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ABSTRACT
Early identification of wheel defects can prevent serious damage
to railways, considerably lowering maintenance costs for both rail-
way administrations and rolling stock operators. Within this context,
an unsupervised methodology based on artificial intelligence tech-
niques is presented, which allows the detection and classification of
out-of-roundness damagewheels, such as wheel flats and polygonal
wheels, based on dynamic responses induced on the track by cross-
ing freight railway vehicles. Themethodology involves the following
steps: (i) data collection and pre-processing, (ii) feature extraction (iii)
data fusion and (iv) feature discrimination. In the first phase, an FFT
algorithm is applied to the acceleration track responses. Then, fea-
tures are extracted after training a Stacked Sparse Autoencoder, in
which the main features of the responses are obtained after a com-
pression stage using an encoder network. This lower dimensional
layer forces themodel to learn a compression of the input data. Then,
these extracted features aremergedusing theMahalanobis distance,
which enhances the sensitivity to the damage recognition. Posteri-
orly, an outlier analysis is performed to distinguish a healthy wheel
from a defective one and a cluster analysis to discriminate the two
types of out-of-roundness (OOR) damage and classify the severity of
each type of damage.
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1. Introduction

Rail vehicle wheels are subjected to constant wear and tear due to continuous use and inad-
equate maintenance plans. Over time, this wear and tear can generate more significant
defects, so it is extremely important to use sensing to understand when maintenance of
both the track and rolling stock is required. Over the last few decades, researchers have
proposed two types of monitoring systems that are commonly referred as on-board and
wayside systems, being the main difference in the location of the measuring devices. Most
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on-board techniques are based on acoustic, vibration, ultrasonic and image detection tech-
nologies [1] in which sensors are installed in the vehicle for management of the condition
of both the rolling stock and railway infrastructure.However, this type of system entail high
costs envisaging the vehicle wheel conditionmonitoring, since sensors need to be installed
in every vehicle in order to achieve a good representativity [2]. On the other hand, wayside
systems are a more viable solution for identifying wheel defects, since the condition of all
wheels is indirectly estimated by measuring the in-service train responses on the railway
track [3].

The most common wheel defects are known as OOR. As the name infers, this defect is
related to deformations on the surface of the wheel circumference that make it not round.
This deformation can have many forms and different causes, leading to faults on the vehi-
cle and on the track due to the higher dynamic force values [4–6]. The OOR damages
most frequently studied are wheel flats (discrete defects) and polygonal wheels (periodic
irregularity).

Many authors have reported the impact of the flats on the measurement responses as
a function of their shape and size, vehicle characteristics and speed [7–10]. Wheel flats
induce high dynamic impact loads on the railway infrastructure, which causes significant
damage to both tracks and vehicles, such as broken axles, damaged rolling bearings and
cracks in the wheels, rails and sleepers [11]. Moreover, it also generates high vibrations
transmitted to the rolling stock, inducing significant stresses and causing damage to the
suspension system, frame, and carbody [12,13].

In the case of polygonal wheels, the formation mechanism can be roughly classified
into three categories, namely, (1) initial wheel defects [14,15], (2) a natural vibration of the
vehicle–track system [16,17] and (3) thermoelastic instability [18]. The formation mech-
anism is strongly contingent on the vehicle type and its operational characteristics, with
the resultant effects on both the track and the vehicle intricately linked to the prevalence
of dominant harmonic orders [19–22]. For example, Tao et al. [20] studied asymmetrical
polygonal wear on metro wheels and obtained harmonic orders of 12–14, while another
study by Tao et al. [19] found that the most common harmonic order in Chinese freight
trains is 18–19. Although a polygonal wheel could generate less impact on the track than a
wheel flat, this defect can cause serious damage to the track due to resonance effects in the
wheelsets by increasing the vibration in these components [23].

