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Abstract Heart failure (HF) is one of the major health

and economic burdens worldwide, and its prevalence is

continuously increasing. The study of HF requires reliable

animal models to study the chronic changes and pharma-

cologic interventions in myocardial structure and function

and to follow its progression toward HF. Indeed, during the

past 40 years, basic and translational scientists have used

small animal models to understand the pathophysiology of

HF and find more efficient ways of preventing and man-

aging patients suffering from congestive HF (CHF). Each

species and each animal model has advantages and disad-

vantages, and the choice of one model over another should

take them into account for a good experimental design. The

aim of this review is to describe and highlight the advan-

tages and drawbacks of some commonly used HF rodents

models, including both non-genetically and genetically

engineered models, with a specific subchapter concerning

diastolic HF models.
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Introduction

Heart failure (HF) is a complex syndrome in which patients

should present the following characteristics: symptoms of

HF, signs of fluid retention and objective evidence of an

abnormality of the cardiac structure or function at rest [53].

It is often divided in two distinct entities, namely systolic

heart failure (SHF) and diastolic heart failure (DHF) or, in

alternative, HF with reduced ejection fraction and HF with

preserved ejection fraction, respectively. Despite the hot

controversy on the definition of each entity, SHF is char-

acterized by an inability of the myocardium to contract and

eject blood, while DHF refers to a disturbance in accom-

modating blood volume during diastole at low filling

pressures, due to impaired ventricular relaxation (primarily

affecting early diastole) or increased myocardial stiffness

(primarily affecting late diastole) [152]. Besides defective

myocardial relaxation, the mechanisms underlying DHF

include abnormal extracellular matrix dynamics and altered

myocyte cytoskeleton, which could interfere with the

passive properties of the ventricular wall [152].

The great majority of animal models have been devel-

oped for SHF. Besides being rather difficult to replicate

pure DHF in animal models, these are also more

demanding and time-consuming than SHF. Therefore, not

surprisingly most HF models developed so far represent

SHF.

Non-genetically engineered rodent models

Pharmacologically induced cardiomyopathy

Doxorubicin

Doxorubicin (adriamycin, DOX) is an anthracycline widely

used in cytostatic treatments. One of the major long-term

consequences of DOX therapy is the development of car-

diomyopathy and ultimately CHF in humans as in experi-

mental animals. Therefore, understanding the pathogenesis
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of cardiotoxic cardiomyopathy is essential to the develop-

ment of new measures to prevent cardiotoxicity associated

with antineoplastic therapies. DOX causes a dose-depen-

dent cardiotoxicity and thus has been used to induce HF in

various animal species [21, 37, 291, 293].

DOX administration once a week for 6 weeks or on

alternate days for 2 weeks has been shown to induce car-

diomyopathy and HF [51, 168, 284]. Interestingly, a single

dose of DOX has been shown to induce significant left

ventricular (LV) dysfunction in mice after 5 days [189].

This drug is usually administered by intravenous or intra-

coronary injection. The latter allows delivery of DOX at a

smaller dose to induce HF without systemic toxicity [203].

DOX-induced cardiomyopathy is characterized by ven-

tricular wall thinning and dilatation, and depressed systolic

and diastolic function [22, 50, 168, 291] accompanied by

fluid retention and by neurohumoral activation [8]. At the

cardiac muscle level, DOX promotes intrinsic contractile

dysfunction and reduced contractile reserve [21, 22, 50].

Furthermore, DOX impairs vascular [208] as well as

endocardial [21] endothelial function and [27, 151, 287]

induces inflammatory reactions in the heart, leading to

thrombosis in the atria and myocarditis [27, 75, 78, 293].

Multiple pathways of anthracycline-induced cardiac

cellular injury have been proposed such as the release of

cardiotoxic substances, which subsequently accumulate in

cardiomyocytes [185], the generation of free radical, lipid

peroxidation, and suppression of DNA, RNA and protein

synthesis [255, 276]. Other studies suggest that cardio-

toxicity pathways include abnormalities in Ca2? handling

[50, 54, 285]; induction of mitochondrial DNA lesions

[149]; degradation of myofilamental and cytoskeletal pro-

teins, including titin [160] and dystrophin [40]; interference

with various pro-survival kinases [224]; and changes in

adrenergic and adenylate cyclase function [33, 74]. These

examples of a much larger set of proposed cardiotoxic

mechanisms are not mutually exclusive: they may each

contribute to cardiac cell damage, ultimately leading to

myocyte death, by either necrosis or apoptosis [254].

Additionally, it was recently demonstrated that DOX car-

diomyopathy can be also mediated by depletion of the

cardiac stem cell pool and rescued by restoration of pro-

genitor cell function [50].

Spontaneous hypertensive rats (SHR) are more sensitive

to the toxic effects of DOX [98], probably because of the

low free radical–scavenging ability of their myocardium

[122].

DOX model has a short time course of induction of HF

and also the advantages of being technically simple,

reproducible, non-invasive and economical. Additionally,

it can be used in several animal species to promote either

chronic or acute HF [203]. The main limitations of this

model are related to the variable degree of ventricular

dysfunction and the high incidence of arrhythmias that

contribute to the high mortality rate. Anthracycline

administration also has undesirable bone marrow, gastro-

intestinal and renal toxicities that can however be elimi-

nated by the intracoronary injection of the drug [8, 203].

Homocysteine

Hyperhomocysteinemia has been identified as a causative

factor of cardiac stress and dysfunction in both spontaneous

hypertensive and normotensive rats [129, 130]. In rats,

supplementation of diet with homocysteine for 10 weeks

produces hyperhomocysteinemia and consequently ven-

tricular dysfunction with compromised systolic and dia-

stolic function [52, 130]. The main factors involved in the

development of HF are oxidative stress and inflammatory

mediators [129].

Isoproterenol

Excessive doses of catecholamines produce diffuse myo-

cardial destruction with cardiomyocyte necrosis and

extensive fibrosis in both animals and humans [219, 220,

292]. The mechanism underlying myocardial damage is

likely related to an imbalance between oxygen supply

versus demand due to myocardial hyperactivity [62]. In

mice, infusion of isoproterenol for 7 days has been shown

to induce cardiac dysfunction [216]. In rats, subcutaneous

administration of isoproterenol for 3 days leads to a dose-

dependent impairment of cardiac function and neurohu-

moral activation [88, 325], with cardiomyocyte necrosis

and extensive LV hypertrophy and dilation and after 2 and

12 weeks, respectively [92, 324]. However, isoproterenol

administration before ischemia exerts a cardioprotective

effect in rats [92]. The advantages of this model are its

technical simplicity and excellent reproducibility in asso-

ciation with a satisfactory low mortality. Nonetheless, it

seems not suitable for inducing an overt state of CHF

because higher doses of catecholamines can increase the

mortality rate up to 80% [88].

