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Abstract

AetherGeo is a standalone piece of software (current version 1.0) that aims to enable the
user to analyze raster data, with a special focus on processing multi- and hyperspectral
images. Being developed in Python 3.12.4, this application is a free, open-source alternative
for spectral analysis, something considered beneficial for researchers, allowing for a flexible
approach to start working on the topic without acquiring proprietary software licenses. It
provides the user with a set of tools for spectral data analysis through classical approaches,
such as band ratios and RGB combinations, but also more elaborate techniques, such
as endmember extraction and unsupervised image classification with partial spectral
unmixing techniques. While it has been tested on visible and near-infrared (VNIR), short-
wave infrared (SWIR), and VNIR-SWIR datasets, the functions implemented have the
potential to be applied to other spectral ranges. On top of this, all results can be visualized
within the software, and some tools allow for the inspection and comparison of spectra and
spectral libraries. Providing software with these capabilities in a unified platform has the
potential to positively impact research and education, as students and educators usually
have limited access to proprietary software.

Keywords: hyperspectral imaging; target identification; image classification; dimensionality
reduction; endmember extraction; spectral analysis

1. Introduction
Using data that describe variations in how each given material interacts with light

across different wavelengths is a common technique for characterizing materials at any
scale [1,2]. Thus, optical remote sensing centers around acquiring variations in how the
surface material interacts with the light from the sun. Machine learning (ML) algorithms
are typically applied to process such remote sensing data due to the high quantity of data,
and this is a topic that has experienced exponential growth in the last few years [3].

Multiple sensors onboard different satellites are available for data acquisition by
academic and non-academic communities, either multispectral or hyperspectral [3], and
remote sensing techniques have shown great potential in identifying variations in materials
present in the ground, therefore having extensive potential for geological applications [4,5].
One of the main current problems is the limited access potential users have to tools that
enable efficient processing and analysis of such data in free, all-in-one software. For this
reason, building a tool focused on geological applications and data analysis seems to meet
the demand for specific applications that are free and open-source [6].
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In recent years, a limited number of software programs have been developed to
provide possible users access to such tools, especially outside the scope of proprietary
packages such as “Environment for Visualizing Images” (ENVI) [7]. Some alternatives
have recently been proposed [8–11]. We believe that such projects are a step toward giving
research and educational communities access to free open-access software.

HypeRvieW [8] is a license-free software that runs on the Linux operating system.
While it is developed using the C language, it provides great capabilities for spatial-spectral
supervised classification. Another important feature is the integrated 2D noise correction
function, which uses wavelets and soft-thresholding [12]. Its main limitation is the lack
of compatibility with more common file types for remote sensing optical images from
satellite missions.

HypPy [9] provides a different range of tools, focusing on taking advantage of the
physical meaning of the wavelength values in place of band numbers. Another advantage is
compatibility with all default ENVI file formats. While not focused on typical endmember
extraction, it can perform mapping based on variations in central wavelength position and
relative depth, making it a valuable tool for spectral analysis.

HYPER-Tools [10] is a MATLAB-based [13] interface that provides extensive tools
for the preprocessing and analysis of spectral data. For the second component, the func-
tions range from dimensionality reduction, endmember identification, clustering, and
classification. The main limitation is the dependency on proprietary software.

EnMap-box [11] is a plugin for QGIS that provides an extensive set of tools for hy-
perspectral and multispectral image analysis in a Geographic Information System (GIS)
environment. One of the main advantages is the time series visualization function. Though
developed to focus on spectral analysis in a broader sense, it also provides some specific
tools for geological applications across multiple fields of study. One of the main contribu-
tions of AetherGeo is providing a 3D interactive point cloud tool for endmember selection.

Considering some of the limitations identified in other free alternatives, we propose
a new software, AetherGeo, with similar capabilities to the mentioned tools but with
significant new functions: (i) a higher number of tools/algorithms for dimensionality
reduction, (ii) density-based clustering algorithms for classification, and (iii) 3D point cloud
selection for endmember extraction. Additionally, AetherGeo is not limited by proprietary
components in any of its functionalities, making it a pertinent contribution to the current
state-of-the-art technology. A more detailed comparison with other alternatives can be
found in Appendix A.