To identify the occurrence of these OOR anomalies in train wheels, innovative
methodologies have been developed combining signal processing and automatic learn-
ing techniques. These methodologies are based on the extraction of damage sensitiv-
ity features, making possible the distinction between undamaged and damaged situa-
tions. Recently, many studies have shown good results in detecting OOR damages using
distinct approaches [24–29]. Mishra et al. [24] concluded that a single FBG (Fiber
Bragg Grating) sensor, positioned along the rail can detect the presence of wheel flats.
Lourenço et al. [25] created an automatic algorithm for diagnosing OOR defects. The
proposed methodology consists of isolating specific defective wheels and then identi-
fying the severity of the damage, using only acceleration and strain data measured on
the track. In another study, Krummenacher et al. [29], proposed two machine-learning
methods to automatically detect a defective wheel during operation by measuring the
vertical wheel force and using a sensor system permanently installed on the railway
track.
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By extracting the features, it is possible to transform the measured data into an alter-
native form of information where the correlation with damage is more easily observed
[30]. There are various techniques for feature extraction, the most common being CWT
(continuous wavelet transform) [31–33], PCA (principal component analysis) [31,34,35],
AR (autoregressive models) [31,36,37] and ARX (autoregressive models with exogenous)
[27,31,38]. Guedes et al. [38] developed an unsupervised methodology that allows the
detection of polygonal wheels on freight vehicles using CWT and ARX features, using
6 accelerometers, 3 on each side of the railway track. Mosleh et al. [32] introduced a
methodology relying on a single-sensor wayside monitoring system for detecting wheel
flats by extractingAR features from acceleration records.Moreover,Mohammadi et al. [31]
adopted linear features, particularly, CWT, PCA, ARX and AR, and their research findings
indicate that the AR and ARX extraction methods are more effective than CWT and PCA
in the context of wheel flat damage detection. Although these studies have demonstrated
robust results in detection, they show some limitations in dealing with the non-linear
effects associated with operational effects, such as the train speed. Due to the inability
of these linear techniques to attenuate operation effects, the inclusion of different speeds
simultaneously becomes a challenge.

For most of these studies, a feature normalisation stage is used when it is necessary to
remove the operational effects. Usually, latent variable methods are used, such as PCA [39]
or multiple linear regression (MLR) [40]. Thus, to deal with the non-linear phenomena
and reduce the large amounts of data without relying on the aforementioned methods,
the first artificial neural networks were created to inherently execute this task [41]. Over
the years, new and more advanced networks have been developed, with the Autoencoder
(AE) being one of the main types. Later, Olshausen et al. [42] proposed the creation of
sparse coding and Ng et al. [43] introduced a sparse penalisation term in the hidden layer,
to acquire more compact and effective features from lower-dimensional data. For some
datasetswith complex relationships between characteristics, employingmore than one SAE
is necessary, which is why stacked sparse autoencoders (SSAE) are commonly used [44].
Nowadays, these types of AE are widely used in various scientific fields, but specifically
for structural engineering only a few studies are found, and most are about damage detec-
tion on bridges [45–47]. Amaral et al. [45], proposed an approach for detecting structural
anomalies based on SAE and Shewhart’s T control chart. The characteristics extracted by
the SAEmodels directly from the accelerations allow detecting early abnormal behaviours
in structures. In another similar study, Amaral et al. [46], applied the same approach to
a numerical model of a highway viaduct in Brazil reaching more than 99% of success-
ful classifications of structural damage with the combination of SAE and Support Vector
Machine. Pathirage et al. [47] proposed a framework utilizing SAE’s potential for dimen-
sionality reduction, which facilitated the assessment of damage detection performance on
a pre-stressed concrete bridge.

Many of these AE algorithms already performed feature classification in order to dis-
criminate the different types of damages and severities. However, the AEmethods can also
be combined with other techniques commonly used to classify the data. They can be used
unsupervised methods, in which the model is trained without any labels provided to the
training dataset, such as k-means [36], self-organising maps (SOM) [48], isolation forest
[25], gaussian mixture model [49], k-medoids [50] and cluster analysis [51], or supervised
methods, which assume that the hierarchy of database categories is known, such as Naive
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Bayes classifiers [52], k-Nearest Neighbours classifiers [53], Support Vector Machine [54]
and decision trees [55].