Monocrotaline

Monocrotaline (MCT) is a plant toxin derived from

Crotalaria spectabilis that can be administered by intra-

peritoneal, subcutaneous or intravenous injection to induce

right ventricular dysfunction and HF within 4–6 weeks [30,

299]. Current hypotheses of the pathogenesis of MCT-

induced pneumotoxicity suggest that MCT is transformed

in a bioactive pyrrole metabolite in the liver and is then

transported by red blood cells to the lung, where it initiates

endothelial injury. The metabolite has a half-life of *3 s

in aqueous media and primarily affects the pulmonary
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vascular bed as lungs are the first major vascular bed after

the liver [230]. Nonetheless, MCT can injury other struc-

tures such as liver [135] or kidney [262]. In the pulmonary

vasculature, MCT induces perivascular inflammation,

platelet activation and endothelial dysfunction, generally

leading to increased pulmonary arterial pressure. These

changes are accompanied by increase in RV systolic and

diastolic pressures, hypertrophy and ultimately HF [99,

310]. Besides inducing HF, MCT is a simple model which,

at an earlier phase, shares some similarities with human

pulmonary hypertension.

Myocardial infarction-induced HF

Since ischemic heart disease is the most important cause of

human HF, coronary artery occlusion is the most common

method of inducing acute myocardial damage in animal

models. Ligation of the left anterior descending (LAD)

coronary artery or one of its branches remains the most

preferred and acceptable method of inducing regional

injury and subsequent HF in rodents [10, 85], as well as to

gain further insight into pathophysiology of post-myocar-

dial infarction (MI) cardiac remodeling [12, 223]. The

mechanisms responsible for cardiac remodeling are mostly

related to changes in extracellular matrix of the remaining

overloaded myocardium and neurohumoral activation

[72, 156, 234].

Surviving mice gradually develop HF within the

4 weeks following the surgical procedure [76, 155, 158]. In

rats, a significant decrease up to 25% in cardiac output is

observed 8 weeks after LAD ligation [115]. The infarct

size varies significantly (between 10 and 45%) and is

directly related to the degree of LV function impairment

[228], influencing the time course of CHF development

[10]. Generally, the infarct extension needs to affect at least

30% of the LV mass in order to present the typical char-

acteristics of CHF and to induce considerable increases in

the molecular markers of hypertrophy [10]. Age also exerts

a noteworthy effect on the time course of CHF develop-

ment, with young animals tolerating well LAD ligation

without CHF signs, in spite of the larger infarct size [85].

Some recent studies showed that female mice undergo less

extensive ventricular remodeling, suggesting the influence

of sex hormones as a putative explanation for gender dif-

ferences [315].

In both mice and rats, mortality ranges between 35 and

50% and occurs within the first hour after MI due to ven-

tricular fibrillation and severe acute HF [79, 144]. Fur-

thermore, in rats, it seems to be strain dependent with

Lewis inbred rats surviving more than Sprague–Dawley

rats [164].

Contrary to the clinical situation, in which the patient

has progressive non-occlusive coronary artery obstruction,

myocardial infarct in this model is due to the sudden

occlusion of a normal coronary artery. Therefore, efforts

have been made to create a model of chronic myocardial

ischemia, more similar to the clinical reality. Indeed, a

mice model of hyperlipidemia and atherosclerosis with

multiple infarction and CHF has been described. However,

those high-density lipoprotein receptor SR-B1 and apoli-

poprotein-E double knockout mice survive only few weeks

after birth limiting their use in HF research [23].

Protocols of temporary LAD occlusion have been

developed to reproduce human ischemia–reperfusion

injury. This model has confirmed the benefits of reperfu-

sion since infarct size was found to be significantly lower

than after permanent occlusion of the coronary artery.

However, they also revealed the diversity of results as a

consequence of mouse left coronary anatomic high vari-

ability [187].

The procedure was further modified to analyze ischemic

preconditioning of the heart. In this method, LAD is

repeatedly occluded to subject the heart to several rounds

of brief ischemia and reperfusion before permanent

occlusion. Molecular analyses identified various ischemia-

induced genes that confer tolerance to subsequent ischemic

event [311].

The cost and simplicity confer important advantages to

LAD ligation. On the other hand, rat differs from human in

terms of electrophysiology, coronary circulation, cardiac

protein isoforms and time course of MI evolution. In fact,

available data point to a faster onset of healing and ter-

mination processes in rats [142], which mean results must

be interpreted with caution.

An alternative model of MI was cryoinfarction, which

induces a series of cryoinjuries in the epicardium of mice

and rats [245]. However, it has not caught the interest of

the scientific community, and thus, it is no longer used.

Myocarditis-induced HF

Viral myocarditis is a common cause of dilated cardio-

myopathy and HF. The coxsackie-B3 virus (CB3) and the

encephalomyocarditis virus (EMCV) have been used to

induce myocarditis in rodents [102, 213, 318]. EMCV

infection can lead to myocyte necrosis and significant

biventricular dilation during the phase of viremia, while

typical signs of CHF appear after 7–14 days of virus

inoculation [68, 177, 213]. This model is limited to Balb/c

and DBA/2 mice because other mouse strains are resistant

to virus infection [306]. Virus inoculation in genetic

engineered mice has been shedding light on the molecules

involved in the pathogenesis of viral myocarditis. Indeed,

the administration of an exogenous antitumor necrosis

factor-a (anti-TNF-a) antibody reduced myocardial lesion

and improved survival, mitigating the effect of the
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observed increase in TNF-a expression [178]. A retrovirus

model of encephalitis and myocarditis in mice showed that

nuclear factor-kB activation confers protection against

virally mediated apoptosis and its expression is preserved

in the presence of interferon-b. The absence of any of these

molecules in the myocardium leads to striking viral

infection and cell death [214]. Transgenic knockout models

of components of the immune system have provided

interesting insights in the pathogenesis of viral myocarditis

[163].

Another pathogenic agent capable of causing myocarditis

and dilated cardiomyopathy is the protozoan parasite

Trypanosoma cruzi, which causes Chagas disease, a major

form of HF in Latin America [46]. The infection causes

generalized vascular inflammation, which stimulates the

production of endothelin-1 and thromboxane-A2, further

enhancing coronary vasospasm and myocardial ischemia

[35].