This work aims to present the AetherGeo software, its interface, main components, and
functionalities, while showcasing some processing workflows that can be achieved entirely
within the software. The current state of the software allows for the use of classical remote
sensing capabilities, such as dimensionality reduction algorithms [14], band ratios [15],
clustering [16], and endmember extraction and classification [17]. The last-mentioned
techniques have shown extensive potential across multiple geological applications [18,19].
Additionally, AetherGeo serves as a tool for testing and implementing advanced analysis
algorithms in the future and, no less importantly, implementing preprocessing algorithms
essential for addressing the range ambiguity and noise associated with sensor data [20–22].

Overall, this free, open-source software can serve as an alternative to proprietary
software for dimensionality reduction, endmember extraction, spectral analysis, and image
classification of multi- and hyperspectral data, with a special focus on (but not limited
to) geological applications. The user-friendly interface (GUI) allows it to reach a broader
audience with ready-to-use tools and no programming knowledge required. Additionally,
the software can be installed on Windows via an executable installer (https://www.fc.
up.pt/RS-GISLab/aethergeo.html, accessed on 23 May 2025). As for users with more

https://www.fc.up.pt/RS-GISLab/aethergeo.html
https://www.fc.up.pt/RS-GISLab/aethergeo.html
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programming experience, since the program is open source, there is the opportunity to use
the functions provided in independent programs/workflows or make alterations to those
functions based on user-specific needs.

2. Spectral Data Analysis
“Light” is commonly used to describe the visible component of the electromagnetic

spectrum, but in reality, optical data acquired with sensors can span more than the visible
component, something important for the characterization of materials and commonly used
for the differentiation of minerals in geological applications (Figure 1) [23].

This ability to characterize materials is associated with light’s interactions with materi-
als, which vary based on their chemical and physical properties. For this reason, the use of
optical data for characterization via remote sensing is a topic that has been used for a long
time in multiple domains of study, especially those related to remote sensing [2,24,25]. The
launch of the Hyperion-01 sensor [26] marked a significant advancement in the application
of hyperspectral data for different fields of study, with a special emphasis on environmen-
tal and geological applications [5,27]. Recent advancements in sensor technology, noise
levels, and the launch of new satellites due to “Precursore IperSpettrale della Missione
Applicativa” (PRISMA) and “Environmental Mapping and Analysis Program” (EnMap)
missions not only provide easier access to quality data but also incentivize the need to
take full advantage of these data, which have a lot of potential but require more detailed
processing due to their high complexity.

  
(a) (b) 

Figure 1. (a) Almandine mineral. (b) Respective infrared spectrum [28].

It is also important to introduce the difference between multispectral and hyperspectral
data (Figure 2). The first one is better described as each pixel having a discrete set of
associated variables (based on the number of bands), while in the other case, the bands are
narrow (2–10 nanometers), and therefore, there is a large number of bands covering the
zone of the electromagnetic spectrum being measured [29,30].

This continuous property of the spectra associated with hyperspectral data makes them
a powerful tool for earth surface characterization [31], and therefore, they have significant
potential for geological applications. The capacity for academic and non-academic commu-
nities to have access to such data covering extensive areas has been greatly improved by
the recent PRISMA and EnMap, with the added benefit of these products being commonly
provided with level 2A and, therefore, having already been corrected for atmospheric
effects, making integration with the rest of the analysis workflows faster and easier.

Additionally, access to hyperspectral satellite data is expected to increase in the future
due to new missions such as the Copernicus Hyperspectral Imaging Mission for the Envi-
ronment (CHIME) by the European Space Agency (ESA), which consists of two satellites
(CHIME-A and CHIME-B) providing systematic hyperspectral data [32].
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Figure 2. Comparison of multispectral and hyperspectral imaging [33].

