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Abstract 

 As the global energy system transitions toward decarbonization, green hydrogen is 

emerging as a key vector for storage and sectoral integration. Electrolysis, powered by 

renewable energy sources, enables sustainable hydrogen production, but economic 

feasibility depends on operational flexibility in response to electricity market dynamics. This 

study analyzes two major electrolyzer technologies, Alkaline Water Electrolyzer (AWE) and 

Proton Exchange Membrane (PEM), using real-world data from REN DataHub on renewable 

generation and grid electricity prices. 

A simulation framework was developed to optimize hydrogen production by adjusting 

input variables, namely current and cooling water flow, while allowing for dynamic grid 

power usage. The objective was to maximize hydrogen output and economic return by 

deciding when to operate, reduce, or halt production based on fluctuating power prices and 

renewable energy availability. A rolling optimization strategy was employed to account for 

uncertainty in short-term electricity price forecasts. 

The results reveal that both AWE and PEM electrolyzers adapt their operation to 

electricity price fluctuations. At low prices, they increase production, often using grid 

electricity; at high prices, they reduce hydrogen output or sell renewable energy to the grid. 

PEM systems demonstrated greater responsiveness to short-term price variations, 

maintaining partial operation even during peak pricing due to higher efficiency. AWE systems 

were more prone to complete shutdowns but were also more stable under constrained output 

conditions. In scenarios with lower hydrogen prices, both systems significantly reduced 

operation, prioritizing electricity sales when hydrogen production was no longer 

economically favourable. These patterns illustrate each system’s strategic behaviour in 

optimizing for profitability under dynamic conditions. 

This work highlights the importance of integrating real-time market signals into 

electrolyzer operation, providing insights for the deployment of hydrogen technologies in 

flexible, renewable-driven energy systems. 
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Resumo 

Com a transição global para a descarbonização do sistema energético, o hidrogénio 

verde surge como um vetor essencial para o armazenamento e integração setorial. A 

eletrólise, alimentada por fontes de energia renovável, permite uma produção sustentável 

de hidrogénio, embora a viabilidade económica dependa da flexibilidade operacional face à 

dinâmica do mercado elétrico. Este estudo analisa duas tecnologias principais de eletrólise, 

Eletrólise Alcalina (AWE) e Membrana de Troca de Protões (PEM), utilizando dados reais do 

REN DataHub sobre produção renovável e preços da eletricidade na rede. 

 Foi desenvolvido um modelo de simulação para otimizar a produção de hidrogénio 

através do ajuste de variáveis de entrada, nomeadamente a corrente elétrica e o caudal de 

água de refrigeração, permitindo o uso dinâmico da eletricidade da rede. O objetivo 

consistiu em maximizar a produção e o retorno económico do hidrogénio, decidindo quando 

operar, reduzir ou parar a produção com base nas flutuações dos preços da eletricidade e 

na disponibilidade de energia renovável. Foi adotada uma estratégia de otimização 

recorrente para integrar a incerteza na previsão dos preços de curto prazo. 

 Os resultados mostram que ambos os eletrolisadores ajustam o seu funcionamento 

consoante as variações dos preços da eletricidade. Quando os preços estão baixos, 

aumentam a produção, muitas vezes recorrendo à eletricidade da rede; quando os preços 

estão altos, reduzem a produção de hidrogénio, vendendo a energia renovável à rede 

pública. O sistema PEM revelou maior sensibilidade às variações de preços, mantendo 

produção parcial durante picos de preços devido à sua maior eficiência. O sistema AWE 

demonstrou maior tendência para desligamentos completos, mas com comportamento mais 

estável sob restrições de produção. Em cenários com preço reduzido do hidrogénio, ambos 

os sistemas reduziram significativamente a operação, favorecendo a venda de eletricidade. 

Estes padrões ilustram o comportamento estratégico de cada sistema na otimização da 

rentabilidade em condições dinâmicas. 

 Este estudo reforça a importância de integrar sinais de mercado em tempo real na 

operação de eletrolisadores, contribuindo para estratégias mais eficazes de produção de 

hidrogénio num sistema energético flexível e renovável. 

 

 

Palavras-chave (tema): Produção de hidrogénio, Otimização de eletrolisadores, 
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1. Introduction 

1.1. Framing and presentation of the work 

The global push for decarbonization, emphasized by the United Nations, has 

accelerated hydrogen technology development, valued both as an industrial raw material 

and a clean energy carrier. Green hydrogen, produced via water electrolysis driven by 

renewable power, is a key enabler of the energy transition. As electricity grids integrate 

more variable renewable energy sources, hydrogen production helps absorb surplus 

electricity and supports grid stability. 

Electrolyzers, which split water into hydrogen and oxygen using electricity, are central 

to this shift. Alkaline Water Electrolyzers (AWE) and Proton Exchange Membrane (PEM) 

electrolyzers are the most widely used, each with distinct operational characteristics suited 

to different energy and market contexts. 

Despite growing interest and increasing deployment, challenges remain in the 

economic and technical viability of electrolyzers, especially in real-time electricity markets. 

High manufacturing costs and sensitivity to fluctuating electricity prices, due to renewable 

intermittency, grid congestion, and demand changes, limit integration and scalability. Fixed 

control strategies often fail to capture market dynamics, leading to unrealistic assumptions. 

Dynamic optimization offers a powerful way to improve electrolyzer operation under 

variable conditions by balancing profitability and operational constraints. Techniques like 

Model Predictive Control, nonlinear programming, and stochastic optimization enable 

continuous adjustments based on electricity price forecasts and renewable power 

availability, enhancing hydrogen yield, reducing costs, and increasing flexibility. 

This dissertation investigates market-aware optimal control for AWE and PEM 

electrolyzers under identical conditions. Rather than focusing on design or hardware 

differences, the study emphasizes operational behaviour in response to real-time market 

signals, such as electricity prices and renewable power availability. Using model-based 

simulation and dynamic optimization, it evaluates their responsiveness and suitability under 

fluctuating market signals. The results provide insights into practical integration strategies 

for renewable-rich grids and support cost-effective hydrogen production. 

Using real-time simulation data, this study assesses the flexibility and integration 

potential of AWE and PEM electrolyzers to meet evolving energy demands. Three case studies 

simulate real-world market conditions, examining system responses to fluctuating electricity 

and hydrogen prices and intermittent renewable energy generation, providing a qualitative 

assessment of each technology’s adaptability. 
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1.2. Contribution of the author to the work  

The author contributed to this work through the development of dynamic 

optimization codes in Python using the CasADi package, as well as the modelling and 

parameterization of the electrolyzer systems using Python and Excel to define and test their 

performance models. Additionally, the author was responsible for acquiring and processing 

up-to-date real-time data, which was integrated into the simulation framework to reflect 

realistic operating conditions and market dynamics. 

1.3. Organization of the dissertation  

This dissertation is subdivided in seven chapters. 

 The first chapter, Introduction, presents the context and motivation for the research, 

highlighting the role of electrolyzer systems in the energy transition and the importance of 

optimizing their operation under dynamic market conditions. It also introduces the main 

objectives and scope of the work. 

 The second chapter, Context and State of the Art, provides a detailed description of 

AWE and PEM electrolyzer systems, alongside an overview of other relevant technologies. 

Key limitations and assumptions are identified and applied to simplify the modelling process. 

The chapter also discusses the principles of dynamic optimization and introduces CasADi as 

a computational tool for implementing optimal control strategies in electrolyzer operation. 

 The third chapter, Modelling and Simulation Framework, presents the model 

equations, optimization constraints, and objective functions applied to both electrolyzer 

systems. It outlines the specific goals of the optimization problem and details the 

simplifications and assumptions incorporated into the models. Additionally, relevant data 

used in the design and parameterization of each system are discussed. 

 The fourth chapter, Results and Discussion, presents the simulation results and 

provides a comprehensive analysis of the operational performance of both electrolyzer 

systems under different market scenarios. It examines their dynamic behaviour, 

responsiveness to fluctuating electricity prices, and overall flexibility. 

 The fifth chapter, Conclusion, summarizes the main findings, outlines the study’s 

contributions, and suggests directions for future research in electrolyzer operation and 

optimization.  

 The sixth chapter, Assessment of the Work Done, provides a concise overview of the 

completed objectives and evaluates their relevance to sustainable development goals. 
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2. Context and State of the art  

2.1. Electrolyzer technology overview 

 Electrolyzers represent the most established and widely recognized renewable 

energy technology for producing green hydrogen, which has an important role in the 

sustainability of future energy transition. Water electrolysis technologies for hydrogen 

production can generate it with high purity to be able to meet its growing demand for 

circular economy and future sustainable solutions on clean energy systems [1]. While their 

development is deeply rooted in scientific and engineering advancements, an increasing 

technology maturing is evident over the years, with the development of different types of 

electrolyzers for the current market targets and needs. AWE, PEM, anion exchange 

membrane (AEM) and solid oxide electrolyzers (SOE) are being highlighted with their market 

readiness and viability for their energy applications in the era of renewable energy market. 

PEM and AWE are relatively mature, with predictable behaviour and environmental 

performance and a well-established manufacturing process regarding its system components 

and material usage. On the other hand, SOE and AEM still present some technical and 

functional challenges, namely degradation issues and manufacturing process which have an 

important role for the overall stack performance and stability, durability, and its limitations 

to different scenarios [2]. Nevertheless, the emergence of these different kinds of hydrogen 

production technologies also contributes to their integration and engagement in the current 

market. This increasing adoption of electrolyzers in industry, not only as a final product but 

also as a potential sub-application, is the fuel for this maturing run. SOE is recognized as a 

future ally for industries with high heat workloads since this technology operates usually in 

the range of 600 °C up to 1000 °C, coupled with its easy scalability for different demands. 

SOE are also recognized for their syngas generation potential, due to their capability to 

perform co-electrolysis of CO₂ and water, resulting in syngas production, which reinforces 

market opportunity for fuel power plants to contribute to the industrial decarbonization 

goals [3]. These capabilities of SOE could encourage these target industries to invest in the 

maturing and advancement of this technology, as they still face major issues such as long-

term durability, reliability, and material degradation due to high temperature exposure, 

which limits their efficiency and lifespan. 

2.2. AWE and PEM 

 The focus on this work will be on optimization of the two widely recognized, most 

mature and commercially available technologies for hydrogen production, AWE and PEM. 