Autoimmune myocarditis has been induced by an

immunization process with different intracellular antigens.

In rats, hemodynamic deterioration and myocarditis have

been reported after 3 weeks of immunization with cardiac

a-myosin or a-myosin peptides [173, 305]. This was

associated with increased expression and activity of

inducible nitric oxide synthase (iNOS) and an inhibitor of

that enzyme effectively attenuated the histopathologic

changes, thus pointing to a relevant pathophysiologic role

of nitric oxide (NO) [103, 104]. In mice, immunization

with a monoclonal anti-dog SERCA2a antibody caused

myocarditis [93].

Immunization of mice with recombinant murine cardiac

troponin I (mcTnI) resulted in myocardial deposition and

elevated serum levels of anti-mcTnI autoantibodies,

accompanied by myocardial inflammation (both humoral

and cellular immune response), cardiac dilatation, con-

tractile failure and increased mortality rate [83].

Systemic hypertension-induced HF

Spontaneously hypertensive rats (SHR)

Systemic hypertension is another relevant factor in human

CHF. Spontaneous hypertension is a natural model of

pressure overload, in which systemic hypertension leads to

HF with aging. Hypertensive vascular lesions appear

within 6–7 weeks, being more severe in males than in

females. For the first 12 months, the hypertrophy is

compensated and contractility is preserved, but after

18–24 months, there is overt CHF characterized by fibro-

sis, LV dilation and reduced systolic function [13, 100,

226]. These structural and functional changes occur in

tandem with a marked raise in cytokine levels such as

TNF-a and interleukin-6 [223]. Transition to failure has

been suggested to depend on significant alterations in the

expression of genes encoding extracellular matrix proteins,

oxidative stress and increased apoptosis of myocytes [1, 13,

15, 157, 273]. The gradual onset of hypertension with

aging makes this model suitable for studying the transition

from hypertrophy to CHF and for reproducing hyperten-

sion-induced CHF in humans [194]. It has the advantage of

avoiding the complications associated with surgical or

pharmacologic interventions, while mimicking the changes

found in human essential hypertension [16, 19]. Nonethe-

less, the long period required for developing CHF poses a

great limitation, making it a time-consuming and conse-

quently an expensive model. Additionally, this model has

other two relevant drawbacks, namely the absence of an

appropriate control and the complexity of the genetic

mutations, which have affected not only blood pressure but

many other regulatory systems as well.

The SHR stroke prone (SHR-SP) is a further developed

substrain with even higher levels of blood pressure and a

strong tendency to die from stroke [319].

Spontaneously hypertensive HF-prone rats (SHHF)

Spontaneous hypertensive rats carry the facp corpulent

gene, which encodes a defective leptin gene, and therefore,

they develop obesity and HF [41, 188]. The time for the

development of HF depends on facp gene dosage and

gender (male animals are more prone to HF than females

[96]) but, in general, SHHF rats present HF earlier than the

SHR strain, with loss of cardiac function starting at the age

of 15 months [100]. These animals present alterations in

the renin-angiotensin-aldosterone system (RAAS) and also

in calcium metabolism [82, 107, 188, 222]. The greatest

advantage of this strain is the possibility of studying drug

interventions in an extended range of cardiovascular risk

factors like obesity, diabetes and renal dysfunction [259].

Dahl-salt-sensitive rats

This is a mutant strain of Sprague–Dawley rats that are

characterized by hypersensitivity to sodium intake [48].

When placed on a high-salt diet from the 6th week of age,

they develop concentric LV hypertrophy without chamber

dilation around the 11th week and decompensate HF with

marked ventricular dilation between the 15th and the 20th

week [119, 139]. Failure is associated with reduced myo-

cardial performance as evidenced by the lower perfor-

mance of muscle strip preparations and the short lifetime of

failing rats [119]. Diastolic dysfunction, as well as

increased LV endothelin-1 production, collagen accumu-

lation and even survival could be improved more effec-

tively by a combination of angiotensin receptor blockers
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and angiotensin-converting-enzyme (ACE) inhibitors than

either agent alone [137].

Interestingly, it has been shown that introducing high-

salt diet at 7 or 8 weeks of age can result in distinct HF

phenotypes. Indeed, the 7-week starting rats showed a steep

elevation in blood pressure and progressive LV hypertro-

phy, falling into overt DHF at approximately 19 weeks. On

the other hand, the 8-week starting rats showed a gradual

rise in blood pressure and less progressive LV hypertrophy,

developing SHF at approximately 26 weeks. Therefore,

these two different models of overt HF may be useful as

models of isolated DHF and SHF based on the same

hypertensive heart disease, which could be relevant to the

pathophysiologic and molecular characterization of each

HF subtype [55]. Another report found that the develop-

ment of HF was dissociated from changes in passive dia-

stolic and active systolic properties, suggesting that volume

overload plays an important pathophysiologic role in the

development of HF despite preserved overall ventricular

pump function in this model of chronic hypertension [139].

This model is suitable to study the transition from

compensated hypertrophy to failure. Moreover, it is often

used to identify the role of several pathways and molecular

mechanisms like oxidative stress, extracellular matrix

degradation [289], calcium handling impairment [253] as

well as redox-regulated transcription factors [116] and

apoptotic factors activation [320].

DOCA-salt rats

The deoxycorticosterone acetate (DOCA) salt-induced

model of hypertension is a typical representative of phar-

macologically induced hypertension. A very high subcu-

taneous dose of DOCA is required to induce hypertension

in rats [268]. Isotonic saline is the sole drinking fluid,

which hastens and aggravates progression to hypertension

[280]. Despite being salt-dependent in its initiation, this

model frequently needs surgical reduction of renal mass or

unilateral nephrectomy. DOCA-salt hypertension is a low

renin and volume-overloaded form of hypertension. The

combination of DOCA-salt and unilateral nephrectomy

results in hypertension, renal hypertrophy, nephrosclerosis,

cardiac hypertrophy and myocardial and perivascular

fibrosis within 4–5 weeks of chronic treatment [89, 215].

The pathophysiologic mechanisms underlying the

development and maintenance of DOCA-salt hypertension

include increased levels of arginine vasopressin [120],

angiotensin-II/aldosterone [300, 313], endothelin [179,

204, 258, 302] and oxidative stress [154, 175], excessive

activation of the sympathetic nervous system [132] and

nitric oxide synthase (NOS) uncoupling due to oxidative

depletion of its cofactor tetrahydrobiopterin (BH4) [274].