This study aims to develop an automatic methodology for detecting and classifying
two types of OOR damages, flats and polygonal wheels, based on acceleration responses
obtained from a virtual wayside monitoring system. The methodology comprises seven
stages: (i) data collection, (ii) data pre-processing, (iii) training on a Stacked SparseAutoen-
coder, (iv) feature extraction, (v) data fusion, (vi) outlier analysis and (vii) cluster analysis.
Thus, this numerical study aims to make innovative contributions to the current state of
the art, with special emphasis on the following aspects:

– Use of a Autoencoder neural network for feature extraction. This technique has been
applied in the structural engineering area, but the application in the railway engineering
area is very scarce;
– The application of Autoencoder in the railway area can be very valuable, instead of

the classical linear feature techniques, since allows an efficient removal of the operational
effects, such as train speed, from the data;
– The proposed methodology allows to detect and classify two types of OOR damages

within a wide range of train speeds, unlike most methodologies that show results for only
one speed;
– Additionally, the proposed methodology allows for a reduction in the number of

accelerometers compared to other studies [25,38], showing good efficiency in damage clas-
sification using only two accelerometers. The application of sensors on both sides of the
rail allows the methodology to be applied without knowing on which side is located the
damage.

2. Numerical simulations

To obtain the responses from the railway track, it is necessary to apply sensors on the track
that can measure the dynamic responses of the crossing trains. As it is not always possible
to install them due to the high costs involved, simulations have been carried out based on
calibratedmodels of the track [56], vehicle [57] and considering their dynamic interaction,
as well as including the track irregularities. Simulations include cases with healthy wheels
and with OOR wheels (polygonal wheels and wheel flats).

2.1. Vehicle-track interaction

To simulate the dynamic interactions between the vehicle and the track, an in-house soft-
ware VSI – Vehicle-Structure Interaction Analysis is used, which was initially developed by
Neves et al. [58] and later improved by Montenegro et al. [59,60]. This numerical tool was
validated with numerical examples and experimental data (see [38], [59], [60] and [61]).

The train and the track are initially modelled separately in ANSYS� [62] and then
coupled using a wheel-rail contact model implemented in MATLAB� [63]. The track
comprises multiple-layers with rail and sleepers are represented by beam elements, while
the ballast is represented by discrete mass point elements. Elastic elements are used to
connect the various layers, simulating the interface between them.
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Table 1. Main properties adopted for vehicle and track models.

Vehicle Track

Parameter Value Parameter Value

Mass of carbody,mcb(ton) 13.5 Area of rail, Ar (m2) 7.67 × 10−4

Roll moment of inertia in carbody, Icb,x(t.m2) 49 Inertia of rail, Ir (m4) 30.38 × 10−6

Pitch moment of inertia in carbody, Icb,y(t.m2) 673 Longitudinal stiffness of the rail pad, Kp
(N/m)

20.00 × 106

Yawmoment of inertia in carbody, Icb,z(t.m2) 665 Modulus of elasticity of the sleeper, Es
(N/m2)

40.90 × 109

Longitudinal stiffness of suspensions, K1,x(kN/m) 44,981 Vertical stiffness of the ballast, Kb,z (N/m) 30.00 × 106

Vertical stiffness of suspensions, K1,z(kN/m) 1860 Lateral damping of the ballast, Cb,y (N ·
s/m)

15.00 × 103

Vertical damping of suspensions, C1,z(kN · s/m) 16.7 Vertical stiffness of the foundation, Kf,z
(N/m)

20.00 × 106

For the train model, a Laagrass model was used, specifically designed for container
transport and capable of reaching speeds up to 120 km/h [57]. The vehicle model inte-
grates spring elements to simulate suspensions, mass elements to represent the mass and
inertia at the centre of gravity of the wagon components. For the structural connection
of these elements, rigid beam elements are adopted. Table 1 outlines the properties of the
track and vehicle model.

