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Unveiling the physical conditions for Lyman-α photons escape using Neural Network

Activations

by Bruno CERQUEIRA

Understanding the conditions that allow Lyman-α photons to escape from galaxies is es-

sential for studying galaxy evolution and the early Universe. Traditional LAE (Lyman-

α emitter) selection methods, such as narrow-band imaging or spectroscopic follow-up,

limit the efficiency and scalability of identifying these objects in large photometric sur-

veys. This dissertation investigates whether deep learning models, specifically convolu-

tional neural networks (CNNs), can identify LAEs and estimate their emission properties

using only broadband imaging. RGB composite images were built from broadband pho-

tometry using sources from the SC4K and COSMOS2020 catalogs. A CNN was trained to

classify LAEs and nLAEs, while separate regression models were developed to estimate

redshift, Lyman-α luminosity, and equivalent width. The classifier achieved an overall ac-

curacy of ∼75.84%, with a F1-score of 75.51% across perturbed datasets. Cross-matching

with HETDEX sources showed the model maintained a high mean precision of 86.41%.

The regression models achieved an average absolute error (MAE) of 0.032 for redshift, for

log equivalent width, and for Lyman-α luminosity. Saliency maps and perturbation anal-

ysis revealed that the models primarily focus on compact, central regions of the sources,

consistent with known properties of LAEs. This suggests that CNNs can learn physical

features relevant to Lyman-α escape. This work shows that deep learning can complement

traditional LAE selection, enabling scalable analysis of photometric data and supporting

future applications in surveys like Euclid and MOONS.

Keywords: galaxy, Lyman-α emitters, Lyman-α escape, broadband photometry, con-

volutional neural networks, high redshift, saliency maps, SC4K
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Desvendando as condições fı́sicas para a fuga de fótons Lyman-α usando Ativações de

Redes Neurais

por Bruno CERQUEIRA

Compreender as condições que permitem a fuga de fótons de Lyman-α das galáxias

é essencial para o estudo da evolução galáctica e do Universo primordial. Métodos tra-

dicionais de seleção de LAEs (emissores de Lyman-α), como imageamento com filtros

de banda estreita ou acompanhamento espectroscópico, limitam a eficiência e a escala-

bilidade na identificação desses objetos em grandes levantamentos fotométricos. Esta

dissertação investiga se modelos de aprendizado profundo, especificamente redes neurais

convolucionais (CNNs), podem identificar LAEs e estimar suas propriedades de emissão

utilizando apenas imagens em banda larga. Imagens RGB compostas foram construı́das

a partir de fotometria em banda larga usando fontes dos catálogos SC4K e COSMOS2020.

Uma CNN foi treinada para classificar LAEs e nLAEs, enquanto modelos de regressão

independentes foram desenvolvidos para estimar redshift, luminosidade de Lyman-α e

largura de linha equivalente. O classificador alcançou uma acurácia global de aproxima-

damente 75.84%, com uma mediana de F1-score de 75.51% entre os diferentes conjuntos

de dados perturbados. O cruzamento com fontes do catálogo HETDEX demonstrou que

o modelo manteve uma precisão média elevada de 86.41%. Os modelos de regressão ob-

tiveram um erro absoluto médio (MAE) de 0.032 para redshift, log da largura de linha

equivalente, e luminosidade de Lyman-α. Mapas de saliência e análises de perturbação

revelaram que os modelos concentram-se principalmente nas regiões centrais e compactas

das fontes, em concordância com as propriedades conhecidas de LAEs. Isso sugere que

as CNNs conseguem aprender caracterı́sticas fı́sicas relevantes para a fuga de fótons de

Lyman-α. Este trabalho mostra que o uso de deep learning pode complementar a seleção

mailto:up202100408@edu.fc.up.pt 


tradicional de LAEs, permitindo uma análise escalável de dados fotométricos e apoiando

aplicações futuras em levantamentos como o Euclid e o MOONS.

Palavras-chave: galáxias, emissores de Lyman-α, escape de Lyman-α, fotometria de

bandas largas, redes neurais convolucionais, alto redshift , mapas de saliência, SC4K
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Chapter 1

Introduction

Lyman-α (Lyα) is a prominent spectral line in the ultraviolet region of the electromagnetic

spectrum, corresponding to the transition of a hydrogen electron from its second energy

level (n=2) to the ground state (n=1). This transition emits a photon with a wavelength of

1215.67 Å and represents one of the strongest emission lines in the Universe, appearing

in the spectra of a diverse range of astrophysical objects [2, 3]. The significance of the

Lyα line for extragalactic astrophysics and observational cosmology was recognised early,

when Partridge and Peebles [4] predicted that primeval young galaxies would be strong

Lyα emitters at very high redshifts (on the order of z ≈ 10–30). Although this redshift

range was overestimated when compared to later observations( z ≈ 11.4) such as (e.g.,

Heintz et al. [5]), their insight was forward-looking: Lyα emission is a crucial tracer of

young galaxies in the distant Universe (e.g., Nilsson [6], Huang et al. [7]).

Lyman-α emitters (LAEs) are galaxies, typically young star-forming systems or active

galactic nuclei (AGN), that exhibit strong Lyα emission lines in their spectra [8]. In prac-

tice, LAEs are often identified by a rest-frame Lyα equivalent width above a certain thresh-

old, commonly EW0 > 20 Å [3, 8], which distinguishes them as objects dominated by this

ultraviolet line. Most LAEs have been detected at high redshifts (z ≥ 2). This is partly

because the Lyα line, which has a rest-frame wavelength of 1215.67 Å, is redshifted into

the optical or near-infrared regime at z > 2, where ground-based and space-based instru-

ments have optimal sensitivity. At lower redshifts (z ≤ 2), however, the line remains in the

far-ultraviolet, making it more difficult to observe from the ground due to atmospheric ab-

sorption. Furthermore, nearby galaxies, which dominate the low-redshift Universe, tend

to contain significant amounts of dust and neutral hydrogen. These components strongly

attenuate Lyα photons, further hindering their detection even when space-based facilities

1
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are used. Consequently, strong Lyα emitters are comparatively rare in the nearby Uni-

verse (e.g., [3]) and are predominantly observed in the distant, early Universe (e.g., [9]).

Studying LAEs provides valuable insights into galaxy formation and evolution (see

e.g., Partridge and Peebles [4]). Lyα emission is generally linked to energetic star for-

mation, as hot, young stars ionise the surrounding hydrogen gas, which recombines and

emits Lyα photons. LAEs therefore highlight sites of active star formation in young galax-

ies and can be utilized to trace how galaxies accumulate their stellar content over cos-

mic time (e.g., Oyarzún et al. [10]). By examining large samples of LAEs across different

epochs, one can infer how the properties of star-forming galaxies (such as their star forma-

tion rates, masses, and gas content) evolve as the Universe ages (e.g., Mori and Umemura

[11]). Moreover, Lyα line profiles can offer information about galactic kinematics (e.g., gas

outflows) and the distribution of neutral gas in and around galaxies, as the interaction of

Lyα photons with gas can broaden or shift the line (see e.g., [Hayes [3]).

LAEs also play a pivotal role in studying the intergalactic medium (IGM) (see e.g.,

Villasenor et al. [12], Nasir et al. [13]) and the Epoch of Reionisation (EoR) (see e.g., Di-

jkstra [14], Witten et al. [15]). The IGM refers to the diffuse gas found between galaxies,

and during the EoR (approximately at redshifts 6 ≤ z ≤ 10), this gas transitioned from

being predominantly neutral to largely ionised (e.g., Gatuzz, E. et al. [16]). Lyα-emitting

galaxies act as valuable probes of this cosmic transition. The presence or absence of Lyα

emission from high-redshift galaxies is particularly sensitive to the ionization state of the

surrounding IGM (e.g., Meiksin [17]). Consequently, studying LAEs across different red-

shifts, particularly as they approach the EoR(z ≈ 6), can provide crucial constraints on

the timing and progression of reionization.

For decades, detecting Lyα-emitting galaxies proved challenging. It was only in the

late 1990s that observational breakthroughs occurred. The first confirmed LAEs were re-

ported after the development of deep imaging surveys and powerful telescopes. In 1996,

Hu and McMahon [18] and Odewahn et al. [19] used narrowband imaging to identify

high-z Lyα emitters, and shortly thereafter, the Hubble Deep Field and 8–10 meter-class

ground telescopes enabled blank-field surveys for LAEs. By 1998, Cowie and Hu [20]

and others had discovered many LAEs at redshifts z > 2. This pivotal advancement con-

firmed that galaxies with strong Lyα lines were indeed common in the young Universe

and could be systematically found (e.g., [8]).

LAEs are predominantly observed at z > 2 due to the favourable redshifting of the
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Lyα line into optical and near-infrared wavelengths. A Lyα photon emitted at 1216 Å will

be observed at λobs = 1216 Å (1 + z). For z ≈ 2, this shifts the line to approximately 3648

Å (near the edge of the optical window), and for z ≈ 7, it moves to ≈ 9700 Å (entering

into the near-infrared). At these redshifts, Lyα falls within spectral ranges accessible to

ground-based observatories equipped with sensitive CCDs and IR detectors (e.g., [21]).

In contrast, Lyα from low-redshift galaxies (for example, z ≈ 0.3 corresponds to ≈ 1600

Å) lies in the far-UV, requiring space-based instruments such as GALEX or HST (e.g.,

[22, 23]). Moreover, intrinsic galaxy properties at high redshift may favour strong Lyα

emission: early galaxies tend to have low metallicities and less dust, reducing Lyα absorp-

tion (e.g., De Cia, A. et al. [24]) and often exhibit vigorous star formation (e.g., Su [25]).

Nearby galaxies, particularly massive ones, typically contain more dust and fully ionised

gas (e.g., Blanton and Moustakas [26]), which can suppress Lyα visibility. Consequently,

most LAE surveys have targeted the high-redshift Universe, where both observational

access and the likelihood of strong Lyα emission are greatest.

Identifying LAEs in practice relies on recognizing the Lyα line through imaging or

spectroscopy. Two main techniques have been developed to find LAEs in the sky (see

e.g., [8]):

• Narrowband (NB) imaging: This technique employs specialised narrowband fil-

ters to detect Lyα emission photometrically. The goal is to capture an image at a

specific wavelength band adjusted for Lyα at a target redshift and compare it with

broadband images in adjacent wavelengths of the same field. A galaxy exhibit-

ing a strong Lyα line at the filter’s wavelength will appear significantly brighter

in the NB image than in a broadband image, which measures the continuum light

(see e.g., [8]). Such an excess indicates the presence of an emission line, presum-

ably Lyα. The central wavelength of the narrowband filter, λc, determines which

redshift of Lyα is observed, following approximately z ≈ (λc/1216) − 1. By se-

lecting different NB filters, astronomers can target LAEs at specific redshifts. An

important practical consideration is the atmospheric OH window - the Earth’s at-

mosphere emits bright infrared sky lines (from OH molecules) that can overwhelm

faint signals (see e.g., [27]). Therefore, NB filters are frequently placed in wave-

length intervals between these sky lines (known as OH transparency windows) to

minimise background noise (see e.g., [27]). Through narrowband imaging, large

volumes can be surveyed relatively swiftly. For instance, Ouchi et al. [8] utilised a
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NB921 filter (centred at ≈ 9200Å) to identify galaxies at z ≈ 6.6, where a distinct NB

excess uncovered candidate LAEs (e.g., cf. Figure 1.1). Narrowband surveys have

proven very successful, providing samples of LAEs at discrete redshifts such as 2.2,

3.1, 4.6, 5.7, etc., which are often followed up with spectroscopy for confirmation

(e.g., Sobral et al. [1]).

FIGURE 1.1: Image from Ouchi [28], narrowband selection for a LAE at z = 6.6. The
top panel shows images of the LAE observed with broadbands (B, V, R, i′, z′) and a nar-
rowband (NB921) filter at λc ≈ 9200 Å. The second panel presents the spectrum of the
LAE over the range 9050− 9275 Å. The third panel shows the model spectrum of an LAE
redshifted to z ≈ 6.6. The fourth panel shows transmission curves of the filters, and the

bottom panel shows atmospheric OH lines.

• Spectroscopic Searches: LAEs can also be discovered via their spectral signatures

without relying on narrowband pre-selection (e.g., [29, 30]). There are two ap-

proaches here: slitless and slit-based spectroscopy. Slitless spectroscopy involves

taking a dispersed image of the sky (using a prism or grating, often called a grism)

without any slit, so that every source in the field has its light spread into a spectrum.

Instruments on space telescopes (like HST, JWST, or Euclid) and some ground-based

setups can do this. LAEs then appear as objects showing an isolated emission line in

the spectrum with no corresponding continuum, since many high-z LAEs are very

faint in the continuum) (see e.g., [23, 31, 32]). The advantage is that one can blindly
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search for emission lines across a wide field. However, on the ground this is chal-

lenging due to overlapping spectra and bright sky background; in space, where the

sky background is much darker, slitless methods have successfully identified LAEs

in deep fields (e.g., [33]). A more modern approach uses integral field spectrographs

(IFS), such as the MUSE instrument on the VLT, which essentially take a spectrum

at every position in a small field of view. IFS surveys allow a “blind” spectroscopic

search for LAEs across the field without predefined targets (e.g., [34]). Each tech-

nique, narrowband imaging, grism, and IFS spectroscopy, has its own strengths,

and together they have built a complementary picture of the LAE population across

cosmic time (e.g., [8]).

Figure 1.2 displays an example of this technique application.

FIGURE 1.2: Image from Ouchi [28], showing an LAE candidate detected in VLT/FORS2
[35] grism data from a blank field.