Indeed, both inhibition of the angiotensin-aldosterone

system and endothelin receptor blockade have been shown

to prevent cardiac remodeling, even without concomitantly

reducing arterial blood pressure [89, 257]. Of notice, PPAR-

a activation has also a beneficial effect on myocardial

fibrosis and prevented diastolic dysfunction in DOCA-salt

rats by modulation of NF-jB inflammatory pathway [215].

Nonetheless, the cardiac consequences are minimal during

the development of DOCA-salt hypertension-induced

hypertrophy [29]. This is in contrast to the decreased

responses reported in other rat models of cardiac hypertro-

phy and in the failing human heart. Therefore, hypertrophy

in hearts of DOCA-salt hypertensive rats does not produce

similar changes to the failing human heart [29].

Of notice, a group recently published a mouse model that

combines a surgical intervention to induce pressure over-

load, namely transverse aortic constriction (TAC), with

DOCA administration, in the setting of normal-salt diet.

Compared with TAC mice, TAC plus DOCA mice had

similarly normal LV systolic pressure and fractional short-

ening but more hypertrophy, fibrosis and diastolic dysfunc-

tion with increased lung weights, consistent with HF with

preserved ejection fraction. There was progressive activa-

tion of markers of oxidative stress but no evidence of classic

mineralocorticoid receptor–dependent gene transcription.

Therefore, they suggest that pressure-overload hypertrophy

sensitizes the heart to mineralocorticoid excess, promoting

the transition to DHF without activation of the classic min-

eralocorticoid receptor-dependent gene transcription.

The major limitations of the DOCA-salt model are (1)

the need to employ a large amount of drug, (2) the

requirement for surgical reduction of renal mass and (3) the

dependence on a strictly controlled ingestion of a high

NaCl dose. On the other hand, its chief advantage is the

potential to investigate the role of sodium in the develop-

mental stages of hypertension.

2K1C rat

Since 1934, when Goldblatt and his co-workers induced an

elevation of blood pressure by partial constriction of the

renal artery of the dog [81], many successful models of

renal-induced experimental hypertension have been

developed in rats. In general, the procedure includes two-

kidney Goldblatt hypertension (constriction of one renal

artery while the contralateral kidney is left intact) and one-

kidney Goldblatt hypertension (one renal artery is con-

stricted and the contralateral kidney is removed) [280].

Clipping one renal artery, while leaving the contralateral

kidney untouched, induces systemic hypertension and LV

concentric remodeling within 8 weeks [131]. Histologic

studies revealed extensive LV fibrosis, while echocardi-

ography and hemodynamic data consistently shown dia-

stolic dysfunction [131]. Indeed, inhibition of matrix
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metalloproteinase activity in these hypertrophic hearts has

been shown to provide beneficial effects in terms of

structure and function [237]. At cellular level, several

changes in the energy metabolism, actin–myosin cross-

bridge cycle and protein expression were identified in

renovascular hypertensive rats [131]. In addition, the par-

amount role of activation of the RAAS [73, 150] and the

sympathetic nervous system [32, 270] has been thoroughly

studied. In the one-kidney model, no compensatory

increase in sodium and water excretion can occur, and

hence, fluid volume is retained, which means this model is

thus a sodium-fluid volume-dependent model. Therefore, it

would advantageous for studying the role of volume

expansion in the development of hypertension [11]. During

the early developmental stage, when the clip is removed,

arterial blood pressure returns to normal in both models,

suggesting that renovascular hypertension is both revers-

ible and reproducible [147].

Pressure-overload-induced HF

Aortic constriction (banding) is a well-established surgical

technique for induction of LV chronic pressure overload

and hypertrophy in rodents. The banding initially imposes

little or no restriction to aortic flow but gradually, as the

animal grows, the relative severity of the constriction

increases, resulting in cardiac hypertrophy. Aortic banding

in several positions has been used to mechanically repro-

duce the cardiac consequences of aortic stenosis, systemic

hypertension and coarctation of the aorta [111, 138, 203,

240, 279]. The constriction can be thoracic, either close to

the origin of the aorta, ascending aortic constriction

(AAC), or in the aortic arch between the first and second

trunks and named transverse aortic constriction (TAC).

Alternatively, the constriction can be performed in

abdominal aorta, either below or above the renal arteries,

the latter inducing hypertension by renal hypoperfusion

and concomitantly LV hypertrophy [34]. The anatomic

location of the constriction is the main responsible for the

differences between these models. In this context, AAC is

generally used to study the effects of early insult due to

pressure overload, while TAC and suprarenal aortic con-

striction display a more gradual rise of pressure, progres-

sion toward hypertrophy and HF [16].

The timeline of disease progression depends on the

selected species, age or gender, with mice subjected to

TAC presenting LV hypertrophy as early as 7 days [294]

and decompensate HF at 4 weeks [153], while rats present

slower progression [16], as illustrated in Fig. 1. For

instance, in weanling rats [70, 263, 309, 316], a TAC

surgery that reduces 50% of the aorta diameter creates a

systolic pressure gradient of *50–60 mmHg between the

aorta and the LV, inducing clear echocardiographic evi-

dence of LV hypertrophy, and increases left atrial pressure

around the 8th week [162]. After 18–20 weeks of com-

pensated LV hypertrophy, a subgroup of animals eventu-

ally decreases LV systolic pressure, accompanied by

increased LV volume, reduced ejection fraction and clini-

cal signs of overt CHF [309]. Moreover, molecular changes

have been reported with increased expression of b-myosin

heavy chain, atrial natriuretic peptide (ANP), interleukin-1,

interleukin-6 and TNF-a [200]. On the other hand, the

failing myocardium exhibits a reduced expression of

SERCA2a when compared to non-failing hypertrophied

heart, which suggested that decreased levels of SERCA2a

could be a marker of transition from compensatory

hypertrophy to failure in these animals [70].