TheHertzian theory is applied to calculate the normal contact forces, while theUSETAB
routine [64] allows evaluating the tangential forces resulting from the rolling contact
phenomenon.

The modelling of track irregularities and OOR wheel defects is also performed in
MATLAB� [63]. These models are then included in the constraint equations that couple
the train to the track in the VSI software. Using Lagrange multipliers, this tool connects
wheel displacements with the track nodal displacements, incorporating track irregulari-
ties and OOR profiles through a set of constraint equations. These equations are solved
alongside equilibrium equations, forming a unified system that couples the two subsystems
(see [60,61] for a full description of the coupling model). Including the track irregulari-
ties directly in the constraint equations are beneficial since it avoids explicitly considering
them in the FEMmodel. Moreover, it also allows to include the wheel and OOR profiles as
a periodic rail irregularity, simplifying the analysis. Thus, before starting the analysis, the
VSI software imports track irregularities and OOR profiles from a MATLAB file, which
contains one column related to the position of the track and four columns corresponding
to the vertical and lateral irregularities in each rail in each respective position, and adds
it to the constraint equations of the system throughout the dynamics analysis. Then, the
system of dynamic equations is solved using the typical Newmark integration method.

The impact of track irregularity on wheel defect classification is significant, as a lower
track quality tends to result in a higher likelihood of misclassification. A comprehensive
exploration of this influence was previously undertaken by Mosleh et al. as documented
in their research study [56]. Hence, this study does not delve into the impact of track
quality; rather, it primarily centres on the utilisation of AI-based methodologies for the
detection and classification of wheel defects. For this, four different profiles are used, based
on European Standard EN 13848–2 [65]. In this case, power spectral density (PSD) curves
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Figure 1. Vehicle–track interaction model schematisation.

are generated and artificial irregularity profiles are created in the vertical and transverse
directions.

For OOR defects, several profiles are defined based on real measurements in represen-
tative profiles of the various severities. Subsequently, the structural matrices are imported
and integrated into the VSI software using a fully coupled strategy.

More details on track and train properties, including additional information on train-
track interaction, can be found in previous publications [59,66]. Figure 1 shows the
vehicle–track interaction model schematisation and some details about the train and track
subsystems, as well as the track irregularities and wheel-rail contact model.

2.2. Virtual waysidemonitoring system

According to the conclusions reached in other studies with this type of damage [31,38],
the most promising location of the sensors is on the rail. To reduce installation and main-
tenance costs, it is important to reduce the number of sensors without compromising the
quality of the results. Therefore, based on a sensitivity analysis performed during the study,
only two vertical unidirectional accelerometers were used on each rail, 4 in total (A1 toA4),
since they provided a higher cost–benefit ratio. These sensors are mounted on the rail at
mid-span between two sleepers, as illustrated in Figure 2.
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Figure 2. 3D wayside monitoring system.

2.3. Scenarios

2.3.1. Overview
To test and validate the automaticmethodology for the detection and classification ofwheel
defects, different simulation scenarios with perfect wheels (baseline) and OOR wheels
(damage) were defined for a five-wagon Laagrss freight train. Based on different cross-
ing speeds, loading schemes and rail irregularities profiles, 120 baseline and 180 damage
scenarios (90 for polygonal wheels and 90 for wheel flats) were defined, as summarised in
Table 2.

For baseline scenarios, six loading schemes with five different speeds (40, 60, 80, 100
and 120 km/h) and four rail irregularity profiles were considered, giving a total of 120 sce-
narios. The loading schemes used are: empty, half-loaded, full-loaded and, additionally,
three other loading schemes with unbalanced loads within the limits recommended by
UIC [67].

