (LGSD) to capture motion patterns from
the skeleton, focusing on features such as position, angle, swing, and
trajectory. Zhou et al. (2020) employ Graph Convolutional Networks
(GCN) to process skeleton sequences structured as graphs, where joints
act as nodes. The Gait-D model, developed by Iwashita et al. (2021),
ombines GCN with Temporal Convolutional Networks (TCN) to ex-

tract spatial and temporal features. The work of Zheng et al. (2022)
introduces the MAST-GCN model, which adopts a Spatial–Temporal

raph Convolutional Network (ST-GCN). The model includes an An-
le Estimator module and a Part-Frame-Importance (PFI) attention

mechanism that adapts to varying view angles, emphasizing significant
ody parts and frame sequences to improve cross-view recognition.
n Upadhyay and Gonsalves (2022), the researchers use Recurrent Neu-

ral Networks (RNN) to capture temporal dependencies in gait sequences
extracted via OpenPose (Cao et al., 2019). The model processes diverse
eatures, including angular trajectories and temporal displacements,
mploying sequential modeling to maintain robustness across vari-
us conditions and movements. Lastly, Cosma et al. (2023) transform
keleton sequences into image representations for processing by Vision
ransformers (ViT). The proposal effectively adapts skeleton sequences
o ViT encoders by employing square images and bicubic upsampling,
emonstrating the transformers’ potential to convert complex temporal
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sequences into visual inputs for downstream gait recognition tasks. The-
oretically, model-based approaches are more robust to handle changes
in clothing, the carrying of objects, and occlusions. However, extracting
spatial and temporal features is more complex and relies on accurate
pose estimation, which can be challenging, especially in low-resolution
images.

Model-free approaches in gait recognition concentrate on analyzing
he overall movement of the human body without explicit modula-
ion. Typically, silhouettes represent gait features, leading to superior
erformance in low-resolution images. In these approaches, silhouettes

can be used both frame-by-frame and as more compact representations
that integrate spatial and temporal characteristics into a single image,
such as Gait Energy Images (GEI). GEI and similar representations
are often referred to as template-based approaches. For example, the
approach suggested by Hawas et al. (2019) builds GEIs from silhouettes
and computes Optical Flow (OF) to capture body part movements
fed into the recognition network. Sayeed et al. (2022) used a simple
en-layer Convolutional Neural Network (CNN) with GEI to compare
he effects of different activation functions. The CNN with LeakyReLU
ctivation function achieved the best results. On the other hand, Wang

et al. (2019) developed a Two-Stream Generative Adversarial Network
(GAN) to create view-invariant GEI templates by learning from different
angles.

Pose-based strategies, typically used alongside template-based
methods, employ compact representations to map each key pose, using
alignment and segmentation techniques to enhance recognition under
varying conditions. For example, Gupta and Chattopadhyay (2020)
ddressed speed and frame rate variations by generating Active En-
rgy Image (AEI) templates for each key pose set. These templates
re processed through an autoencoder for dimensionality reduction
nd classified using LDA. Gupta and Chattopadhyay (2021) proposed

Dynamic Gait Energy Image (DGEI), a pose-based template generated
y mapping frames to predefined key poses. A GAN removes covari-
nt conditions, followed by LDA classification, making the approach
ffective for mitigating variations such as carrying objects.

Template-based strategies offer the advantage of low computational
ost. However, most state-of-the-art models now employ frame-by-

frame analysis due to considerable advancements in computational
power. When using frame-by-frame analysis, methods can be catego-
rized into video-based and set-based approaches. Video-based methods
consider all silhouettes in a sequence in order, allowing for better
capture of temporal features in addition to spatial ones. The GaitPart
and GaitGL models stand out in this category. GaitPart (Fan et al.,
2020) uses focal convolutions to extract part-level features from a
equence of silhouettes without relying on pre-defined templates. The
odel captures short-range motion patterns by dividing the silhouette

nto parts and employing a micro-motion capture module (MCM),
reating a comprehensive gait representation for identification. GaitGL
Lin et al., 2022) leverages 3D convolutions to simultaneously extract
lobal and local features from gait sequences. Its dual-branch structure
aptures both contextual information and detailed posture changes,
nhancing the model’s ability to handle variations in body movements
ithout relying on specific templates. In contrast, set-based methods

ike GaitSet and GaitBase treat a sequence as an unordered collection
f silhouettes, emphasizing the appearance of the silhouettes while
till preserving some temporal information. GaitSet (Chao et al., 2021)
reats silhouette sequences as unordered sets, extracting robust features
hrough a combination of CNNs for frame-level feature extraction and
et pooling methods, which utilize a permutation-invariant function.
t employs Pyramid Horizontal Pooling (PHP) to efficiently aggregate
nd capture hierarchical features. GaitBase (Fan et al., 2023) presents
 simple yet powerful model-free set-based approach, using a strong
ackbone, ResNet9 (He et al., 2015), to extract features from silhouette
rames. The model employs temporal and horizontal pooling to aggre-
ate spatial and temporal information, treating the frames as a unified
tructure. Thus, model-free approaches are more robust in handling
3

d

cross-view conditions. However, the model’s performance significantly
decreases due to covariant factors such as object carrying or clothing
changes.

To the best of our knowledge, no studies explicitly explore the
integration of a person’s displacement angle relative to the image
camera in identification models. This work proposes this approach
using two video-based models, GaitPart and GaitGL, and two set-based
models, GaitSet and GaitBase.

3. Proposed system

This work developed the foundations of a comprehensive system for
identifying individuals based on gait using 2D images. By employing
advanced computer vision and machine learning algorithms, the pro-
posed system can simultaneously detect, track, and analyze multiple
individuals in real-time, provided that high-altitude imaging data is
used. When a gait sequence meets predefined criteria, the displacement
angle relative to the imaging camera is calculated. This angle, along
with the imaging data, is sent for segmentation and subsequently to
the identification algorithm, which is enhanced by integrating the angle
value. The resulting vector is compared to previously recorded profiles
for identification. The corresponding profile is updated if a match is
found; otherwise, a new profile is created.

The proposed system comprises two main components: gait se-
quence acquisition and gait recognition. The development of the gait
equence acquisition component is detailed along with its specific

techniques and algorithms. For gait recognition, specific changes were
conducted in four well-known gait recognition models to integrate
angle information for improved feature extraction, which are outlined
in the following. CUDA 10.7, Python 3.8.5, and Visual Studio Code
were used in the implementation. The computational platform was an
NVIDIA DGX workstation with four Tesla V100 GPUs, an Intel Xeon

PU, 256 GB of RAM, and Ubuntu 18.04.6 LTS.

3.1. Gait sequence acquisition

Ensuring data consistency throughout the walking sequence is cru-
cial for effective identification, contributing to a higher gait recognition
rate. In the proposed approach, data quality is prioritized over quantity,
avoiding storing noisy gait data that would hinder accurate identifica-
tion. Factors that lead to the exclusion of identification-suitable data
include:

1. No movement — Lack of significant movement hinders the
extraction of distinct gait characteristics;

2. Body parts out of view — If essential body parts, such as legs
or feet, are out of the camera’s view, gait analysis may be
inconsistent;

3. Direction, i.e., orientation, changes — Abrupt changes in move-
ment direction can disrupt precise gait modeling;

4. Frame discontinuity — Gaps or failures in the frame sequence
may result in crucial temporal information loss;

5. Occluded body — Frequent obstruction of the individual’s body
by objects or other people compromises gait acquisition;

6. Short acquisition time — Insufficient time for data capture limits
the amount of information available for accurate identification.