Producing a strong Lyα line requires a source of ionizing photons and the right condi-

tions for re-emission (e.g., [36]). Several physical processes can generate Lyα emission in

galaxies and their environments. According to Ouchi et al. [8], the major sources of Lyα

photons include:

1. Young massive stars: Hot OB-type stars within star-forming galaxies emit abundant

ultraviolet radiation that excites or ionizes the surrounding interstellar medium.

When the hydrogen lowers its energy or recombines, it can produce Lyα photons.

LAEs often experience intense bursts of star formation that lead to this mechanism.

[14, 37]

2. Active Galactic Nuclei (AGN): An accreting supermassive black hole (quasar or

Seyfert nuclei) can photoionize gas and produce strong emission lines, including

Lyα. Some LAEs may in fact be powered by AGN activity rather than purely by

stars.
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3. Shock heating: Outflows or supernova-driven winds can create shock fronts in the

gas. Collisional excitation of neutral hydrogen in shocks (for example, in galactic

superwinds) can lead to Lyα emission as the gas cools, a process often termed “shock

heating” (see e.g., [38]).

4. Infalling gas (cold accretion): In the early Universe, gas falling into dark matter

halos can form filamentary streams that reach the galaxy. As this infalling gas is

heated and ionized at the interface with the galaxy, it may emit Lyα (often called

“cold accretion” radiation; see e.g., [39]).

5. Fluorescent illumination: The gas in a galaxy’s circumgalactic medium (CGM) or

even the intergalactic medium can shine in Lyα if illuminated by an external source

of ultraviolet photons. For example, the UV background radiation from quasars

or star-forming galaxies can photoionize the neutral hydrogen in the CGM/IGM,

causing it to fluoresce in Lyα (see e.g., [40]).

The first two sources (young stars and AGN) are internal to galaxies and pertain to

the galaxy’s interstellar medium. The latter three (shocks, accretion, and fluorescence)

involve gas in the circumgalactic or intergalactic environment around galaxies. Multiple

mechanisms might contribute simultaneously (see e.g., [8]). It is also worth noting that

what we perceive as a single LAE could blend a central galaxy and smaller satellite galax-

ies or gas clumps; unresolved faint companions can add to the observed Lyα luminosity

(see e.g., [8]). Identifying the dominant Lyα production mechanism for a given LAE can

be challenging, but doing so is key to understanding the nature of these galaxies.

Although Lyα photons can be generated by multiple processes within galaxies, not all

of them successfully escape the interstellar and itergalactic media to be observed by tele-

scopes (e.g., [14]). Detecting Lyα emission is challenging primarily due to the resonant in-

teractions between Lyα photons and neutral hydrogen [41]. Within galaxies, particularly

young, gas-rich systems, the interstellar medium typically contains significant amounts

of neutral hydrogen [42]. Lyα photons emitted near galaxy centers scatter repeatedly

off these hydrogen atoms, significantly increasing their path length (e.g., [43]) This pro-

longed journey raises the likelihood that photons will be absorbed by dust, if present, or

redirected far from their original emission points, altering their frequency. Consequently,

galaxies actively forming stars (and thus producing Lyα photons) might appear faint in
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Lyα if these photons become trapped by neutral gas and dust [44]. This problem inten-

sifies at higher redshifts, where galaxies are more gas-rich, and near the EoR, where the

IGM itself contains patches of neutral hydrogen [45]. Indeed, theoretical models have

long indicated that Lyα photons generally cannot escape their host galaxies or the neutral

early Universe without special conditions [46].

Observations, however, have shown that Lyα emission can escape, implying that galax-

ies have ways to let Lyα photons out [47]. Possible mechanisms for facilitating Lyα escape

include galaxy-scale outflows that push neutral gas away from the center, creating chan-

nels of lower column density through which Lyα can leak out [48]. Outflows can also

Doppler shift Lyα photons out of resonance with surrounding neutral gas, allowing them

to traverse the ISM with less scattering [42]. Clumpy ISM structures (as opposed to a

uniform distribution of gas and dust) might also permit higher escape fractions, since

photons can scatter off clumps and dodge around denser regions [49]. There is ongoing

research into the exact interplay of geometry, kinematics, and dust that yields a high Lyα

transmission [50].

As noted, in the context of the early Universe, a LAE likely signals that its host galaxy

is located in a partially ionized zone of the IGM. Radiation from the galaxy (or nearby

galaxies) may have ionized a bubble in the IGM, which dramatically reduces the IGM

opacity for Lyα. Still, even with such an ionized bubble, the galaxy must allow Lyα pho-

tons to escape from its immediate vicinity [51–53]. Why some galaxies are LAEs and

others are not (even at similar epochs) remains an open question. It appears to depend

on a complex combination of the galaxy’s age, metallicity, dust content, gas kinematics,

and environment. Previous studies have found correlations between Lyα luminosity or

equivalent width and properties like star formation rate [54], UV luminosity [55], or halo

mass [56], but these correlations exhibit scatter and exceptions [57].

Fundamentally, the escape of Lyα photons is a balance between production and de-

struction: the abundant production in young galaxies versus the multiple absorption and

scattering processes that hinder the photons’ escape. Overcoming these observational

challenges often requires large statistical samples of LAEs (to average over cosmic vari-

ance and capture a range of conditions) and detailed follow-up of individual objects to

piece together their story. Addressing these challenges is important not just for under-

standing Lyα emitters themselves, but also for what LAEs can tell us about cosmic history,

such as reionization and galaxy evolution. Consequently, advancing our understanding
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relies heavily on large-scale surveys and data-intensive astronomy to systematically study

LAEs across various environments and epochs.

Astronomy has entered an era of “big data”, marked by massive surveys and mis-

sions that gather unprecedented volumes of information. Over the past two decades, nu-

merous large-scale projects have mapped the sky across various wavelengths, generating

extensive catalogs of galaxies, stars, and other celestial objects. Space-based observato-

ries like Euclid and the James Webb Space Telescope (JWST) exemplify this trend: Euclid,

launched in 2023, is expected to survey billions of galaxies, producing nearly 1 petabyte

of data per year [31], while JWST instruments generate hundreds of gigabits of data daily

[32]. Ground-based efforts such as SDSS [58], Pan-STARRS [59], the Dark Energy Sur-

vey (DESI) [60], and the upcoming LSST at the Vera C. Rubin Observatory [61] further

expand this data landscape. LSST alone will produce approximately 15 terabytes of data

per night. Radio astronomy is no exception, with projects like the Square Kilometre Array

(SKA) [62] expected to generate exabytes of data once fully operational. These numbers

vastly exceed those from previous generations of surveys.

In this context, the search for LAEs is a double-edged sword. On one hand, large sur-

veys are ideal for finding and studying significant numbers of LAEs. Surveys like COS-

MOS, with its 2 square degree multiwavelength coverage [63], have cataloged thousands

of galaxy candidates [64], including many LAEs, providing rich datasets to analyze statis-

tically. Faint LAEs, previously beyond detection thresholds, are now identifiable [65–67].

On the other hand, the sheer volume of the data makes manual identification strategies

increasingly impractical. For example, narrowband imaging campaigns for LAEs require

scanning large sky areas with specialized filters, producing millions of source detections

that must be filtered for the telltale Lyα signature [68]. Spectroscopic surveys like zCOS-

MOS [69], DEIMOS [70], VUDS [71], and MUSE [72] yield catalogs of spectral lines that

need identification. Traditionally, identifying LAEs in big datasets involved significant

human effort visually inspecting color-color plots [73], images [74], or spectra [47] to pick

out candidates, and straightforward cuts on data (e.g., selecting objects with a certain

color excess in narrowband; [75]). This approach becomes impractical as datasets grow to

billions of objects.

To meet these challenges, machine learning, especially deep learning, has emerged as

a transformative tool. Convolutional Neural Networks (CNNs), in particular, are well-

suited to classification tasks based on imaging data. Recent studies (e.g., Yoshioka et al.
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76) have demonstrated that deep learning models can achieve true positive rates of 77%

while maintaining low false positive rates of 14% in identifying LAEs, and can general-

ize well to new observations, including data from JWST. This kind of success paves the

way for assembling large LAEs samples directly from broad photometric surveys, which

is much more efficient than classic narrowband searches. Interestingly, beyond classifica-

tion, such models can be used to probe astrophysical conditions: for instance, differences

between the ML-predicted LAEs population and the spectroscopically confirmed LAEs

can provide clues about the neutral gas distribution in the EoR. [76] showed that compar-

ing their model’s predictions with actual observations allowed them to place constraints

on the typical sizes of ionized bubbles in the high-z IGM. This illustrates that big-data-

driven machine learning models not only accelerate discovery, but can also yield insights

into the underlying physics.

In light of the above developments, this dissertation leverages deep learning methods

to improve the identification and analysis of Lyman-α emitters. The core goal is to de-

velop a convolutional neural network model capable of recognizing LAEs from imaging

data alone, and to use this model to investigate the conditions that enable Lyα escape. We

specifically focus on using broadband photometric data (e.g., multi-band telescope im-

ages that can be combined into color images) as the input, so that our approach does not

rely on narrowband filters or prior spectral information. The objectives of this work can

be summarized as follows:

• LAE Classification: Train a CNN-based classifier to distinguish LAEs galaxies from

non-LAEs using composite color images (constructed from broadband filters). The

model will be designed to learn the subtle features associated with Lyα emission

(such as color excesses or dropouts) and will be tested to ensure it generalizes well

beyond the training sample, meaning it can reliably pick out LAEs in new, unseen

datasets. A high classification accuracy is desired so that the resulting candidate

lists are trustworthy for further study.

• Physical Property Prediction: Implement regression models to directly predict key

physical properties of the galaxies identified as LAEs. In particular, I aim to esti-

mate each galaxy’s Lyα line luminosity, rest-frame equivalent width, and redshift

from the same input imaging data. Successfully predicting these properties would

demonstrate that the network is capturing not just a yes/no classification, but also

information related to the strength of Lyα emission line and the galaxy’s distance.



10
UNVEILING THE PHYSICAL CONDITIONS FOR LYMAN-α PHOTONS ESCAPE USING

NEURAL NETWORK ACTIVATIONS

• Interpretability and Physical Insights: Beyond performance, I will probe the inter-

pretability of the trained neural network to understand what features in the data

drive its decisions. Techniques such as visualization of neuron activation (e.g.,

saliency maps) will be used to see which parts of an image are most influential in

identifying an LAE. By doing so, I hope to connect the network’s internal logic with

physical aspects like the presence of a Lyman-break, and the spatial extent of UV

light, which might relate their compactness that allows Lyα escape.

To achieve these goals, I structure the dissertation as follows. Chapter 1 (Introduction)

has provided the background and motivation, outlining the importance of LAEs, the ob-

servational methods and challenges in detecting them, and the emergence of big data and

deep learning techniques to study them. Chapter 2 (Data) describes the datasets used in

this work, including the imaging surveys and LAE catalogs from which my training and

testing samples are drawn. I detail the characteristics of these data (such as filters, depths,

and redshift coverage) and the preprocessing steps taken to make them suitable for input

into the neural network (for example, image cutout preparation, photometric corrections,

and augmentation). Chapter 3 (Methods) explains the deep learning models and tech-

niques employed. I discuss the CNN architecture designed for classification, the loss

functions and optimization strategy, and how I set up the regression models for proper-

ties prediction. This chapter also covers the evaluation metrics used to assess performance

(accuracy, precision, recall for classification and mean-absolute-error, mean square Error

for regression) and describes any cross-validation or hyperparameter tuning performed.

Chapter 4 (Results) presents the outcomes of my experiments. I report the classifier’s per-

formance in identifying LAEs and the accuracy of the property predictions, and I compare

the results with sources that have spectroscopic confirmation. To interpret the model’s

decision-making, I employ visualization tools such as saliency maps, which highlight the

regions of input images most influential to the CNN. I also examine misclassified exam-

ples to identify and understand the model’s limitations. Chapter 5 (Discussion) discusses

the interpretation of findings, model limitations, and their scientific implications. Finally,

Chapter 6: (Conclusion) summarizes the key findings of the dissertation, reflecting on

how deep learning can advanced the study of LAEs. I highlight the contributions of this

work to the broader field such as providing a new tool for LAE selection and insights

into Lyα escape. All tables and the full source code used in this study are openly avail-

able at https://github.com/Onirb/Tese, ensuring reproducibility and enabling future

https://github.com/Onirb/Tese
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research.

Throughout this work, I assume a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1,

ΩM = 0.3, and ΩΛ = 0.7 [77].





Chapter 2

Data

The data used in this study originates from three primary sources: two for tabular data

and one for imaging. The SC4K survey [1] and the COSMOS 2020 catalog [64] were se-

lected due to the exceptional data quality, extensive multi-wavelength coverage, and reli-

able photometric redshift estimates provided by the COSMOS field, which is particularly

valuable as it hosts the largest, most homogeneous, and consistently defined sample of

LAEs available to date making it the optimal environment to study LAEs using machine

learning techniques.

To ensure model robustness and mitigate class imbalance, we constructed balanced

datasets with respect to redshift, i-band magnitude distribution (within the bin sizes de-

fined in Section 2.2), and total number of sources. This resulted in one dataset of LAEs,

selected from the SC4K [1] survey in the COSMOS field, and seven comparison datasets

composed of other star-forming galaxies (oSFG) from COSMOS2020 [64], which we refer

to as non-LAEs (nLAEs). These nLAEs were not identified as LAEs by SC4K, and are

matched to the LAE sample in redshift and i-band magnitude distributions. While some

of these sources may contain undetected or low-EW Lyα emission, we treat them statis-

tically as typical star-forming galaxies for the purpose of training and validation. Each

dataset contains 3317 sources. A separate prediction dataset was also created using the

remaining COSMOS2020 sources which are unlabeled. The details of this procedure are

described in Section 2.2.