For the damage cases, a total of 90 scenarios were generated for polygonal wheels. These
scenarios including 1 load x 1 irregularity x 3 speeds x 3 severities (H1,H2 andH3) x 10 dif-
ferent irregularity profiles within each specified harmonic interval. In these 10 irregularity
profiles, based on the defect amplitude, two amplitudes are considered, five simulations for
A1 and five simulations for A2. Similarly, 90 scenarios were created for wheel flats, involv-
ing 1 load x 1 irregularity x 3 speeds x 3 severities (F1, F2 and F3) x 10 different irregularity
profiles within each flat length interval.

The two types of defects are simulated on different wheels and wagons for full load cases
and for three crossing speeds (60, 80 and 100 km/h).

2.3.2. Polygonal wheel
A polygonal wheel is a wheel that shows a periodic radial tread deviation from the mean
wheel radius [67]. This wave phenomenon can be characterised by the different wave-
lengths formed (harmonics θ), and by the levels of irregularity (Lw) associated with each of
the harmonics. According to Peng [68], it is considered a polygonal wheel when the wear
amplitude assumes values above 0.2mm and wavelengths between 140mm and the wheel
perimeter.
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Table 2. Baseline and damage scenarios.

To define scenarios with polygonal wheels for the Laagrss wagon, a literature survey on
experimental measurements in defective wheels was conducted [20,69,70]. Three experi-
mental irregularity profiles were collected, illustrated in Figure 3. The first group (H6-8)
corresponds to a study carried out by Cai et al. [69] with dominant harmonics from 6 to 8;
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Figure 3. Wheel irregularity amplitude spectra (Lw) and harmonic order (θ ) of polygonal wheels with
dominant harmonic orders: (a) H6-8, (b) H12-14, (c) H17-18.

Figure 4. Examples of polygonal damage profiles for each of the dominant harmonic intervals.

the second group (H12-14) to a study authored by Tao et al. [20] with dominant harmonics
from 12 to 14; and the third profile (H17-18) to a study performed by Wu et al. [70] with
dominant harmonics from 17 to 18.

Based on the wheel irregularity spectra (Lw) taken from the respective measure-
ment profiles, shown in Figure 3, and considering the contribution of the first 30 har-
monics, several irregularity profiles were generated, according to Figure 4. For this,
phase angles (ψ0) are randomly assigned to sinusoidal functions in the range 0–2π ,
which is affected by a value referring to the amplitude of the sine function of each
wavelength(A0).

One of the crucial parameters to be aware of before obtaining irregularity profiles is the
wheel diameter, which, in the case of Laagrss, is approximately 0.86m.

More details on the process of generation of polygonal wheel profiles can be found in
the study by Guedes et al. [38].

For each harmonic group, five profiles with amplitudes ranging between 0.25 and
0.35mm (A1) and other five profiles with amplitudes ranging between 0.65 and 0.75mm
(A2) were simulated.
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Figure 5. Examples of wheel flat profiles for each length.

2.3.3. Wheel flat
A wheel flat is a discrete defect on the wheel surface often caused when the wheelsets are
locked and slide along the rails due to poorly adjusted or defective brakes. Since we are
dealing with a discrete defect, the wheel profile is typically represented by a peak in the
contact zone between the defect and the track.

Thus, three severity groups based on flat length intervals were defined based on the
study of Mosleh et al. [37]. A less severe group, with a 10–20mm length, an intermediate
group, with a 25–50mm length and a more severe case, with a 55–100mm length. The
irregularity profiles are generated randomly, but in this case, in function of two geometric
variables, the length and the depth of the flat. More details about the process of generation
of flat profiles can be found in the study performed by Mosleh et al [37]. Figure 5 shows
the irregularity profiles for each severity, clearly showing the influence of flat length and
depth.

As the flat is a punctual defect that occurs in the wheel from perimeter to perimeter and
is characterised by a smooth area on the wheel, the irregularity profile is marked by a peak
in the zone where the flat occurs.

2.4. Track dynamic responses

Figure 6 presents the acceleration records measured on the rail (A1) for the baseline and
damage scenarios. All time series are filtered based on a low-pass Chebyshev type II digital
filter [38,61] with a cut-off frequency of 1500Hz. To have a more realistic track response,
an artificial noise of 5% is considered in the numerical measurements. The sampling fre-
quency for data acquisition is considered 10 kHz in order to ensure a good problem
integration and allow numerical signals to have a clear definition.