The development began training the object detection algorithm.
hen, this algorithm was combined with a tracking algorithm, culmi-

nating in the Sequence Quality Analysis Module (SQAM) that ends by
etermining the individual’s angle of movement. Each of these steps is
etailed in the following sections.
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Fig. 1. Workflow chart for the proposed SQAM, illustrating the adopted decision-making process for determining whether a gait sequence is valid.
3.1.1. Object detection
The selected object detection model was YOLOv8 (Jocher et al.,

2023), a state-of-the-art computer vision model built by Ultralytics,
released in 2023. It represents the latest advancement in the YOLO
series by Ultralytics. YOLOv8 was chosen primarily for its compatibility
with the project’s requirements and for previous studies with the YOLO
series. No other detection methods were considered, as the focus was
on ensuring a straightforward implementation. YOLOv8 is easy to
implement, offers a range of specialized variants for various vision
tasks, and supports efficient real-time detection. The available versions
are ‘‘n’’, ‘‘s’’, ‘‘m’’, ‘‘l’’, and ‘‘x’’, where ‘‘n’’ is the nano version for
resource-constrained environments, and ‘‘x’’ is the extra-large version
for maximum accuracy and performance. The nano version was chosen
for its speed and lightweight design to test the model in its simplest
form. If successful, this confirms that the solution can scale to more
robust versions, obtaining results at least as good as those achieved
with the nano version.

For the specific requirements of this study, the focus was to ensure
that YOLOv8n detected only the full body of individuals. The detections
needed to be entirely within the boundaries of the images, excluding
cases where parts of the person’s body extended beyond the frames.
The detection model was configured to ignore people with significant
obstructions, ensuring that only individuals with minimal occlusion are
detected. This meant avoiding detections where a large body part is
blocked or hidden. This was achieved by filtering the annotations of
the original dataset selected, as it is explained in Section 4.1.

3.1.2. Tracking
The tracking module uses ByteTrack (Zhang et al., 2022), a multiple

object tracking (MOT) algorithm that improves consistency by lever-
aging high and low-confidence detections. It operates in two stages.
First, it matches high-confidence detections to existing tracklets using
a higher Intersection Over Union (IoU) threshold, then associates low-
confidence ones with unmatched tracklets using a lower IoU threshold
for continuity. ByteTrack was integrated with YOLOv8n, using its BB
coordinates and class probabilities.

3.1.3. Sequence quality analysis module
The Sequence Quality Analysis Module (SQAM) is organized into

core classes, mainly Person, ListPerson, LastFrames and Di-
agram, each serving distinct functions within the system. The Per-
son class is responsible for tracking individual people by maintain-
ing their positions, velocities, and other relevant data across image
frames, while ListPerson manages collections of Person objects.
The LastFrames class stores recent frames for processing, and the
4

Table 1
Parameters used in the proposed SQAM.

Parameter Description Restrictions

𝑛 Total frames required for the sequence
to be considered complete (𝑛 ∈ N).

𝑝 Minimum number of frames required to
start evaluating direction changes (𝑝 ∈ N).

𝑥 Number of consecutive frames considered
in speed calculation (𝑥 ∈ N).

𝑡 Number of frame intervals used to
calculate the average speed (𝑡 ∈ N).

𝑑 Limit of distance allowed between the
new point and the trend line (𝑑 ∈ R∗

+).
𝑣 Minimum limit allowed for average

speeds (𝑣 ∈ R∗
+).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 ≤ 𝑝 < 𝑛
1 ≤ 𝑡
2 ≤ 𝑥 ≤ 𝑛

2
𝑥 × 𝑡 ≤ 𝑛

Diagram class visualizes movement points and angles for performance
evaluation.

Table 1 outlines the key parameters essential for evaluating gait
sequences and their descriptions and associated restrictions to ensure
accurate analysis.

The LastFrames class stores only potentially necessary frames,
with a maximum of 𝑛 frames, updating as new frames are added to
conserve RAM. For each instance of Person, only the bounding box
(BB) coordinates are saved for sequence quality analysis, and the final
cropping of the region of interest (ROI) only takes place after all criteria
are met.

The workflow of the SQAM is depicted in Fig. 1. This diagram
illustrates the process starting from a new human detection assigned
a unique tracking ID by the tracking algorithm. The gait analysis is
performed after each new detection is associated with the respective
tracklet.

The proposed process (Fig. 1) begins when a new detection is identi-
fied, and the system determines if this is a new entry or if it corresponds
to an existing person instance. If it is a new entry, a new instance of
the Person class is created to track that individual. Otherwise, the
new point is added to the respective instance of the Person class
corresponding to the person’s tracklet. The algorithm then evaluates
the sequence by analyzing three main conditions, ensuring that each
data sequence corresponds to a person in motion with a consistent
direction and sense of movement. It is discarded if the sequence fails
to meet any of these conditions. However, if it satisfies all criteria
and reaches 𝑛 points, i.e., frames, the system calculates the angle
of movement relative to the image camera. The validated sequences
and their calculated angles are stored for further processing, and the
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Fig. 2. Workflow for assessing direction changes through trend line evaluation and distance validation.
sequence ends when the data is successfully saved. This process is
repeated for each new detection; however, multiple detections can exist
in a single frame. In the ListPerson class, every tracklet with a
newly associated detection is evaluated through a loop that iterates
over all tracked detections in the current frame. Once the loop ends, any
Person objects that did not receive a new detection from the current
frame are removed from the list. This ensures that the obtained gait
sequences used for identification correspond to individuals consistently
detected in every frame of the 𝑛 total frames.

The diagram of Fig. 2 depicts the detailed process for evaluating
changes in direction during movement. The process starts when a new
point is added to the respective person instance. First, it checks whether
the accumulated points are greater than 𝑝. If not, the system lacks
sufficient information to calculate a stable trend line. If the sequence
has more than 𝑝 points, the distance of the new point to the trend line is
calculated. The next step is to compare this distance with the threshold,
𝑑. If the distance exceeds this limit, the sequence is marked as invalid.
However, if the distance is within acceptable bounds, the trend line
is updated to include the new point, and the sequence is considered
valid. The trend line is calculated using Principal Component Analysis
(PCA) to identify the primary direction of movement. The distance from
a point to the respective trend line is calculated according to:

𝑑 =
|𝑎𝑥 − 𝑦 + 𝑏|
√

𝑎2 + 1
(1)

The diagram of Fig. 3 illustrates how the module calculates the
average movement speed and detects direction reversals. The flow
begins again by adding a point to the respective person instance. If the
total number of points is divisible by 𝑥, the speed is calculated based
on the last 𝑥 frames. From this point, the diagram branches into two
distinct paths, where invalidating the sequence in either path results in
its overall rejection. In one path, the system checks whether the number
of points exceeds 2 × 𝑥. This condition ensures there are sufficient points
to evaluate a potential direction reversal. If the signs of the last two
speed values, one calculated in the previous step and the other derived
from 𝑥 frames back, are opposite, it indicates a reversal of direction,
making the sequence invalid. Otherwise, the sequence is classified as
valid. In the second path, the speed is normalized by the BB height.
This normalization accounts for the observation that individuals farther
from the camera move more slowly while also exhibiting a smaller BB.
If the number of points equals or exceeds 𝑡× 𝑥, it signifies enough data
points to assess velocity. The average speed is calculated using the last
𝑡 speed values, corresponding to 𝑡 × 𝑥 frames for speed evaluation. If
the average speed falls below the threshold 𝑣, the sequence is invalid
due to insufficient speed.

As illustrated in Fig. 4, the angle calculation begins when a sequence
reaches 𝑛 points without failing any criteria. The camera’s position is
estimated, and a key point is defined at the midpoint of the sequence.
Two vectors are then defined: one pointing from the key point to the
camera and the other aligned with the trend line of the movement. The
angle between these vectors is calculated and adjusted to range from 0◦

to 360◦, providing a comprehensive measure of the person’s directional
5

displacement. The angle between the two vectors, 𝐮 and 𝐯, is computed
using:

cos(𝜃) = 𝐮 ⋅ 𝐯
‖𝐮‖ ⋅ ‖𝐯‖

(2)

3.2. Gait recognition

This section presents the developments proposed to improve the
accuracy of cutting-edge algorithms, specifically GaitPart, GaitSet,
GaitGL, and GaitBase architectures, by incorporating the displacement
angle of the person under tracking relative to the used imaging camera.
Thus, the feasibility and benefits of integrating this angle data and
the most effective ways to incorporate this information into each
architecture are discussed. All integration attempts used the normalized
angle value, ranging from 0 (zero) to 1 (one).