AWE is the most established technology, with a long history of industrial use, being 

recognized by its maturity in electrolysis processes. Its module is composed by two 
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electrodes immersed in an alkaline solution of potassium or sodium hydroxide. These 

electrolytes operate with a typical concentration of hydroxide ions around 25-40% [4]. There 

is a physical division between both electrodes by a porous membrane and the separator is 

crucial for allowing a restrictive flow of 𝑂𝐻− ions and for imposing the flux of electrons by 

the external circuit. At the cathode, water undergoes reduction, producing hydroxide ions 

and hydrogen gas. Subjected to an externally induced electric field, the ion conduction 

occurs within the electrolyte, passing across the diaphragm to the anode. Upon arrival at 

the anode, hydroxide ions undergo oxidation to form oxygen gas [5]. In Table 2.1 and Figure 

2.1, the reactions which occur in each electrode previously described are represented: 

Table 2.1 - Half-reactions in cathode and anode side for AWE 

Cathode: 4𝐻2𝑂(𝑙) + 4𝑒− → 2𝐻2(𝑔) + 4𝑂𝐻−(𝑎𝑞) 

Anode: 4𝑂𝐻−(𝑎𝑞) → 𝑂2(𝑔) + 2𝐻2𝑂(𝑙) + 4𝑒− 

 

Figure 2.1 - Cell operation diagram of an AWE [4] 

 The electrodes surface is designed to facilitate the bubbles formed during the water 

electrolysis. These gas bubbles will continue to grow coalescing with surrounding ones or by 

diffusion of the gases produced, blocking active sites, creating electron resistance, and 

impacting the overall electrolyzer efficiency and compromising hydrogen purity [6]. AWE 

can produce hydrogen with over 99.999% purity at ambient temperature. The electrodes are 

built with non-noble metals, typically nickel or iron, which lower their CAPEX. However, this 

technology is very restricted with limited current density, lower efficiency compared with 

other technologies, and corrosion associated with the alkaline electrolyte. Additionally, the 

lengthy start-up time and slow load response makes it challenging for AWE to adjust to 

intermittent renewable energy sources. 

 To address the limitations of AWE, PEM electrolysis technology emerged, 

revolutionizing the hydrogen production industry. In this technology configuration, it is 

mandatory to feed only deionized water to the cell. The electrolyte is a polymer membrane, 

known for its high proton conductivity, low gas crossover, small thickness, and high-pressure 

operation, which contrasts with the restrictive nature of the AWE. Deionized water is 
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supplied to the anode to be oxidized. The hydrogen ions cross over the membrane to be 

collected in the cathode and to be released in its gas form after reacting with the electrons 

transported via the external circuit [4]. In Table 2.2 and Figure 2.2, the reactions in each 

electrode, cathode and anode, respectively, are represented. 

Table 2.2 - Half-reactions in cathode and anode side for PEM 

Cathode: 4𝐻+(𝑎𝑞) + 4𝑒− → 2𝐻2(𝑔) 

Anode: 2𝐻2𝑂(𝑙) → 𝑂2(𝑔) + 4𝐻+(𝑎𝑞) + 4𝑒− 

 

Figure 2.2 – Cell operation diagram of a PEM [4] 

 The low gas crossover allows a wide range of power inputs and fluctuations with fast 

response from the cell. Because the electrolyte in PEM electrolyzers is a solid polymer rather 

than a liquid as in alkaline water electrolyzers (AWE), proton crossover closely follows 

changes in the supplied power without the lag caused by inertia seen in AWE systems. In 

alkaline electrolyzers running at low power levels, production rates of hydrogen and oxygen 

decline, yet hydrogen permeability through the diaphragm remains steady. This leads to an 

increased concentration of hydrogen on the anode (oxygen) side, which poses safety risks 

and reduces efficiency. Conversely, PEM electrolysis maintains efficient operation over a 

broad range of power densities and can even operate above its nominal power (by 10–100%) 

thanks to the Nafion® membrane’s low hydrogen permeability, thereby improving overall 

performance and efficiency. However, this configuration suffers from high capital costs, 

since PEM relies on precious metal catalysts (platinum and iridium) to achieve efficient 

reactions and to handle the acidic regime provided by the membrane, leading to the 

corrosion of the catalysts, current collector, and separator plates, reducing its lifespan [7]. 

 Both technologies face their drawbacks, but each one offers distinct advantages that 

make them suitable for different applications. AWE remains a cost-effective and well-

established choice for hydrogen production, particularly in industries where high purity and 

long-term stability are required. However, its limitations in efficiency, slow dynamic 

response, and sensitivity to corrosion restrict its adaptability to modern energy demands. 

On the other hand, PEM electrolysis presents a highly responsive and efficient alternative, 
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capable of handling variable renewable energy inputs with ease. Despite its higher capital 

costs and reliance on noble metals, ongoing research and technological advancements aim 

to reduce these constraints, making PEM a strong candidate for the future of sustainable 

hydrogen production. Ultimately, selecting between AWE and PEM is determined by the 

specific operational and financial constraints of the application, as both technologies 

continue to evolve in the pursuit of cleaner and more efficient energy solutions.  

2.3. Limitations and Assumptions 

 To enable tractable implementation of the simulation framework, several 

assumptions and simplifications were made regarding the physical and operational 

characteristics of the electrolyzer systems. For the electrochemical water splitting process 

to work efficiently, several obstacles must be overcome, all of which require a steady supply 

of electrical energy. These obstacles include electrical resistance in the circuit, which slows 

down the current flow and reduces the overall efficiency of the system, while also leading 

to waste of energy generating heat according to the Ohms law. These resistances derive 

from the electrodes to the connection circuits, being determined by the dimensions and 

specifications of the materials [8]. 

 Another major challenge is presented by the activation energy of the electrode 

reactions. These energies act as kinetic barriers that must be overcome for the reaction to 

proceed, contributing to what is often termed reaction resistance or overpotential. In both 

AWE, focusing on the oxygen evolution reaction, and PEM electrolyzers, concerning the 

hydrogen evolution reaction, a significant amount of energy is required to initiate these 

processes. Should these activation energies be too high, a larger applied voltage will be 

necessary, directly resulting in lower operational efficiency. 

 In addition, ionic transfer resistance within the electrolyte also limits performance. 

The ions (like 𝑂𝐻− in alkaline systems or 𝐻+  in PEM systems) need to move through the 

electrolyte to reach the electrodes. If the electrolyte is too resistant to ion movement, this 

slows down the reaction and raises the energy required to drive the process. Factors like 

electrolyte type, concentration, and distance between electrodes impact in the ionic flow 

[8]. 

 Mass transfer plays a key role in water electrolysis systems, affecting gas bubble 

behaviour, dissolved gas diffusion and overall efficiency. Gas contamination, a key safety 

and performance factor, is affected by the movement of hydrogen and oxygen through the 

electrolyte and separator. The Sherwood and Nusselt numbers help describe convective mass 

and heat transfer, which impact bubble detachment, electrolyte circulation, and reactant 

distribution. These effects shape the electrolysis process by determining how efficiently 
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reactants reach the electrodes and how quickly products are removed, ultimately influencing 

cell voltage, energy consumption, and gas purity [9]. 

 To improve efficiency, it is important to consider all these barriers. From a 

thermodynamic standpoint, it is essential to determine the minimum energy needed to drive 

the water splitting reaction. But in practice, kinetic factors, like the overpotentials at the 

electrodes and how effective the catalysts are, influence the actual energy needed. 

Moreover, transport phenomena, including ion migration and current distribution, 

significantly influence the process efficiency. By simultaneously optimizing these elements, 

energy losses can be minimized, leading to enhanced electrolyzer performance. [8].  

 To simplify the model to compute, some considerations were made, and limitations 

were included. Electrical resistances, diffusion, bubble detachment, and ion transfer 

resistance were not considered. Gases were considered as ideal, since at lower pressures, 

below 30 bar, the ideal gas assumption is reasonably accurate, with deviations typically 

under 10 mV [10]. The water feed is considered as pure water, deionized for the PEM. The 

operational pressure was considered atmospheric (1 atm) since the efficiency of electrolyzer 

cells operating under pressure is not significantly higher compared to those operating at 

ambient pressure. Operating under pressure increases the amount of gas that dissolves in 

the electrolyte, and it also demands a more durable diaphragm to handle the added stress 

[8].  

2.4. Dynamic optimization  

 Dynamic optimization is a key concept in control theory and decision making, 

particularly on systems that evolve over time. It is a mathematical approach useful in 

scenarios where decisions made at one point affect the future states, requiring a strategy 

that accounts for both immediate and long-term objectives. This type of optimization is 

widely applied in control systems, economics, and engineering where processes are led by 

dynamic constraints and uncertainties. 

 The principle in dynamic optimization is breaking down a complex, multi-stage 

problem into smaller and more manageable subproblems. This is often done using recursive 

methods, ensuring that optimal decisions at each stage contribute to the overall best results. 

The approach is specifically relevant for energy systems, such as electrolyzers, where 

operating conditions change over time. By optimizing variables like power input, 

temperature, and water intake dynamically, efficiency can be maximized while minimizing 

energy losses and overall system costs and ensuring its longevity [11]. 

 A system in a transient state, such as a time-dependent one, can be mathematically 

represented using differential equations that describe how its variables evolve over time. 
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For instance, if the system’s state is given by 𝑥 and time denoted by 𝑡, its behaviour is 

defined by two main components: a differential equation governing its dynamics, and a 

boundary condition that sets specification constraints, as illustrated in Equation (2.1). 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡)), 𝑥(𝑡0) = 𝑥0 

(2.1) 

In dynamic optimization, the number of boundary conditions should be equal to the 

number of dynamic variables within the system.  The approach to solving differential 

equations varies based on the problem’s complexity. Simple problems may be tackled with 

analytical methods such as direct integration or Laplace transforms. For more intricate 

problems, numerical techniques like Euler’s method, Runge-Kutta methods, or discretization 

strategies are used to find approximate solutions with high precision [11]. During transient 

periods, the system adapts to changes or disturbances, such as changes in input or non-

equilibrium starting conditions. This phase can be analysed by observing how the solution to 

the differential equations develops over time.  

2.5. CasADi 

 In this work, CasADi was used to formulate and solve the dynamic optimization 

problem. CasADi is an open-source software tool designed for nonlinear optimization and 

optimal control. It provides a powerful and flexible framework for solving dynamic 

optimization problems, including both continuous and discrete systems. CasADi is 

particularly well-suited for handling complex mathematical models, such as differential 

equations and dynamic systems, and offers various solvers for large-scale optimization 

problems. It supports symbolic expressions, making it easier to define optimization problems 

and to analyse their structure. Through its interface with multiple solvers, such as IPOPT 

and BlockSQP, CasADi can efficiently solve large and nonlinear optimization problems, which 

are common in fields like control engineering and applied mathematics [12][13]. 

 In dynamic optimization, CasADi is helpful for setting up and solving optimal control 

problems, including those involving differential-algebraic equations, by combining symbolic 

modelling with powerful numerical tools. A key feature that enables this capability is 

automatic differentiation, which allows for the efficient and accurate computation of 

derivatives required by gradient-based optimization algorithms. Its symbolic expression 

framework enables users to define complex dynamic systems efficiently, while its numerical 

solvers handle the resulting optimization problems effectively. This combination allows for 

the analysis of both transient and steady-state behaviours in dynamic systems, making 

CasADi a valuable tool for researchers and practitioners in control engineering and applied 

mathematics.
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3. Modelling and Simulation Framework  

 As mentioned, this work is focused on the AWE and PEM electrolyzers, and due to 

their technical and operational differences, two models were created to represent the 

production of hydrogen and the energy balance for these systems. 

 This chapter details the mathematical models developed to simulate the operation 

of AWE and PEM electrolyzers. Each model accounts for the specific physical, 

electrochemical, and thermodynamic behaviours of the two technologies, as well as the 

analysis of performance in terms of hydrogen production rate and energy losses. The models 

were built using Python, and implement thermodynamic equations, overpotential models, 

and empirical correlations found in recent literature. 

3.1. Electrolyzer Design and Sizing 

 Both models consider the electrolyzer as a stack composed of multiple individual 

electrolytic cells connected in series. To ensure consistency and enable a fair comparative 

analysis between the two technologies, the total system power was fixed at 1 MW for both 

the AWE and PEM systems. 