Abdominal aortic banding in rats causes an initial

increase in contractility due to the compensatory activation

of the sympathetic nervous system [25] but after 8 weeks,

systolic and diastolic dysfunction as well as concentric

hypertrophy are evident [34, 67]. In mice, suprarenal

abdominal aortic banding causes cardiac hypertrophy

within 4 weeks as a compensatory response, which even-

tually leads to CHF after 15–21 weeks depending on the

degree of constriction as well as animal age, gender and

weight [94, 312]. Changes in NO pathway are believed to

play an important role in the pressure-overloaded heart and

pathologic cardiac remodeling. In fact, reports showed that

phosphodiesterase-5 (PDE5) inhibitor sildenafil reduces

LV hypertrophy and dilation in the mouse TAC model

[223, 290]. However, the most promising therapeutic

approach is represented by a new neutral sugar organic

nitrate, LA-419, the thiol group of which seems to protect

NO from degradation, thereby increasing its bioavailabil-

ity. In the aortic stenosis model, LA-419 has been found to

restore the complete NO signaling cascade and reduce LV

remodeling, but without restoring the original pressure

Fig. 1 Timeline progression of

transverse aortic constriction:

comparison between mice and

rat
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gradient, indicating a possible direct antiproliferative effect

[243]. Additionally, the exogenous administration of the

NOS cofactor BH4 has been shown to reduce LV hyper-

trophy, fibrosis and cardiac dysfunction in mice with

pre-established pressure overload. In this setting, BH4

recoupled endothelial NOS, with subsequent reduction of

NOS-dependent oxidative stress and reversal of maladap-

tive remodeling [195, 196].

Among the major advantages that these banding models

share compared to other hypertensive or HF models is the

ability to manipulate the degree of pressure overload by

changing the constriction severity [197]. Concerning the

thoracic aorta constrictions, the main advantage is the

similarities to human HF progression, especially to aortic

stenosis patients. Accordingly, it is characterized by initial

compensatory phase, with concentric LV hypertrophy fol-

lowed by an enlargement of cardiac chambers associated

with a further deterioration of LV function [16]. Another

advantage is the extensive information regarding TAC

model: it was first described in 1994 by Rockman [240],

and it has been extensively used since then, especially in

mice either by traditional thoracotomy approach [67, 239]

or by minimally invasive aortic banding through a small

incision in the proximal sternum [111]. Finally, this

method permits the quantification of the pressure gradient

across the aortic constriction and the stratification of LV

hypertrophy [223]. However, the rat TAC model has sev-

eral drawbacks such as prolong duration of the protocols

(Fig. 1), inter-individual variability in the response to

pressure overload [198] and high proportion of debanding

due to internalization of the constriction knot [171]. These

two last disadvantages require the use of large experi-

mental groups and the use of accessory methods for visu-

alization of the constriction integrity and progression of

disease, such as echocardiography. Both AAC and TAC

models have a common disadvantage resultant from the

complex surgical method and equipment necessary for

open-chest microsurgery. The lack of such an extended

learning curve is the major advantage of abdominal con-

striction model, alongside with the low mortality rate

associated with banding (10%) [70]. Activation of RAAS

might however limit the use of abdominal aorta constric-

tion in some studies [241]. Moreover, decrease of LV

relaxation rates makes such models valuable for the eval-

uation of diastolic dysfunction, which is an important

factor in the progression of LV failure [69]. In addition, the

stimulus for HF is gradual in onset as is the progression

from compensated hypertrophy to HF in humans, thus

making it clinically more relevant. Recently, a minimally

invasive murine model of TAC debanding was described,

in which it is possible to remove the band up to 4 weeks

later through the same suprasternal incision [278]. This

reversible model of pressure overload turned out to be an

interesting model to study the molecular mechanisms

involved in LV reverse remodeling.

Volume-overload-induced HF

Arteriovenous shunts have been used to induce volume

overload and consequently dilated cardiomyopathy and HF

in rodents. Femoral artery to femoral vein fistulas lead to

HF, but present a reported mortality above 25% in all

studies [217]. The more recent aortocaval shunt is a rela-

tively simpler and faster alternative to induce HF with good

survival rates and no need to perform thoracotomy [28, 77,

231]. In rats, significant cardiac hypertrophy develops

4 weeks after shunt induction, with compromised LV

contractility and increased end-diastolic pressure [256].

Severe volume overload from a large aortocaval fistula

initially leads to depressed LV function followed by a

compensatory hypertrophy and near normal function at

4 weeks [165, 307]. Decompensated hypertrophy or CHF

develops between 8 and 16 weeks after the intervention

and is characterized by a decline in systolic and diastolic

function [34, 308] and a shift between myosin heavy chain

isoforms expression [307]. Nonetheless, shunt closure has

been reported in 7% of the cases, which means that it is

necessary to confirm the patency of the shunt at the end of

investigation. Of note that, not only the duration, but also

the size of the shunt will determine the onset and severity

of CHF in rats, with elevation of LV end-diastolic pressure

reported only in the overt CHF group caused by a large

shunt for a minimum period of 4 weeks [148]. This pro-

cedure has the advantage of being fast and usually well

tolerated, despite the limitation of requiring a laparotomy.

Another procedure used to induce volume overload in

rats is aortic valve regurgitation, in which an aortic valve

cusp is punctured [56, 207].

The neurohumoral activation of volume-overload mod-

els includes local activation of RAAS, which is associated

with depressed myocardial function [211]. Recent reports

found that ANP expression is a more sensitive marker of

volume overload than pressure overload [36]. In addition,

long-term overexpression of SERCA2a in this animal

model can preserve systolic function and potentially pre-

vent diastolic dysfunction and LV remodeling [134].

Diabetic cardiomyopathy-induced HF

Animal models have been extensively used in diabetes

research. Their utility can be questioned due to species

differences; however, rodent models share many features

with human diabetic cardiomyopathy. For example, rodent

models of obesity, insulin resistance and type 2 diabetes

present LV hypertrophy, diastolic dysfunction, increased

cardiac fatty acid uptake and utilization, decreased cardiac
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efficiency, impaired mitochondrial energetics, increased

myocardial lipid storage, and impaired Ca2? handling [4,

19, 31].

There are a number of pharmacologic rodent models of

diabetes: streptozotocin (STZ) administration to rats or

mice, which induces diabetes mellitus (DM) as soon as

48 h post-injection [295]. This substance is selectively

toxic to b-cells in the pancreatic islets, induces insulin

deficiency and hyperglycemia and therefore represents a

model of type 1 diabetes.

On the other hand, selective inbreeding has produced

several strains of animal that are considered reasonable

models of type 1 diabetes, type 2 diabetes and related

phenotypes such as obesity and insulin resistance

(Table 1). Apart from their use in studying the pathogen-

esis of the disease and its complications, all new treatments

for diabetes, including islet cell transplantation and pre-

ventive strategies, are initially investigated in animals. In

recent years, a large number of new genetic animal models

for the study of diabetes, including knock-in, generalized

and tissue-specific knockout mice, have been described.