3.2.1. GaitPart
The original GaitPart architecture underwent several modifications

to incorporate angle information, categorized by their initial, later, and
middle integration stages.

The GaitPart_In approach added a new channel to each input frame
to represent the person’s normalized displacement angle, repeating
the value to match the dimensions of the silhouette channel. This
integration ensured that angle data was captured from the start. For
the later integration stage, the GaitPart_Out approach, where a 16-
dimensional vector was concatenated to each feature vector after the
temporal pooling stage (Fig. 5), was implemented. Each vector was
generated using separate Fully Connected (FC) layers that received the
normalized angle as input. In the GaitPart_OutLR variant, a LeakyReLU
activation was applied to these vectors before concatenation, adding
non-linearity to enhance performance potentially.

The middle stage modifications focused on integrating angle in-
formation within the backbone. In GaitPart_FiLM, the Feature-wise
Linear Modulation (FiLM) (Perez et al., 2017) technique was applied
to the output of a Focal Convolution (FConv) layer. FConv divides the
channels into 𝑠 horizontal sections, applying separate convolutions with
the same kernel to each section. After LeakyReLU activation, FiLM mod-
ulates each section by multiplying the feature values with a trainable
𝛾 and adding a trainable 𝛽, both scaled by the angle: 𝑓 ′ = 𝛾 × 𝑓 + 𝛽.
In GaitPart_FiLM16, a 16-dimensional vector generated by FC layers
using the angle as input replaces the single angle value. The same 16-
dimensional vector is applied to all corresponding sections, i.e., the first
section in each division uses the same vector. This vector controls 𝛾 and
𝛽 for more detailed modulation across sections. LeakyReLU is applied to
the 16-dimensional vectors and the final 𝛾 and 𝛽. In GaitPart_NewCh,
an additional channel is added, similarly to the one used in GaitPart_In.
The specific placement of these techniques within the backbone can be
seen in Table 2.
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Fig. 3. Workflow for evaluating speed and direction reversal based on calculated speed and threshold checks.
Fig. 4. Workflow for angle calculation, outlining the steps to determine the person’s displacement relative to the camera.
Fig. 5. Pipeline of GaitPart_Out.
3.2.2. GaitSet
The original GaitSet architecture was modified similarly to GaitPart,

with changes applied at the initial and final stages. At the initial
6

stage, GaitSet_In adds a new angle channel to each silhouette frame,
similar to the approach in GaitPart_In. At the final stage, GaitSet_Out
concatenates 16-dimensional vectors, generated by separated FC using
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Fig. 6. Pipeline of the GaitSet_Out architecture.
Fig. 7. Pipeline of the GaitGL_Out architecture.
Table 2
Summary of the studied backbone configurations for each model variation (BC — Basic
Convolution, M — Max Pooling, FC — Focal Convolution).

Model Backbone description

GaitPart_FiLM BC → BC → M → FC → FiLM → FC → M → FC → FC
GaitPart_FiLM16 BC → BC → M → FC → FiLM16 → FC → M → FC → FC
GaitPart_NewCh BC → BC → M → FC → FC → M → FC → NewCh → FC

the angle as input, to each feature vector resulting from the Horizontal
Pyramid Pooling (HPP), as shown in Fig. 6. GaitSet_OutLR applies
LeakyReLU to each 16-dimensional vector.

3.2.3. GaitGL
Since the GaitGL model processes the entire sequence at once using

3D convolutions, angle integration was only tested at the final stage
of the architecture. Similar to the previous modifications, GaitGL_Out
concatenates 16-dimensional vectors containing angle information to
each feature vector after the Horizontal Pooling (HP) stage, as shown
in Fig. 7. GaitGL_OutLR applies LeakyReLU to each 16-dimensional
vector.
7

3.2.4. GaitBase
In the GaitBase model, the angle integration was explored at the ini-

tial and final stages. GaitBase_In involved adding a new angle channel
to each input frame, while GaitBase_Out concatenated 16-dimensional
vectors to each feature vector after the Temporal Pooling (TP) stage,
Fig. 8. GaitBase_OutLR applies LeakyReLU to each 16-dimensional
vector.

3.3. Training and test details

3.3.1. Gait sequence acquisition
The YOLOv8n model was trained and evaluated independently from

the rest of the gait sequence acquisition algorithm, following the con-
figurations specified in the original documentation. The losses used
include Varifocal Loss (cls_loss) designed to address imbalances and
uncertainties in classification tasks, CIoU Loss (box_loss) for refined BB
regression, and Distribution Focal Loss (dfl_loss) to help the model to
estimate object categories better. Training the model involved format-
ting the dataset to meet the specific requirements and converting the
annotations to the correct format.

The trained YOLOv8n model was subsequently combined with Byte-
Track and the SQAM components. The integration of the different
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Fig. 8. Pipeline of the GaitBase_Out architecture.
Fig. 9. Frame number 100 from the video used to develop and evaluate the gait data
acquisition algorithm.

components of the gait sequence acquisition algorithm was performed
and evaluated using an image sequence video with frames as shown in
Fig. 9. The used video was obtained from Pexels,1 which offers various
royalty-free videos that can be freely downloaded and used. It was
selected for featuring multiple individuals with diverse behaviors, using
a high-altitude imaging camera with a wide field of view, ensuring
proper tracking and gait analysis. The used video has a frame rate
of 25 fps and a duration of 13.6 s, containing a total of 341 frames,
with dimensions of 1080 by 1920 pixels. The evaluation was conducted
using qualitative analysis. (The used video can be found in the current
project’s repository at https://github.com/diogobastos07/Innovative-
Gait-Acquisition-System.git.)

3.3.2. Gait recognition
The gait recognition algorithms were modified using the OpenGait

(Fan et al., 2023) project, a unified and consolidated platform that facil-
itates a comprehensive study of gait recognition methods. This platform
enables the reproduction of the methods developed in this study, with
performance comparable to or surpassing the results reported in the
original articles. OpenGait also supports the most common datasets,
encouraging the research community to use it as a base for developing
new solutions. This strategy ensures that researchers follow the same
evaluation settings used in the literature, facilitating effective model
comparisons.

All modifications made to the studied models were solely aimed at
incorporating information about the angle of the person’s movement
relative to the imaging camera, altering only what was strictly neces-
sary. This ensures that the results obtained solely reflect the contribu-
tion of the angle and are not influenced by changes in hyperparameters
or other factors.

For the training process, Batch All (𝐵 𝐴+) Triplet Loss (Hermans
et al., 2017) was used on the GaitPart and GaitSet models. For the

1 https://www.pexels.com.
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GaitGL and GaitBase model, the sum of the 𝐵 𝐴+ Triplet Loss with
the Cross-Entropy Loss was used. The batch size is defined by two
values, (𝑃 , 𝐾), where 𝑃 represents the number of people, and 𝐾 is
the number of gait sequences per person. Both in training and testing,
all gait sequences contained exactly 30 frames. In the GaitPart and
GaitGL models, the 30 frames used were in order, but the intervals of
frames were selected randomly from all available frames. In the GaitSet
and GaitBase models, the 30 frames were randomly selected from each
sequence.

Test sequences were processed to generate feature vectors for eval-
uation, the same ones used for the 𝐵 𝐴+ Triplet Loss during training.
These vectors were split into gallery (labeled) and probe sets. Euclidean
distances were computed between probe and gallery vectors, with the
closest matches determining the recognition accuracy.