The electrolyzer power can be described as the following Equation (3.1): 

𝑃𝑒𝑙𝑒 = 𝑈𝑠𝑡𝑎𝑐𝑘𝐼 (3.1) 

where 𝑃𝑒𝑙𝑒 is the target system power (1 MW), 𝑈𝑠𝑡𝑎𝑐𝑘 is the voltage of the electrolytic stack, 

and 𝐼 is the current applied to each cell (identical across the stack since the cells are 

connected in series). Given that the cells are connected in series, the stack voltage can be 

modelled as shown in Equation (3.2): 

𝑈𝑠𝑡𝑎𝑐𝑘 = 𝑈𝑐𝑒𝑙𝑙𝑁𝑐𝑒𝑙𝑙 (3.2) 

where 𝑈𝑐𝑒𝑙𝑙 is the voltage of a single electrolytic cell (which will be calculated from the 

electrochemical model), and 𝑁𝑐𝑒𝑙𝑙 is the number of electrolytic cells. 

The power equation can be then rearranged to include the number of cells, as 

expressed by Equation (3.3): 

𝑃𝑒𝑙𝑒 = 𝑈𝑐𝑒𝑙𝑙 𝑁𝑐𝑒𝑙𝑙𝐼 (3.3) 

 The operating current 𝐼 was selected based on typical values reported in the scientific 

literature and datasheets from commercial electrolyzer manufacturers. This ensures that 

the modeled system operates within realistic industrial parameters, allowing for meaningful 

performance comparisons and scaling estimates. Table 3.1 presents the electrolyzer design 

parameters. 
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Table 3.1 – Electrolyzer design parameters 

Model Current (𝑰) Voltage (𝑽) Length (𝒎) Diameter (𝒎) Volume (𝒎𝟑) 

AWE 2500 [14][15] 400 [14][15] 15 [16] 0.8 [16] 7.5 

PEM 4000 [17] 250 [17] 2 [18] 0.71 [18] 0.8 

Rearranging Equation (3.2), a new expression for the number of cells is obtained as 

shown in Equation (3.4): 

𝑁𝑐𝑒𝑙𝑙 =
𝑃𝑒𝑙𝑒

𝑈𝑐𝑒𝑙𝑙𝐼
 

(3.4) 

 Since 𝑈𝑐𝑒𝑙𝑙  depends on factors such as temperature, pressure, and current density, 

the number of cells was calculated based on the optimal operating conditions, specifically 

at a temperature of 60 °C and at the maximum current defined for each technology. These 

conditions were chosen as they represent typical optimal performance points for both AWE 

and PEM electrolyzers, ensuring high efficiency and production. The resulting number of 

cells ensures the stack configuration delivers a total system power of 1 MW under these 

reference conditions. The electrolyzer stack configuration parameters are summarized in 

Table 3.2. 

Table 3.2 – Electrolyzer stack configuration parameters 

Model Number of cells Cell Area (𝒎𝟐) 

AWE 181 0.5 

PEM 159 0.4 

 While the electrolyzer model was designed based on specific nominal current and 

voltage targets, the physical constraint of having an integer number of cells required 

rounding the calculated cell count. Consequently, the actual operational current and voltage 

depicted in the model’s output figures reflect these adjusted values, rather than the initial 

exact targets. 

 Three sources of electrical power were considered for the electrolyzer systems: solar 

energy 𝑃𝑠𝑜𝑙𝑎𝑟, wind energy 𝑃𝑤𝑖𝑛𝑑, and the electrical grid 𝑃𝑔𝑟𝑖𝑑, as shown in Equation (3.5). 

The primary objective was to rely on renewable sources, solar and wind, whenever possible. 

These sources were prioritized based on their availability, with solar and wind contributing 

to the electrolyzer load if sufficient generation was available. In periods of low renewable 

output, electricity was supplemented by the grid to ensure continuous operation. This hybrid 

supply strategy aims to maximize the use of clean energy while maintaining system 

reliability. When electricity is purchased from the grid, the power drawn 𝑃𝑔𝑟𝑖𝑑 is considered 
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a negative value, reflecting its negative impact on system profitability. Conversely, if there 

is a surplus of generated renewable energy beyond the electrolyzer's demand, 𝑃𝑔𝑟𝑖𝑑 is 

recorded as positive, representing a potential opportunity for energy export or financial 

credit. 

𝑃𝑒𝑙𝑒 =  𝑃𝑠𝑜𝑙𝑎𝑟 +  𝑃𝑤𝑖𝑛𝑑 − 𝑃𝑔𝑟𝑖𝑑 (3.5) 

 The design and sizing of the PEM and AWE electrolyzer stacks, including stack 

diameter and overall dimensions, were based on data from existing commercial 

electrolyzers. These parameters were selected to reflect practical, real-world 

configurations reported in the literature, ensuring that the simulated systems closely 

represent current industry standards in terms of physical size and design. Accurately defining 

the stack diameter and overall size was essential for estimating the superficial area of the 

electrolyzer, which directly impacts the heat exchange characteristics with the 

environment. Moreover, the cell active area within the stack influences key electrochemical 

parameters such as current density and cell voltage. Together, these geometric factors are 

critical for accurately modelling both the thermal behaviour and electrolysis performance 

of the systems. Table 3.3 presents the electrolyzer dimensions. 

Table 3.3 – Electrolyzer dimensions 

Model Superficial Area (𝒎𝟐) 

AWE 37.6 

PEM 4.5 

 To accurately simulate the performance of both AWE and PEM electrolyzers, 

mathematical models were developed based on electrochemical theory and empirical data. 

These models aim to represent the voltage behaviour of a single electrolytic cell under 

various operating conditions, incorporating key loss mechanisms such as activation 

overpotentials, ohmic resistance, and thermodynamic effects. The following sections 

present the equations used to describe the cell voltage, energy balance, and hydrogen 

production rate for each technology, with all parameters selected to reflect realistic 

operational conditions and supported by data from the literature and industrial sources. 

3.2. AWE Model 

 With the stack configuration defined, the next step involves modelling the 

electrochemical behaviour of a single alkaline electrolytic cell. The following equations 

describe the voltage components and system parameters used to calculate the cell voltage 

and hydrogen production rate. These expressions incorporate thermodynamic, kinetic, and 
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ohmic losses specific to alkaline electrolysis, and are essential for accurately estimating the 

overall system performance. 

 The cell voltage 𝑈𝑐𝑒𝑙𝑙 is calculated as the sum of the reversible voltage 𝑈𝑟𝑒𝑣, the 

activation overpotentials at the anode 𝑈𝑎𝑐𝑡,𝑎 and cathode 𝑈𝑎𝑐𝑡,𝑐, and the ohmic losses 𝑈𝑜ℎ𝑚 

within the system [19], as expressed in Equation (3.6). Although other phenomena, such as 

concentration overpotential, can influence the overall voltage, these effects were neglected 

in this study to simplify the model and due to the time constraints of the dissertation. 

𝑈𝑐𝑒𝑙𝑙 = 𝑈𝑟𝑒𝑣 + 𝑈𝑎𝑐𝑡,𝑎 + 𝑈𝑎𝑐𝑡,𝑐 + 𝑈𝑜ℎ𝑚 (3.6) 

3.2.1. Reversible Voltage  

 The reversible voltage 𝑈𝑟𝑒𝑣 is the minimum theoretical voltage needed to drive a 

redox reaction to occur and is dependent on temperature, pressure, and water activity. This 

value is calculated by Nernst equation (3.7), as follows: 

𝑈𝑟𝑒𝑣 = 𝑈𝑟𝑒𝑣
0 +

ℛ𝑇

2𝐹
ln [

(𝑝 − 𝑝H2O)
1.5

𝛼H2O
] 

(3.7) 

where 𝑈𝑟𝑒𝑣
0  is the standard conditions reversible voltage, which is also influenced by the 

stack temperature 𝑇 as shown in the following equation, ℛ is the gas constant, 𝐹 is Faraday’s 

constant, 𝑝 is the operating pressure, 𝑝H2O is the water vapour partial pressure, and 𝛼H2O is 

the water activity in the range 0-150 °C [19].  The expression for 𝑈𝑟𝑒𝑣
0  is given by Equation 

(3.8): 

𝑈𝑟𝑒𝑣
0 = 1.50342 − 9.956 × 10−4𝑇 + 2.5 × 10−7𝑇2 (3.8) 

𝑝H2O and 𝛼H2O are expressed by the empirical formulas which are dependent on 𝑚, alkali 

molar concentration, and stack temperature 𝑇, as shown in Equations (3.9) and (3.10), 

respectively [19]: 

log 𝑝𝐻2𝑂 = −0.01508𝑚 − 0.0016788𝑚2 + 2.25887 × 10−5𝑚3 +

(1 − 0.0012062𝑚 + 5.6024 × 10−4𝑚2 − 7.8228 × 10−6𝑚3) ×

(35.4462 −
3343.93

𝑇
− 10.9 log 𝑇 + 0.004165𝑇)

 (3.9) 

log 𝛼H2O (KOH) = −0.02255𝑚 + 0.001434𝑚2 +
(1.38𝑚 − 0.9254𝑚2)

𝑇
 

(3.10) 

The alkali molar concentration 𝑚 is expressed by the following Equation (3.11): 

𝑚 =
𝜔

56.105
(183.1221 − 0.56845𝑇 + 984.5679 exp (

𝜔

1.1596277
)) (3.11) 

where 𝜔 is the alkali mass fraction concentration [19]. 
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3.2.2. Activation Overpotential 

 The activation overpotential is the additional voltage required beyond the 

equilibrium potential to overcome the activation energy barrier for electron transfer at the 

electrode surface, enabling the electrochemical reaction to proceed at a practical rate, is 

calculated separately for each electrode as shown in Equations (3.12) [19]: 

𝑈𝑎𝑐𝑡,𝑘 =
ℛ𝑇

2𝛼𝑘𝐹
ln [

𝑗

𝑗0,𝑘(1 − 𝜃)
] (3.12) 

where 𝑗 is the current density, 𝑗0,𝑘 is the exchange current density of the electrode, with 

𝑘 = 𝑎 for the anode and 𝑘 = 𝑐 for the cathode, 𝜃 is the ratio of electrode surface covered 

by generated bubbles, and 𝛼𝑘 is the transfer coefficient of the electrode. It is important to 

mention that these parameters are specified for the electrode’s material, in this case nickel, 

and are calculated by Equations (3.13) to (3.17) [19]: 

𝜃 = [−9725 + 182
𝑇

𝑇0
− 84 (

𝑇

𝑇0
)

2

] (
𝑗

𝑗𝑙𝑖𝑚
)

0.3 𝑝

𝑝 − 𝑝𝐻2𝑂
 (3.13) 

𝛼𝑎 = 0.07835 + 0.001𝑇 (3.14) 

𝛼𝑐 = 0.1175 + 0.00095𝑇 (3.15) 

𝑗0,𝑎 = 0.9 (
𝑝

𝑝0
)

0.1

exp [−
42000

ℛ𝑇
(1 −

𝑇

𝑇0
)] (3.16) 

𝑗0,𝑐 = 1.5 (
𝑝

𝑝0
)

0.1

exp [−
23000

ℛ𝑇
(1 −

𝑇

𝑇0
)] (3.17) 

where 𝑝 is the operating pressure, 𝑝0 the reference pressure, 𝑇0 the reference temperature, 

and 𝑗𝑙𝑖𝑚 is the limiting current density under full bubble coverage of the electrode [20]. 