Rodent models of type 2 diabetes include the Zucker fatty

rat, as well as db/db and ob/ob mice, all of which display

dysfunctional or absent leptin homeostasis and therefore

develop insulin resistance in different timepoints.

In vivo studies in these rodents have revealed suscepti-

bility to systolic and diastolic dysfunction using echocar-

diography and hemodynamic measurements [301]. They

also exhibit a propensity to ischemia/reperfusion injury

following LAD ligation, which occurs in conjunction with

structural and functional changes to the LV [87]. However,

there are several limitations when comparing these models

to human diabetic cardiomyopathy, as spontaneous ische-

mia and atherosclerotic disease are not prominent in

rodents [18]. The latter becomes simultaneously a valuable

aspect as the effects of obesity, insulin resistance and

diabetes on the heart can be studied independently of

coronary artery disease [121]. Importantly, rodent models

present fulminant and uncontrolled hyperglycemia or

insulin resistance, while in the clinical setting patients with

diabetes are increasingly well controlled as demonstrated

by a recent study which found no evidence for diabetic

cardiomyopathy in well-controlled patients with type 1

diabetes [141]. Moreover, because DM develops at varying

stages in these models, it is important to keep in mind that

studies performed in animals before the onset of diabetes

may reflect changes that are secondary to the underlying

obesity and insulin resistance, and studies performed after

the onset of diabetes may reflect the added effects of

hyperglycemia of different durations.

In conclusion, each model has certain limitations and no

perfect model exists that exactly mimics human diabetic

cardiomyopathy (Table 1).

Diastolic HF models

In spite of the rising prevalence of DHF, currently there is

no evidence-based treatment strategies capable of changing

its natural history, reflecting our poor understanding of this

HF subtype [314]. Therefore, animal models of diastolic

dysfunction and DHF urge for the development and pre-

clinical evaluation of new effective therapies for this dis-

ease. However, animal models of DHF are rather scarce,

thus leading to the utilization of diastolic dysfunction

models, which are more widely published and very similar

regarding the basic pathophysiologic mechanisms [60].

Furthermore, these models have been most commonly

created in large animals, such as canine, sheep and swine.

Nonetheless, there have been some successful rodent

models that deserve to be highlighted in this review.

Animal models have tried to reproduce the paramount

risk factors typically associated with diastolic dysfunction

and DHF, namely aging, diabetes mellitus and hyperten-

sion [327]. In fact, the alterations in myocardial relaxation

and stiffness associated with chronic hypertension

and diabetes have been already mentioned above in the

appropriate models, namely Dahl-salt-sensitive rats,

DOCA-salt rats and diabetic cardiomyopathy.

Despite the great difficulty in developing an animal

model of DHF age-induced, a recent study has character-

ized a model demonstrating isolated diastolic dysfunction

associated with accelerated aging [235]. This mouse model

is a spontaneous senescence model that displays many

common geriatric disorders in the human population and

recapitulates diastolic dysfunction as it naturally occurs in

the elderly. Diastolic dysfunction, accompanied by fibrosis

and an increase in pro-fibrotic cytokines, develops between

3 and 6 months of age, which is an early timepoint in the

life span of these animals. This suggests that the physio-

logic abnormality manifests over a relatively short period

of time and, from an experimental standpoint, adds

an advantage as it allows for a more rapid study of

pathophysiologic mechanisms. The senescence-accelerated

mouse model will probably turn to be a useful model for

future studies of age-related diastolic dysfunction, since the

better insight into its underlying mechanisms could pave

the way for designing specific pharmacologic strategies to

prevent or treat this pathology [235].

The association between aging and diastolic dysfunction

had already been addressed in a previous study, which

compared adult (6-month-old) and old (24-month-old)

Fischer 344/BNF1 rats after either 12 weeks of treadmill

training or normal sedentary cage life [26]. Echocardio-

graphic indices of LV relaxation were significantly lower

in the old rats, but with training, they increased back to the

levels seen in the adults. LV stiffness measured in isolated

perfused hearts was not affected by age or training, but
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increased more rapidly during low-flow ischemia in the old

hearts than in the adults. Again, training eliminated this

age-associated difference in the response to ischemia,

although it was not ascertained if the improvement was due

to reversal of aging consequences or superimposition of

some other effects. These findings indicate that in rats

some age-associated changes in diastolic function are

reversible and thus may not be intrinsic to aging but instead

secondary to other processes, such as deconditioning [26].

Syrian cardiomyopathic hamster

The Syrian cardiomyopathic hamster is an established

animal model for genetic cardiomyopathy, which has been

extensively used since it was firstly described in 1962 by

Homburger et al. [109]. They characterized an inbred line

of Syrian hamster named BIO1.50 that experienced both

cardiomyopathy and muscular dystrophy with 100% pen-

etrance and [109] present an autosomal recessive mode of

transmittance [109], thus being very useful for studying

both cardiac and skeletal muscle disorders. Afterward,

selective crossings gave rise to a new line, BIO14.6, which

is now more widely used throughout the world [110].

Indeed, hitherto several cardiomyopathic hamsters (CM

hamsters) have been derived from BIO14.6. Jasmin and

colleagues established a new inbred line of UMX7.1 by

cross-breeding BIO14.6 with unrelated healthy hamsters

[126]. Later, another substrain of these hamster was iso-

lated, the J2N [210]. The descendants of BIO14.6 and

UMX7.1 were named as CHF146 and CHF147, respec-

tively, and have been maintained at Canadian Hybrid

Farms in Nova Scotia, Canada [113]. All the five CM

hamsters (BIO14.6, UMX7.1, J2N, CHF146 and CHF147)

develop an identical cardiomyopathy, progressing through

prenecrotic, necrotic, hypertrophic and dilated stages [108].

Therefore, the disease progression in the hamster parallels

the human genetic disease [66].

The most remarkable genetic manipulation of CM

hamsters is the isolation of BIO53.58 from BIO14.6 [108].

Contrary to their forebears, BIO53.58 has a shorter life-

expectancy and achieves much faster the disease endpoint

of marked chamber dilation, which is common to all the

CM hamsters, apparently without developing previous

cardiac hypertrophy. Several descendants of BIO53.58,

such as TO, TO-2 and MS200, were developed [180], and

TO-2 is now maintained at Bio-Research Institute.