4. Experiments

4.1. Datasets and implementation details

In this study, YOLOv8n was trained and evaluated using the Crowd-
Human (Shao et al., 2018) dataset. The various modifications of the
gait recognition models were trained and tested on the CASIA-B (Yu
et al., 2006) dataset, where the performance comparison was primarily
conducted. Based on these results, one selected model was also trained
and evaluated on the CASIA-E (Song et al., 2023) dataset to provide
a broader assessment. However, conducting a comprehensive perfor-
mance evaluation of all models on the CASIA-E dataset was not feasible
within the available time frame. The time required to train and evaluate
a model on CASIA-E is significantly higher compared to CASIA-B due
to the greater size and complexity of the CASIA-E dataset.

4.1.1. YOLOv8n
CrowdHuman. The CrowdHuman (Shao et al., 2018) dataset is

a large and richly annotated human detection dataset designed to
improve the evaluation of detectors in crowded scenarios. It con-
tains 15,000 images for training, 4370 for validation, and 5000 for
testing, all collected from the Internet. The training subset includes
approximately 340,000 person annotations, and 99,000 ignore region
annotations, making it one of the most comprehensive datasets. The
dataset features 470,000 human instances in the training and validation
subsets, with an average of 22.6 persons per image, capturing various
occlusions and crowd scenarios. Each human instance is annotated with
three types of BB: head bounding-box (Head BB), human visible-region
bounding-box (Visible BB), and human full-body bounding-box (Full
BB). The annotations were originally in JSON format, specifying BB as
[𝑥_𝑚𝑖𝑛, 𝑦_𝑚𝑖𝑛, 𝑤𝑖𝑑 𝑡ℎ, ℎ𝑒𝑖𝑔 ℎ𝑡].

Implementation Details. This dataset needed to be converted into
a required format suitable for YOLOv8n, which involved structuring
it into designated folders for images and labels. Each image had a
corresponding label file in TXT format detailing class and normalized
BB coordinates. The annotations were further filtered to meet the
requirements of the system. Firstly, the focus was solely on Full BB.
After, Full BB that extended beyond image boundaries and those that

https://github.com/diogobastos07/Innovative-Gait-Acquisition-System.git
https://github.com/diogobastos07/Innovative-Gait-Acquisition-System.git
https://github.com/diogobastos07/Innovative-Gait-Acquisition-System.git
https://www.pexels.com
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lacked sufficient visibility, using a threshold to ensure that the Visible
BB area represented at least 70% of the Full BB area. were excluded.

o train, the default hyperparameters were used and the number of
pochs was defined as 100 and the batch size to 64. A GPU was used to

enhance performance. For the model, pre-trained weights provided by
Ultralytics, which were obtained with COCO dataset (Lin et al., 2015)
hat comprises 80 classes, including the ‘‘person’’ class, were used. The
omplete training of YOLOv8n, including evaluating the validation set
t the end of each epoch, took approximately one hour.

4.1.2. Gait recognition
CASIA-B. The CASIA-B (Yu et al., 2006) dataset is one of the most

ommonly used gait datasets. It features 124 subjects acquired from 11
different view angles (0◦ to 180◦, with 18◦ intervals). Each angle has 10
gait silhouette sequences under three conditions: normal walking (NM),
walking with a bag (BG), and walking with a coat (CL). Specifically,
it includes 6 NM sequences, 2 BG, and 2 CL per view, resulting in
13,640 sequences across the dataset, acquired at a rate of 25 fps. For
evaluation, the protocol recommended by the OpenGait project was
ollowed. The first 74 individuals were used for training, while the
emaining 50 individuals comprised the test set. The test set was further
ivided into gallery and probe sets. The gallery included the first four
equences of normal walking conditions (NM1–NM4), while the probe
et consisted of the remaining sequences: two normal (NM5, NM6), two
arrying objects (BG1, BG2), and two with different clothing conditions
CL1, CL2).
CASIA-E. The CASIA-E (Song et al., 2023) dataset stands out as the

most recent and potentially the most comprehensive among the gait
datasets. It comprises gait silhouette data from 1014 subjects, featuring
 total of 384 types of variants for each individual, with two sequences
cquired for each variant. The sequences were acquired across three
cenarios of increasing complexity: Scene#1, Scene#2, and Scene#3.
or each scenario, sequences were acquired under three conditions:
ormal walking (NM), carrying an object (BG), and wearing different
lothing (CL). Each condition has two sets of sequences. Each set
ontains one sequence for each angle and view. The gait was captured
rom a horizontal view (L) and a vertical view (H), with 13 distinct
ngles ranging from 0◦ to 180◦ with 15◦ intervals, along with two
epeated angles (45◦ and 135◦) and an angle of 270◦. In Scene#3, two
dditional sets of sequences were acquired for each condition (NM, BG,
L), where the subject pauses and then resumes walking. Following
he protocol suggested by OpenGait, the first 200 subjects were used
or training, and the remaining 814 were used for testing. The test set
as further divided into gallery and probe. The gallery contains the

wo sets of sequences with NM conditions acquired in Scene#1. The
robe includes all sequences acquired in Scene#2 and Scene#3. This
ncludes two sets of sequences for each condition (NM, BG, CL) in each
cene and two additional sets of sequences for each condition where
he subject pauses and then resumes walking. All sequences acquired at
he 270◦ angle were removed for the test set. For a different evaluation,
ll sequences acquired from a horizontal view were excluded from the
est set to align with the system’s design, tailored for gait sequences
aptured from a vertical view. Sequences with stop-and-resume walking
ere also excluded for the same reason.

Table 3 summarizes the key differences in complexity between the
CASIA-B and CASIA-E datasets.

Implementation Details. The view angles were normalized by
dividing the respective value by 180◦. Preprocessing included normal-
izing pixel values to a range from 0 (zero) to 1 (one) and cropping
the silhouettes, reducing the original 64 × 64 size to 64 × 44 to
emove irrelevant information. For the CASIA-B dataset, rotation and
andom erasing were also applied to the GaitBase model inputs. These
dditional preprocessing techniques, with their respective parameters,
ollowed the default conditions established by the OpenGait frame-
ork. Training without these augmentations showed overfitting, with
9

he model rapidly achieving perfect training accuracy. The CASIA-E
Table 3
Summary of the CASIA-B and CASIA-E datasets.

Dataset #Subjects #Sequences #Views Environ-
ment

Other factors

CASIA-B 124 13,640 11 Static
indoor

Bag carrying,
dressing

CASIA-E 1014 778,752 26 Multiple
outdoor

Bag carrying,
walking style,
dressing, soft
biometric
features

dataset did not require these preprocessing techniques, as experiments
without rotation and erasing showed stable generalization. This is due
to the dataset’s inherent complexity, which provided enough diversity
to prevent overfitting without additional augmentations. The training
details using the CASIA-B dataset are summarized in Table 4, with
the only difference for CASIA-E being a batch size of (8, 32) for the

aitBase model. All models were trained and evaluated using two GPUs
n parallel.

4.2. Gait sequence acquisition evaluation

4.2.1. YOLOv8n
The trained YOLOv8n model has 168 layers, 3,005,843 parameters,

and a computational complexity of 8.1 GFLOPs. As shown in Fig. 10,
the downward trends in the loss metrics indicate effective learning and
convergence. The achieved performance metric values were 0.79 for
precision, 0.69 for recall, 0.78 for mAP50, and 0.52 for mAP50-95.
These values indicate high precision minimizing false positives, and a
reasonably good recall, ensuring most people are detected. The high
mAP50 value reflects accurate BB predictions. The lower mAP50-95
score (0.52) likely stems from the dataset’s high density of people,
leading to cases where multiple individuals are grouped into a single
detection, impacting precision at stricter IoU thresholds.