3.2.3. Ohmic Overpotential 

 In an electrolyzer, the flow of electric current through various cell components, such 

as the electrodes, electrolyte, and membrane, encounters inherent electrical resistance. 

This resistance leads to a voltage drop known as ohmic overpotential. Analogous to an 

electric circuit, where resistive elements cause energy losses in the form of heat, the 

electrolyzer exhibits similar behaviour due to ionic and electronic resistances. Ohmic 

overpotential increases linearly with current as shown in the following Equation (3.18) [19]: 

𝑈𝑜ℎ𝑚 = 𝑅𝑜ℎ𝑚𝐼 = (𝑅𝑎 + 𝑅𝑐 + 𝑅KOH-bubble + 𝑅𝑚𝑒𝑚) × 𝐼 (3.18) 

where 𝑅𝑜ℎ𝑚 is the ohmic resistance, 𝐼 is the current, and 𝑅𝑎, 𝑅𝑐, 𝑅KOH-bubble, 𝑅𝑚𝑒𝑚 the anode, 

cathode, electrolyte and membrane resistances, respectively. 
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The electrode resistance, 𝑅𝑘 with 𝑘 = 𝑎 for the anode and 𝑘 = 𝑐 for the cathode, is 

given by the following Equation (3.19) [19]: 

𝑅𝑘 =
1

𝜎𝑘
(

𝛿𝑘

𝑆𝑘
) (3.19) 

where 𝛿𝑘 and 𝑆𝑘 are the thickness and area of the electrode. 𝜎𝑘 represents the electrode 

conductivities, which are equal due to being made from the same material, nickel, so the 

electrical conductivity of nickel 𝜎𝑁𝑖 is calculated using the following Equation (3.20) [19]: 

𝜎𝑎 = 𝜎𝑐 = 𝜎𝑁𝑖 = 60000000 − 279650𝑇 + 532𝑇2 − 0.38057𝑇3 (3.20) 

 The electrolyte resistance, accounting for the effect of gas bubbles (denoted as 

𝑅𝐾𝑂𝐻−𝑏𝑢𝑏𝑏𝑙𝑒), is determined by the intrinsic resistance of the electrolyte 𝑅𝑒𝑙𝑒 and a 

correction term representing the influence of the bubbles. The intrinsic resistance 𝑅𝑒𝑙𝑒 is 

calculated as shown in Equation (3.21) [19]: 

𝑅𝑒𝑙𝑒 =
1

𝜎𝐾𝑂𝐻
(

𝑑𝑎

𝑆𝑎
+

𝑑𝑐

𝑆𝑐
) (3.21) 

where 𝑑𝑎, 𝑑𝑐 are the distances between the electrode and the membrane, for anode and 

cathode respectively, and 𝜎𝐾𝑂𝐻 is the electrolyte conductivity, with this parameter being 

related to the electrolyte concentration and temperature, as shown in Equation (3.22) [19]: 

𝜎𝐾𝑂𝐻 = −2.041𝑚 + 5.332𝑚𝑇 × 10−3 + 2.072 × 102𝑚𝑇−1 − 

2.8𝑚2 × 10−3 + 1.043𝑚3 × 10−3 − 3𝑚2𝑇2 × 10−7 
(3.22) 

 During electrolysis, bubbles are generated and flow in the electrolyte on which they 

reduce its conductivity. This phenomenon impacts the overall efficiency, and the corrected 

electrolyte conductivity is described by Bruggeman equation [19] [21], represented in 

Equation (3.23): 

𝜎𝐾𝑂𝐻−𝑏𝑢𝑏𝑏𝑙𝑒 = (1 −
2

3
𝜃)

3
2

𝜎𝐾𝑂𝐻 (3.23) 

This can also be translated in an electrolyte resistance considering the effect of 

bubbles as the following Equation (3.24): 

𝑅𝐾𝑂𝐻−𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑅𝑒𝑙𝑒 (1 −
2

3
𝜃)

−
3
2
 (3.24) 

 The membrane resistance 𝑅𝑚𝑒𝑚 is influenced by factors such as the membrane's 

porosity, tortuosity, cross-sectional area, and the conductivity of the electrolyte. For the 

inorganic Zirfon-based membrane used in the stack, 𝑅𝑚𝑒𝑚 is calculated by Equation (3.25): 
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𝑅𝑚𝑒𝑚 =
𝛿𝑚𝜏𝑚

𝜑𝜎𝐾𝑂𝐻𝑆𝑚
 (3.25) 

where 𝛿𝑚 is the membrane thickness, 𝜏𝑚 is the membrane tortuosity, 𝜑 is the membrane 

porosity, and 𝑆𝑚 is the cross-sectional area of the transverse membrane. AWE Voltage Model 

parameters are summarized in Table 3.4. 

Table 3.4 – AWE Voltage Model parameters 

Constant Value Units  Constant Value Units 

𝓡 8.314 J·mol-1·K-1  𝜹𝒄 0.2 mm 

𝒑 1 × 105 Pa  𝑺𝒂 0.42 m2 

𝑭 9.65 × 104 C·mol-1  𝒅𝒂 2 mm 

𝝎 0.32 -  𝒅𝒄 2 mm 

𝑻𝟎 298.15 K  𝜹𝒎 0.5 mm 

𝒋𝒍𝒊𝒎 300 kA·m-2  𝝉𝒎 5.2 - 

𝒑𝟎 1 × 105 Pa  𝝋 0.59 - 

𝜹𝒂 0.2 mm  𝑺𝒎 0.42 m2 

𝑺𝒂 0.42 m2     

3.3. PEM Model 

 Building on the approach used for the AWE electrolyzer, the next step involves 

modelling the electrochemical behaviour of a single PEM cell. Although the technology 

differs in design and materials, the same fundamental equation is used to calculate the cell 

voltage 𝑈𝑐𝑒𝑙𝑙, as shown in Equation (3.26). This expression includes the reversible voltage, 

activation overpotentials, and ohmic losses, capturing the key thermodynamic and kinetic 

phenomena that govern PEM electrolysis. While some secondary effects, such as mass 

transport limitations, may also play a role, they were omitted here to maintain consistency 

with the alkaline model and to keep the scope of the study focused and manageable. 

𝑈𝑐𝑒𝑙𝑙 = 𝑈𝑟𝑒𝑣 + 𝑈𝑎𝑐𝑡,𝑎 + 𝑈𝑎𝑐𝑡,𝑐 + 𝑈𝑜ℎ𝑚 (3.26) 

 For clarity and consistency, the main equations are presented again below, though 

definitions of commonly used terms are not repeated unless specific to this system. 
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3.3.1. Reversible Voltage 

 As in the alkaline model, the reversible voltage 𝑈𝑟𝑒𝑣 defines the minimum theoretical 

potential required for electrolysis and is calculated using the Nernst equation (3.27) [22]. 

The standard reversible voltage 𝑈𝑟𝑒𝑣
0  is used as reference point under standard conditions, 

as represented in Equation (3.28) [22]: 

𝑈𝑟𝑒𝑣 = 𝑈𝑟𝑒𝑣
0 +

ℛ𝑇

2𝐹
ln [

𝑝H2√𝑝O2

𝑝H2O
] (3.27) 

𝑈𝑟𝑒𝑣
0 = 1.229 − 0.9 × 10−3(𝑇 − 298) (3.28) 

3.3.2. Activation Overpotential 

 In this model, the electrode current densities 𝑗0,𝑘, with 𝑘 = 𝑎 for the anode and 𝑘 =

𝑐 for the cathode, reflect the characteristics of PEM electrolysis and are defined by Equations 

(3.29) and (3.30), accordingly [22]: 

𝑈𝑎𝑐𝑡,𝑘 =
ℛ𝑇

𝛼𝑘𝐹
arcsinh [

𝑗

2𝑗0,𝑘
] 

(3.29) 

𝑗0,𝑘 = 𝑗0,𝑘−𝑟𝑒𝑓 exp [−
𝐸𝑎𝑐𝑡,𝑘

ℛ
(

1

𝑇
−

1

𝑇0
)] (3.30) 

where 𝑗0,𝑘−𝑟𝑒𝑓 is the reference electrode exchange current density at temperature 𝑇𝑟𝑒𝑓, and 

𝐸𝑎𝑐𝑡,𝑘 is the activation energy for the water electrolysis reaction at the electrode. 

3.3.3. Ohmic Overpotential 

 As previously discussed in the alkaline model, the passage of current through the cell 

components results in ohmic losses due to ionic and electronic resistances. In the PEM 

electrolyzer, these losses similarly contribute to a voltage drop that increases linearly with 

current density, as expressed by the following Equation (3.31) [22]: 

𝑈𝑜ℎ𝑚 = 𝑅𝑖𝑜𝑛 × 𝑗 (3.31) 

In PEM electrolyzers, ohmic overvoltage comprises ionic and electronic components. 

However, due to the much lower conductivity of the membrane compared to the electronic 

parts, the ionic overvoltage dominates. Therefore, as in many models [20], [34], [35], the 

electronic contribution is neglected for simplicity. Given the short and uniform ionic path, 

membrane resistance is modelled using constant resistivity and is given by Equation (3.32) 

[22]: 

𝑅𝑖𝑜𝑛 =
𝛿𝑚

𝜎𝑚
 (3.32) 

where 𝛿𝑚 is the membrane thickness and 𝜎𝑚 is its ionic conductivity. 
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The membrane’s ionic conductivity 𝜎𝑚 depends on both temperature and water 

content, and is calculated using the membrane water content 𝜆𝑚 as shown in Equation (3.33) 

[22]: 

𝜎𝑚 = (0.514𝜆𝑚 − 0.326) exp [1268 (
1

303
−

1

𝑇
)] (3.33) 

The membrane water content 𝜆𝑚 is modelled as a linear function of temperature, as 

shown in Equation (3.34) [22][23]: 

𝜆𝑚 = 0.08533𝑇 − 6.77632 (3.34) 

PEM Voltage Model parameters are summarized in Table 3.5. 

Table 3.5 – PEM Voltage Model parameters 

Constant Value Units  Constant Value Units 

𝒑𝑯2
 1× 105 Pa  𝒋𝟎,𝒄−𝒓𝒆𝒇 191 A·m-2 

𝒑𝑶2
 0.21 × 105 Pa  𝑬𝒂𝒄𝒕,𝒂 53.99 × 103 J·mol-1 

𝒑𝑯2𝑶 1 × 105 Pa  𝑬𝒂𝒄𝒕,𝒄 53.99 × 103 J·mol-1 

𝜶𝒂 2.47 -  𝑻0 298.15 K 

𝜶𝒄 0.93 -  𝜹𝒎 0.254 mm 

𝒋𝟎,𝒂−𝒓𝒆𝒇 2 × 10−4 A·m-2   
  

3.4. Hydrogen Production 

 An essential outcome of electrolyzer operation is the quantification of hydrogen 

production, which is directly related to the input current and system efficiency. The molar 

flow rate of hydrogen 𝑛̇𝐻2
 is given by Equation (3.35) [19]: 

𝑛̇𝐻2
= 𝜂𝐹

𝐼

𝑧𝐹
𝑁𝑐𝑒𝑙𝑙 (3.35) 

where 𝜂𝐹 is the Faraday efficiency, 𝑧 is the number of electrons transferred per mole of 

hydrogen, and 𝑁𝑐𝑒𝑙𝑙 is the number of cells in the stack.  