For imaging data, RGB images were generated using observations from the Subaru

Suprime-Cam [78], an imaging camera installed on the 8.2m Subaru telescope. The Suprime-

Cam offers a wide field of view of 1.5 degrees in diameter and is equipped with a variety

of filters, including 5 broadband filters (g, r, i, z, y), 4 narrow-band filters, and several

13
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medium-band filters. For this work, we specifically used the homogenized broadband

filters g+, r+, and i+ from the HSC Subaru to construct RGB images, the choice of these 3

is first 3 filters are need for a RGB and these GRI cover the usual narrowband filters used

to study LAEs.

2.1 Catalogs and surveys

2.1.1 COSMOS2020

The COSMOS2020 catalog includes two major photometric versions: Classic and Farmer.

While the Farmer catalog provides profile-fitting photometry with higher precision in lo-

calized regions, its coverage is limited by mask restrictions and constrained primarily to

the UltraVISTA footprint. For this study, the Classic version is adopted, which offers reli-

able aperture photometry and ensures complete and uniform spatial coverage across the

full COSMOS field. This choice facilitates consistent comparison with the SC4K sample,

which also spans the full field [64].

The Cosmic Evolution Survey (COSMOS) 2020 [64] is pivotal in extragalactic astron-

omy, offering a comprehensive view of cosmic evolution. It details the meticulous col-

lection, processing, and analysis of imaging data within the COSMOS field, spanning

approximately 2 square degrees. This effort resulted in the creation of a refined reference

photometric Redshift catalog, encompassing a vast ensemble of 1.7 million sources.

The catalog encompasses a rich array of multi-wavelength photometry data, with

nearly 966,000 sources measured across all available broadband data. The photometry

extraction process involved the utilization of traditional aperture photometric methods

alongside a profile-fitting photometric extraction tool termed ”The Farmer”, developed

specifically for that study.

Figure 2.1 shows the transmission curves of the filters from the COSMOS2020 dataset.

The three broadband filters used to construct the RGB images are highlighted in bright

colors, with their curves normalized to a maximum transmission of 1.0. The remaining

broadband filters are also shown in color but with lower opacity to indicate they were

not used for image construction. In contrast, all medium- and narrow-band filters are

displayed in grey and their transmission curves are normalized to a maximum of 0.3.
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FIGURE 2.1: Normalized transmission curves of filters used in the COSMOS2020 and
SC4K surveys. Broadband filters are displayed in color and normalized to 1, while
narrow- and medium-band filters are shown in gray and normalized to 0.3. The three
broadband filters used to construct the RGB images (g+, r+, i+) are highlighted with a

thicker black contour and increased opacity.

2.1.2 SC4K

Description of the SC4K: The Slicing the Cosmos 4k (SC4k) [1] survey, selects a total of

3908 LAEs using narrow and medium bands techniques over the COSMOS field, their

selection is inside a redshift range of 2 to 6, passing by the star formation peak, until the

re-ionization era.

They apply two criteria: one to select the Lyman break and the other to remove stars or

red galaxies that have a strong Balmer break that mimics the Lyman break, in agreement

with [79].

The SC4k survey has a total of 12 medium bands and 4 narrow bands, each band

refers to a redshift slice, and we use this value to track the redshift of each source. Table

2.1 shows the number of LAE in each redshift slice, for a total of 3908 LAE, it also displays

the amount within each redshift slice for the LAE Dataset generated from this survey, a

total of 3317 (see Section 2.2).

The Figure 2.2 displays the distribution for the log10 of Lyman Alpha luminosity and

the log10 of Equivalent width for the SC4K survey.
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TABLE 2.1: Adapted from [1], Describe the filter, redshift range, and the number of LAE
candidates for each slice, a total of 12 medium bands and 4 narrow bands. The column
LAE dataset refers to the values obtained for this dissertation after the data processing,

while the others columns are the original values used in [1]

Selection Filter Lyα Redshift range # LAE Candidates # LAE Dataset
IA427 2.42 – 2.59 741 679
IA464 2.72 – 2.90 311 294
IA484 2.92 – 3.10 483 621
IA505 3.07 – 3.26 478 416
IA527 3.30 – 3.50 641 578
IA574 3.63 – 3.85 98 92
IA624 4.00 – 4.16 124 124
IA679 4.39 – 4.57 79 71
IA709 4.53 – 4.72 176 74
IA738 4.67 – 4.87 90 62
IA767 4.81 – 5.01 99 31
IA827 5.64 – 5.92 55 20
NB392 2.20 – 2.24 159 85
NB501 3.08 – 3.16 159 13
NB711 4.83 – 4.89 78 48
NB816 5.65 – 5.75 192 109
TOTAL 3908 3317

The SC4K survey provides a curated selection of LAEs using narrow and medium-

band filters, but it only covers specific redshift slices and relies on visual inspection for

source validation. In contrast, the COSMOS2020 catalog offers continuous multi-band

photometry over the entire COSMOS field. This difference in methodology and cover-

age makes COSMOS2020 an essential complementary dataset for both enriching the LAE

feature set and constructing a robust comparison sample of nLAE.
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(A) Histogram of log10 of Lyman alpha Luminosity from the SC4K data

(B) Histogram of log10(EW0) from the SC4K data

FIGURE 2.2: Distributions of Equivalent Width (log10(EW0)) and Lyman Alpha Lumi-
nosity (LLyα) of the SC4K data.

2.2 Data processing

The LAE dataset was constructed using the SC4K survey [1] for the initial selection of

LAEs, cross-matched with the COSMOS2020 catalog [64] to obtain additional photomet-

ric features. The cross-matching was performed using TOPCAT [80], based on Right As-

cension (RA) and Declination (Dec), using the Sky algorithm with a maximum error of 1

arcsecond. The matching strategy was symmetric, selecting the best match. This process

resulted in 3346 matched sources.
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To reduce contamination from AGNs, we applied a cut on the COSMOS2020 dataset

column ip mag APER3, keeping only sources with ip mag APER3 > 22, following the

analysis from Calhau et al. [81], which states that from the SC4K analisys most of the

AGN are located bellow these values. After this filtering, the final LAE dataset consisted

of 3317 sources. These objects retained all SC4K features, now complemented by COS-

MOS2020 measurements. The dataset was then divided into training, testing, and vali-

dation subsets. The last column in the Table 2.1 displays the number for each readshift

bin.

The comparison datasets of nLAEs were created from the COSMOS 2020 catalog,

specifically, the Classic Catalog, where the photometry aperture is performed on PSF-

homogenized images [82], [83]. We excluded all 3317 LAE sources from COSMOS2020

and applied the following selection criteria: photometric redshift in the range 2 < z < 6

and 0 < ip mag APER3 < 40. These limits prevent the inclusion of sources with invalid

magnitudes (e.g., −1 or 99.9, used to encode missing values in astronomical catalogs).

To ensure the nLAE datasets had the same redshift and magnitude distributions as the

LAE sample, we defined bins in redshift (z) from 2 to 6 with step 1, and in ip mag APER3

from 22 to the LAE dataset maximum (≈ 40), with step 0.5. For each bin combination, we

counted the number of LAEs and randomly selected the same number of nLAE sources.

This sampling strategy was repeated seven times, generating seven independent nLAE

datasets, each with 3317 galaxies and identical distribution profiles to the LAE dataset.

The remaining COSMOS2020 sources, after removing the LAE dataset and the first

nLAE dataset, were grouped into a prediction dataset containing 191,826 unlabeled sources.

Figure 2.3 illustrates the redshift and ip mag APER3 distribution for the LAE and the

seven nLAE datasets. The LAE sample is shown in green with bars and dots, and each

nLAE dataset is represented by a unique color and marker style, with hatched histograms

indicating the shared distribution shape.

Although three types of datasets are available, LAE, nLAE, and prediction, only clas-

sification analysis uses them, while regression analysis is conducted exclusively on the

LAE dataset, which provides well-constrained target features: redshift, Lyman Alpha Lu-

minosity, and Equivalent Width (EW0). To optimize the performance of the Convolu-

tional Neural Network, appropriate preprocessing is applied: Lyman Alpha Luminosity

is scaled using a RobustScaler [84], and the Equivalent Width is log-transformed using

base 10.
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FIGURE 2.3: The plot shows the distribution of I-band magnitude as a function of redshift
for all samples, including 1 LAE and 7 nLAEs.

Additionally, three histograms are presented in Figures 2.4 - 2.6 to provide a detailed

overview of the distributions of the key physical features used in the regression anal-

ysis. These values are provinient from the LAE dataset values. Figure 2.4 shows the

redshift distribution of LAEs, while Figures 2.5 and 2.6 display the distributions of the

log-transformed equivalent width (log10(EW0)) and the scaled Lyman-alpha luminosity

(log10(LLyα)), respectively. These plots confirm that the LAE dataset spans a wide range

of physical properties, with statistically meaningful variation in all parameters.
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FIGURE 2.4: Redshift Distribution: The histogram shows the distribution of redshift val-
ues in the LAE dataset, with prominent peaks around 2.5 and 3.0, and smaller peaks

beyond 3.5.

FIGURE 2.5: LogEW0 histogram: Displays the distribution of log-transformed Equivalent
Width (log10(EW0)) of the Lyα line values from the the LAE dataset, which is skewed to

the left.
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FIGURE 2.6: LLyα distribution: Illustrates the distribution of scaled Lyman Alpha Lumi-
nosity (LyaLum scaled) values of the LAE dataset after scaling, with a peak around the

mean and a long tail towards higher values.
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2.3 Image construction

We choose to work with the broadband G, R, and I filters, using the homogenized PSF mo-

saics from [78]. These broadband filters were selected because they provide high signal-

to-noise ratios in the Subaru images and cover the rest-frame UV and optical regions most

relevant to LAE morphology at redshifts 2 to 6. Figure 2.1 illustrates the transmission

ranges of these filters. To construct the RGB images, we used the Astropy package [85] to

extract the corresponding FITS cutouts from the mosaic images. These cutouts were then

combined using the make lupton function [86] with default parameters to produce RGB

JPEG images of size 32×32 pixels.

We chose a final image size of 32x32 pixels based on empirical testing that showed

no performance improvement when using 64x64. The reduced size limits the inclusion

of background noise while preserving the key morphological features of the sources. The

RGB image construction uses g+ as blue, r+ as green, and i+ as red, following standard

astronomical color mapping conventions. The resulting images are shown in Fig 2.7 to-

gether with the filters in which the first row is a LAE source with redshift 2.81 while the

second contains nLAE source with redshift 2.41.

(A) GP (blue) (B) RP (green) (C) IP (red) (D) LAE: RGB

(E) GP (blue) (F) RP (green) (G) IP (red) (H) nLAE: RGB

FIGURE 2.7: Example of RGB image used as final input for the CNN models, the first-row
are LAE sources, while the second are nLAE sources



Chapter 3

Methods

This chapter presents the methodological framework that supports the analysis carried

out in this work. The chapter is divided into two main sections. The first, Section 3.1,

introduces the core principles of deep learning relevant to this study, including the archi-

tecture of CNNs, the activation functions employed, and the evaluation metrics used for

both classification and regression tasks. This theoretical foundation is essential to under-

standing the motivations behind the choices made during model design and training.

The second part, Section 3.2, outlines the complete experimental methodology, from

the initial classification setup to the regression models developed for predicting key astro-

physical properties. Different training strategies, such as fine-tuning, model comparison,

and the use of explainability tools like saliency maps, are discussed in detail. Moreover,

alternative regression approaches are presented, including single-model multitarget pre-

diction, independent models per target, and a chained regression pipeline using redshift

as auxiliary input.

Together, these sections provide a comprehensive view of the techniques and reason-

ing that guided the implementation and evaluation of the models used in this research.

The methodological choices were shaped by the specific challenges of working with as-

tronomical image data, such as the need for interpretability, generalization across redshift

ranges, and accurate estimation of galaxy properties from limited pixel information.

23
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3.1 Deep learning

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that focuses on devel-

oping algorithms that enable computers to learn from and make predictions based on

data [87]. Unlike traditional programming, where explicit instructions are coded, ma-

chine learning models are trained on data to recognize patterns and make decisions with

minimal human intervention. This approach allows for automating complex tasks and

extracting meaningful insights from large datasets.

AI is the broader field that encompasses Machine Learning. AI aims to create sys-

tems capable of performing tasks that typically require human intelligence, such as under-

standing natural language, recognizing images, and making decisions [88]. AI includes

various subfields, including natural language processing, robotics, computer vision, and

more. Machine Learning represents a significant advancement within AI, providing pow-

erful tools for data analysis and prediction.

A particularly influential subset of Machine Learning is Deep Learning (DL), which

uses neural networks with many layers, known as deep neural networks, to model com-

plex patterns in data [89]. One of the most effective types of DL models for image and

spatial data is the CNN. They work by applying convolutional filters to input data, cap-

turing spatial hierarchies and features at different levels of abstraction [90]. They consist

of multiple layers, including convolutional layers, pooling layers, and fully connected

layers, each playing a crucial role in feature extraction and pattern recognition.

The relationship between these fields is illustrated in Figure 3.1, which shows how

AI encompasses ML, and within ML, DL forms a specialized subset that focuses on deep

neural networks.
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FIGURE 3.1: Hierarchical relationship between Artificial Intelligence (AI): Develops sys-
tems capable of performing tasks that normally require human intelligence, such as
understanding natural language, recognising images and making decisions; Machine
Learning (ML): Develops algorithms that enable computers to learn from data and make
predictions, and Deep Learning (DL): Uses multilayer neural networks to model complex
patterns in data. AI includes ML, which focuses on developing algorithms that enable
computers to learn from data. Within ML, DL uses deep neural networks to model com-

plex patterns. Figure from author.