Figure 6a) shows two baseline cases for two speeds (40 and 100 km/h), where it is pos-
sible to observe the influence of speed on the dynamic response. The amplifying effect
of speed can influence the identification of damage, which is why a robust baseline with
a wide range of scenarios is very important. At a speed of 40 km/h, lower accelerations
around 0.5m/s⊃2 are observed. In contrast, at a speed of 100 km/h (considerably higher),
accelerations increase substantially to around 3.5m/s⊃2. This illustrates the significant
dynamic effect exhibited by this vehicle emphasizing its role in amplifying the responses at
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Figure 6. Acceleration time-series in sensor A1 for Laagrss vehicle: (a) influence of speed, (b) influence
of load schemes, (c) wheel flat defect, (d) polygonal wheel defect.

higher speeds. In Figure 6b), the influence of the load scheme is observed in the baseline
responses, considering the same speed (60 km/h) and the same type of irregularity (Irreg-
ularity 2). Lastly, Figure 6c) and d), show two acceleration responses for the two types of
simulated OOR damages. Compared to a perfect wheel, there is a significant increase of
the peak values, more localised in the case of flats (Figure 6c)) and more distributed in the
case of polygonal wheels (Figure 6d)).

3. Methodology

3.1. Overview

The automatic methodology proposed in this study for the detection and classification of
the wheel condition is based on Machine Learning (ML) and comprises several phases,
summarised in the flowchart presented in Figure 7. After obtaining the acceleration mea-
surements from the numerical simulations, an FFT algorithm is applied to the time series
allowing the conversion of the signal from the time domain to the frequency domain. Then,
a Stacked Sparse Autoencoder (SSAE) is used to train the input data based on a set of
predefined hyperparameters of the algorithm. The set hyperparameters are encoding and
decoding transfer functions, hidden layer size,maximumnumber of epochs, L2weight reg-
ularisation term, sparsity regularisation term and a sparsity proportion term. Afterwards,



VEHICLE SYSTEM DYNAMICS 243

Figure 7. Flowchart with the main phases of the methodology for detection and classification of OOR
wheel damages on railway vehicles.

the features are extracted in the more compressed layer of the SAE, the so-called bottle-
neck layer. The number of features obtained is equal to the number of hidden layers which
is usually considerably lower than the data size, allowing a compression of the input data.

Furthermore, to enhance the sensitivity to damage, two levels of data fusion are applied
to the bottleneck features using the Mahalanobis distance. In the first level, all features are
fused into a damage index (DI) for each sensor and, in the second level, all the sensors
are merged resulting in only one DI for each simulation. Finally, automatic damage detec-
tion is achieved by performing an outlier analysis, in which a statistical confidence limit
(CB) is used, based on the Inverse Cumulative Gaussian Distribution Function (ICDF).
For feature classification, an automatic clustering process based on the k-means technique
is implemented. This algorithm allows for the unsupervised and automatic classification of
data, based on the calculation of statistical distances between objects. In k-means technique
given a vector of data and chosen k clusters, the key is to find k centroids that minimise
the distance of each vector to its nearest centroid [72]. Since it is necessary to define the
number of clusters in advance, a global Silhouette index (SIL) [33] was adopted to make
an automatic process. At the end, the clusters will allow the classification of the two types
of OOR damages and their respective severities.
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The evaluation of the accuracy of the classification was performed through the ratio
between the number of correct classifications and the total number of cases.

3.2. Data collection and pre-processing

The transformation of acceleration records using an FFT algorithm is frequently used in
damage detection problems, as it allows a signal to be converted from the time domain to
the frequency domain, to capture the excitation frequencies induced by the wheel defects.
In addition, a data reduction is carried out at this stage, since the initial records contain a
maximum of 74,000 data points, which are reduced to 7,000.