All the CM hamsters share the genomic deletion of

about 30-kb interval, which includes the two promoters and

first exons of delta-sarcoglycan gene with consequent loss

of its protein product [212, 248, 249]. The consequences of

the genetic loss of delta-sarcoglycan in heart are related

not only to sarcolemmal fragility but also to coronary

vasospasm from disruption of dystrophin-associated pro-

tein complex [44]. A genetic insult yet to be discovered

was probably introduced during the isolation of BIO53.58

and has been inherited by its descendants, which could

explain its distinct cardiomyopathy.

Pathophysiologically, two basic mechanisms contribute

to cardiomyopathy in this model: (1) ischemic heart disease

by vasospasm of the coronary circulation and (2) cardio-

myocyte loss due to intrinsic cell defects [66]. Reports

suggested that the vascular RAAS plays a critical role in

the generation of increased coronary reactivity and resis-

tance in young Syrian CM hamsters that have not yet

developed the clinical manifestations of HF, being the

increased reactivity due to endothelial dysfunction sec-

ondary to angiotensin-II-dependent oxidative stress [66].

Indeed, blockade of the RAAS during early stages of dis-

ease improves the clinical manifestations of dilated car-

diomyopathy in this model [66]. With regard to

cardiomyocyte loss, numerous studies showed autophagic

vacuolar degeneration in cardiomyocytes, which could be

improved by treatment with granulocyte colony-stimulat-

ing factor [288]. Another report provided novel evidence of

a beneficial effect of vascular endothelial growth factor in

the Syrian CM hamster via induction of myogenic growth

factor production by skeletal muscle and mobilization of

progenitor cells, which resulted in attenuation of cardio-

myopathy and repair of the heart [328].

Moreover, the Syrian CM hamster has been shown to

develop alterations in electrical and ionic homeostasis

related to disruption of gap junctions, which contributes to

arrhythmogenesis during the development of HF [247]. A

recent report showed that adhesion junction precedes

gap junction alterations and that angiotensin-II receptor

blockade might be a new therapy for lethal ventricular

arrhythmia by modulating both adhesion junctions and gap

junctions remodeling [323].

In summary, several reports confirm that CM hamsters

with genetic loss of delta-sarcoglycan recapitulate many

pathophysiologic aspects of cardiac failure [39, 267, 296],

but it is clear that despite its extended use, this model is far

from being totally understood [247].

Genetically engineered rodent models

The development of molecular biology offers the oppor-

tunity to study the impact of overexpression or deletion of

specific genes involved in the pathophysiology of CHF.

Indeed, transgenic murine models will help understanding

the molecular basis of CHF, which might open the door for

the development of novel molecular targets for the treat-

ment of CHF. A wide number of genetic modifications

have been successfully introduced in mice, either in terms
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of gain or loss of function. Besides the genetically engi-

neered mouse models summarized in Table 2, other

selective inbreed and other genetic animal models were

presented in previous sections whenever appropriate.

General considerations

Besides ethical and philosophical questions, the use of

animal models of HF needs careful consideration not only

because the disease may be associated with discomfort and

pain to the animal but also because results from animal

studies are not readily transferable to human patients.

HF models were originally developed in rodents because

of numerous potential advantages inherent to a small ani-

mal model. Housing and maintenance costs for rodents are

much lower than for larger animals, thus allowing

increasing the number of animals included in a given study

and improving its statistical power. Moreover, recent

technological advances in echocardiography, MRI and

micromanometer conductance catheters have greatly

upgraded the assessment of cardiac function in rodents,

removing a significant barrier to their use in HF research.

The small size of mice presents some challenges in

assessing myocardial function by conventional techniques

(echocardiography, MRI), and the tenfold bigger myocar-

dial mass of rats compared to mice gives the opportunity of

performing more post-mortem histologic and biological

analyses [223]. Nevertheless, cardiac physiologic assess-

ments have been made easier by recent technologies such as

ultrahigh resolution ultrasound [169] and micromanometer

conductance for pressure–volume analyses [80, 218], but

these techniques are quite expensive and pose a serious

challenge to laboratories without an established expertise.

The major advantage of mice compared to rats is the fact

that pharmacologic studies become less expensive as the

drug is usually administered proportionately to the animal

weight. Moreover, mice are one of the most interesting

research models to study the molecular basis of HF due to

the availability of many genetically engineered strains made

possible by their well-characterized genome and the easy

introduction and stable transmission of gene mutations.

Moreover, since 99% of the human genes have direct

orthologs with mice, it is possible to generate transgenic

mice models to mimic human disorders [71, 244]. Never-

theless, structural differences regarding human cardiovas-

cular system represent another limitation of rodent models.

With regard to diastolic dysfunction, it should be

emphasized that rodent models generally progress to SHF

within a variable amount of time, which means in those

animals DHF is only temporary step in the development of

SHF. On the contrary, there are several human pathologies

characterized by stable and isolated DHF, thus not evolving

to systolic dysfunction. Therefore, small animal models

could be misleading because they suggest that DHF

invariably progress to SHF, which in fact seldom happens

in humans. Additionally, in humans, DHF is a condition

typically associated with aging, and the diastolic dysfunc-

tion/DHF animal models herein mentioned are relatively

young.

Care should be taken when dealing with genetically

engineered mice. Besides taking into account strain and

gender issues [91, 272, 283], high levels of overexpression

must be carefully interpreted. In fact, transgenic mice that

express a biologically inert green fluorescent protein in a

cardiomyocyte-specific fashion develop LV hypertrophy,

dilation and systolic dysfunction in a manner directly

related to the level of protein expression. Therefore, non-

specific effects on LV structure and function may result

from vast overexpression of even biologically inactive

proteins [112]. Furthermore, certain phenotypes depend on

the expression level of the gene concerned [43, 298], which

means it is necessary to develop multiple transgenic lines

to establish a gene-dosage effect. Development of com-

pensatory mechanisms could be triggered in response to

gene overexpression or deletion at a very early stage after

manipulation, masking the direct effects of the targeted

gene. The use of inducible and conditional gene activation

or deactivation could be a good way of overcoming this

problem [306]. In conclusion, despite the inherent pitfalls

in transgenesis, many of them can be circumvented by

creating additional transgenic lines that can be used as

controls to check dosage or epigenetic sequelae, as has

been recently reviewed [202]. A number of difficulties in

interpreting a cardiac transgenic experiment can arise from

the promoter that drives the transgene itself. For example,

although the a-myosin heavy chain (a-MHC) promoter is

often thought of as driving ventricular expression in the

adult, its actual expression pattern is considerably more

nuanced, with transient expression in the embryonic heart

tube and atrial expression throughout development. If the

experimenter is attempting to isolate events that occur as a

result of expression only in the adult, more precise

manipulation of transgene expression may be necessary to

generate interpretable data. Inducible transgene expression

allows precise and reversible expression of a normal or

mutated protein that can be directed to a particular cell type

at a particular developmental time. A number of drug-

inducible systems have been described, but the tetracy-

cline-based system is the most effective and widely used.