The obtained performance metric values indicate strong overall per-
formance and reveal sufficient capability even with the simplest version
of YOLOv8, the nano version. As seen in the examples in Fig. 11,
the model performed well, correctly filtering out annotations of indi-
viduals outside the image boundaries or those significantly occluded.
The model produced 21% false positives and 31% false negatives,
reflecting the expected ambiguity in cases where individuals approach
the 70% occlusion threshold, influenced by the inherent uncertainty
of manual annotations. Additionally, distant individuals with barely
visible silhouettes seem to account for a portion of the false negatives,
which is not problematic, as the system is not designed to identify such
cases.

Improvements can be made by constructing a dataset with annota-
ions specifically tailored to the system’s requirements.

4.2.2. YOLOv8n + ByteTrack
Three representative frames were selected to demonstrate the per-

formance of the ByteTrack model, Fig. 12.
To mitigate the impact of anomalous detections on tracking, only

B with a minimum confidence of 55% was used. Increasing this
hreshold reduces the number of tracked individuals while lowering
t increases false detections or merges multiple individuals in cases
f partial overlap. This threshold effectively balances minimizing the
mpact of anomalous detections while preserving sufficient data for

identification.
Considering factors such as the stability of object IDs, the precision

f BB, and the algorithm’s ability to track different individuals despite
ariations in movement and appearance, it can be concluded that the

algorithm successfully maintains the continuity and accuracy of the
tracks over time.
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Table 4
Training parameters in CASIA-B: batch size (following the manner introduced in Section 3.3.2), iterations, optimizer (name, momentum and
weight decay), margin for the 𝐵 𝐴+ Triplet Loss, and learning rate schedule. (The parameters are organized to show the differences in the
implementation of each model.)
Model Batch size Iter. Optimizer Margin (𝐵 𝐴+ TL) LR schedule

Name Mom. WD

GaitPart (8, 16) 120K ADAM 0.9 0 0.2 Initial 1e−4, decreases to 1e−5 at 100K
GaitSet (8, 16) 40K SGD 0.9 5e−4 0.2 Initial 0.1, decreases by 1/10 at 10K, 20K, 30K
GaitGL (8, 8) 80K ADAM 0.9 5e−4 0.2 Initial 1e−4, decreases to 1e−5 at 70K
GaitBase (8, 16) 60K SGD 0.9 5e−4 0.2 Initial 0.1, decreases by 1/10 at 20K, 40K, 50K
Fig. 10. Training (train) and validation (val) performance metric values obtained for the YOLOv8n object detection model.
Fig. 11. Comparison of ground truth labels and model predictions for a sample set of 8 images from the CrowdHuman validation dataset: (a) Ground truth labels and (b) Model
predictions.
Fig. 12. Visual representation of ByteTrack’s performance across different video stages: frames 65, 100, and 135, respectively.
4.2.3. YOLOv8n + ByteTrack + SQAM
During the tuning of the SQAM model, its hyperparameter values

were optimized, and the ones in Table 5 were obtained.
The values in Table 5 indicate that a sequence is complete with 75

frames (𝑛 = 75), corresponding to 3 s. The initial trend line calculation
requires a minimum of 10 frames (𝑝 = 10) to evaluate direction
changes. Speed calculations utilize 5 consecutive frames (𝑥 = 5), while
10
Table 5
Values of the hyperparameters used in the SQAM model.
𝑛 𝑝 𝑥 𝑡 𝑑 𝑣 Camera position

75 10 5 3 15 0.025 [960, 2000]
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Fig. 13. Visual representation of all data points collected, with colors indicating distinct IDs (black points (0) signify a failure to fulfill the criteria. Y-coordinate values are negative
to mimic video frame visualization).
average speed calculations rely on 3 frame intervals (𝑡 = 3). The
distance threshold for validating the proximity of new points to the
trend line is set at 15 units (𝑑 = 15), and the minimum average speed
threshold is 0.025 units (𝑣 = 0.025). Finally, the imaging camera is
positioned at coordinates [960, 2000].

Fig. 13 presents the first of two plots generated by the Diagram
class, illustrating tracked detections marked with their corresponding
IDs from the tracking algorithm. The black points indicate moments
when sequences were excluded during analysis. Areas with a higher
concentration of black points signify individuals or groups that are sta-
tionary or moving minimally, confirmed by video footage. Conversely,
the sequence with ID#4, located around [1250, −800], demonstrates
notable direction changes, leading to three exclusions. Each identified
black point prompts the exclusion of the sequence, but a new acquisi-
tion begins with the subsequent frame. A 75-frame interval cannot be
achieved throughout this gait sequence where all criteria are met, as
expected.

Some sequences (Fig. 13) exhibit slight changes in movement direc-
tion that would typically prompt exclusion and restart analysis, yet no
black point indicates this. The subject with ID#24, near [600, −400],
exemplifies this situation. Although the sequence reached 75 frames
shortly before, allowing data to be saved, the next 10 frames required
for evaluation diminish the significance of the observed movement
change. This can be confirmed with Fig. 14, which shows a second
plot where black points denote moments when sequences of 75 frames
were saved, each associated with a displacement angle relative to the
imaging camera.

A trajectory directly towards the camera corresponds to 0◦, with
angles varying up to 360◦, following the clockwise direction. The angle
calculation strategy accounts for how the person of the person under
tracking affects the perceived movement direction. For example, the
trajectory of subject ID#45, shown in the lower-left corner of Fig. 14,
has an angle of 1◦, indicating movement directly towards the camera,
as confirmed in Fig. 15. The accuracy of the angle calculation can be
qualitatively confirmed not only for the subject ID#45 but also for all
other subjects.

Many of the sequences in Fig. 13 do not show black points because
they did not fail any of the established criteria. However, they also do
not appear in Fig. 14 because they did not reach the 75 frames needed.

The number of frames can be reduced to as low as 15, considering
the restrictions outlined in Table 1. However, it is reasonable to assume
that longer sequences improve the accuracy of future identification
results. Additionally, SQAM effectively filters out false positives and
negatives, as they are unlikely to form a valid gait pattern across
multiple frames.
11
The analysis of the processing times for the acquisition component
revealed an average per frame of 41.95 ms for inference, 6.19 ms
for tracking, and 8.30 ms for SQAM when using the CPU. Further
optimization is necessary for compatibility with 25 fps videos, which
requires processing times of less than 40 ms per frame. An effective
solution is to transform the model for TensorRT use, as highlighted in
the official YOLO documentation, to exploit GPU capabilities fully. The
documentation reports that tests with YOLOv8n, a model comprising
3.2 M parameters and 8.7 GFLOPs, achieved inference times of just
0.99 ms per frame on an A100 GPU with TensorRT. Given that the
suggested model is slightly smaller, with 3.01 M parameters and 8.1
GFLOPs, even faster processing times are anticipated, ensuring the
feasibility of efficiently meeting the required time constraints.

While the SQAM parameters were optimized to balance accuracy
and computational efficiency, a more detailed exploration of their
effects remains an open question. The influence of the parameters in the
SQAM is a topic of significant interest, as it directly impacts the quality
of the acquired gait sequences. Future work will focus on systematically
studying the sensitivity of the SQAM parameters to understand their
role better and optimize their values for diverse scenarios.

4.3. Performance comparison on CASIA-B

Table 6 highlights the Rank-1 accuracy performance comparing the
original models with their versions integrating angle information. The
results are divided by different walking conditions, averaged across
all probe and gallery views, excluding identical-view cases to simulate
cross-view conditions.

In all models, at least one variation showed improved results,
demonstrating that incorporating angular information enhances the
model’s ability to discriminate and generalize across different viewing
angles and conditions.