Though sensors onboard unmanned aerial vehicles (UAVs), aircraft, and spacecraft
can acquire such images, access to proper techniques for processing and inspecting such
data is essential for retrieving significant information. Traditional techniques, such as
false color RGB combinations, allow for fast, somewhat intuitive evaluation of the overall
scenery but lack concrete interpretability of results and capabilities to consider more than
three bands.

It is also common to use unsupervised learning algorithms when analyzing spectral
data since they provide data-driven results that uncover complex links in data [34] without
requiring labeled data. The most commonly used unsupervised approaches for analyzing
remote sensing optical data are clustering and dimensionality reduction algorithms, the
latter being especially important for hyperspectral data due to what is described in the
literature as the curse of dimensionality [35].

Another alternative is spectral unmixing, especially algorithms under the category
of partial spectral unmixing, since they do not rely on having the full information for
each component present in the image [36], something unreasonable for most geological
applications. These algorithms focus on classifying each pixel of an image based on the
likelihood of a given input spectrum being present.

There are two approaches for selecting the input spectra for spectral unmixing. The
first consists of importing the spectra from an already existing spectral library [28]. The
second relies on finding spectrally pure pixels within the image. Retrieving these pure
independent components, commonly called endmembers, from the image itself has the
advantage that the spectrum being assumed as a pure material in the image is already
adjusted for variations in material composition, sensor noise, and spectral shifts, in this
way overcoming typical limitations associated with this type of analysis [37]. The software
AetherGeo allows the user to undertake both approaches.
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3. Software Introduction
The current version (v1.0) of the software allows the user to analyze data in the

form of an image. This is done with a focus on the analysis of spectral data (multi- and
hyperspectral). Handling the high-dimensional datasets associated with these data is
challenging, but the user must have access to adequate analysis and visualization tools.
For this reason, the software visualization approach is pixel-based but saves the geospatial
metadata of the original file to any output file. This allows for interoperability with
GIS software.

Regarding image visualization, after importing a raster file (Figure 3A), the user can
also change the bands displayed as an RGB combination (Figure 3C), a common tool for
inspecting spectral data [38,39].

 

Figure 3. AetherGeo’s main interface. (A) Input and layer selection. (B) Icon bar functions. (C) Display
settings: (C1)—RGB combination selector; (C2)—Image adjustment. (D) Main data processing functions.

Continuing with this approach, the icon bar (Figure 3B) in the top part, for now, has
a total of three functions. The first one allows the user to generate a two-dimensional
plot showing the relationship between components of the data, allowing for selection and
visualization of the selected pixels. The second and third functions allow the user to access
the user guide and license, respectively, which can be accessed by clicking the respective
icons (Figure 4a,b) on the software.

  
(a) (b) 

Figure 4. (a) Help button, for opening the user guide. (b) License button.

On the right side of the screen is a toolbar for accessing the different available data
processing tools (Figure 3D).

To achieve all the functionalities, the Python language [40] was used in conjunc-
tion with different packages, such as Matplotlib 3.5.0 [41], NumPy 1.23.0 [42], Raste-
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rio 1.2.0 [43], Spectral 0.22.1 [44], scikit-learn 1.0.0 [45], Umap 0.5.0 [46], SciPy 1.7.0 [47], scikit-
image 0.19.0 [48], h5py 3.6.0 [49], pyproj 3.3.0 [50], OpenGL 3.1.5 [51], and PyQt6 6.4.0 [52].

The current version supports TIF, DAT, and HE5 files for image inputs. As for spectral
libraries, it currently supports SLI and (.txt) files. All outputs are saved as TIF files.

4. Related Software Tools
This section focuses on the different tools currently available and is subdivided in the

same order as those categories displayed in the software. Table 1 comprises the different
functions available in the current state of the software. More in-depth explanations for
most function groups can be found in their respective subsections.

Table 1. Software’s main functions.