However, like most tools, it must be used carefully as the

tetracycline activator can, when expressed at high levels or

for long periods of time, be cardiotoxic. Despite this con-

cern, transactivator lines have been developed that show no

cardiotoxicity for at least 6 months, and so these experi-

mental limitations can be easily circumvented [250].
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Gene targeting has often been heralded as being more

precise and useful than transgenesis. When coupled with

tissue- or cell type–specific methodologies via Cre-lox

technology, gene targeting offers a precise way of intro-

ducing specific mutations that will only be expressed in a

defined cell type at a particular developmental time.

Nonetheless, the continuous expression of the Cre recom-

binase system has been shown to cause decreased growth,

cytopathic effects and chromosomal aberrations in cultured

cells lacking exogenous lox sites [260, 275]. A self-

excising retroviral vector that incorporates a negative

feedback loop to limit the duration and intensity of Cre

expression can avoid measurable toxicity, while retaining

the ability to excise a target sequence flanked by lox sites,

thus providing the basis of a less toxic strategy for the use

of Cre or similar recombinases [275]. As is the case for

transgenesis, the more precisely the targeting event can be

manipulated, the more straightforward the data interpreta-

tion will be. In the heart, this is accomplished by rendering

the targeting event cardiomyocyte specific via controlled

Cre expression using a cardiomyocyte-specific promoter or

even making cardiomyocyte-specific Cre expression

inducible [277]. However, several reports have noted some

cardiac toxicity due to high levels of Cre expression with

the a-MHC promoter, especially in later adulthood [202].

One putative solution is to design the experiment such that

the data are obtained before cardiac function and bio-

chemistry are affected, circumventing any negative effect

of Cre expression. More importantly, employing Cre-only

transgenic mice in the same genetic background as part of

the overall experimental design is absolutely necessary for

proper data interpretation and to ascertain any potential

effect of Cre alone. Alternatively, different cardiac Cre

transgenes may be used. Moreover, tamoxifen administra-

tion only in the presence of the a-MHC-MerCreMer

transgene produces a temporary reduction in cardiac

function with some ventricular dilation, although this

phenotype resolves in 7–14 days after tamoxifen adminis-

tration [202]. Thus, if the MerCreMer transgene is used to

inducibly delete a gene from the heart, controls that only

contain this transgene with tamoxifen are critical.

Another drawback of rodent models is that many pro-

tocols have a sudden onset of HF due to a surgical or drug

intervention, whereas human HF generally develops over a

period of several years. Most models also use young adult

animals, while human patients are usually old. In addition,

human HF is often associated with atherosclerosis, hyper-

tension, diabetes or obesity, but the development of ath-

erosclerosis is rather rare in most rodent strains [92].

In addition, even though rodent models have been

extremely useful in developing concepts concerning the

pathogenesis of heart failure, apart from the Pfeffer’s

model [228], which predicted the utility of ACE inhibitorsT
a
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in post-infarction [227], they have not predicted outcomes

in phase III clinical trials. Although translation of findings

to clinical trials requires preclinical studies where the

appropriate animal model is used for either acute or chronic

HF, therapeutic results obtained in small animal models are

not necessarily predictive of outcomes in human patients

but can provide a potential future approach in the human

context. In this regard, two recent examples could be

mentioned. Inhibitors of enzymes in the PDE5 family have

been used to raise cGMP content in cardiac muscle in

animal models of pressure overload, chronic b-adrenergic

receptor stimulation, ischemic injury and doxorubicin

toxicity showing antihypertrophic and cardioprotective

actions. However, recent experimental results raise some

question regarding the applicability of these findings to

humans, in whose hearts PDE5 is present at much lower

levels than those seen in animal models, and raise the

possibility of PDE1, a dual-specificity phosphodiesterase

present at high levels in human myocardium, as an alter-

native target for inotropic and cardioprotective actions

[205]. On the other hand, despite the evidence for inflam-

matory activation as an important pathway in disease

progression in chronic HF and the promising results of

‘anti-inflammatory’ therapies (such as antitumor necrosis

factor-a approaches) in rodent models [146], clinical trials

have hitherto failed to show benefit in HF patients [101].

The discrepancy between clinical and basic research find-

ings could be explained by the inherent physiologic dif-

ferences between humans and rodents in terms of

pharmacokinetics and pharmacogenetics. On the other

hand, several authors reinforce the importance of refining

patient selection in order to optimize the benefits of new

HF drugs [101, 174].

Finally, the majority of the numerous genetic studies

performed in mice have not resulted in clinically approved

treatment in humans thus far [202]. However, it is not

uncommon for a drug to take over 20 years from inception

to clinical application. Given that genetically modified

mouse models have only recently become a mainstay

approach, it may take many more years before approaches

based on this technology are introduced into clinical

practice.

Conclusion

The use of small animal models has proven to be an

extremely valuable tool in understanding the pathophysi-

ology of complex cardiovascular diseases like CHF. Due to

the recent development of invasive and non-invasive

techniques to evaluate hemodynamics in human patients,

animal models of HF are becoming less important to study

hemodynamics, neurohumoral activation and myocardial

function. Furthermore, with cardiac transplantation sur-

gery, end-stage human myocardium become available for

molecular and biochemical studies. Nevertheless, animal

models remain critically important to study myocardial

changes during compensated, initial stages of CHF, during

transition from hypertrophy to failure and during the pro-

cess of remodeling, all of which are currently difficult or

even impossible to follow serially in human patients.

Animal models may also be relevant to study the effects

of new pharmacologic interventions on hemodynamics,

neurohumoral activation and survival under preclinical

conditions.

At present, transgenic models of CHF are essential for

understanding the molecular alterations underlying the

development of the disease, as they allow the identification

of genes that are causative for HF and to characterize

molecular mechanisms responsible for the development

and progression of the disease.

Finally, animal models that mimic distinct features of

human HF will play an important role in unraveling the

consequences of gene transfer and molecular techniques to

correct disturbed subcellular processes in the failing heart.

These experiments are indispensable, and these rodent

models will continue to held an important role, not only in

expanding our knowledge about the mechanisms underly-

ing HF, but also in developing novel therapeutic strategies

for CHF.
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