Looking at average accuracies, variations of the GaitPart, GaitSet,
and GaitGL models improved upon their original models in all versions
integrating angular information at both early (_In) and late stages
(_Out, _OutLR), except for GaitSet_In, which only matched the original.
Late-stage integration outperformed early integration in GaitPart and
GaitSet, with LeakyReLU further boosting performance in GaitPart and
GaitGL. Specifically, their best versions, GaitPart_OutLR, GaitSet_Out,
and GaitGL_OutLR showed overall accuracy improvements of 0.8%,
0.5%, and 0.4%, respectively. In contrast, GaitBase was the only model
where late-stage angular integration was not beneficial. However, Gait-
Base_In achieved a notable 0.7% overall improvement, higher than any
other early-stage integration.
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Fig. 14. Visual representation of data points meeting all criteria for identification, with each group shown in a unique color (black points (0) denote the final stored data point
in each valid trajectory, along with the associated displacement angles relative to the imaging camera).
Fig. 15. Raw images of the subject with ID#45: (a) Natural inclination of the person
under analysis, and (b) Image rotation to provide a better perception of the movement
direction.

Table 6
Rank-1 accuracy comparison of original models vs. angle-integrated versions across
walking conditions (NM — normal walking, BG — walking with a bag and CL —
walking with a coat, identical-view cases were excluded, best values in bold). For each
model, the average percentage improvement of the best-performing angle-integrated
version compared to the original model is as follows: GaitPart (+0.8%), GaitSet
(+0.5%), GaitGL (+0.4%), and GaitBase (+0.7%).

Model NM BG CL Average

GaitPart 96.3 90.7 77.4 88.1
GaitPart_In 96.1 90.7 78.6 88.5
GaitPart_Out 96.1 91.1 78.5 88.6
GaitPart_OutLR 96.7 91.2 78.9 88.9
GaitPart_FiLM 78.5 70.3 54.9 67.6
GaitPart_FiLM16 89.0 78.7 60.5 76.1
GaitPart_NewCh 95.2 85.2 72.7 84.4

GaitSet 95.8 90.2 74.3 86.8
GaitSet_In 95.8 90.0 74.5 86.8
GaitSet_Out 96.0 90.5 75.4 87.3
GaitSet_OutLR 96.0 90.2 74.5 86.9

GaitGL 97.3 94.6 83.9 91.9
GaitGL_Out 97.4 94.9 83.7 92.0
GaitGL_OutLR 97.6 95.0 84.3 92.3

GaitBase 98.2 93.8 77.5 89.8
GaitBase_In 98.1 94.5 79.0 90.5
GaitBase_Out 98.1 94.0 76.9 89.7
GaitBase_OutLR 98.0 93.8 77.3 89.7

The results also show strong performance under clothing condi-
tions (CL1, CL2), with GaitPart_OutLR, GaitSet_Out, GaitGL_OutLR and
GaitBase_In achieving improvements of 1.5%, 1.1%, 0.4% and 1.5%,
respectively. These findings suggest that when angular information is
properly integrated, it enhances the robustness of all models, with
12
Table 7
Comparison of parameter size, training time, testing time, and inference time for the
base models and their best angle-integrated variations.

Model Parameters
number (M)

Training time
(h)

Testing time
(s)

Inference
time (ms)

GaitPart 1.20400 8.49 78 14.22
GaitPart_OutLR 1.23702 8.51 79 14.40

GaitSet 2.59459 1.99 23 4.19
GaitSet_Out 2.84954 2.00 24 4.38

GaitGL 3.09667 2.87 33 6.02
GaitGL_OutLR 3.22877 2.90 34 6.20

GaitBase 7.30541 10.89 30 5.46
GaitBase_In 7.30598 11.12 31 5.65

particularly significant improvements in more variable and challenging
conditions. The results also highlight the varying impact of angle
integration, depending on the model and the specific configuration.

None of the studied models with mid-stage angle integration outper-
formed the original GaitPart in overall performance. The GaitPart_FiLM
model experienced a drastic performance drop due to the FiLM layers
scaling the feature map to zero at 0◦, resulting in significant infor-
mation loss. While GaitPart_FiLM16 addressed this issue, its overall
performance remained poor, suggesting that FiLM layers require better
calibration or may not be suitable. Similarly, GaitPart_NewCh failed
considerably to enrich contextual learning, indicating that introducing
angular data at intermediate stages is inadequate to enhance feature
extraction.

Table 7 demonstrates the computational costs associated with the
base models and their best angle-integrated variations. The superior
results achieved by the best angle-integrated versions of each base
model were accompanied by a slight increase in inference time, re-
maining below half a millisecond in all cases. This minimal increase
is negligible, proving the efficiency of angle integration.

4.3.1. Ablation study
Three studies were conducted: the first two aimed at understanding

why integrating angle information at an intermediate stage was inef-
fective, and the third to explore why variations in the GaitBase model
with later-stage integration did not lead to improvements as seen in
other models.

Analysis of different hyperparameters on GaitPart_NewCh. Ad-
ditional tests with GaitPart_NewCh were conducted motivated by the
conviction that the poorer results were due to overfitting caused by
excessive adaptation to the angle value. Fig. 16 shows three distinct
groups of lines, with the mean triplet distance used as the primary
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Fig. 16. Mean triplet distance over iterations for different variations of the GaitPart
model.

Table 8
Rank-1 accuracy comparison of GaitPart_NewCh with variations in weight decay and
added noise to angular channel across walking conditions (NM — normal walking,
BG — walking with a bag and CL — walking with a coat, identical-view cases
were excluded).

Condition Value NM BG CL Average

– – 95.2 85.2 72.7 84.4

0.0005 95.5 86.1 74.6 85.4Weight decay 0.001 95.6 86.2 74.6 85.5

10% 95.5 85.5 73.7 84.9Noise 100% 95.2 86.1 73.7 85.0

metric to assess class separation during training. Triplet loss was less
informative due to PyTorch’s autograd mechanism, which optimizes
only the hardest triplets, leading to localized adjustments without
noticeable changes in loss values. While the number of hard triplets
could also be presented, it provided less visual clarity.

Variations that integrated angle information at early and later
stages showed consistent improvement, closely matching the origi-
nal GaitPart’s training behavior, as expected from the good accuracy
results. However, variations with intermediate-stage integration per-
formed worse for different reasons. For example, the GaitPart_FiLM
and GaitPart_FiLM16 models showed a significant drop in the mean
triplet distance, confirming these approaches struggled with maintain-
ing representation quality. In contrast, GaitPart_NewCh had notably
higher triplet mean distances, suggesting overfitting and a loss of
generalization. Further tests, summarized in Table 8, explored different
weight decay values and added noise to the angular channel to address
overfitting. Noise was introduced by adding a slight random devia-
tion (normal distribution, standard deviation 0.02) to the normalized
angle, followed by replacing a percentage of angular values (selected
randomly) with random numbers between 0 (zero) and 1 (one).

Initially, weight decay was set to 0 (zero), but introducing values of
0.0005 and 0.001 reduced overfitting, as shown in Fig. 16. Although
performance improved, the gains were modest compared to the base
GaitPart model. Similarly, adding 10% of noise to the angular channel
provided an insignificant boost in performance. Interestingly, with
100% noise, making the angle information essentially irrelevant, the
behavior was similar. This suggests that the root cause of overfitting
may not be excessive angle adaptation as initially thought. Instead,
angle integration in intermediate layers might act like noise, adding
useless information, confusing the model, and exacerbating overfitting.

Analysis of the new channel’s position in the GaitPart_NewCh.
This study evaluated the impact of integrating a new channel con-
taining angle information at various positions within the GaitPart
backbone. The results, summarized in Table 9, revealed a trend where
earlier integration of the new channel led to improved performance.
Specifically, variations with the new channel positioned earlier in the
architecture, such as GaitPart_NewCh3, demonstrated higher accuracy
across various conditions. However, all variations still exhibited a
considerable decline in performance compared to the original GaitPart
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Table 9
Rank-1 accuracy comparison of GaitPart_NewCh with variations in the new channel’s
position across walking conditions (identical-view cases were excluded, BC — Basic
Convolution, M — Max Pooling, FC — Focal Convolution).