3.1.1 Architecture

CNNs are a class of deep learning models designed to process data with grid-like topol-

ogy, such as images [91]. They are composed of multiple layers, each serving a specific

purpose and contributing to the overall ability of the network to learn and make predic-

tions. The primary layers in a CNN include convolutional layers, activation functions,

pooling layers, and fully connected layers, each playing a distinct role in the feature ex-

traction and classification process.

Convolutional Layers are the foundational components of CNNs. These layers apply

convolutional filters to the input image to detect local features such as edges, textures, and

patterns. The convolution operation involves sliding a filter (or kernel) over the input data

and computing dot products between the filter and local regions of the input [91]. This

process generates feature maps, which highlight the presence of specific features within
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the image. By stacking multiple convolutional layers, the network can detect increasingly

complex and abstract features.

Following the convolutional layers, activation functions are applied to introduce non-

linearity into the model. One of the most commonly used activation functions is the Rec-

tified Linear Unit (ReLU). The ReLU function activates a node only if the input is above

a certain threshold, effectively allowing the model to capture and learn more complex

patterns in the data. Without these non-linear activation functions, the network would be

limited to learning only linear relationships.

Pooling layers are used to downsample the feature maps, reducing their dimension-

ality and computational load while preserving important features. Pooling helps to make

the model more robust to variations in the position of the features within the input image.

Common pooling methods include max pooling, which selects the maximum value from

a pooling window, and average pooling, which calculates the average value. These opera-

tions reduce the spatial dimensions of the feature maps, thus condensing the information

and mitigating overfitting.

Towards the end of the CNN architecture, fully connected layers are employed. These

layers function similarly to those in traditional neural networks and serve to combine the

features extracted by the convolutional and pooling layers. The output of the final pooling

or convolution layer is flattened and fed into one or more fully connected layers, which

integrate the features and produce the final output predictions. These layers are crucial

for the final decision-making process of the network.

Each layer in a CNN has parameters, such as weights and biases, which are learned

during the training process. Training a CNN involves adjusting these parameters to mini-

mize the difference between the predicted output and the true labels using a loss function.

This optimization is typically achieved through a process called backpropagation [92, 93],

where the network propagates the error gradient backward from the output layer to the

input layer, updating the parameters to reduce the overall error.

Overall, the architecture of CNNs allows for efficient and effective feature extraction,

making them particularly well-suited for tasks involving image recognition and other

forms of spatial data analysis. By stacking multiple layers, each with a specific function,

CNNs can learn and model complex patterns in the data, leading to highly accurate pre-

dictions.
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3.1.2 Activation functions in neural networks

Activation functions are crucial components of neural network architecture, allowing the

model to learn and represent complex patterns in data through the introduction of non-

linearity. This subsection provides an overview of four widely used activation functions

applied at various stages in this project: ReLU, sigmoid, softmax, and linear. Each func-

tion’s definition, mechanism, and application within the layers of a CNN are detailed.

3.1.2.1 ReLU (rectified linear unit)

The ReLU activation function is defined as:

ReLU(x) = max(0, x). (3.1)

Popularized by Nair and Hinton [94], ReLU is favored in CNNs for its simplicity and ef-

ficiency. It addresses the vanishing gradient problem, allowing models to converge more

quickly and achieve better performance in deep networks. By activating neurons only

when the input is positive, ReLU introduces sparsity in the network, enhancing compu-

tational efficiency. Typically applied after convolutional layers, ReLU helps the model

capture more intricate features by introducing non-linearity, promoting faster training

speeds, and mitigating gradient-related issues.

3.1.2.2 Sigmoid

The sigmoid activation function is given by:

σ(x) =
1

1 + e−x . (3.2)

Historically significant, the sigmoid function was widely used in early neural networks

[95]. It compresses input values to a range between 0 and 1, making it suitable for bi-

nary classification tasks. However, sigmoid functions can suffer from vanishing gradi-

ents, which can hinder learning in deeper networks. Often employed in the output layer

of binary classifiers, the sigmoid function converts the network’s output into a probability

score, indicating class membership and facilitating the interpretation of binary classifica-

tion predictions.
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3.1.2.3 Softmax

The softmax activation function is defined as:

softmax(xi) =
exi

∑j exj
. (3.3)

Widely used for multi-class classification problems [96], softmax transforms logits (raw

prediction scores) into a probability distribution over multiple classes, ensuring that the

sum of all probabilities equals one. Applied in the output layer of neural networks de-

signed for multi-class classification, softmax allows the model to produce a probability

distribution across different classes. This is crucial for tasks where each instance must

be assigned to a single class among many, aiding in decision-making by providing inter-

pretable probability scores.

3.1.2.4 Linear

The linear activation function is simply defined as:

f (x) = x. (3.4)

Used in scenarios where the network’s output should be a continuous value without non-

linear transformation, the linear function, while not an activation function in the tradi-

tional sense, is essential for specific prediction types. Commonly utilized in the output

layer of regression models, the linear activation function enables the model to produce

a wide range of output values, making it suitable for tasks that require continuous and

unbounded predictions.

Each layer in a CNN, including those utilizing these activation functions, has param-

eters (weights and biases) that are learned during the training process. Training involves

adjusting these parameters to minimize the difference between the predicted output and

the true labels using a loss function, often through a process called backpropagation.

These activation functions collectively enable CNNs to learn from complex datasets

and perform a wide range of tasks, from binary and multi-class classification to continu-

ous value predictions.
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3.1.3 Metrics

Evaluating the performance of Machine Learning models requires the use of appropri-

ate metrics that offer insights into the models’ effectiveness. This section outlines several

commonly used evaluation metrics applied at various stages in our project: accuracy, pre-

cision, recall, F1-Score, mean absolute error (MAE), root mean square error (RMSE), and

mean squared error (MSE). Each metric is defined and discussed in terms of its strengths,

weaknesses, and typical applications.

Accuracy is the most straightforward metric and is defined as the ratio of correctly

predicted instances to the total number of instances:

Accuracy =
True Positives + True Negatives

Total Instances
. (3.5)

Accuracy provides a general measure of how often a classifier is correct. Its simplicity

makes it popular for balanced datasets, where each class has roughly the same number

of instances. However, accuracy can be misleading in imbalanced datasets. For instance,

if one class is much more prevalent, a model that always predicts the majority class will

achieve high accuracy despite failing to identify the minority class effectively.

Precision, or positive predictive value, is defined as the ratio of true positive predic-

tions to the sum of true positive and false positive predictions:

Precision =
True Positives

True Positives + False Positives
. (3.6)

Precision measures the accuracy of positive predictions made by the model. It is par-

ticularly useful when the cost of false positives is high, such as in spam detection where

incorrectly labeling legitimate emails as spam is undesirable. While precision focuses on

the reliability of positive predictions, it does not account for false negatives, which can be

problematic in scenarios where missing a positive instance is critical.

Recall, also known as sensitivity or the true positive rate, is defined as the ratio of true

positive predictions to the sum of true positives and false negatives:

Recall =
True Positives

True Positives + False Negatives
. (3.7)

Recall measures the model’s ability to identify all relevant instances within the dataset.

It is crucial in scenarios where identifying all positive instances is essential, such as in
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medical screenings or fraud detection. High recall often results in a decrease in precision,

as the model may generate more false positives to capture all true positives.

F1-Score is the harmonic mean of precision and recall, providing a single metric that

balances both:

F1-Score = 2 · Precision · Recall
Precision + Recall

. (3.8)

The F1-Score is particularly useful in cases of imbalanced class distribution where both

precision and recall are important. It combines the strengths of both metrics into a single

value, making it valuable when a balance between false positives and false negatives is

desired. However, the F1-Score does not differentiate between the relative importance of

precision and recall, which may be critical in some applications.

For the classification tasks discussed in this dissertation, accuracy was primarily used

to evaluate the results, given the balanced nature of the dataset. However, other metrics

were also computed, and the F1 Score was considered in specific cases.

Regarding the regression metrics:

Mean Absolute Error (MAE) is defined as the average of the absolute differences be-

tween predicted and actual values:

MAE =
1
n

n

∑
i=1

|xi − yi|, (3.9)

where xi represents the predicted value and yi denotes the actual value for the i-th in-

stance, and n is the total number of instances. MAE is easy to interpret, reflecting the

average magnitude of errors in the units of the original data. It treats all errors equally,

which may not be ideal when larger errors should be penalized more [97]. Unlike squared

error metrics, MAE is less sensitive to outliers.

Root Mean Square Error (RMSE) is the square root of the average of the squared

differences between predicted and actual values:

RMSE =

√
1
n

n

∑
i=1

(xi − yi)2. (3.10)

RMSE provides a measure of the average magnitude of error, heavily penalizing larger

deviations. Its sensitivity to large errors makes it suitable for scenarios where large devi-

ations are particularly undesirable. RMSE also shares the same units as the original data,
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facilitating interpretation [98]. However, its sensitivity to outliers can be a disadvantage

when dealing with noisy datasets.

Mean Squared Error (MSE) is defined as the average of the squared differences be-

tween predicted and actual values:

MSE =
1
n

n

∑
i=1

(xi − yi)
2. (3.11)

MSE measures the variance of prediction errors and penalizes larger errors more than

smaller ones [99]. It is useful when large errors are particularly detrimental and is also

mathematically convenient for optimization due to its differentiability. Like RMSE, MSE

is sensitive to outliers and its squared units can make interpretation less intuitive com-

pared to MAE.
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3.2 Methodology overview

With the steps made in Section-2, the data is ready for classification and regression tasks,

Figure 3.2 is a flow chart to clarify the structure of the data until this step.

FIGURE 3.2: Flowchart describing the complete pipeline used in this work. Starting from
the SC4K survey and COSMOS2020 catalogs, cross-matching and constraint filtering are
applied to define the LAE and nLAE datasets. The nLAE dataset is sampled to match
the size, redshift, and magnitude distribution of the LAEs, and this sampling is repeated
six times to generate perturbed nLAE datasets for robustness analysis. Sources are then
cut from Subaru FITS mosaics in the g, r, and i bands with a size of 32×32 pixels. These
cutouts are used to generate RGB images in Python, which serve as input for classifica-
tion and regression models. A separate prediction dataset is built from the remaining

COSMOS2020 data, after excluding all LAE and sampled nLAE entries.
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3.2.1 Classification

The first step in developing the CNN architecture involved importing the necessary data

and libraries using Python. This subsection outlines the architecture, training process,

Fine-tune process, and evaluation criteria used for the CNN model and the comparison

with other models.

3.2.1.1 Model architecture

The CNN architecture created before tuning is depicted in Figure 3.3, while 3.4 displays

the tuned.

FIGURE 3.3: Initial architecture of the CNN model before hyperparameter tuning. The
network consists of two convolutional layers with ReLU activation and max-pooling,
followed by a flattening layer and a single fully connected layer with dropout. The final
output layer uses softmax activation for binary classification. This configuration was

manually defined prior to automated optimization.

The CNN model was designed with an input shape of (32, 32, 3), suitable for pro-

cessing RGB images constructed from Subaru/HSC broadband filters (g+, r+, i+). The

architecture includes the following components:

1. Convolutional Layers: Two convolutional layers were used, both with a kernel

size of (5, 5). The first layer includes 32 filters, and the second uses 64 filters. The ReLU

activation function was chosen for its computational efficiency and ability to introduce

non-linearity while mitigating vanishing gradients. The (5, 5) kernel size was selected as

a compromise between capturing local spatial features (e.g., compact structures, gradi-

ents in brightness) and computational cost. Larger kernels (e.g., 7×7) risk oversmoothing

faint features, while smaller kernels (e.g., 3×3) may fail to capture enough structure in

low-resolution astrophysical images. The number of filters increases with depth to allow

the model to extract a richer hierarchy of features. All convolutional layers include L2

regularization to reduce overfitting [100].
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2. Pooling Layers: Max pooling layers with a pool size of (2, 2) follow each convolu-

tional layer to reduce the spatial dimensions of the feature maps. The (2, 2) pooling size

is widely adopted in astrophysical applications, as it balances dimensionality reduction

with the preservation of morphological information. This is particularly relevant when

working with small input sizes like 32×32 pixels.

3. Flatten Layer: A flatten layer converts the 2D feature maps into a 1D vector, prepar-

ing the data for input into the fully connected layers.

4. Dropout Layers: A dropout layer with a rate of 0.2 is applied after flattening.

Dropout is a common regularization method that randomly disables a fraction of neu-

rons during training, preventing co-adaptation and reducing overfitting. A rate of 0.2

is widely used in CNNs for image classification and regression tasks, offering a balance

between regularization and training stability.

5. Fully Connected Layers: A single fully connected (dense) layer with 128 units is

used after the dropout layer. The number of units was chosen empirically to balance

representational capacity and computational cost. Higher dimensional dense layers can

easily overfit small image datasets, while fewer units may lack the capacity to model the

necessary non-linear relationships. The ReLU activation function is again used here for

its simplicity and effectiveness in deep learning models.

6. Output Layer: The output layer includes 2 units with a softmax activation function,

appropriate for binary classification tasks. In this case, the goal is to distinguish between

two galaxy classes (e.g., LAEs and nLAEs), so the softmax outputs the class probabilities.

FIGURE 3.4: Final architecture of the CNN model after hyperparameter tuning. The net-
work includes three convolutional blocks with ReLU activations and max-pooling layers,
followed by fully connected layers with dropout for regularization. The final dense layer

uses a softmax activation for binary classification.