Faraday efficiency 𝜂𝐹 is described as the following Equation (3.36) [19]: 

𝜂𝐹 =
𝑗2

(2.5(𝑇 − 273.15) + 50) + 𝑗2 (1 − 6.25 × 10−6(𝑇 − 273.15)) (3.36) 

The corresponding mass flow rate 𝑚̇𝐻2
 is calculated by Equation (3.37) [19]: 

𝑚̇𝐻2
= 𝑀𝐻2

 𝑛̇𝐻2
 (3.37) 
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where 𝑀𝐻2
 represents the molar mass of hydrogen. These expressions are used to estimate 

the hydrogen output based on the operating current and system configuration. The Hydrogen 

production parameters are illustrated in Table 3.6. 

Table 3.6 – Hydrogen Production parameters 

Constant Value Units 

𝒛 2 - 

𝑴𝑯𝟐
 2.02 g·mol-1 

3.5. Heat Model 

 Thermal modelling is an essential part of simulating both AWE and PEM electrolyzers, 

as heat produced during operation influences system performance and stability. Since both 

systems share similar thermal characteristics, mainly due to overpotentials, resistive losses, 

and overall structure, a unified heat model is applied.  

 The model considers heat generation during electrolysis and its dissipation through 

convection, radiation, and thermal exchange with a cooling water stream at ambient 

temperature. While parameters are adjusted to reflect the specifics of each system, the 

overall structure of the model remains the same, allowing for a consistent and simplified 

implementation. 

 The heat generated by the electrolyzer during operation is calculated using the 

following Equation (3.38), which accounts for the electrical losses contributing to thermal 

energy [19]: 

𝑄𝑒𝑙𝑒 = (𝑈𝑐𝑒𝑙𝑙 − 𝑈𝑡ℎ)𝑁𝑐𝑒𝑙𝑙 𝐼 (3.38) 

where 𝑈𝑡ℎ is the thermoneutral voltage. 

 The thermoneutral voltage 𝑈𝑡ℎ represents the voltage at which no net heat is 

produced or consumed during electrolysis, all the energy required for the reaction is supplied 

electrically and equals the enthalpy change ∆𝐻 of the reaction, as illustrated in Equation 

(3.39) [22]. 

𝑈𝑡ℎ =
∆𝐻

2𝐹
 (3.39) 

The following Equation (3.40) represents the enthalpy change for the water 

electrolysis reaction [22]: 

∆𝐻 = ∆𝐻𝐻2
+

1

2
∆𝐻𝑂2

− ∆𝐻𝐻2𝑂 (3.40) 
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where  ∆𝐻𝐻2
 is the hydrogen enthalpy change, ∆𝐻𝑂2

 is the oxygen enthalpy change, and 

∆𝐻𝐻2𝑂 is the water enthalpy change. 

The enthalpy change for each component 𝑖 can be described as the difference 

between the actual state and the reference state, as shown in Equation (3.41): 

∆𝐻𝑖 = ∆𝐻𝑖(𝑇) − ∆𝐻𝑖(𝑇0) (3.41) 

 The total heat loss from the electrolyzer stack to the environment is expressed by 

Equation (3.42) as the sum of the heat loss mechanisms, convection 𝑄𝑐𝑜𝑛𝑣 and radiation 𝑄𝑟𝑎𝑑 

[24]: 

𝑄𝑙𝑜𝑠𝑠 = 𝑄𝑐𝑜𝑛𝑣 + 𝑄𝑟𝑎𝑑 = ℎ 𝐴𝑠𝑡𝑎𝑐𝑘(𝑇 − 𝑇𝑎𝑚𝑏) + 𝜎 𝐴𝑠𝑡𝑎𝑐𝑘 𝜀𝑠𝑡𝑎𝑐𝑘(𝑇4 − 𝑇𝑎𝑚𝑏
4) (3.42) 

where ℎ is the convective heat transfer coefficient, 𝐴𝑠𝑡𝑎𝑐𝑘 is the external surface area of 

the stack, 𝑇 is the stack temperature, 𝑇𝑎𝑚𝑏 is the ambient temperature, 𝜎 is the Stefan–

Boltzmann constant, and 𝜀𝑠𝑡𝑎𝑐𝑘 is the surface emissivity of the stack. 

 The thermal behaviour of the electrolyzer also depends on the heat exchanged with 

the cooling water, which absorbs part of the generated heat to maintain system 

temperature. This heat exchange is directly related to the enthalpy change of the water 

involved in the reaction. The enthalpy of water, ∆𝐻𝐻2𝑂, varies with temperature and can be 

approximated by the Equation (3.43) [25]: 

∆𝐻𝐻2𝑂 = ∆𝐻𝐻2𝑂
0 + 72.39(𝑇 − 𝑇0) + 4.69 × 10−3(𝑇2 − 𝑇0

2) (3.43) 

where ∆𝐻𝐻2𝑂
0  is the reference water enthalpy at temperature 𝑇0, and 𝑇 is the operating 

temperature. This temperature-dependent enthalpy allows accurate modelling of the heat 

absorbed or released by the cooling water during electrolysis, which is essential for the 

system’s thermal management.  

The heat absorbed or released by the cooling water during electrolysis can be 

calculated using the following Equation (3.44) [25]: 

∆𝑄𝐻2𝑂 =
𝑞𝜌𝐻2𝑂

𝑀𝐻2𝑂
(∆𝐻𝐻2𝑂

𝑖𝑛 − ∆𝐻𝐻2𝑂
𝑐𝑒𝑙𝑙(−0.0077(𝑇 − 𝑇0) + 1)) (3.44) 

where 𝑞 is the volumetric flow rate of cooling water, 𝜌𝐻2𝑂 is the density of water, 𝑀𝐻2𝑂 is 

the molar mass of water, and ∆𝐻𝐻2𝑂
𝑖𝑛  and ∆𝐻𝐻2𝑂

𝑐𝑒𝑙𝑙 are the enthalpies of the water at the inlet 

and at the electrolyzer cell temperature, respectively. The corrective heat model used in 

Equation (3.44) of the referenced study introduces a temperature-dependent correction 

factor to enhance the model’s accuracy, (−0.0077(𝑇 − 𝑇0) + 1), which is applied solely to 

the enthalpy term 𝐻𝐻2𝑂
𝑐𝑒𝑙𝑙. However, upon closer inspection and comparison with calculated 
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values, it was found that this formulation results in significant inaccuracies in heat flow 

estimation. 

 Specifically, the correction factor should be applied to the enthalpy difference 

(∆𝐻𝐻2𝑂
𝑖𝑛 − ∆𝐻𝐻2𝑂

𝑐𝑒𝑙𝑙), rather than to the cell enthalpy term alone. This discrepancy can lead to 

misrepresentation of the temperature-driven variation in thermal energy transfer. 

Therefore, the corrected form of the previous Equation (3.44) is proposed as Equation (3.45): 

∆𝑄𝐻2𝑂 =
𝑞𝜌𝐻2𝑂

𝑀𝐻2𝑂
(∆𝐻𝐻2𝑂

𝑖𝑛 − ∆𝐻𝐻2𝑂
𝑐𝑒𝑙𝑙)(−0.0077(𝑇 − 𝑇0) + 1) (3.45) 

 This correction ensures that the thermal model reflects the actual energy exchange 

driven by the enthalpy difference between the inlet water and the cell conditions, thereby 

improving the accuracy of dynamic simulations.  

Table 3.7 presents the Heat Model parameters. 

Table 3.7 – Heat Model parameters 

Constant Value Units  Constant Value Units 

∆𝑯𝑯𝟐
 0 J·mol-1  ∆𝑯𝑯𝟐𝑶

𝟎  -2.86 × 105 J·mol-1 

∆𝑯𝑶𝟐
 0 J·mol-1  𝑻𝟎 298.15 K 

𝑻𝒂𝒎𝒃 298.15 K  𝝆𝑯𝟐𝑶 1 g·cm-3 

𝝈 5.67× 10−8 J·K-1  𝑴𝑯𝟐𝑶 18.02 g·mol-1 

𝜺𝒔𝒕𝒂𝒄𝒌 0.8 -   

 The overall thermal behaviour of the electrolyzer cell is described by the heat 

transfer balance, which accounts for the electrical heat generation, heat exchanged with 

the cooling water, and heat losses to the environment. This balance is expressed as in 

Equation (3.46): 

𝐶
𝑑𝑇

𝑑𝑡
= 𝑄𝑒𝑙𝑒 + ∆𝑄𝐻2𝑂 − 𝑄𝑙𝑜𝑠𝑠 (3.46) 

where 𝐶 is the thermal capacity of the cell. 

 This equation captures the dynamic temperature response of the cell under varying 

operating conditions. 

 The parameters ℎ and 𝐶 were estimated so that the electrolyzer takes 1 hour to heat 

up from room temperature to its nominal temperature while operating at full power and 5 

hours to cool down back to the room temperature plus 10% of the difference between 

nominal and room temperatures through convection and radiation. It is important to mention 
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that a simulation was conducted for each model due to their differences. The following 

parameters are detailed in Table 3.8. 

Table 3.8 – Estimated heat transfer coefficients  

AWE 

Constant Value Units 

PEM 

Constant Value Units 

𝒉 99.3 W·m-2·K-1 𝒉 306.2 W·m-2·K-1 

𝑪 30.7 MJ·K-1 𝑪 10.9 MJ·K-1 

3.6. Power Acquisition 

 The values of renewable energy, solar power 𝑃𝑠𝑜𝑙𝑎𝑟 and wind power 𝑃𝑤𝑖𝑛𝑑, were 

retrieved from REN’s DataHub [26] for April and May of 2025. These values were manipulated 

to consider a 2 MW hybrid solar-wind park for these electrolyzers by calculating the power 

relative to its maximum from the DataHub data. The values were then stored in text files, 

containing the nominal power for each 15 minutes. 