Function Group Function Description Input

Icon Bar
2D Plot Select points from the image based on

the associated information Image

User Guide Opens the user manual -----
License Opens the license description -----

Preprocessing
Normalize data [0, 1] pixel-wise normalization Image

Attribute Wavelengths Add wavelength metadata to the
image Image + Select Satellite

Dimensionality
Reduction

Principal Component Analysis [53]

Reduce the amount of data while
maintaining the most significant or

independent features.

Image
Mask (optional)

Number of components to be kept

Independent Component
Analysis [54]

Non-Negative Matrix
Factorization [55]

Endmember Extraction

Pixel Purity Index Identify the most extreme pixels in a
given image

Image
Mask (optional)

Number of projections

Generate Point Cloud
Generates a 3D embedding of the data

from where the user can extract
endmembers

Image
Mask (PPI)

Spectral Unmixing Spectral Angle Mapper [56]

Attributes a value to each pixel based
on the angular distance between the

pixel spectra and the given input
spectra

Image
Input spectra

Clustering

K-Means [57] Performs clustering based on distance
from the cluster centroid

Image
Mask (optional)

Number of classes

Ordering Points to Identify Cluster
Structure [58]

Performs clustering based on varying
density zones

Image
Mask (optional)

Minimum samples
Xi

Minimum cluster size

Mean Spectra from Cluster
Saves a spectral library based on the
mean spectra for each cluster from

previous functions

Image
Clustering results

Spectral Libraries

Import Library Enables the user to import spectral
libraries File path

Spectra Analyst
Visualization tool for spectral libraries,

their components, and respective
analysis

-----

Others Band Ratios Perform calculations based on pixel
values for input bands Image

4.1. Preprocessing

This category currently has two different functions. The first enables the user to
generate a layer composed of a normalized version of the input data. This normalization
is conducted through a process that sets the lowest value to 0 and scales the other bands
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proportionally so that the highest possible value is 1, thus normalizing the vector of band
values associated with each pixel [59]. This process is important for minimizing the effects
of light intensity changes across the scene and maximizing the focus on the structure of the
spectrum itself.

The second function enables the user to attribute the wavelength metadata to an image
if that given image lacks previous wavelength metadata and the number of bands associated
with it is the same as the number of bands for the selected sensor. This attribution is
important for later stages to generate proper spectral libraries with correct wavelength data.

4.2. Spectral Dimensionality Reduction

The following group of functions is built around techniques for dimensionality reduc-
tion. For any of the functions under this category, the user can choose a layer to be used as
input, another layer to be used as a mask (optional), and a given number of components to
be present after the reduction.

Three different algorithms are implemented to achieve this task: Principal Component
Analysis (PCA) [53], Independent Component Analysis (ICA) [54], and Non-negative
Matrix Factorization (NMF) [55]. After running any of the functions, the user can generate
a graph representing a significance value for each of the new bands. For the case of PCA,
the software outputs a graph based on the explained variance ratio of each component
(Figure 5); for ICA, a kurtosis value is used [54]; and a significance value, which represents
how much each given feature is present across the entire dataset, based on the L2 norm of
matrix W [60] is used in the case of NMF.

 

Figure 5. Example of PCA explained variance ratio graph for seven components.

The first two described functions are already well-established in the remote sensing ge-
ological application literature [14]. On the other hand, NMF is not as established for this spe-
cific application, despite showing promising results both for dimensionality reduction [55]
and endmember extraction and classification [61]. The NMF algorithm also has several
advantages due to its nature of working with non-negative values (reflectance values are
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always positive), as it always generates positive results, making preserving the physical
meaning of the reflectance values easier. These constraints regarding potential negative
values in the input dataset are also essential for achieving efficient computational times.

4.3. Band Ratios

The application of band ratios to retrieve information from spectral data has applica-
tions in all remote sensing fields, being an important feature with extensive application in
the geologic context [2,15]. This function is added in a context where the user can select
from the layer in a given file and a set group of basic mathematical procedures, allowing for
math calculations that include sum, subtraction, multiplication, and division of different
bands, generating an output file composed of a single layer. This output file can be further
inspected based on value variations across the image using the 2D plot function available
in the icon bar.