The final architecture resulting from the hyperparameter optimization (Section 3.2.1.2)

process consists of a deep convolutional neural network designed to classify RGB galaxy

images. The input shape is fixed at (32, 32, 3), corresponding to the RGB composites

created from Subaru/HSC filters. The architecture includes the following layers:
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• Convolutional Layers:

– First layer: 64 filters, kernel size (5 × 5), ReLU activation

– Second layer: 64 filters, kernel size (3 × 3), ReLU activation

– Third layer: 128 filters, kernel size (5 × 5), ReLU activation

• Pooling Layers: A MaxPooling2D layer with pool size (2 × 2) is applied after each

convolutional layer, reducing spatial resolution while preserving salient features.

• Flatten Layer: The output of the final convolutional block is flattened into a one-

dimensional vector to be used by the dense layers.

• Fully Connected Layers:

– Dense layer with 256 units and ReLU activation, followed by a Dropout layer

with a rate of 0.4

– Dense layer with 128 units and ReLU activation, followed by a Dropout layer

with a rate of 0.2

– Dense layer with ReLU activation (unit count as optimized)

– Final output layer with 2 units and softmax activation for binary classification

This architecture was automatically selected during the hyperparameter tuning phase

using Keras Tuner [101], and reflects the best-performing configuration discovered for the

LAE classification task.
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3.2.1.2 Fine-tune

The model, named my CNN, was compiled and trained using the Keras package [102].

The training process involved multiple epochs, with the test set ( 10%) used for evaluation.

Accuracy was adopted as the primary evaluation metric due to the balanced nature of the

dataset. However, additional metrics such as precision, recall, and F1-score were also

monitored to detect any unexpected model behavior.

To optimize the model architecture, we employed the Keras Tuner package with the

RandomSearch algorithm, using validation accuracy as the objective. The hyperparame-

ters explored included the number of convolutional layers, kernel size, number of filters,

L2 regularization strength, number of dense layers, dropout rate, and learning rate. Af-

ter tuning, the best-performing my CNN configuration was selected and evaluated. The

final accuracy and F1-score results are presented in Figure 3.5 and Figure 3.6, respectively.

FIGURE 3.5: Accuracy comparison between the CNN with and without tune
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FIGURE 3.6: F1 score comparison between the CNN with and without tune

3.2.1.3 Model comparison

To ensure robustness, my CNN was compared against several well-known CNN archi-

tectures: VGG19 [103], Xception [104], ResNet50 [105], DenseNet121 [106], and a visual

transform architecture ViT B/32 [107]. These models were chosen for their diverse ar-

chitectural strategies: VGG19 is a deep but simple convolutional model with uniform

3×3 filters and around 19 layers; ResNet50 introduces residual connections to enable the

training of very deep networks; DenseNet121 densely connects each layer to all preced-

ing ones, promoting feature reuse and parameter efficiency; and ViT B/32 represents a

transformer-based vision model that processes images as sequences of 32×32 patches. Fig-

ure 3.7 presents the evaluation results, showing that my CNN and ViT 32b achieved the

highest performance metrics.

Figure 3.8 illustrates the architectural complexity in terms of model size. These com-

parisons supported the choice of my CNN Tuned for the final predictions. Although

several models performed similarly in terms of accuracy and F1-score, the final decision

prioritized computational efficiency, making the lightweight architecture of my CNN par-

ticularly suitable given the available computing resources.
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FIGURE 3.7: Comparison of classification accuracy (left) and F1-score (right) for different
CNN architectures. ViT 32b achieved the highest accuracy, followed closely by my CNN,
DenseNet121, and Xception. For the F1-score, ViT 32b again showed the best perfor-

mance, with my CNN among the top-performing models.

FIGURE 3.8: Total number of trainable parameters per architecture. ResNet50 has the
highest number of parameters among the CNNs tested, while my CNN has the lowest,

indicating a more lightweight and computationally efficient model.
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3.2.1.4 Perturbation analysis and saliency maps

Following model selection, a perturbation analysis was performed using my CNN Tuned

to assess the robustness of the classification performance. This analysis involved gener-

ating six additional nLAE samples, in addition to the base nLAE sample, resulting in a

total of seven nLAE datasets. The number of nLAE datasets was limited to seven due to

constraints in the number of available sources within the redshift and i-band magnitude

bins. Since the goal was to replicate the distribution of the LAE dataset across these bins,

only seven balanced nLAE datasets could be constructed under these conditions. Each of

these nLAE datasets was then combined with the same LAE dataset, and the CNN was

trained separately for each combination. The resulting performances were compared to

evaluate the influence of the different samples on the model’s behavior and to confirm the

consistency of the predictions.

To further investigate the decision process of the CNN, saliency maps were generated

using the SmoothGrad method [108]. Saliency maps are visualizations that highlight the

regions of the input images that most strongly influence the model’s predictions, offering

insight into what parts of the image the network attends to during classification.

Figure 3.9 shows two examples of saliency maps. In each case, the first row (A) cor-

responds to a source labeled and predicted as nLAE, and the second row (B) corresponds

to a source labeled and predicted as LAE. For both examples, the three columns repre-

sent: (1) the original RGB image, (2) the image overlaid with saliency, and (3) the isolated

saliency map.
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(A) Example of a source labeled and predicted as nLAE. From left to right:
original RGB image, RGB image with saliency overlay, and isolated saliency

map.

(B) Example of a source labeled and predicted as LAE. From left to right:
original RGB image, RGB image with saliency overlay, and isolated saliency

map.

FIGURE 3.9: Saliency maps generated using the SmoothGrad method. Each row corre-
sponds to a different class (A: nLAE, B: LAE), showing how the model identifies class-

relevant regions in the images.

3.2.2 Regression

In this study, the regression approach involves several key steps to prepare and use the

data effectively for predicting the astrophysical parameters of LAEs. The process begins

with the preparation and labeling of the dataset, followed by loading the data using Keras

and Python.

3.2.2.1 Independent CNN models for each target

In this approach, the strategy was to create separate CNNs for each feature. It is illustrated

in Figures 3.10a - 3.11. Each CNN was tailored to predict a specific feature independently:

• Independent LLyα model (Figure 3.11): This model focused solely on predicting

LLyα, leveraging a specialized architecture.

• Independent redshift model (Figure 3.10a): A distinct model was designed to pre-

dict the redshift, with an architecture optimized for this task.
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• Independent log10(EW0) model (Figure 3.10b): Another separate model was con-

structed to predict the LogEW, ensuring that the unique characteristics of this fea-

ture were addressed.

This approach yielded good results for redshift and log10(EW0), as each CNN could

focus on the specific features relevant to its prediction task. However, there was still room

for improvement, particularly in the prediction of Lyman-α luminosity. In Section-4.2, the

results are presented.

The Tables 3.1, 3.2, and 3.3 provide detailed breakdowns of the individual models’

architectures used in this attempt. Each table includes the type of each layer, the input

and output shapes, and the number of parameters for each layer.

TABLE 3.1: Describes the structure of the best model for predicting LogEW0, highlighting
its layers and the parameter counts, totalizing 191,009 parameters.

Layer (type) Output Shape Param #
conv2d input (InputLayer) (None, 32, 32, 3) 0

conv2d (Conv2D) (None, 30, 30, 32) 896
max pooling2d (MaxPooling2D) (None, 15, 15, 32) 0

conv2d 1 (Conv2D) (None, 13, 13, 32) 9,248
max pooling2d 1 (MaxPooling2D) (None, 6, 6, 32) 0

flatten (Flatten) (None, 1152) 0
dense (Dense) (None, 128) 147,584

dropout (Dropout) (None, 128) 0
dense 1 (Dense) (None, 256) 33,024

dropout 1 (Dropout) (None, 256) 0
dense 2 (Dense) (None, 1) 257

Total 191,009

These tables illustrate the tailored architectures for each specific feature, allowing for

focused learning and improved prediction accuracy compared to the joint model ap-

proach. Each model’s parameter count reflects its complexity and capacity to capture

the unique characteristics of the feature it was designed to predict.
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TABLE 3.2: Summarizes the Lyman-α luminosity model, showing a total of 95,299 pa-
rameters.

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 28, 28, 32) 2,432

max pooling2d (MaxPooling2D) (None, 14, 14, 32) 0
conv2d 1 (Conv2D) (None, 12, 12, 32) 9,248

max pooling2d 1 (MaxPooling2D) (None, 6, 6, 32) 0
conv2d 2 (Conv2D) (None, 2, 2, 32) 25,632

max pooling2d 2 (MaxPooling2D) (None, 1, 1, 32) 0
flatten (Flatten) (None, 32) 0
dense (Dense) (None, 256) 8,448

dropout (Dropout) (None, 256) 0
dense 1 (Dense) (None, 128) 32,896

dropout 1 (Dropout) (None, 128) 0
dense 2 (Dense) (None, 128) 16,512

dropout 2 (Dropout) (None, 128) 0
dense 3 (Dense) (None, 1) 129

Total 95,299

TABLE 3.3: Outlines the redshift model, with a total of 95,297 parameters.

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 28, 28, 32) 2,432

max pooling2d (MaxPooling2D) (None, 14, 14, 32) 0
conv2d 1 (Conv2D) (None, 12, 12, 32) 9,248

max pooling2d 1 (MaxPooling2D) (None, 6, 6, 32) 0
conv2d 2 (Conv2D) (None, 2, 2, 32) 25,632

max pooling2d 2 (MaxPooling2D) (None, 1, 1, 32) 0
flatten (Flatten) (None, 32) 0
dense (Dense) (None, 256) 8,448

dropout (Dropout) (None, 256) 0
dense 1 (Dense) (None, 128) 32,896

dropout 1 (Dropout) (None, 128) 0
dense 2 (Dense) (None, 128) 16,512

dropout 2 (Dropout) (None, 128) 0
dense 3 (Dense) (None, 1) 129

Total 95,297
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(A) Independent Redshift model (B) Independent log10(EW0) model

FIGURE 3.10: Architectures of the CNN models independently trained for redshift and
log10(EW0) regression.
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FIGURE 3.11: Architecture of the CNN model independently trained for Lyman-alpha
luminosity (LLyα) regression.
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3.2.2.2 Chained regression using redshift predictions as auxiliary input for luminosity

This involved a more refined approach, integrating predictions from the redsfhit individ-

ual model into subsequent models. This approach is depicted in Figure 3.12. The process

involved several key steps:

1. Redshift prediction: First, trained a model to predict the redshift independently,

with the same model used already for redshift.

2. Chained prediction for Lyman-α luminosity: The predictions from the redshift

model were then used as additional input features for a second CNN designed to

predict the Lyman-α luminosity. This integration occurred after the convolutional

layers but before the fully connected layers; the input of redshift is not given initially

to the model, only after it passes through the convolutional layers.

3. log10(EW0) prediction: The structure from the independent models was retained for

predicting log10(EW0), ensuring consistency and leveraging the previously identi-

fied strengths.

This approach used the best results of the independent approach and joined together

with a new one for the Lyman-α luminosity, with the incorporation of the redshift predic-

tions as input to the Lyman-α luminosity prediction model.

The Table 3.4 provides a detailed breakdown of the model architecture used for pre-

dicting Lyman-α luminosity. The structure leverages the predictions from the redshift

model, concatenating the output with the image features to improve prediction accuracy.

The total number of parameters in this model is 441,377. For the log10(EW0) and red-

shift predictions, we used the same models described in the independent CNN models,

detailed in Tables 3.1 and 3.3, respectively.
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TABLE 3.4: Structure of the Model Lyman Ensemble

Layer (type) Output Shape Param #
image input (InputLayer) (None, 32, 32, 3) 0

conv2d 12 (Conv2D) (None, 30, 30, 32) 896
max pooling2d 10 (MaxPooling2D) (None, 15, 15, 32) 0

conv2d 13 (Conv2D) (None, 13, 13, 32) 9248
max pooling2d 11 (MaxPooling2D) (None, 6, 6, 32) 0

conv2d 14 (Conv2D) (None, 4, 4, 128) 36992
max pooling2d 12 (MaxPooling2D) (None, 2, 2, 128) 0

flatten 5 (Flatten) (None, 512) 0
dropout 14 (Dropout) (None, 512) 0

redshift input (InputLayer) (None, 1) 0
concatenate (Concatenate) (None, 513) 0

dense 21 (Dense) (None, 512) 262656
dropout 15 (Dropout) (None, 512) 0

dense 22 (Dense) (None, 256) 131328
dense 23 (Dense) (None, 1) 257

Total 441,377
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FIGURE 3.12: Chained regression utilizing the redshift as input to help predicting LLyα.
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3.2.2.3 Joint multi-target regression with a single CNN

The best results were found when it was aimed to predict the redshift, Lyman-α luminos-

ity, and equivalent width (log10(EW0)) simultaneously using a single CNN. The architec-

ture for this approach is shown in Figure 3.13. In this model, the three target features were

input together, and the network was trained to predict them concurrently. However, this

approach faced significant challenges for the implementation. The input of the features

values occurred after the convolutional layers.

TABLE 3.5: Structure of the Model Together First Attempt

Layer (type) Output Shape Param #
input layer 3 (InputLayer) (None, 32, 32, 3) 0

conv2d 7 (Conv2D) (None, 28, 28, 32) 896
max pooling2d 6 (MaxPooling2D) (None, 14, 14, 32) 0

conv2d 8 (Conv2D) (None, 10, 10, 64) 18496
max pooling2d 7 (MaxPooling2D) (None, 5, 5, 64) 0

flatten 3 (Flatten) (None, 1600) 0
dense 12 (Dense) (None, 128) 204928

dropout 8 (Dropout) (None, 128) 0
dense 13 (Dense) (None, 128) 16512

dropout 9 (Dropout) (None, 128) 0
dense 14 (Dense) (None, 256) 33024

dropout 10 (Dropout) (None, 256) 0
dense 15 (Dense) (None, 256) 65792
EWlog (Dense) (None, 1) 257

LyAlpha (Dense) (None, 1) 257
dense 16 (Dense) (None, 256) 65792
redshift (Dense) (None, 1) 257

Total 387,211

The table 3.5 provides a detailed breakdown of the model’s architecture, including the

type of each layer, the output shape, and the number of parameters for each layer. The

total number of parameters in this model is 387,211. This significant number of parame-

ters reflects the complexity of the model and highlights the challenges faced in training a

model to predict three different astrophysical features simultaneously.
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FIGURE 3.13: Structure of the CNN used in the joint multi-target regression with a single
CNN.
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3.2.2.4 Performance evaluation

To evaluate the performance of the regression models, we focused on the MAE and MSE.