3.7. Optimization Problem 

 The main goal of this work is to maximize the profit over time by adjusting the 

current and the cooling water rate. To create a more realistic scenario, a restriction for the 

daily hydrogen production was also created, which ensures that the minimum daily 

production should be at least 1/3 of the maximum daily production allowed for each 

electrolyzer. The optimization problem was formulated using CasADi as the following 

Equations (3.47) to (3.51): 

𝐽 = ∫ (−𝑚̇𝐻2
 𝑃𝑟𝑖𝑐𝑒𝐻2

− 𝑃𝑔𝑟𝑖𝑑

𝑃𝑟𝑖𝑐𝑒𝑔𝑟𝑖𝑑

3600
) 𝑑𝑡

𝑡𝑓

0

 (3.47) 

𝑇𝑎𝑚𝑏 ≤ 𝑇(𝑡) ≤ 𝑇𝑛𝑜𝑚 (3.48) 

0 ≤ 𝐼 ≤ 𝐴𝑐𝑒𝑙𝑙𝑗𝑑 (3.49) 

0 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥 (3.50) 

∫ 𝑚̇𝐻2
𝑑𝑡

𝑡𝑑𝑎𝑦

0

≥ 𝛽𝐷𝑎𝑖𝑙𝑦𝑀𝑎𝑥 𝐻2
 (3.51) 

where 𝐽 is the cost minimized by the solver, which is symmetrical to the accumulated profit 

in euros (€), 𝑃𝑟𝑖𝑐𝑒𝐻2
 is the hydrogen price (€∙kg-1) which was considered constant and equal 

to 2 €∙kg-1, an optimistic value for future years, 𝑃𝑟𝑖𝑐𝑒𝑔𝑟𝑖𝑑 is the grid power price (€∙MWh-1) 

retrieved from REN’s DataHub like solar and wind power, 𝑇𝑛𝑜𝑚 is the nominal temperature 

of the electrolyzer, 𝑡𝑓 is the operation time in seconds (s),  𝑗𝑑 is the maximum current density  

(A∙m-2), 𝑞𝑚𝑎𝑥 is the maximum estimated water flowrate for the optimal hydrogen production 



Market-aware optimal control of electrolyzer systems 

Modelling and Simulation Framework 22 

(cm3∙s-1), 𝛽 is a dimensionless parameter set to 1/3 to represent the daily demand of 

hydrogen, 𝐷𝑎𝑖𝑙𝑦𝑀𝑎𝑥 𝐻2
 is the maximum daily production possible for the electrolyzer (kg), 

and 𝑡𝑑𝑎𝑦 is the time of a day in seconds (s). The objective function and constraint parameters 

common to both models are detailed in Table 3.9, while the parameters specific to each 

model are presented in Table 3.10. 

Table 3.9 – Objective function and constraints parameters 

Constant Value Units 

𝑷𝒓𝒊𝒄𝒆𝑯𝟐
 2 €·kg-1 

𝑻𝒂𝒎𝒃 298.15 K 

𝑻𝒏𝒐𝒎 333.15 K 

 

Table 3.10 – Constraints parameters for each model 

AWE 

Constant Value Units 

PEM 

Constant Value Units 

𝒋𝒅  5000  A·m-2 𝒋𝒅  10000 A·m-2 

𝒒𝒎𝒂𝒙 1852.3  cm3·s-1 𝒒𝒎𝒂𝒙 336.6 cm3·s-1 

𝑫𝒂𝒊𝒍𝒚𝑴𝒂𝒙 𝑯𝟐
 414  kg 𝑫𝒂𝒊𝒍𝒚𝑴𝒂𝒙 𝑯𝟐

  600 kg 

 Regarding the activation overpotential, it represents the energy barrier that must be 

overcome to initiate electron transfer at the electrode. This phenomenon is captured 

quantitatively by the Butler–Volmer equation (3.52), which relates the overpotential to the 

current density, accounting for both anodic and cathodic reactions [27]. 

𝑗 = 𝑗0 [exp (
𝛼𝑎2𝐹

ℛ𝑇
𝜂) − exp (

𝛼𝑐2𝐹

ℛ𝑇
𝜂)] (3.52) 

This equation has two limiting cases: a lower overpotential region, namely called 

polarization resistance, where the overpotential value is very close to 0, and high 

overpotential region. The Butler-Volmer equation can be approximated to Tafel equation 

(3.53), and it can be rewritten to obtain the overpotential as a function of the current, as 

follows [28]: 

𝜂 =  
𝛼ℛ𝑇

2𝐹
ln (

𝑗

𝑗0
) (3.53) 

Alternatively, its variation can be expressed in terms of the inverse hyperbolic sine 

function, as shown in Equation (3.54) [27]: 
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𝜂 =  
ℛ𝑇

2𝐹
sinh−1 (

𝑗

2𝑗0
) (3.54) 

 But at lower overpotentials, when 𝜂 ≈ 0, namely the polarization resistance region, 

the linear term of the equation dominates, and linearity can be assumed. So, when the 

current is small enough, resulting in overpotentials lower than 15 mV, the Butler-Volmer 

equation is approximated as a linear relation between 𝑗 and 𝜂 [27]. 

 To simplify the implementation of the Butler–Volmer equation in computational 

frameworks such as Python, the original logarithmic expression of the overpotential 

dependence was reformulated using the inverse hyperbolic sine function. While the classical 

form includes a natural logarithm that can lead to negative arguments under certain current 

density conditions, requiring conditional logic to handle positive and negative branches, the 

sinh−1 formulation provides a mathematically similar but computationally smoother 

alternative. This transformation avoids the need for explicit branch handling, improves 

numerical stability, and allows for a more straightforward evaluation across the entire 

current density range. As such, the overpotential expression for AWE was rewritten using 

the inverse hyperbolic sine to maintain accuracy while enhancing implementation simplicity, 

as represented in Equation (3.55): 

𝑈𝑎𝑐𝑡,𝑘 =
ℛ𝑇

2𝛼𝑘𝐹
sinh−1 [

𝑗

2𝑗0,𝑘(1 − 𝜃)
] (3.55) 

 As previously mentioned, several simplifications were made to the system to simplify 

the model and due to the restrictive time of the dissertation. In the models, not all possible 

overpotential losses were considered, such as concentration, electrode contamination, 

membrane, and electrodes deterioration. Additionally, it is assumed that the system can 

change the current instantaneously. Although this simplification introduces a potential 

safety risk, since a sudden increase in current can cause the generation of explosive gas 

mixtures and impose mechanical stress on the electrolyzer materials, it is not expected to 

significantly impact the optimization results. This is because, in practice, current transitions 

typically occur over a timescale of several seconds, allowing the system to settle into new 

operating conditions without major deviations from the model assumptions [29]. The grid 

price was assumed equal either buying or selling. All hydrogen is sold to the grid, avoiding 

storage and transport potential outcomes. The temperature and heat parameters, 

convection coefficient and thermal capacity, are constant throughout the electrolyzer to 

ensure uniformity of the values. Startup and shutdown times and minimum power were not 

considered, which is a limitation that affects the results since these technologies have power 

loadout restrictions and these times can range from 30 to 60 minutes [30]. In this model, it 

is assumed that the entire water feed to the electrolyzer exceeds the stoichiometric 
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requirement for hydrogen production. This additional amount, referred to as excess water 

and through the model as cooling water, serves a dual purpose by acting as a coolant. It 

facilitates heat dissipation from the system and is therefore be referred to as cooling water. 

Additionally, it is assumed that a cooling tower of adequate capacity is available to maintain 

the water temperature constantly at 298.15 K. The renewable energy power used has no 

purchase cost associated as it is assumed that these electrolyzers are integrated into an 

established 2 MW hybrid solar-wind facility, with each renewable energy technology (solar 

and wind) contributing 1 MW of production capacity. Also, this optimization problem does 

not consider any costs associated to external equipment/raw materials, such as fans/air 

conducts to achieve the desired convection heat transfer coefficient, water price as 

electrolysis raw material and heat exchanger, pipes, water pumps, and any other relevant 

cost which could be associated to this plant, namely electrolyzer equipment cost, 

installation, transport, operation, and maintenance costs.  
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4. Results and discussion 

 By applying the models created with the data extracted from REN DataHub for daily 

production of renewable energy power and daily grid power price, 3 different simulations 

were run: a base scenario to gather relevant data and conclusions about the model and two 

comparative scenarios with strict data selection to input in the models. 

 For a first analysis, a 4-day period was evaluated in the model. As previously 

mentioned, the price is updated hourly and the renewable energy power in 15-minute 

intervals, and these data correspond to 20-24 of April 2025. The current trajectory is 

presented in Figure 4.1 for the AWE model and Figure 4.2 for the PEM model. Further 

graphical representations illustrating relevant variable data, such as cooling water flow rate, 

temperature, hydrogen production, voltage, and renewable power histories can be found in 

Appendix A for both models. 

 

Figure 4.1 – Current trajectory obtained by CasADi for the AWE model 
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Figure 4.2 - Current trajectory obtained by CasADi for the PEM model 

 The objective function tends to maximize the hydrogen production via manipulation 

of the input variables of the system, current and cooling water. An important factor in play 

is the integration of grid power with the system to increase the power in times where it is 

economically advantageous to produce hydrogen and when the renewable energy source 

does not fully provide the required power. So, when it is economically advantageous to 

produce hydrogen, the optimizer increases the current, consequently leading to temperature 

rising as the electrolysis reaction occurs. As the system approaches the nominal 

temperature, where hydrogen production is at its highest, the optimizer adjusts the cooling 

water flow to maintain thermal stability. Maintaining the nominal temperature is important 

not only for maximizing production but also for ensuring system safety, preserving 

component lifespan and maintaining electrolyte stability. 

 On the other hand, when it is not economical viable to produce hydrogen, the 

optimizer reduces the current. This action causes a gradual temperature decrease, and the 

cooling water is not necessary. As a consequence of the current decrease, the electrolyzer 

power also diminishes and the energy surplus from solar and wind power is sold directly to 

the public electric grid. Engaging in a comprehensive examination of major economic 

determinants, the relevant data were presented in a unified graphic format to facilitate 

both quantitative and qualitative analysis. 
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Figure 4.3 – Electrolyzer power consumption and grid prices histories obtained by CasADi 

for the AWE model 

 

Figure 4.4 - Electrolyzer power consumption and grid prices histories obtained by CasADi 

for the PEM model 

 Even though AWE and PEM operate differently, both models follow the same 

optimization principle, as shown in Figures 4.3 and 4.4, respectively. The optimization 

framework establishes a strategic electricity price threshold, above which selling renewable 
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energy to the grid is economically advantageous, and below which utilizing it for hydrogen 

production is more cost-effective. 

 This behaviour is illustrated in Figures 4.3 and 4.4. For the AWE model (Figure 4.3), 

during high-price periods such as the 34-hour peak, 45–60 hours and 70-85 hours, the 

electrolyzer is turned off or operates at minimal power, with all available electricity sold to 

the grid. The PEM model (Figure 4.4) exhibits similar behaviour at the same time ranges. 

However, PEM is still able to partially operate (~0.12 MW) at the 54 and 77-hour marks. This 

is due to PEM’s higher hydrogen production capacity, which leads to a higher strategic 

electricity grid price, compared to AWE, making it worthwhile to continue hydrogen 

production even at high electricity prices. Interestingly, at the 25-hour mark, PEM opts to 

purchase electricity to maintain a high electrolyzer load (~0.99 MW), while AWE is close to 

a complete shut down and sells the remaining power to the grid, as illustrated in Figure 

A.10. This divergence underscores PEM's operational flexibility and efficiency and its higher 

strategic electricity grid price, allowing it to remain active when AWE does not. 

 Overall, both models react similarly to price peaks, especially at 45 hours, but 

evaluate subsequent peaks differently based on their performance characteristics. When 

prices are lower than the strategic threshold, at 0–33, 35-45, 60–68 and 84-92 hours, 

excluding the 45-hour spike, both models purchase electricity and operate the electrolyzers 

at maximum capacity. While grid prices largely dictate the power flow decisions, the 

optimizer also accounts for real-time performance and economic trade-offs, occasionally 

deviating from a strict price-driven strategy. 