4.4. Spectral Library Management and Visualization

An important feature when working with hyperspectral and multispectral data is the
visualization of spectral libraries (Figure 6). This is the term for files containing groups
of different spectra from previous studies, such as open-access libraries resampled for
different satellite sensors [62] or extracted from an image.

 

Figure 6. Comparison between spectra using the “Spectra Analyst” tool. The spectra displayed
correspond to the selection on the left panel.

In this tool, the spectral angle mapper (SAM) algorithm [56,63] can also be used to
measure the angle between two selected spectra. An angle of zero degrees means the
spectra are precisely equal; as the angle increases, the spectra are less similar.

4.5. Endmember Extraction

The only currently available tool for spatial dimensionality reduction is the pixel
purity index (PPI). This algorithm focuses on attributing a purity index for each pixel of
a given image. This is an important step in finding the most unique pixels most likely to
correspond to pure material [37]. To achieve this task, the algorithm compares each image
pixel against a group of vectors (skewers) and classifies its likelihood of being pure based
on a threshold set by the user [30]. After a selected number of iterations, the output is a
binary layer based on whether pixels are considered pure or not.
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To retrieve the pure spectra directly from the image, the “Point Cloud Extraction” func-
tion allows the user to select the desired input files and generate a three-dimensional point
cloud based on Uniform Manifold Approximation and Projection (UMAP) embedding [46].

From the pop-up window (Figure 7), the user can either run the automatic selection
of the Ordering Points to Identify Cluster Structure (OPTICS) algorithm [58] to perform
density-based clustering (see Section 4.7) or manually select multiple regions in the point
cloud, forming clusters to extract their representative spectra. With this workflow, the
user can inspect each endmember spectrum and save the results as a spectral library for
future use.

  
(a) (b) 

 
(c) 

Figure 7. (a) Instruction menu for endmember extraction. (b) Point cloud selection (purple
color represents the points selected as endmember). (c) Visualization of the respective selected
endmember spectra.
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4.6. SAM

Currently, SAM is the only algorithm available for classification based on specific
spectral inputs. Considering a given layer (corresponding with raster spectral data) and
a spectrum corresponding to a given endmember, the SAM algorithm attributes a value
to each pixel based on the similarity between the pixel and the input spectrum. It is
assumed that a higher similarity between both spectra indicates a higher likelihood of the
endmember material being present. The SAM algorithm is described in Equation (1) [63]:

∠(x, y) = arccos
x·y

∥x∥∥y∥ (1)

where x and y are vectors composed of [x1, x2, . . ., xn] and [y1, y2, . . ., yn], respectively,
and represent the array of reflectance values associated with a given pixel and the array of
reflectance values associated with a given endmember.

The usage of this algorithm for geological applications is common due to the reliability
around light and angle deviations across the landscape [27,64].

The endmember used as input can be a spectrum from a spectral library, such as the
United States Geological Survey (USGS) open-access library [28]. Another alternative is to
generate a spectral library composed of the pure components present in a given image. This
approach shows promising results since it is robust against sensor noise and deviations of
the spectra [37].

A typical workflow for classification after endmember extraction can be seen in Figure 8.

 

Figure 8. Workflow for classification using endmember extraction and spectral unmixing.

The spectral dimensionality reduction step is not mandatory but is highly recom-
mended, especially for hyperspectral data, due to what is known in the literature as the
curse of dimensionality [35].

Appendix B provides a practical example of this workflow with more optional steps
regarding preprocessing and final data inspection. It shows how to use multiple functions
to achieve classification based on an endmember extracted from the image, while starting
only with a satellite image product without previous information or processing.

4.7. Clustering

Another implemented alternative is to use unsupervised classification clustering
techniques [65] to classify a given image. To achieve this task, OPTICS [58] was the main
algorithm selected for clustering due to its similarity with density-based spatial clustering
of applications with noise (DBSCAN) [66]. DBSCAN has been proven useful for analyzing
geological [67] and spectral data [68]. However, OPTICS has the advantage of having a
higher degree of interpretation due to having fewer parameters set by the user [69], with the
main ones being the “Minimum samples”, which refers to the minimum number of points in
a neighborhood for a point to be considered a core point, and “Xi”, a parameter that controls
the model’s sensitivity to changes in point density, therefore affecting cluster boundaries.