These metrics provided a comprehensive assessment of the models’ accuracy and robust-

ness, guiding our iterative improvements and validating the effectiveness of our final

approach.



Chapter 4

Results

This section presents the results obtained from the classification task, along with a detailed

analysis of the outcomes from the three approaches applied to the regression models.

The performance of these methods is evaluated using their respective metrics, providing

a comprehensive view of their effectiveness. Additionally, potential factors influencing

these results are discussed, emphasizing the strengths and limitations observed through-

out the experiments.

4.1 Classification results

The performance comparison between models revealed minimal differences in accuracy,

as shown in Figure 3.7. However, their computational requirements varied significantly.

Ultimately, the best results were obtained using the custom CNN architecture developed

specifically for this task, referred to as my CNN Tuned, which achieved an accuracy of

75.9% on the test set, as illustrated in Figure 3.5.

The model was then applied to the prediction dataset, which contains 191,826 sources.

Using a threshold of 0.5, where 0 corresponds to LAE and 1 to nLAE, a total of 44,295

sources were classified as LAEs. These are LAEs candidate that exhibit similar features,

regarding redshift and i-band magnitude, to those in the SC4K catalog [1].

Among the predicted LAEs, some sources had already been spectroscopically con-

firmed in prior studies, particularly in the HETDEX survey [109]. HETDEX (Hobby-

Eberly Telescope Dark Energy Experiment) is a large-scale integral field spectroscopic

survey targeting the spatial distribution of Lyα-emitting galaxies over a wide area of 540

deg2. It aims to constrain cosmological parameters by measuring the Hubble expansion
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rate and angular diameter distance in the redshift range 1.88 < z < 3.52. To assess

the model’s behavior in such cases, a comparison was conducted using the 45 sources in

common between our prediction dataset and HETDEX. The resulting confusion matrix is

presented in Figure 4.1.

In this evaluation, the CNN model ”correctly” identified 21 true LAEs and 2 true

nLAEs. However, it also misclassified 18 LAEs as nLAEs (false negatives) and ”incor-

rectly” labeled 4 nLAEs as LAEs (false positives), resulting in an LAE classification pre-

cision of 84%. This indicates that while the model is relatively conservative and precise

when assigning the LAE label, it may fail to capture some true emitters. It is also impor-

tant to note that the HETDEX dataset has its own limitations, but this cross-comparison

provides a valuable validation step.

FIGURE 4.1: Confusion Matrix of the sources spectroscopically confirmed by HETDEX
[109]

Table 4.1 lists the top 15 most confidently predicted LAEs from the classification model.

Each entry includes RA, Dec, the photometric redshift (zphot), i-band magnitude, and the

predicted probability.

Table 4.2 shows the top 15 predictions from the model that also have spectroscopic

redshifts available from HETDEX. This comparison helps identify which predicted LAEs

are reinforced by independent observations.
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TABLE 4.1: Top 15 most confidently predicted LAEs by the classification model. The
table includes each source’s coordinates (RA and Dec), the photometric redshift from
COSMOS2020 (zphot), the i-band magnitude, and the prediction probability (0: LAE,
1: nLAE). Complete table available at: [https://github.com/Onirb/Tese/blob/main/

Tables/tabela completa com probabilidades.csv].

RA (deg) Dec (deg) zphot i band mag prob

149.6052 2.5349 2.0841 25.9542 0.0003
149.8030 1.6994 2.2579 26.5433 0.0005
150.7421 2.7697 2.8810 26.2006 0.0016
150.7462 2.7659 2.4634 27.4887 0.0022
149.7642 2.5542 2.2889 24.9029 0.0035
149.5119 2.1461 2.5392 24.3433 0.0051
150.1451 2.6124 2.1346 25.6657 0.0063
149.9902 1.9977 2.5024 25.6428 0.0082
150.7423 2.2091 2.0528 25.9492 0.0082
150.3735 2.2066 2.7508 25.6328 0.0087
150.6682 1.7012 2.7230 26.1638 0.0090
150.7449 2.7667 2.1973 25.9406 0.0095
149.6809 1.9943 2.6065 26.2841 0.0100
150.5346 2.6408 2.6965 24.9943 0.0110
149.5775 1.6949 2.3068 25.8649 0.0112

TABLE 4.2: Top 15 predicted LAEs with spectroscopic matches from HETDEX.
The table includes RA, Dec, COSMOS2020 photometric redshift (zphot), HET-
DEX spectroscopic redshift (zHETDEX), and model prediction probability(0: LAE,
1: nLAE).Complete table available at: https://github.com/Onirb/Tese/blob/main/

Tables/tabela HETDEX com probabilidades.csv.

RA (deg) Dec (deg) zphot zHETDEX prob

150.2482 2.2772 2.7034 2.8796 0.0440
150.1269 2.3682 2.7841 2.6753 0.1210
150.1157 1.9195 3.2152 3.3174 0.1248
150.2782 2.2524 2.8423 2.6113 0.1254
150.2658 2.3661 2.3766 2.5523 0.1337
150.1989 2.2578 2.6410 2.6106 0.1412
150.1359 2.3131 2.4953 2.6007 0.1616
150.2562 2.3822 2.4029 2.3188 0.1668
150.2027 2.2003 2.5988 2.6330 0.1893
150.1205 2.1923 2.7757 2.6916 0.1926
150.1211 2.2354 2.3764 2.4348 0.1974
149.8765 1.9346 2.1508 2.3867 0.2458
150.2009 2.2258 2.8700 2.4815 0.2594
150.0683 2.2165 2.2655 3.2560 0.3257
150.2540 2.2338 2.0128 0.0000 0.3451

4.2 Regression results

The regression approach involved multiple attempts to optimize the prediction of astro-

physical parameters of LAEs. These attempts included joint regression with single CNN,

[https://github.com/Onirb/Tese/blob/main/Tables/tabela_completa_com_probabilidades.csv]
[https://github.com/Onirb/Tese/blob/main/Tables/tabela_completa_com_probabilidades.csv]
https://github.com/Onirb/Tese/blob/main/Tables/tabela_HETDEX_com_probabilidades.csv
https://github.com/Onirb/Tese/blob/main/Tables/tabela_HETDEX_com_probabilidades.csv
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independent models for each feature, and an integrated approach using redshift predic-

tions as inputs to luminosity.

4.2.1 Independent CNN models for each target

Independent CNNs were developed for each individual target: redshift, equivalent width

(log10(EW0)), and Lyman-α luminosity. This modular approach led to good performance

metrics across most outputs, as each model could specialize in learning the specific pat-

terns relevant to its target. The Figures 4.2-4.7 illustrate the results for each of the three

models.

The redshift CNN achieved a test loss (MAE) of 0.263 and a Root Mean Squared Error

(RMSE) of 0.352. By analyzing the training evolution shown in Figure 4.2, one might

infer that extending the number of epochs could lead to further improvements. However,

another interpretation is that the network architecture may lack sufficient complexity or

information to enhance performance beyond this point. Despite these limitations, the

model predictions remain close to the true redshift values, as illustrated in the histogram

of Figure 4.3.

FIGURE 4.2: Performance of the redshift CNN trained independently. The plot shows the
training and validation MAE over epochs.
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FIGURE 4.3: Histogram of the redshift predictions generated by the independent CNN
model.

For the log10(EW0), the model achieved a test loss (MAE) of 0.266 and an RMSE of

0.315, indicating strong predictive performance for equivalent width. As shown in Fig-

ure 4.4, the training, validation, and test metrics are already closely aligned, suggesting

that further improvements may only be possible by modifying the architecture or provid-

ing additional input features. Furthermore, Figure 4.5 demonstrates that the predicted

values are well aligned with the true labels, reinforcing the model’s reliability.

FIGURE 4.4: Performance of the log10(EW0) model in the independet CNN. The figure
presents the MAE evolution during training and validation.
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FIGURE 4.5: Histogram of the predicted equivalent width values (log10(EW0)) from the
independent CNN.

The Lyman-α luminosity model showed room for improvement, with a test loss (MAE)

of 0.622 and an RMSE of 0.714. As shown in Figure 4.6, the model presents consistently

lower training error compared to validation and test metrics, indicating signs of over-

fitting. This pattern appears early in training and persists throughout, suggesting that

while the CNN is able to learn certain features, it fails to generalize effectively to unseen

data. Consequently, this model yields the weakest performance among the three regres-

sors. This is further reflected in the distribution shown in Figure 4.7, where the predicted

values show larger deviations from the true luminosity values.

FIGURE 4.6: Performance of the Lyman-alpha luminosity model in independent CNN.
The training and validation MAE curves are shown.
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FIGURE 4.7: Histogram of the predicted Lyman-α luminosity values (LLyα) from the in-
dependent CNN in.

4.2.2 Chained regression using redshift predictions as auxiliary input

In this strategy, the CNN trained to predict Lyman-α luminosity received not only image

and tabular data, but also the redshift predictions generated by the corresponding inde-

pendent redshift model from the previous attempt. This chained or ensemble approach

aimed to leverage the relatively strong redshift predictions to improve the more challeng-

ing task of Lyman-α luminosity estimation. The architecture used for this model remains

the same as in the independent setup, ensuring consistency and isolating the effect of the

added input feature.

The inclusion of redshift as an auxiliary input led to a test loss (MAE) of 0.564 and

an RMSE of 0.699, representing a moderate improvement over the independent Lyman-α

model discussed in the previous section. As shown in Figure 4.8, the training error con-

tinues to decrease while the validation and test errors plateau, suggesting that overfitting

remains a concern, likely due to excessive training epochs rather than model capacity.

Additionally, Figure 4.9 shows that, although predictions are better aligned with the true

luminosity values compared to the previous model, there is still noticeable deviation. This

highlights that, despite improvement, Lyman-α luminosity remains the most difficult pa-

rameter to predict, and further enhancements may require architectural changes or the

incorporation of more discriminative features.
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FIGURE 4.8: Performance of the Lyman-α luminosity CNN model trained using red-
shift predictions as auxiliary input. The plot shows training and validation MAE across

epochs.

FIGURE 4.9: Histogram of the predicted Lyman-α luminosities (LLyα) produced using
redshift predictions as auxiliary input to the regression model.

4.2.3 Joint multi-target regression with a single CNN

The final approach involved a single CNN trained to simultaneously predict redshift,

Lyman-α luminosity (LLyα), and logarithmic equivalent width (log10(EW0)), as illustrated

in Figure 4.10. Despite the architectural complexity required to jointly model three differ-

ent outputs, this strategy produced the best overall results among all experiments, partic-

ularly showing a significant improvement in the LLyα predictions. The mean MAE across

all outputs was 0.032, although individual MAEs and RMSEs were not recovered during

training due to technical limitations.
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FIGURE 4.10: Performance of the CNN trained to jointly predict all target features
(Lyman-α luminosity, equivalent width, and redshift) using both imaging and tabular
inputs. The y-axis represents the MAE, and the x-axis shows the training progress over

epochs.

To better understand the model’s behavior, Figures 4.11–4.13 show the histograms of

the predicted values for each output variable. The distributions suggest a better alignment

between the predicted and true values across all three features, when compared to the

previous independent and chained models. These visual results reinforce the conclusion

that the joint multi-target regression architecture achieved the most balanced and robust

performance.

The third attempt proved to be the most successful, as it combined the strengths of the

previous approaches. This ensemble strategy allowed the CNN to leverage the redshift

predictions as additional inputs, enhancing the accuracy of Lyman-α luminosity predic-

tions.
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FIGURE 4.11: Histogram of the redshift predictions obtained from the joint multi-target
CNN regression model. The distribution reflects the model’s output across the test or

prediction set.

FIGURE 4.12: Histogram of the predicted values of the logarithmic equivalent width
(log10(EW0)) from the joint multi-target CNN regression.
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FIGURE 4.13: Histogram of the predicted scaled Lyman-α luminosities (LLyα) produced
by the joint multi-target regression model.
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4.2.4 Summary and comparison of regression strategies

Three regression strategies were explored to predict the redshift, equivalent width, and

Lyman-α luminosity of LAEs using CNNs trained on image and tabular data. The in-

dependent models achieved strong results for redshift and equivalent width, but strug-

gled with LLyα. The chained approach, which incorporated redshift predictions into the

luminosity model, showed modest improvements, indicating that prior information is

valuable. Finally, the joint multi-target CNN achieved the most robust and consistent

performance across all outputs. While individual MAE values could not be extracted for

this last model, both training curves and histogram comparisons revealed more accurate

and stable predictions, particularly for the Lyman-α luminosity. These results suggest that

sharing learned representations across related astrophysical features may help overcome

limitations observed in single-output models.

To illustrate the outcome of the regression process, Table 4.3 presents a random se-

lection of 15 entries from the prediction dataset, showing the Joint multi-target model’s

outputs alongside relevant catalog information. Each row corresponds to a galaxy from

the COSMOS2020 catalog, including its right ascension (RA), declination (Dec), and orig-

inal photometric redshift estimate (zphot). The predicted quantities, redshift, Lyman-α

luminosity (log10(LLyα)), and equivalent width (log10(EW0)), were generated using the

final joint multi-target CNN regression model, which was trained to estimate all three

properties simultaneously. A link to the full table will be available in the appendix.
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TABLE 4.3: Random 15 predictions generated by the joint multi-target CNN regres-
sion model. The table includes each source’s coordinates (RA and Dec), the photomet-
ric redshift from COSMOS2020 (zphot), and both the true and predicted values for red-
shift, Lyman-α luminosity, and equivalent width, complete Table available in [https:

//github.com/Onirb/Tese/blob/main/Tables/Regression Predictions.csv].