 In the second simulation phase, a rolling optimization strategy was used, evaluating 

a four-day horizon within each 24-hour period. On day 1, the model optimized decisions for 

days 1–4; on day 2, the window shifted to days 2–5, and so on. This approach accounts for 

short-term uncertainties in grid prices. It was assumed that prices for the first two days were 

known, while days 3 and 4 were affected by pseudorandom uncertainties of ±5% and ±15%, 

respectively, drawn from a uniform distribution. To aid convergence, each day's uncertainty 

was applied uniformly, i.e., all prices on day 3 were scaled by the same random factor and 

likewise for day 4, reducing intra-day volatility, helping the solver avoid instability, and 

leading the optimizer algorithm to a feasible solution without cycling or crashing. This 

method simulates real-world price variability and evaluates its impact on the optimizer’s 

decision-making. Two datasets were used for each model, representing different weeks in 

May 2025: a normal week scenario with moderate prices and an expensive week scenario 

with higher prices. Starting with the normal week results, the following Figures 4.5 and 4.7 

and Figures 4.6 and 4.8 illustrate the real trajectory of the current and the current trajectory 

for the grid price uncertainty analysis, for AWE and PEM, respectively. 
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Figure 4.5 – Real trajectory obtained for the uncertainty analysis obtained by CasADi in 

the normal week for AWE 

 

Figure 4.6 - Real trajectory obtained for the uncertainty analysis obtained by CasADi in 

the normal week for PEM 
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Figure 4.7 – Current trajectory with grid price uncertainty analysis obtained by CasADi in 

the normal week for AWE 
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Figure 4.8 - Current trajectory with grid price uncertainty analysis obtained by CasADi in 

the normal week for PEM 
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 As illustrated in Figure 4.7 and Figure 4.8, the introduction of price uncertainties 

leads to varying effects on the current trajectory in the AWE and PEM models, respectively. 

In some cases, the trajectory remains largely consistent, indicating limited sensitivity to 

small fluctuations. However, in other instances, noticeable deviations occur, suggesting that 

the optimizer’s decisions can be influenced when the uncertainty aligns with more critical 

cost or timing conditions. These deviations are clearly noticeable on the PEM model. The 

deviation in current between Day 2 and Day 5, in Figure 4.8, reflects how the optimizer 

reacts to variations in grid electricity prices. While the hydrogen price remains fixed, the 

optimizer evaluates the strategic electricity grid price to dynamically assess whether it's 

more cost-effective to operate the system or keep it off regarding the economical signal 

input. These decisions differ slightly between simulation days due to the shifting four-day 

optimization window. Even when time periods overlap, notorious changes in future price 

uncertainty influence the outcome, leading to slight adjustments in operation from one day 

to the next. Among the two electrolyzer models studied, only this one showed noticeable 

deviations in operation due to price uncertainties. This behaviour is likely linked to its higher 

production capacity per hour. Since this electrolyzer can produce more hydrogen, the 

associated electricity costs have a greater impact on the optimization outcome. As a result, 

fluctuations in grid prices more strongly influence the decision to operate or remain idle 

compared to the smaller-capacity system. 

Now for the expensive week scenario, the following Figures 4.9 and 4.11 and Figures 

4.10 and 4.12 illustrate the grid price uncertainty analysis, real trajectory of the current 

and current for the uncertainty analysis, for AWE and PEM, respectively. 

 Since electricity prices remain consistently high in this scenario, minor fluctuations 

have a reduced influence on the optimizer's decisions, as shown in Figures 4.11 and 4.12. 

When prices are high, the incentive to adjust operations in response to small changes 

diminishes, leading to a more stable optimization strategy. As a result, deviations in current 

trajectories between simulation days are less pronounced, with operations reflecting the 

high-cost environment rather than reacting sensitively to small price uncertainties. In this 

context, the AWE model is more affected, as seen in the current deviations from Day 2 to 

Day 5 in Figure 4.11. Although less noticeable than in the PEM model during the normal 

week, the higher price variance here still impacts the electrolyzer's response, prompting a 

reduction in production, evident from the lower current peaks on the final day of each 

simulation (one of the two days subject to price variance). This indicates that AWE is more 

sensitive to high price scenarios, while PEM, though affected as shown in Figure 4.12, 

exhibits a more stable response. 
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Figure 4.9 - Real trajectory obtained for the uncertainty analysis obtained by CasADi in 

the expensive week for AWE 

 

Figure 4.10 - Real trajectory obtained for the uncertainty analysis obtained by CasADi in 

the expensive week for PEM 
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Figure 4.11 - Current trajectory with grid price uncertainty analysis obtained by CasADi in 

the expensive week for AWE 
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Figure 4.12 - Current trajectory with grid price uncertainty analysis obtained by CasADi in 

the expensive week for PEM 
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 As observed during the normal week, smaller price deviations can significantly impact 

profitability. Under such conditions, the optimizer targets specific price points to determine 

whether electricity purchases are economically viable, making the system more sensitive to 

fluctuations and resulting in greater operational variation between days. 

 Despite differences in electricity prices and renewable inputs across the two weeks, 

the optimizer achieved comparable profits: for AWE, 4592€ in the normal week and 4512€ 

in the expensive week; for PEM, 6067€ and 6164€, respectively. While AWE’s profit slightly 

decreased under higher electricity prices, PEM’s profit marginally increased. This contrast 

highlights the different ways each system responds to market conditions. High electricity 

prices create more attractive opportunities to sell surplus renewable energy to the grid, 

while lower prices enable the optimizer to purchase electricity economically and increase 

hydrogen production. The PEM electrolyzer, with its higher production capacity, is better 

equipped to adapt to price fluctuations. Its greater flexibility allows the optimizer to 

selectively operate during economically favourable periods, even under high-cost scenarios. 

AWE’s lower production capacity and reduced responsiveness make it more sensitive to price 

increases, leading to reduced operating hours and output. As result, its profit slightly 

declines in the expensive week. These outcomes illustrate the optimizer’s ability to 

dynamically adjust strategies depending on the system characteristics and economic signals. 

These results highlight the influence of input variability and randomness on system 

performance. Rather than indicating a precise economic balance, they demonstrate the 

system’s ability to adapt to changing conditions. The optimizer adjusts operational 

strategies, accordingly, leading to similar performance outcomes across scenarios. This 

suggests that, despite differing inputs, the model identifies robust solutions that maintain 

profitability and production within a consistent range. 

 To evaluate the system’s response to the product price deviations, a hydrogen price 

reduction scenario was developed. This sensitivity analysis focused solely on the price 

reduction case. A scenario involving increasing hydrogen price was excluded, as it would 

likely result in both AWE and PEM systems operating continuously at nominal power, since 

higher hydrogen prices would consistently justify purchasing grid electricity. While 

technically valid, such a scenario does not yield meaningful insights aligned with the study's 

objectives. The following simulations also employed the rolling optimization strategy, under 

the same conditions and price variances as in the previous case. 

The following Figure 4.13 and Figure 4.14 illustrates the grid price uncertainty 

analysis for the normal week with the new hydrogen price, 1.5 €·kg-1, for AWE and PEM, 

respectively. 
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Figure 4.13 - Current trajectory with hydrogen price reduction and grid price uncertainty 

analysis obtained by CasADi in the normal week for AWE 
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Figure 4.14 - Current trajectory with hydrogen price reduction and grid price uncertainty 

analysis obtained by CasADi in the normal week for PEM 
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 The Figure 4.13 and Figure 4.14 clearly illustrate the importance of using the right 

price. This parameter, resulting in a lower strategic electricity grid price, leads the 

optimizer to make sharper and more extensive turn-off periods as shown between Day 1 and 

Day 4 in both models due to the less appealing hydrogen revenue. For the AWE model, Figure 

4.13, in Day 5 to Day 7 no change is seen relative to the previous scenario. This phenomenon 

is justified by the daily production restriction imposed in the model, since in both scenarios 

the optimizer adjusts the variables to produce the required quantity, as shown in the 

following Figure 4.15 and Figure 4.16 for AWE and PEM scenarios, respectively. 

 In the PEM electrolyzer simulation, the model’s sensitivity is clear. From Day 3 to Day 

7, as shown in Figure 4.16, the optimizer enforces sharp reductions in power input, 

significantly decreasing hydrogen production. This occurs because, during these periods, it’s 

more economically advantageous to sell the available renewable energy to the grid rather 

than use it as feedstock for hydrogen generation. This behaviour becomes even more 

pronounced in the daily hydrogen production data, where, from Day 5 to Day 7, the model 

operates at the minimum required output, as illustrated in Figure 4.16. Without this 

production constraint, both systems would likely produce very little hydrogen or even shut 

down entirely during times when selling electricity is more profitable. 

 

Figure 4.15 - Daily hydrogen production for each simulation day and the respective 

production constraint with different hydrogen prices and grid price uncertainty obtained 

by CasADi in the normal week for AWE 
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Figure 4.16 - Daily hydrogen production for each simulation day and the respective 

production constraint with different hydrogen prices and grid price uncertainty obtained 

by CasADi in the normal week for PEM
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5. Conclusion 

 The current work provides crucial insights into the operational flexibility and 

economic responsiveness of AWE and PEM electrolyzer systems under varying scenarios.  

 In the base scenario, the objective is to maximize the profit by optimally managing 

hydrogen production and energy flows. The system can either utilize available renewable 

energy to produce hydrogen or sell energy back to the grid. Additionally, it is allowed to 

purchase electricity from the grid to supplement renewables when economically 

advantageous. The hydrogen production process is controlled by adjusting current and 

cooling water, allowing the system to dynamically respond to energy price fluctuations and 

operational constraints. When hydrogen production is profitable, the optimizer increases 

current and cooling to maintain optimal temperature and efficiency. When it is not 

profitable, current and temperature drop, and surplus renewable energy is sold to the grid. 

Both AWE and PEM models follow this principle but differ in operation: AWE tends to reduce 

or stop production during high electricity prices to sell power, while PEM continues producing 

at lower power due to its higher efficiency, sometimes even buying grid power during peak 

prices to maintain hydrogen output. Outside peak hours, both models buy grid power to 

operate near nominal levels. Although grid prices mainly guide decisions, the optimizer 

occasionally prioritizes overall economic benefit, showing a nuanced strategy. 

 In the electricity price variation and deviation scenario, the study highlights the 

strategic behaviour of both systems when subject to economic signals from the grid, 

particularly under a rolling optimization framework. The results demonstrate that electricity 

price is a key factor influencing system operation. Lower grid prices encourage increased 

hydrogen production, as it becomes more cost-effective to purchase electricity for the 

electrolyzer and less cost-effective to sell electricity. Conversely, higher prices incentivize 

selling excess renewable energy to the grid rather than producing hydrogen. This dual 

response, buying electricity during low-price periods and selling renewable energy during 

high-price periods, enhances system flexibility and overall profitability. This behaviour is 

especially evident in the PEM electrolyzer system, which shows greater sensitivity to price 

fluctuations. From Day 2 to Day 5, the optimizer often minimizes operating periods to align 

production with economic efficiency rather than simply operating at nominal capacity. In 

contrast, while the AWE system also responded to price variations, its behaviour remained 

more stable, especially from Day 5 to Day 7. This is attributed to the daily hydrogen 

production constraint imposed on the model, which requires a baseline level of production. 

The constraint effectively curtails the system’s flexibility, forcing it to operate at higher 

levels even during periods when selling electricity would be more beneficial. Nevertheless, 
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the optimizer still leveraged downtime where possible, particularly in the early days of the 

simulation, reflecting a balance between economic optimization and constraint satisfaction. 