K-means clustering is also implemented in AetherGeo in the form of k-means++ [57].
Due to this algorithm’s fast processing of extensive datasets, K-means is ideal for processing
remote sensing data, providing the user with clustering results that segment the data into
classes with a higher degree of similarity.
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It is also important to mention that the last available function, “Retrieve spectrum
from cluster”, allows the user to extract the mean spectrum for each cluster generated by
the previously selected clustering algorithm. Thus, this function allows for a more detailed
interpretation, especially when used in conjunction with the “Spectral library management
and visualization” class. Figure 9 gives an example result from clustering with K-means.

 

(a) (b) 

Figure 9. (a) Parameter and layer selection menu. (b) Clustering results before saving the image.

5. Discussion
The current version of AetherGeo is mainly intended to work with geospatial data,

but the visualization is pixel-based and not georeferenced. For the results generated by
any analysis to have spatial meaning, all necessary metadata for georeferentiation is saved
in conjunction with any new layer created. Therefore, all the output images generated by
AetherGeo can be later analyzed in a GIS environment.

Compared with other alternatives, especially other free, open-source projects [8–11],
it is important to highlight that AetherGeo provides the user with extensive tools for
endmember extraction from a 3D point cloud, something that the other free software
alternatives described do not offer. Other contributions of AetherGeo for state-of-the-art
geological applications are as follows: (i) AetherGeo offers per-band significance graphs
for each dimensionality reduction technique; (ii) it is one of the few software that offers the
NMF algorithm for dimensionality reduction, having potential for geological application;
(iii) AetherGeo is the only software that allows intuitive and interactive 3D point cloud
extraction with embedding resulting from UMAP, which provides great capabilities to
preserve local and global data structure [46]; (iv) it provides density-based clustering for
image classification and endmember extraction; (v) AetherGeo offers a 2D plot function
that enables the user to select pixels based on their associated values.

Figure A1 of Appendix B shows a more detailed workflow using multiple functions to
achieve image classification based on an endmember extracted from a given image and
only using such an image as a starting point (without previous information), highlighting
how multiple functions can be used together to achieve a final classification result, and also
serves as a guide for anyone learning how to use the software.

Additionally, all the tools in AetherGeo are provided without any dependency on
proprietary packages or software, and the user can modify any of its components without
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any proprietary license. In this way, it differs from an available alternative [10] that runs
on MATLAB, which requires a full license. AetherGeo, built in Python, provides access to
state-of-the-art libraries, especially for machine learning.

Though the current version does not include any specific algorithm for noise correc-
tion, we intend to explore some alternatives currently present in the literature [20–22] in
the future and subsequently add some functions to the preprocessing group regarding
such matters.

Regarding the potential for geological applications, the capabilities of AetherGeo
software can be expanded to include more than satellite data, such as UAV, airborne, and
laboratory data. Since the software is developed to extract information from images, the
scale of work is defined by the capabilities to acquire corrected images, which, in the
case of particular sensors for UAV, airborne, and laboratory applications, may require
specific preprocessing with software developed for the specific sensor. Even though the
image analysis functions were tested in images containing data from the “visible and near-
infrared” (VNIR) and “short-wave infrared” (SWIR), they can also be tested and applied
to other spectral ranges. Due to the flexibility of working with different spectral ranges
and image scales, we believe this software provides helpful analysis tools across different
geological applications. Additionally, since hyperspectral data can be helpful in many
areas of expertise, the hyperspectral image analysis features available in AetherGeo can be
explored by specialists in other fields of study.

Another topic that has been discussed extensively in the literature is that even though
many algorithms have been developed, they tend to be difficult to test due to either
limitations in testing data or limitations in access and applicability by other experts. For
this reason, building an intuitive layout in the form of a GUI (Graphical User Interface)
enables experts from different areas to have access to multiple functionalities and algorithms
without requiring extensive programming knowledge or other complications.