Model NM BG CL Average Backbone description

GaitPart_NewCh 95.2 85.2 72.7 84.4 BC-BC-M-FC-FC-M-FC-NewCh-FC
GaitPart_NewCh2 95.1 86.9 75.7 85.9 BC-BC-M-FC-NewCh-FC-M-FC-FC
GaitPart_NewCh3 95.7 87.4 76.0 86.4 BC-NewCh-BC-M-FC-FC-M-FC-FC

Table 10
Rank-1 accuracy comparison of additional variations of GaitBase with later-stage angle
integration (NM — normal walking, BG — walking with a bag and CL — walking with
a coat, identical-view cases were excluded, best values in bold).

Model NM BG CL Average

GaitBase 98.2 93.8 77.5 89.8
GaitBase_Out2 97.9 93.4 77.3 89.5
GaitBase_OutLR2 98.1 93.6 77.8 89.8
GaitBase_2Out32LR 98.1 93.9 77.0 89.7
GaitBase_2Out32LR1 98.2 93.8 77.3 89.8
GaitBase_2Out64LR1 98.0 93.7 77.2 89.6
GaitBase_Out64LR1 98.3 93.8 76.7 89.6

model. This trend may support the theory that angle information be-
haves like noise, where the detrimental impact increases as the channel
is added later in the network.

The values in Table 9 also confirm the challenge of improving
results when integrating angle information at intermediate stages. A
similar behavior is anticipated for integrating other types of meta-
data in various other models with different purposes. Early and late
integration in deep learning models appear to be the most reliable
approaches.

Analysis of additional variations with later stage angle integra-
tion in GaitBase. Further modifications were made to the later stage
angle integration in the GaitBase model, motivated by the hypothesis
that the poor performance of GaitBase_Out and GaitBase_OutLR might
be linked to the concatenation of 16-dimensional vectors with the
512-dimensional feature vectors derived from the TP. These high-
dimensional vectors contrast the 128-dimensional vectors used for
angle information concatenation in the other three models. The modi-
fications made are illustrated in Fig. 17.

GaitBase_Out2 first transforms each of the 512-dimensional vec-
tors into 256-dimensional vectors, to which the 16-dimensional angle
vectors are concatenated. GaitBase_OutLR2 includes a LeakyReLU ac-
tivation function. GaitBase_2Out32LR transforms each 16-dimensional
vector into 32-dimensional vectors for concatenation. After concatena-
tion, GaitBase_2Out32LR1 transforms the previous concatenated vec-
tors back into 512-dimensional. GaitBase_2Out64LR1 converts the an-
gle information directly into 32-dimensional vectors, followed by trans-
formation into 64-dimensional vectors for concatenation. The resulting
concatenated vectors are again transformed into 512-dimensional vec-
tors. Finally, GaitBase_Out64LR1 performs the same process, but the
64-dimensional vectors are obtained directly from the angle values.
All these variations apply LeakyReLU to the vectors carrying angle
information. Every transformation from one set of vectors to another
was accomplished through separate FC layers.

The additional variations, as shown in Table 10, demonstrated
occasional improvements in specific walking conditions, but all models
achieved an overall accuracy ranging between 89.5% and 89.8%, with
none surpassing the performance of the original GaitBase. This adds
an extra layer of surprise to the notable improvement achieved by the
GaitBase_In model, suggesting that the backbone of GaitBase is the
critical factor driving its success. According to the authors (Fan et al.,
2023), ResNet9 plays a crucial role in feature extraction, which seems
validated by the results.
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Fig. 17. Different GaitBase modifications to include angle information in later stages: (a) GaitBase_Out2, (b) GaitBase_2Out32LR, (c) GaitBase_2Out32LR1, (d) GaitBase_2Out64LR1,
and (e) GaitBase_Out64LR1.
Table 11
Rank-1 accuracy comparison of GaitBase_In and variation across walking conditions on
CASIA-E, divided by two evaluation protocols (NM — normal walking, BG — walking
with a bag and CL — walking with a coat, identical-view cases were excluded, best
values in bold).

Evaluation protocol Model NM BG CL Average

GaitBase 91.3 86.3 74.4 84.0
GaitBase_In 92.2 87.6 76.8 85.4Default
GaitBase_InN 91.4 86.6 74.7 84.2

GaitBase 85.1 78.5 66.3 76.6
GaitBase_In 86.4 80.3 69.1 78.6Just vertical data
GaitBase_InN 85.3 78.9 66.6 76.9

4.4. GaitBase_in evaluation on CASIA-E

GaitBase_In was selected for further evaluation due to its strong
performance on the CASIA-B dataset, confirmed by the results in Sec-
tion 4.3. While GaitGL variations performed better, their evaluation on
the CASIA-E dataset posed additional challenges. Unlike other models,
which are prepared in the OpenGait repository for fast training and
evaluation with pre-defined parameters, GaitGL lacks configurations
tailored to CASIA-E, necessitating extensive parameter tuning that was
unfeasible given the available time. Additionally, CASIA-E, being a
large dataset comparable in scale to OUMVLP (Takemura et al., 2018)
and GREW (Xianda et al., 2022), would likely require added layers of
complexity, as observed for those datasets. These adjustments increase
the model’s size to approximately 14.47M parameters and significantly
raise the number of iterations needed, often doubling or tripling those
used for CASIA-B. Consequently, similar modifications for CASIA-E
would result in considerably longer processing times, making evalua-
tion impractical under current constraints. Furthermore, GaitBase has
been shown to outperform GaitGL on outdoor datasets, which more
closely resemble the real-world scenarios of CASIA-E (Fan et al., 2023).

To evaluate the robustness of GaitBase_In and the effect of noise on
angle data, a variant called GaitBase_InN was built. This model adds
noise to the angle values during training and evaluation. The noise
follows a normal distribution (mean equal to the normalized angle
value, standard deviation of 0.02), with adjustments to keep the values
between 0 (zero) and 1 (one). Table 11 highlights the Rank-1 accuracy
performance by comparing this variation with the original GaitBase.
The results are divided by different walking conditions, averaged across
all probe and gallery views, excluding identical-view cases to simulate
cross-view conditions. The models were evaluated using the default
evaluation protocol and a second evaluation focusing on sequences
acquired from a vertical view, as explained in Section 4.1.2.

The results in Table 11 highlight the significant improvements
achieved by GaitBase_In, particularly due to the integration of angle
information. Across the default protocol, GaitBase_In demonstrated
an average improvement of 1.4% compared to the baseline GaitBase
(85.4% vs. 84.0%). It showed even stronger improvements on CASIA-E
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Table 12
Comparison of parameter size, training time, testing time, and inference time for the
GaitBase and GaitBase_In, using CASIA-E dataset.

Model Parameters
number (M)

Training time
(h)

Testing time
(s)

Inference
time (ms)

GaitBase 7.82150 17.67 4135 6.71
GaitBase_In 7.82208 18.85 4879 7.90

than on CASIA-B (1.4% vs. 0.7%), demonstrating how angle integration
enhances generalization. Using just vertical data, the improvement was
even greater, with an average gain of 2.0% (78.6% vs. 76.6%). Notably,
it distinguished gait sequences from 814 individuals despite training on
only 200, underscoring its robustness.

Although the gains for GaitBase_InN were smaller, it still surpassed
the baseline GaitBase, indicating the resilience of angle information,
even with added noise. Noise was introduced to assess whether the
optimal results observed could also be achieved without relying on
fixed angle values. During the training of GaitBase_In, the dataset con-
siders sequences captured from 13 different angles, and each sequence
is associated with its respective normalized angle value, which can
only assume one of these 13 predefined values. By introducing noise,
the angle values are no longer fixed, allowing them to vary within a
wider range. This experiment also evaluated the model’s robustness by
verifying whether slight variations in the actual angle would result in
significant drops in accuracy. The standard deviation of 0.02, corre-
sponding to an angular variation of approximately 3.6◦, was selected
arbitrarily as a reasonable starting point. However, further tests with
different values could be conducted to study this choice in future work.
Based on the results, it is believed that the best approach would be
to approximate the angle calculated by the gait acquisition component
to the nearest value within the range of angles used during training.
Nevertheless, additional tests in real-world contexts are needed to
confirm whether this would be the most effective strategy.