RA
(deg)

Dec
(deg) zphot ztrue zpred

log10
(LLyα/erg s−1)

(true)

log10
(LLyα/erg s−1)

(pred)

log10(EW)
(Å)

(true)

log10(EW)
(Å)

(pred)

150.1229 2.2246 2.4845 2.5100 2.5251 42.4935 42.4861 1.8261 1.8300
150.0564 2.6180 3.0475 3.4000 3.4086 42.8525 42.8541 3.0590 3.0689
149.7870 2.1277 2.7850 3.0100 3.0205 42.8055 42.8028 1.9295 1.9378
150.7280 1.9997 0.1497 3.4000 3.4127 42.7323 42.7260 1.7639 1.7727
149.9117 2.0689 0.1666 4.4800 4.4861 43.2836 43.2894 1.7750 1.7880
150.2751 1.6679 2.3983 2.5100 2.5236 42.5337 42.5264 2.3088 2.3145
150.1175 2.2315 2.9241 3.0100 3.0222 42.6930 42.6864 1.9436 1.9517
149.8691 1.7411 4.7405 4.8600 4.8775 42.8049 42.8028 1.5887 1.5971
150.2873 2.7654 2.7743 2.8100 2.8202 42.7626 42.7580 1.9960 2.0044
149.4906 1.8574 3.2314 3.4000 3.4096 42.9485 42.9523 1.8045 1.8128
150.5235 2.2009 2.9960 3.1700 3.1819 42.7859 42.7817 1.7984 1.8071
150.1118 2.0467 3.2046 3.4000 3.4120 42.8114 42.8088 1.7621 1.7712
149.7919 2.7342 4.7040 4.7700 4.7786 43.2523 43.2592 2.4005 2.4145
149.5655 1.6457 2.5112 2.8100 2.8181 42.8258 42.8243 2.3867 2.3946
149.8819 1.7261 0.8306 5.7000 5.7171 42.9270 42.9306 3.0019 3.0147

[https://github.com/Onirb/Tese/blob/main/Tables/Regression_Predictions.csv] 
[https://github.com/Onirb/Tese/blob/main/Tables/Regression_Predictions.csv] 




Chapter 5

Discussion

This chapter discusses the interpretation of findings, model limitations, and their scientific

implications.

5.1 Catastrophic failures

In the analysis of the classification results, the top 5 catastrophic failures for each category

were identified in the first dataset and subsequent datasets. These errors represent in-

stances in which the model made incorrect predictions with the highest confidence, mak-

ing them critical points for evaluation. Since we used 7 models, generated with the same

architecture but varying the nLAE dataset, we obtained 35 catastrophic errors for each

class. This analysis was performed over the test split of each dataset, enabling consistent

comparison with the original values.

The most significant classification errors for nLAEs in the first dataset are detailed in

Table 5.1. These errors were identified by their high confidence deviation, calculated as

the absolute difference between the predicted probability and the true label. Ideally, this

value should be 0.0 for a perfect LAE prediction and 1.0 for a perfect nLAE prediction.

Table 5.5 displays more information for this sources.
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TABLE 5.1: Top 5 catastrophic errors with original class nLAE and predicted class LAE,
obtained from My CNN after tune, displaying the COSMOS2020 ID, the predicted prob-

ability, predicted class, and original class.

ID Predicted probability Predicted class Original class

449920 0.0027 LAE (0.0) nLAE (1.0)

1088508 0.008 LAE (0.0) nLAE (1.0)

1429856 0.0135 LAE (0.0) nLAE (1.0)

238435 0.0182 LAE (0.0) nLAE (1.0)

646115 0.0296 LAE (0.0) nLAE (1.0)

(A) ID: 449920 (B) ID: 1088508 (C) ID: 1429856

(D) ID: 238435 (E) ID: 646115

FIGURE 5.1: RGB images of the Top catastrophic errors for nLAEs. Each subfigure repre-
sents a significant classification error, their true label is nLAE and were predicted as LAE.

All five sources appear to be central galaxies with compact morphologies. Addition-

ally, some exhibit blue central emission, which may have contributed to their misclassifi-

cation. This is because compactness is a morphological feature frequently associated with

LAEs, as further discussed in Section 5.3. Given the limited background in these images,

the black-level calibration applied during preprocessing may not have been sufficient,

potentially affecting the contrast and features the CNN relies on.
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TABLE 5.2: Additional characteristics for the catastrophic failures in nLAEs, all features
are from COSMOS2020, in order ID, photometric redshift (zphot), I-band magnitude and

type of detection

ID zphot I-band Magnitude Type

449920 2.33 24.58 Galaxy

1088508 2.77 25.58 Galaxy

1429856 2.09 25.37 Galaxy

238435 2.30 25.72 Galaxy

646115 2.12 25.78 Galaxy

We extended this analysis across all seven datasets. Table 5.3 presents the top five

nLAE sources with the highest prediction error for each dataset. These are additional

examples where the model exhibited high confidence despite incorrect predictions. While

the photometric redshifts for these sources vary, a considerable number lie in the expected

range of LAEs, which may explain their confusion.
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TABLE 5.3: catastrophic failures over test set for each dataset. Each row shows source
ID from COSMOS2020, dataset, predicted probability, original label, and COSMOS2020

photometric redshift (zphot).

ID dataset prob Original label zphot

968126 2 0.113 nLAE 2.3336

261457 2 0.269 nLAE 2.0547

1240532 2 0.270 nLAE 2.4804

1032976 2 0.281 nLAE 2.3999

494835 2 0.287 nLAE 2.3392

780300 3 0.266 nLAE 5.4621

1181647 3 0.275 nLAE 2.8136

1282519 3 0.362 nLAE 2.7588

1421483 3 0.058 nLAE 5.2143

477419 3 0.076 nLAE 3.0536

633107 4 0.289 nLAE 5.3799

286967 4 0.079 nLAE 2.1565

381141 4 0.099 nLAE 2.4715

519387 4 0.109 nLAE 5.2909

1369189 4 0.120 nLAE 2.1170

1283357 5 0.293 nLAE 4.3753

909664 5 0.063 nLAE 3.0547

850212 5 0.116 nLAE 2.2765

604174 5 0.126 nLAE 2.4289

442841 5 0.169 nLAE 3.0767

1284646 6 0.240 nLAE 2.1275

443616 6 0.244 nLAE 2.6799

606823 6 0.095 nLAE 2.3393

594269 6 0.181 nLAE 2.4510

262013 6 0.184 nLAE 2.1163

374764 7 0.085 nLAE 2.3891

750374 7 0.125 nLAE 2.1535

713788 7 0.128 nLAE 2.6965

694188 7 0.149 nLAE 2.2149

1278510 7 0.223 nLAE 2.0857

The top 5 most confident misclassifications for LAEs, where true LAEs were predicted

as nLAEs, are presented in Table 5.4. These catastrophic failures are characterized by high
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predicted probabilities (close to 1.0), which indicate high model confidence in a wrong

prediction.

TABLE 5.4: Top 5 catastrophic failures for LAEs, predicted class nLAE and true label LAE,
obtained from My CNN after tune. The table includes the COSMOS2020 ID, the model’s

predicted probability, the assigned class, and the true class label based on the SC4K.

ID Predicted probability Predicted class True label

326638 0.9646 nLAE (1.0) LAE (0.0)

1176705 0.9194 nLAE (1.0) LAE (0.0)

1495768 0.8929 nLAE (1.0) LAE (0.0)

1220915 0.8919 nLAE (1.0) LAE (0.0)

511315 0.8764 nLAE (1.0) LAE (0.0)

Figure 5.2 displays the RGB images for each of these top LAE misclassifications. These

visual inspections help assess whether morphological or photometric properties may have

led to the model’s erroneous decisions.

(A) ID: 326638 (B) ID: 1176705 (C) ID: 1495768

(D) ID: 1220915 (E) ID: 511315

FIGURE 5.2: RGB images of the top catastrophic failures for LAEs. All shown sources are
true LAEs that were confidently misclassified as nLAEs.
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Upon examining the images, a common trend appears: all five sources seem to be

contaminated by nearby or overlapping sources, possibly introducing misleading flux or

morphology. Furthermore, as observed in the nLAE analysis, these frames also contain

minimal background, which may impair contrast during normalization and feature ex-

traction.

Table 5.5 presents additional astrophysical characteristics of these sources, offering

further context for their classification difficulty. Notably, none of the sources have x-ray

or radio detections from the SC4K, and most possess strong Lyman-α luminosities and

equivalent widths, which usually align with LAE characteristics.

TABLE 5.5: Additional characteristics for the top 5 catastrophic failures among LAEs. Val-
ues include ID from COSMOS2020, Lyman-α luminosity (LLyα)(from SC4K), equivalent
width (EW0)(from SC4K), SC4K redshift, X-ray and radio detection flags (from SC4K),
and lastly the photometric redshift from COSMOS2020(zphot), some sources from SC4K

do not have a photometric redshift, such as ID:1495768.

ID
log10

(LLyα/erg s−1)

EW0

(Å)
zSC4K Radio xRay zphot

326638 42.9917 280.85742 3.9 no no 3.8054

1176705 42.7816 226.30571 3.1 no no 3.0893

1495768 42.8781 57.660590 5.7 no no -

1220915 43.2163 133.32877 4.7 no no 4.2370

511315 42.9980 90.821320 3.1 no no 3.0228

As the LAE dataset remained fixed across all seven training iterations, while the nLAE

subset was varied, it is expected that the same LAE sources might reappear in multiple

experiments. Table 5.6 compiles the top LAE predictions for each dataset and reveals this

expected redundancy. Recurrent sources suggest consistent model behavior across inde-

pendent trainings, potentially pointing to intrinsic ambiguities in their image morphology

or photometric context.

For example, source 326638 appears in datasets 2, 3, 4, and 5, while 760745 also reoc-

curs in those same datasets. This consistency suggests that the model systematically iden-

tifies similar feature patterns in these objects, despite varying negative examples. Simi-

larly, source 173589 is flagged in four different datasets, reinforcing the notion that certain

LAEs lie near the decision boundary, becoming highly sensitive to small variations in the

training distribution. These results emphasize the need for more diversified labeled LAE

samples to reduce overfitting to specific morphologies or observational artifacts.
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TABLE 5.6: Top LAE predictions across the seven datasets. Each row contains COS-
MOS2020 ID, dataset number, prediction probability (prob), Lyman-α luminosity (LLyα)
(from SC4K), redshift from SC4K (zSC4K), equivalent width (EW0) (from SC4K), radio
and X-ray detection flags (from SC4K), and the photometric redshift from COSMOS2020

(zphot)Repetitions indicate model consistency across different training scenarios.

ID dataset prob
log10

(LLyα/erg s−1)
zSC4K

EW0

(Å)
Radio xRay zphot

166452 2 0.856 42.7748 3.40 89.431940 no no ——–

1232790 2 0.836 42.8919 3.01 692.76923 no no 2.7464

1245590 2 0.834 43.0880 4.08 161.09081 no no 3.9725

326638 2 0.834 42.8317 3.17 82.852780 no no ——–

760745 2 0.857 43.2800 4.48 411.56403 yes no 3.9878

1176705 3 0.887 43.0986 4.60 349.75409 no no 4.4715

326638 3 0.882 42.8317 3.17 82.852780 no no ——–

1232790 3 0.881 42.8919 3.01 692.76923 no no 2.7464

173589 3 0.880 42.6747 3.40 1015.84485 no no ——–

760745 3 0.880 43.2800 4.48 411.56403 yes no 3.9878

173589 4 0.850 42.6747 3.40 1015.84485 no no ——–

1220915 4 0.850 43.3779 4.48 81.907880 no no ——–

1232790 4 0.850 42.8919 3.01 692.76923 no no 2.7464

1491967 4 0.850 43.0263 4.60 117.25982 no no ——–

326638 4 0.850 42.8317 3.17 82.852780 no no ——–

760745 5 0.970 43.2800 4.48 411.56403 yes no 3.9878

326638 5 0.965 42.8317 3.17 82.852780 no no ——–

1379702 5 0.942 42.7465 3.17 52.309050 no no ——–

1176705 5 0.916 43.0986 4.60 349.75409 no no 4.4715

405686 5 0.915 43.1485 4.77 157.72897 no no 0.5270

1402384 6 0.889 42.8381 5.70 512.16528 no no 0.2544

563030 6 0.888 43.0870 3.74 124.19489 no no 3.5006

173589 6 0.888 42.6747 3.40 1015.84485 no no ——–

1096673 6 0.888 42.9698 4.08 52.64120 no no 3.9718

1410092 6 0.888 42.8734 5.70 380.98660 no no 1.2134

1402384 7 0.949 42.8381 5.70 512.16528 no no 0.2544

371340 7 0.908 42.8034 3.74 66.662250 no no 3.1576

173589 7 0.908 42.6747 3.40 1015.8449 no no ——–

217800 7 0.908 43.2588 4.77 706.83423 no no 0.5950

166452 7 0.904 42.7748 3.40 89.431940 no no ——–
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5.2 Impact of data perturbations in the model performance

To assess the robustness of our CNN, I introduced perturbations by training, validating,

and testing on varied nLAE datasets with similar but distinct sources. This approach was

intended to evaluate the consistency of the model’s predictions across different datasets

and to understand how slight variations in input data influence model performance.