The results obtained in this first step of the methodology are plotted in Figure 8 for
a crossing speed of 80 km/h. When comparing the FFT spectra for a train passage with
flats, Figure 8a), with polygonal wheels, Figure 8b), there are visible differences in terms
of amplitude peak values and excited frequency ranges. For flats, the amplitude peak val-
ues are higher and they induce frequencies in the range between DC and 1500Hz, while
for polygonal wheels they are restricted to the range between 50 and 300Hz, which is in
accordance with some authors reports [24, 68]. In terms of severities, for flats, the more
severe group (55–100mm) is the one with the higher frequency content, as expected,
with a peak ranging essentially between frequencies DC and 500Hz. On the other hand,
the less severe group is the one inducing less frequency content and is very similar to
a baseline response. For polygonal wheels, from the analysis of Figure 8b), it can be
seen the frequency peaks for the H12–14 and H17–18 profiles around 100 and 150Hz,
respectively, while for the profile H6-8 a more flat spectrum is obtained without show-
ing any significant peak. This can be explained by the irregularity level profile of this
harmonic group (Figure 3) which has a less evident harmonic peak than the other two
profiles.

These two graphs can showwhich frequencies have higher content in the original signal.

3.3. Stacked sparse autoencoder

3.3.1. Autoencoder (AE)
Autoencoders are artificial neural networks trained using an unsupervised approach,
which aim first to learn coded representations of the data, compressing the input into
a latent space representation, and second, through this compressed information, recon-
structing the information. The basic architecture of this type of network consists of three
parts [71]: the Encoder, the Latent Space and the Decoder.

The encoding process (Equation (1)) and the decoding process (Equation (2)) can be
defined by:

H = σ1(Wij · X + b1) (1)

X̂ = σ2(Wjk · H + b2) (2)

where Wij,Wjk are the weights connection matrices between input layer-hidden
layer and hidden layer-output layer, X = (X1,X2, . . . ,Xn) is the input data vector,
H = (H1, . . . ,Hm) is the low-dimensional vector and X̂ = (X̂1, X̂2, . . . , X̂n) is the output
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Figure 8. Frequency domain responses on position 1 for the crossing speed of 80 km/h: (a) wheel flats,
(b) polygonal wheels.

data vector. b1, b2 are bias vectors and σ1, σ2 are the activation function used in each of the
parts.

The optimisation of the weight matrix and bias vectors is performed through the min-
imisation of an error function that expresses the difference between the input X and the
reconstruction of the input X̂, as shown in Equation (3). This function uses the mean
squared-error function, where N is the number of input samples.

E(W, σ) = 1
N

N∑
j=1

‖ X̂ − X‖2 (3)

3.3.2. Sparse autoencoder (SAE)
In the Sparse Autoencoder, to make the coding more efficient, two regularisation terms,
sparse penalty term and weight regularisation term, are added to the error function, caus-
ing only a subset of neurons to be activated. The average activation of neurons in the hidden
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layer ρ̂i is given by [42]:

ρ̂i = 1
N

N∑
j=1

zi(x(j)) = 1
N

N∑
j=1

σ(wi
T · xj + bi) (4)

As the average activation ρ̂ is intended to be close to a constant ρ (sparsity proportion)
and it is usually a small positive number near 0, the Kullback-Leibler (KL) divergence is
used [42].

�sparse = KL(ρ ‖ ρ̂i) = ρ · log
(
ρ

ρ̂i

)
+ (1 − ρ) · log

(
1 − ρ

1 − ρ̂i

)
(5)

In addition to this, a weight regularisation term, called L2 regularisation, is also added
to avoid overfitting the network [42].

�weights = 1
2

L∑
l=1

nl∑
j=1

kl∑
i=1

(wji
l)2 (6)

where L is the number of hidden layers, nl the output size of layer l, kl the input size of
layer l.