Performance dipped slightly for all models in the vertical-view
evaluation, likely due to reduced gallery variety, fewer discriminative
features, and a mismatch between training and evaluation data. To
improve, future work could involve pre-training on the full dataset
followed by fine-tuning for vertical-view sequences, which would better
adapt the model to this specific scenario.

Table 12 demonstrates the computational costs for GaitBase and
GaitBase_In using the CASIA-E dataset. The integration of angle infor-
mation into GaitBase resulted in a slight increase in inference time,
amounting to just 1.19 ms. This minimal increase is negligible, further
demonstrating once again the efficiency of angle integration, now also
confirmed on the CASIA-E dataset, while still providing performance
gains.

A limitation of this study is that training and evaluation were
conducted within the same datasets, without testing the models on
unseen datasets. While this provides insights into performance within
a controlled setting, it does not fully assess robustness in cross-dataset
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Fig. 18. Intra-class (blue line) and inter-class (orange line) distance distributions for GaitBase, GaitBase_In, and GaitBase_InN divided into training and test sets across the two
evaluation protocols (thresholds are marked in black (training) and in gray (testing), indicating their respective values; yellow threshold in the testing sets represents the threshold
value calculated in the corresponding training set).
scenarios, which would further approximate the system’s real-world
performance. Testing in such scenarios would benefit from the avail-
ability of more datasets like CASIA-E, which capture gait from ele-
vated perspectives with varying angles. Nevertheless, the current re-
sults already provide a solid indication of the model’s robustness and
capability and the practical impact of angle integration.

4.4.1. Threshold study
This study aimed to determine the optimal threshold that effectively

separates intra-class distances, i.e., gait sequences from the same in-
dividual, from inter-class distances, i.e., gait sequences from different
individuals. Establishing this threshold is crucial for the system’s ability
to recognize whether a given observation corresponds to a previously
observed individual or a completely new one. This capability enhances
the system’s scalability by accommodating more stored profiles.

The threshold determination was performed for both the default
evaluation protocol and the protocol using only vertical view data.
The threshold value was established on the training set and evaluated
on the test set. For this process, the training set was divided into a
gallery and probe set according to the expected evaluation protocol.
All distances between the probe and gallery samples were calculated,
allowing for the computation of each group’s mean and standard de-
viation from 30,000 sampled distances corresponding to intra-class
and inter-class distances. The threshold was defined as the distance
where the confidence of belonging to the intra-class distribution equals
that of the inter-class distribution, assuming normal distributions. After
determining this threshold using the training set, the process was
repeated for the test set. A comparison was then made between the
thresholds calculated from the training and test sets.

The results shown in Fig. 18 reveal a clear separation between intra-
class and inter-class distances, with minimal overlap in the distributions
from the training set. This aligns with the goals of the triplet loss
function. The test set further reinforces this distinction, highlighting
the models’ strong performance and generalization capability.

Table 13 presents the obtained accuracy values for recognizing
observations as new or previously seen, showing true positive accuracy
(‘‘Intra’’) and true negative accuracy (‘‘Inter’’) for the three models
across three combinations. The values were estimated using a stan-
dard normal distribution’s Cumulative Distribution Function (CDF). The
‘‘Training Set’’ column displays probabilities derived from the training-
set threshold evaluated in the training set, the ‘‘Obtained’’ column
presents actual test results using the same threshold evaluated in the
testing set, and the ‘‘Expected’’ column reflects the optimal results in
the testing set if the threshold had been fine-tuned.
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Table 13
Accuracy rates for true positives and true negatives for GaitBase, GaitBase_In, and
GaitBase_InN under training, obtained, and expected threshold conditions in two
evaluation protocols (best values in bold).

Evaluation protocol Model Training set Obtained Expected

Intra Inter Intra Inter Intra Inter

GaitBase 99.92 99.92 91.96 98.97 97.19 97.39
GaitBase_In 99.97 99.97 90.68 99.55 98.15 98.25Default
GaitBase_InN 99.96 99.96 91.38 99.36 97.95 97.97

GaitBase 99.95 99.94 81.60 99.09 95.80 95.45
GaitBase_In 99.96 99.56 86.85 99.30 97.01 96.81Just vertical data
GaitBase_InN 99.92 99.92 86.81 99.31 97.42 97.27

The results in Table 13 correspond to the distribution patterns
in Fig. 18. In every case, the obtained threshold is shifted leftward
from the expected optimal value, decreasing true positive accuracy
and increasing true negative accuracy. While this may initially appear
detrimental, it will likely enhance overall system performance. Since
inter-class distances greatly outnumber intra-class distances, even a
slight reduction in true negative accuracy can lead to a significant
number of new individuals being incorrectly associated with previ-
ously observed ones. As the number of stored profiles increases, this
imbalance becomes more pronounced, underscoring the importance of
maintaining a threshold that slightly penalizes true positive accuracy to
enhance true negative accuracy. However, if desired, a slight penalty
could be applied to the obtained threshold value, bringing it closer to
the ideal separation point. This assumes the deviation as an established
fact. Moreover, the better results observed with the models incor-
porating angle information are confirmed by higher accuracy in the
‘‘Expected’’ column, indicating that these distributions have a smaller
area of overlap.

Considering the default settings, the accuracy of true positives
and true negatives shows little distinction among the models. How-
ever, GaitBase_In should be emphasized for achieving the highest true
negative accuracy at 99.55%. This characteristic indicates it would con-
tribute most positively to the system for the aforementioned reasons.

Using only vertical data, the models incorporating angle infor-
mation demonstrate a clear improvement in true positive accuracy
compared to GaitBase’s 81.60%, achieving 86.85% and 86.81% for
GaitBase_In and GaitBase_InN, respectively. This improvement under-
scores the significance of incorporating angle information into the
models, ultimately enhancing their capability to distinguish between
new and previously observed individuals.
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5. Conclusion

The study effectively integrated angle data into various DL model-
free approaches, supported by an innovative but simple gait acquisition
ystem that is expected to be adaptable to varied scenarios through
ppropriate hyperparameter tuning. The high-quality sequences and
ngle information enable more accurate identification of multiple sub-
ects and reliable differentiation between known and new individuals.
dditionally, the results show that both early and late integration of
ngle information can lead to improvements, with the optimal strategy
epending on the specific model. For instance, models like GaitPart,
aitSet, and GaitGL performed better with late integration, while Gait-
ase benefited more from early integration. These findings suggest that
he choice of integration strategy should be tailored to the model’s
rchitecture to achieve the best performance. Notably, including angle
nformation proved beneficial in all models tested on the CASIA-B
ataset, with GaitBase_In also showing significant improvements on the
ASIA-E dataset. These results highlight the practical advantages of

ncorporating angle data. The successful implementation of a threshold-
ased approach for differentiating between new and registered subjects
urther underscored the practical viability of the proposed system.

In the future, the goal is to test the system as a whole in real-
time, integrating the acquisition system with the recognition algorithm
hrough implementing an efficient segmentation algorithm, which re-
ains to be explored and would allow a seamless connection between

the two parts. Future research could also focus on further evaluating the
contribution of angle information to feature extraction in model-based
approaches, where its impact is expected to be more significant due to
he structural nature of the data.

This robust gait acquisition and recognition system lays a solid
foundation for future enhancements and practical deployment, demon-
strating strong potential for real-world applications and significant
theoretical and practical advancements.
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