A total of seven models were generated, resulting in 24,640 sources simultaneously

predicted as LAEs across all runs. It is considered as LAE any source in which the pre-

diction value is below 0.5. Table 5.7 displays the distribution of the sources in each bin of

probability interval. A total of 45,194 unique LAE prediction after combining the predic-

tions of all models, only marginally different than the 44,295 using only the first dataset

model. With a more conservative approach using a threshold of 0.1, the number of unique

predictions would have been 915 over the 7 datasets.

TABLE 5.7: Distribution of prediction probabilities across 10 bins of probability values,
based on the median score per source over all seven models. This shows the spread of
classification confidence and highlights the proportion of high-confidence LAE candi-

dates.

Bin(probability) Amount
[0.0, 0.1) 915
[0.1, 0.2) 3185
[0.2, 0.3) 6828
[0.3, 0.4) 12598
[0.4, 0.5) 21668
[0.5, 0.6) 26728
[0.6, 0.7) 22957
[0.7, 0.8) 25928
[0.8, 0.9) 65760
[0.9, 1.0) 5259

The metrics were similar across the datasets, which shows that even after training

different models with varying nLAEs sources, the overall performance was maintained.

The average accuracy was 75.84%, as shown in Figure 5.3, and the average F1-score was

75.51%, as shown in Figure 5.4.
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FIGURE 5.3: Accuracy across all datasets, showing that despite varying nLAEs sources
the metrics overall are the same.

FIGURE 5.4: F1-score across all datasets. Consistent with the accuracy, all datasets
showed similar F1-score values.

To further evaluate the performance of the perturbed CNN, the predictions were cross-

matched with the HETDEX [109] survey, in a similar approach as in the classification re-

sults, which provides spectroscopic confirmation of LAEs. Out of the 45 matched sources,

the confusion matrices for each perturbed dataset are shown in Figures 5.5a to 5.5g. The

performance varied across the perturbed datasets, with true positive rates ranging from

21 to 26 and false negative rates from 13 to 18.
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(A) Dataset 1. (B) Dataset 2.

(C) Dataset 3. (D) Dataset 4.

(E) Dataset 5. (F) Dataset 6.

(G) Dataset 7.

FIGURE 5.5: Confusion matrices for each of the seven classification datasets, evaluated
using 45 crossmatched sources from the HETDEX survey. These visualizations highlight
the consistency and variation in classification outcomes across different negative (nLAE)

sample configurations.
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The correlation matrix of predictions across them (Figure 5.6) shows high correlation

among the predictions from different datasets, with values ranging from 0.85 to 0.95. This

underscores the insensitivity of the models to the perturbations applied.

FIGURE 5.6: Correlation matrix of classification probabilities across the seven perturbed
datasets. Each cell indicates the Pearson correlation coefficient between the predicted
probabilities from different models, revealing strong consistency despite the changes in

negative class composition.
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Table 5.8 compares key metrics among all datasets. Notably, precision remained high

across all perturbed datasets, indicating that it is usually correct when the model predicts

a source as LAE. However, recall had lower values with range from 53% to 66% while

accuracy reaching a maximum of 62%, and F1-score ranging in 65% to 75%. These results

show that despite changing the nLAE dataset each models achieve similar results.

TABLE 5.8: Summary of classification performance metrics for the original dataset
(Dataset 1) and each of the six perturbed datasets over the HETDEX crossmatched
sources. The table reports true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN), along with derived metrics: precision, recall, accuracy, and F1-
score (all in percentage). Despite variations in the nLAE class across datasets, the models
maintain high precision and comparable F1-scores, though recall and overall accuracy

remain limited due to false negative rates.

Dataset TP TN FP FN Precision (%) Recall (%) Accuracy (%) F1-Score (%)

1 21 2 4 18 84.00 53.85 51.11 65.62
2 24 1 5 15 82.76 61.54 55.56 70.59
3 26 2 4 13 86.67 66.67 62.22 75.36
4 22 2 4 17 84.62 56.41 53.33 67.69
5 22 3 3 17 88.00 56.41 55.56 68.75
6 21 4 2 18 91.30 53.85 55.56 67.74
7 21 3 3 18 87.50 53.85 53.33 66.67
Mean – – – – 86.41 57.51 55.24 68.92

• Precision consistency: Across all perturbed datasets, precision remains high, with

a maximum of 91.30%. This indicates that the model’s positive predictions are gen-

erally accurate, even when trained on different datasets with similar data.

• Recall: All datasets had lower values for recall compared with precision, which

displays the difficulty in classifying a source as nLAE.

• Accuracy: The highest accuracy observed is 62.22% which is in general a low value,

and that is caused by the bad nLAE predicitons metrics.

• F1-Score: The F1-Score, balancing precision and recall, varies across the datasets,

reaching a maximum of 75.36% and a minimum of 65.62%.

The analysis of perturbation effects on model predictions reveals the significant im-

pact of training data variability on the stability and reliability of LAE classification. The

similarities observed across different datasets underscore the models’ low sensitivity to

changes in the input data, more specifically the nLAE data.
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Furthermore, the cross-match results with the HETDEX [109] survey provide a bench-

mark for evaluating the models’ real-world applicability. Although some perturbed datasets

showed improvements in certain metrics, the overall variability suggests that, despite be-

ing precise, the CNN misses some LAEs, and is overall conservative, which could be

improved with more LAE sources to train the architecture, or more information encoded

as color from other filters, or feature values.

5.3 Interpretability analysis of CNN activations

This section presents the interpretability analysis of the CNN used for classification. By

leveraging saliency maps, this work aims to uncover the underlying mechanisms by

which the CNN makes its predictions. Saliency maps highlight the regions of the in-

put image that most strongly influence the model’s output by computing the gradient of

the prediction with respect to the input pixels. Understanding these mechanisms is essen-

tial, as they may correspond to physical conditions that facilitate the escape of Lyman-α

photons

Figure 5.7 shows the stacked saliency maps generated from the LAE test set for each

dataset. Although the same LAE sources are used across all datasets, each model inter-

prets them slightly differently. However, a common pattern emerges: most maps exhibit

strong activation centered on the main source, along with some surrounding activation.

This suggests that features related to the central galaxy and its spatial compactness are

the primary focus of the model.

Figure 5.8 shows the equivalent maps for nLAEs. Although the sources vary across

datasets, a similar structure appears. These maps tend to show little or no central activa-

tion, with most saliency concentrated in the periphery. This suggests the model bases its

classification of nLAEs more on surrounding features or background patterns rather than

properties of a central object.
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(A) Dataset 1 (B) Dataset 2 (C) Dataset 3

(D) Dataset 4 (E) Dataset 5 (F) Dataset 6

(G) Dataset 7

FIGURE 5.7: Stacked saliency maps for LAE sources across all seven datasets. Most show
central activation, highlighting the importance of the core region and compact morphol-

ogy in the CNN’s decision process.
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(A) Dataset 1 (B) Dataset 2 (C) Dataset 3

(D) Dataset 4 (E) Dataset 5 (F) Dataset 6

(G) Dataset 7

FIGURE 5.8: Stacked saliency maps for nLAE sources across all datasets. Activations are
typically off-center, suggesting that classification is based on the presence or absence of

peripheral or background features rather than a prominent central source.
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From these saliency map stacks, one can infer that the CNN primarily relies on spatial

structure for its classification decisions. For nLAEs, the model appears to react to missing

or diffuse information around the central area, while for LAEs, central compactness and

brightness seem to be the key signals.

To further explore the classification failures, we examine stacked saliency maps of the

top five misclassified sources from each dataset. Figure 5.9 shows the stack of catastrophic

nLAE errors that were incorrectly predicted as LAEs. These errors typically exhibit central

activations, contrary to most nLAEs, suggesting that the CNN was ”tricked” by sources

mimicking LAE-like central brightness.
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(A) Dataset 1 (B) Dataset 2 (C) Dataset 3

(D) Dataset 4 (E) Dataset 5 (F) Dataset 6

(G) Dataset 7

FIGURE 5.9: Stacked saliency maps of the top catastrophic nLAE misclassifications across
all datasets. Although the true label is nLAE, the CNN predicted LAE, likely due to
the presence of central activation together with some peripheral activation resembling

compact LAEs.

Figure 5.10 presents the corresponding maps for LAEs misclassified as nLAEs. These

typically show weak or no activation in the center and stronger signals in the surrounding

area. This may reflect confusion caused by nearby sources, making the central LAE less

distinct to the CNN.
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(A) Dataset 1 (B) Dataset 2 (C) Dataset 3

(D) Dataset 4 (E) Dataset 5 (F) Dataset 6

(G) Dataset 7

FIGURE 5.10: Stacked saliency maps of the top catastrophic LAE misclassifications across
all datasets. Although the true label is LAE, the CNN predicted nLAE, often due to a lack

of central activation, possibly caused by blending or confusion with nearby sources.



Chapter 6

Conclusion and future directions

This work developed and tested Deep Learning models to identify and extract physical

properties of Lyman-α emitters, using only broadband photometric data. Through the

application of CNNs to RGB images constructed from g, r, and i bands, it was possible to

classify sources as LAEs or nLAEs, and predict features such as redshift, Lyman-α lumi-

nosity, and equivalent width.

The classification model achieved an average accuracy of 75.84%, demonstrating the

feasibility of detecting LAEs similar to those in the SC4K sample using limited photo-

metric information. The regression models predicted redshift and Lyman-α luminosity

(with robust scaling) and equivalent width (with log scaling) with competitive perfor-

mance, achieving average MAE as low as 0.032. These results highlight the importance of

preprocessing strategies and input representation in optimizing model outcomes.

A comparison between multiple known CNN architectures and custom models showed

that task-specific designs can outperform general-purpose deep networks when data is

limited in spectral depth or resolution. Despite working with just three photometric

bands, the CNNs effectively learned spatial patterns that distinguish LAEs from nLAEs.

The perturbation analysis, conducted by training seven CNNs with identical archi-

tectures but varied nLAE datasets, revealed the robustness of the model predictions. A

total of 24,640 sources were consistently classified as LAEs across all models, and perfor-

mance metrics such as F1-score remained stable, with an average value of 75.51% over the

test dataset. This confirms that the models are largely insensitive to small changes in the

negative class sampling.

Analysis of saliency maps revealed that the models focus strongly on the central region

83
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of LAEs, usually compact and bright, while nLAEs show more diffuse or peripheral acti-

vation. This spatial pattern is consistent with physical expectations and literature reports

that LAEs tend to be more compact than typical nLAEs [110]. Catastrophic classification

errors further support this conclusion: most occurred when an LAE had saliency maps

resembling nLAEs (i.e., lacking central activation) or vice versa.

These findings reinforce the conclusion that the CNNs are not merely ”black boxes”

but instead learn physically interpretable features, such as spatial size and central bright-

ness. Nevertheless, misclassifications suggest that some information necessary for perfect

separation may be missing from the limited gri bands or lost during preprocessing.

Although the saliency analysis was only applied to the classification models, extend-

ing this approach to the regression networks could yield additional insight into how the

CNN estimates continuous physical parameters and where these predictions may fail.

Future directions: To enhance the classification and regression capabilities, future ef-

forts could focus on several aspects. First, integrating additional photometric bands or

constructing composite features that preserve RGB format could enrich the input infor-

mation. Second, improving background calibration (e.g., black-level subtraction) and

exploring different image resolutions may help capture finer features. Third, applying

and comparing multiple saliency methods, could further elucidate the model’s decision-

making. Finally, the generalizability of these models to new surveys, such as Euclid [31],

should be tested. These CNNs may serve as a foundation for scalable candidate selection

and first-guess characterization in large photometric datasets.

In conclusion, this study demonstrates the potential of deep learning models to extract

meaningful astrophysical information from minimal data. With careful model design and

interpretation, CNNs can become powerful tools in the search and study of high-redshift

galaxies in current and upcoming surveys.
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C. Olsen, S. Pearson, I. V. Pedraza, M. Popinchalk, L. C. Popović, T. A. Pritchard,
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compactness and morphologies of typical Lyman α emitters from z ∼ 2 to ∼ 6

,” Monthly Notices of the Royal Astronomical Society, vol. 476, no. 4, p. 5479–5501,

feb 2018. [Online]. Available: http://dx.doi.org/10.1093/mnras/sty281 [Cited on

page 84.]

https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1706.03825
http://dx.doi.org/10.1093/mnras/sty281

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Data
	2.1 Catalogs and surveys
	2.1.1 COSMOS2020
	2.1.2 SC4K

	2.2 Data processing
	2.3 Image construction

	3 Methods
	3.1 Deep learning
	3.1.1 Architecture
	3.1.2 Activation functions in neural networks
	3.1.2.1 ReLU (rectified linear unit)
	3.1.2.2 Sigmoid
	3.1.2.3 Softmax
	3.1.2.4 Linear

	3.1.3 Metrics

	3.2 Methodology overview
	3.2.1 Classification 
	3.2.1.1 Model architecture
	3.2.1.2 Fine-tune
	3.2.1.3 Model comparison
	3.2.1.4 Perturbation analysis and saliency maps

	3.2.2 Regression
	3.2.2.1 Independent CNN models for each target
	3.2.2.2 Chained regression using redshift predictions as auxiliary input for luminosity
	3.2.2.3 Joint multi-target regression with a single CNN
	3.2.2.4 Performance evaluation



	4 Results
	4.1 Classification results
	4.2 Regression results
	4.2.1 Independent CNN models for each target
	4.2.2 Chained regression using redshift predictions as auxiliary input
	4.2.3 Joint multi-target regression with a single CNN
	4.2.4 Summary and comparison of regression strategies


	5 Discussion
	5.1 Catastrophic failures
	5.2 Impact of data perturbations in the model performance
	5.3 Interpretability analysis of CNN activations

	6 Conclusion and future directions 
	Bibliography