In addition to improving accessibility, the software also contributes to facilitating
reproducibility and consistency in research by providing a standardized environment where
procedures can be executed with predefined parameters and settings. This strengthens
scientific rigor and also promotes collaboration and transparency.

6. Conclusions
Software that focuses on the analysis of image spectroscopy remote sensing data has

been of limited access to the academic and non-academic communities. With this in mind,
AetherGeo was built to allow the community access to multiple remote sensing techniques
inside a single free, open-source piece of software.

By providing a set of tools and functions in an all-in-one environment with visual-
ization capabilities, AetherGeo can provide a great user experience while also supporting
some of the most common data file types currently in use. Compatibility with more file
types is expected in future versions. This approach also provides an infrastructure for
testing and implementation of new state-of-the-art algorithms in the future.

The current version mainly provides capabilities for classic image analysis tools and
endmember extraction. Future versions can extend this by providing new functionalities,
improving current visualization options, and supporting more file types. In this way,
we believe AetherGeo can continue providing the community access to state-of-the-art
techniques for geological applications, which is something of interest to both professionals
and students.

In the future, functionalities related to data integration and the development of predic-
tive maps will be implemented under the same scope and workflow format, since this tool
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is mainly provided as software developed for geological applications and data analysis.
Other spectral unmixing algorithms could also be added in future software versions.
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Appendix A
This section presents Table A1, which is composed of a comparison between AetherGeo

and the open-source alternatives discussed in the introduction and discussion sections.

Table A1. Comparison between AetherGeo v1.0, AetherGeo v1.1, and other open-source alternatives.

File Type Support
(for Images)

Requires
Proprietary

License

Visualize and
Inspect Spectra
from Spectral

Libraries

3D
Endmember
Extraction

Expert-Based
Algorithms for

Mineral
Identification

Noise
Correction
Functions

HypeRvieW [8] Raw, MAT, HRW No No No No Yes

HypPy [9] DAT No Yes No No No

HYPER-Tools [10] MAT, TIF, and DAT Yes Yes No No Yes

EnMap-Box [11] TIF, DAT, and HE5 No Yes No Yes Yes

AetherGeo v1.0 TIF, DAT, and HE5 No Yes Yes No No

AetherGeo v1.1
MAT and other

new state-of-the-art
file types

No Yes Yes Possibly Yes

Appendix B
Figure A1 shows a step-by-step example for identifying an endmember in an area of

interest in a given image and performing classification. It proceeds as follows: First, import
the image. The second step is optional and depends on previous information, but it is
recommended that normalization be performed and the correct wavelengths be attributed
to each band. As a third step, run one of the clustering algorithms; in the example case,
K-means was used with seven classes (Figure A1A; partially shown in Figure 9). Follow
this by inspecting the results. In this case, classes 1 and 6 coincide with our zones of interest.
Proceed by generating a mask based on classes that match our zones of interest (selection
in QGIS). To identify the pixels most likely to be pure, perform PPI with the original image
and mask from the last step. Follow this by using PPI results and the original image in the
“Generate Point Cloud” function, and select the extreme points in the cloud (Figure A1B;
partially shown in Figure 7). After selection, inspect the spectra and save the results as a
spectral library (Figure A1C; partially shown in Figure 7). To perform classification, start
by importing the spectral library from the last step and performing SAM with the original
image and the desired endmember from the library. To finalize the classification, use the
2D plot feature to extract results with the desired value (for SAM, a smaller angle means
the best results; Figure A1D). Finish by saving and inspecting the final results (Figure A1E).
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Figure A1. Example workflow for image classification. (A): K-means results with seven classes;
(B): selection of the extreme points (endmembers in purple color) in the 3D point cloud; (C): spectral
library of selected endmembers; (D): 2D plot feature to extract SAM results with a smaller angle (red);
(E): final results with target areas in red.
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