 The comparative analysis between the two technologies underlines the value of price 

sensitivity modelling in energy system optimization. Notably, the inclusion of a rolling 

optimization strategy significantly enhanced the model's capacity to adapt to short-term 

price changes, showcasing its practical relevance in real-time market operations. The 

decision to exclude high-price hydrogen scenarios was justified, as they would predictably 

lead to continuous operation at nominal capacity, offering limited additional insights into 

system behaviour under economically constrained conditions.  The hydrogen price reduction 

scenario showed that lower prices lead to longer and sharper shutdowns in both AWE and 

PEM systems, especially early in the period. AWE maintained stable production later due to 

hydrogen output constraints, while PEM reduced hydrogen output significantly, preferring to 

sell excess renewable energy to the grid. Without the daily production constraint, both 

systems would minimize hydrogen production or shut down when selling electricity is more 

profitable. 

 Ultimately, this study underscores the importance of incorporating real-time market 

dynamics, such as electricity price volatility and intermittent renewable energy production, 

into hydrogen production strategies. It is important to note that this work did not aim to 

determine which electrolyzer technology is superior. The focus here was on assessing each 

system’s sensitivity and operational response to real-time economic scenarios and grid 

conditions. These findings can inform future policy and investment decisions by emphasizing 

the conditions under which hydrogen systems can be economically competitive, particularly 

when dynamic grid participation is considered. Future research should further explore multi-

scenario simulations including storage dynamics, demand-side interactions, and the effects 

of more granular price forecasting on system optimization.
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6. Assessment of the work done  

6.1. Objectives Achieved  

 This work aimed to evaluate the operational performance of AWE and PEM 

electrolyzers under dynamic electricity market conditions using optimal control strategies. 

All objectives were successfully addressed through model-based simulations and real-time 

case studies. 

 Both electrolyzer systems were implemented in a unified optimization framework, 

developed using Python and CasADi, demonstrating their dynamic behaviour and 

responsiveness to fluctuating electricity prices and renewable energy production. 

 The proposed approach allowed for a flexible and economical comparison of the 

system performance, offering insights into their practical integration into renewable-based 

energy systems. 

6.2. Contribution to the Sustainable Development Goals 

Table 6.1- Contribution to the Sustainable Development Goals [31] 

SDG Goal Contribution 
Performance indicators and 

metrics 

7 

2 

This work directly supports the increased 

integration of variable renewable 

electricity sources into energy systems by 

optimizing the operational flexibility of 

electrolyzers. It demonstrates how 

hydrogen production can absorb electricity 

surpluses, enhancing grid stability and 

enabling a higher penetration of renewable 

energies. 

Achieved enhanced 

flexibility in absorbing 

renewable energy surpluses 

in simulations. Showcased 

the ability of optimal control 

strategies to balance 

electrolyzer operation with 

intermittent renewable 

power availability. 

3 

By applying optimal control strategies, the 

research improves the overall energy 

efficiency of the green hydrogen production 

process. This minimizes energy waste 

during electrolysis, contributing to more 

efficient utilization of renewable power. 

Optimal control strategies 

demonstrated significant 

improvements in operational 

economics and energy 

efficiency for hydrogen 

production compared to 

rule-based approaches. 
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Table 6.1 (continued) 

9 

4 

The dissertation contributes to upgrading 

energy infrastructure by providing a 

framework for the intelligent integration 

of electrolyzers into renewable-rich 

grids. It promotes the adoption of clean 

and environmentally sound technologies 

(green hydrogen production) for 

industrial processes, enhancing their 

sustainability. 

Development of a unified 

optimization framework using 

Python and CasADi for dynamic 

optimization of electrolyzer 

systems. Demonstrated 

improved system responsiveness 

and suitability for integration 

into existing and future grid 

infrastructure. 

5 

The development and application of 

dynamic optimization frameworks 

(implemented with Python and CasADi) 

represent significant scientific and 

technological innovation. This research 

enhances the technological capabilities 

for managing and operating advanced 

electrochemical processes in industrial 

settings. 

The novel application of 

dynamic optimization using 

advanced computational 

techniques (Python, CasADi) 

represents a direct 

enhancement of technological 

capability. 

12 

2 

This research promotes the efficient use 

of renewable power and water, critical 

natural resources, for green hydrogen 

production. By optimizing the 

electrolysis process, it ensures that 

these resources are utilized as 

effectively as possible to meet hydrogen 

demand. 

Optimal control strategies 

demonstrated efficient 

utilization of fluctuating 

renewable power inputs. The 

qualitative assessment of 

energy waste reduction 

contributes to sustainable 

resource management. 

4 

The promotion of green hydrogen 

production minimizes the generation of 

greenhouse gas emissions associated 

with traditional hydrogen production 

methods, thereby contributing to 

environmentally sound industrial 

processes. 

The core aim of enabling 

emissions-free hydrogen 

production supports a cleaner 

overall industrial life cycle for 

hydrogen. 
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6.3. Final Assessment  

This dissertation delivers a very important and interesting contribution, effectively 

demonstrating the dynamic optimization of AWE and PEM electrolyzer systems. Not only does 

it provide a robust framework for understanding their operational behavior under fluctuating 

market conditions, but it also serves as a crucial foundation for adapting these techniques 

to other dynamic energy systems or for developing even more sophisticated models for green 

hydrogen production. The methodologies and findings presented here, particularly the 

unified optimization framework developed with Python and CasADi, offer valuable insights 

and a solid framework for further research and practical applications. This makes the 

dissertation a significant and engaging contribution to the field of sustainable energy systems 

and real-time energy management. 

 

 

 

 

Table 6.1 (continued) 

13 

2 

By enhancing the efficiency and economic 

viability of green hydrogen production, this 

work provides crucial insights and a 

practical framework that can inform 

national strategies and policies aimed at 

decarbonization. It demonstrates a pathway 

for integrating emissions-free hydrogen into 

the broader energy system. 

The qualitative assessment 

of each technology's 

adaptability and cost-

effectiveness under real-

world market conditions 

provides data relevant for 

strategic planning of 

hydrogen economies. 

3 

As a scientific dissertation, this work 

directly contributes to the body of 

knowledge surrounding climate change 

mitigation technologies (in particular, 

green hydrogen). It enhances understanding 

and capacity within the scientific and 

engineering communities regarding optimal 

operation of decarbonization assets. 

The research findings and 

methodology provide a basis 

for further academic 

discourse and inform future 

research and development in 

climate change mitigation 

technologies. 
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Annex A – Additional Simulation Results 

This annex presents supplementary graphs from the simulation study that provide 

further insights into the operational behaviour and performance of the electrolyzer systems 

under various scenarios. These visualizations support the main analysis by illustrating 

additional trends, variability, and system responses that were not included in the main body 

of the thesis but are relevant for a more comprehensive understanding of the results. 

Figures A.1 to A.6 and Figures A.7 to A.12 correspond to supplementary data for the 

base scenario, including cooling water flow, temperature, stack voltage, grid power and 

price histories, as well as hourly and daily hydrogen production profiles for the AWE and PEM 

systems, respectively. These graphs offer a more detailed view of the system's day-to-day 

operation and support the understanding of performance under standard conditions. Figure 

A.13 represents the renewable power and grid price histories for the base scenario.  

Figures A.14 to A.15 (AWE system) and A.16 to A.17 (PEM system) show the 

electrolyzer power consumption and daily hydrogen production for the normal week under 

electricity price variations. Similarly, Figures A.19 to A.20 (AWE system) and A.21 to A.22 

(PEM system) present the corresponding results for the expensive week. Together, these 

graphs illustrate how both systems adapt their operation in response to fluctuating 

electricity prices across different market conditions, with an associated uncertainty value 

in the electricity prices. Figures A.18 and A.23 represent the renewable power and grid price 

histories for the normal and expensive week, respectively. 

Figures A.24 and A.25 show the electrolyzer power consumption and grid price 

histories for the AWE and PEM systems, respectively, during the normal week with hydrogen 

price reduction and grid price uncertainty. These graphs illustrate how the systems adjust 

their operation in response to changing hydrogen market conditions. 
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Figure A.1 – Cooling water trajectory obtained by CasADi for the AWE model 

 

Figure A.2 – Temperature trajectory obtained by CasADi for the AWE model 
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Figure A.3 – Stack voltage trajectory obtained by CasADi for the AWE model in the base 

scenario 

 

Figure A.4 - Grid power and price histories obtained by CasADi for the AWE model in the 

base scenario 
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Figure A.5 – Hydrogen production history obtained by CasADi for the AWE model in the 

base scenario 

 

Figure A.6 – Daily hydrogen production for each simulation day and the respective 

production constraint obtained by CasADi for the AWE model in the base scenario 
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Figure A.7 – Cooling water trajectory obtained by CasADi for the PEM model 

 

Figure A.8 - Temperature trajectory obtained by CasADi for the PEM model 
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Figure A.9 – Stack voltage trajectory obtained by CasADi for the PEM model in the base 

scenario 

 

Figure A.10 - Grid power and price histories obtained by CasADi for the PEM model in the 

base scenario 



Market-aware optimal control of electrolyzer systems 

Annex A – Additional Simulation Results 57 

 

Figure A.11 - Hydrogen production history obtained by CasADi for the PEM model in the 

base scenario 

 

Figure A.12 - Daily hydrogen production for each simulation day and the respective 

production constraint obtained by CasADi for the PEM model in the base scenario 
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Figure A.13 – Renewable power and grid price histories for both models in the base 

scenario 

 

Figure A.14 – Electrolyzer power consumption and grid prices histories obtained by CasADi 

for the AWE model in the normal week in the grid price variation scenario 
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Figure A.15- Daily hydrogen production for each simulation day and the respective 

production constraint in the normal week obtained by CasADi for the AWE model in the 

grid price variation scenario 

 

Figure A.16 – Electrolyzer power consumption and grid prices histories obtained by CasADi 

for the PEM model in the normal week in the grid price variation scenario 
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Figure A.17 - Daily hydrogen production for each simulation day and the respective 

production constraint in the normal week obtained by CasADi for the PEM model in the 

grid price variation scenario 

 

Figure A.18 - Renewable power and grid price histories in the normal week obtained by 

CasADi for both models in the grid price variation scenario 
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Figure A.19 - Electrolyzer power consumption and grid prices histories obtained by CasADi 

for the AWE model in the expensive week in the grid price variation scenario 

 

Figure A.20 - Daily hydrogen production for each simulation day and the respective 

production constraint in the expensive week obtained by CasADi for the AWE model in the 

grid price variation scenario 
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Figure A.21 - Electrolyzer power consumption and grid prices histories obtained by CasADi 

for the PEM model in the expensive week in the grid price variation scenario 

 

Figure A.22 - Daily hydrogen production for each simulation day and the respective 

production constraint in the expensive week obtained by CasADi for the PEM model in the 

grid price variation scenario  
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Figure A.23 - Renewable power and grid price histories in the expensive week obtained by 

CasADi for both models in the grid price variation scenario 

 

Figure A.24 - Electrolyzer power consumption and grid prices histories obtained by CasADi 

for the AWE model in the normal week with the hydrogen price reduction and grid price 

uncertainty 
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Figure A.25 - Electrolyzer power consumption and grid prices histories obtained by CasADi 

for the PEM model in the normal week with the hydrogen price reduction and grid price 

uncertainty  

 