Thus, the cost function of a Sparse Autoencoder is given by:

Esparse(W, σ) = E(W, σ)+ μ ·�sparse + β ·�weights (7)

whereμ is the coefficient for the L2 regularisation term andβ the coefficient for the sparsity
regularisation term.

3.3.3. Training of the sparse autoencoder
After data pre-processing, the acceleration responses in the frequency domain, are then
used as input for training a stack of several sparse autoencoders.

In this work, two layers of SAE’s were used to form the network, as shown in Figure 9.
The architecture of an SSAE involves training each autoencoder individually in successive
layers, with the outputs of the previous autoencoder serving as input for the next one. After
incorporating various inputs into the SSAE training, they are integrated into the so-called
‘Input 1’. As training progresses, the data is compressed, and themain characteristics of the
signals are obtained and retained in ‘Bottleneck 1’. Subsequently, these characteristics are
used as input for training the second sparse autoencoder, which, after further compression,
enables the extraction of the final features. Depending on the type of data under analysis,
the compression level differs, so multiple tests should be conducted to optimise these layer
sizes. This optimisation was achieved by trial and test, changing both the size of the first
and second layers.

It should be noted that this network architecture, where the dimensions of the layers
gradually decrease along the network until reaching the bottleneck layer [73], has proven
to be highly robust for the type of data used. It allows for effective compression of results
without compromising efficiency in data classification.
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Figure 9. Schematic of the structure of the SSAE neural network used in this study.

3.4. Data fusion

After extracting the features from the bottleneck layer of the SSAE, the difference between
the healthy wheels scenarios and the damage wheels scenarios is still not sufficient. Hence
a data fusion is performed. With this fusion, it is possible to increase the sensitivity of the
features, and as a result, to obtain a damage index (DI) for each simulation. Thus, theMaha-
lanobis distance (MD) is used to reduce the volume of extracted data and preserve themost
relevant information [37,38,72]. Briefly,MD is ametric thatmeasures the distance between
two points in a feature space consisting of two or more variables, being independent of the
scale of the features, thus allowing an increase in the sensitivity of the features to cases with
damage. TheMD, denoted here as DI, is calculated for each simulation using the following
expression:

DI =
√
(xi − x̄) · C−1 · (xi − x̄)T (8)

in which, the inverse covariance matrix of the baseline simulation is defined by C−1, and x̄
is a mean vector of the features from the baseline simulation. The test vector of f features
representing the potential damage is defined by xi. The MD is calculated for each sensor
and for each simulation, obtaining a matrix of n distances per k number of sensors.

3.5. Feature discrimination

Finally, the discrimination of the features consists in distinguishing the features as corre-
sponding to a healthy or damaged case. At this stage of the methodology, an analysis of
abnormal values is carried out, which will allow the condition of the train wheels to be
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automatically monitored and these values to be classified into different classes. This phase
can be divided into two main ones:

3.5.1. Outlier analysis
The outlier analysis consists of grouping, by probabilistic distribution processes, the data
of normal conditions and verifying if the new extracted data have similar characteristics
to the previously created group. For this, a statistical confidence limit (CB) is used, based
on the inverse cumulative Gaussian distribution function (ICDF), considering the mean
value, μ̄, and standard deviation, σ , of the baseline feature vector.

CB = invFx(1 − α) (9)

F(x \ μ̄, σ) = 1
σ
√
2π

∫ x

−α
e−

1
2

(
x−μ̄
σ

)2
dy, for x ∈ R (10)

Whenever a value of a DI indicator is equal to or greater than CB, it is considered an
outlier (the null hypothesis is rejected), thus representing a case of damage.

3.5.2. Cluster analysis
For feature classification, a clustering process is used to divide the dataset into distinct clus-
ters that should be as compact and separated as possible [33]. For clustering, the k-means
technique uses the city-block distance and aims to reorganise the data into k clusters based
on the distances of their vectors. Recent studies showed that the k-means algorithm has
shown promising results [37, 72]. The main limitation of this technique is that it requires
knowledge of the number of clusters in advance. For this purpose, the global silhouette
index [33] is used, making this an automatic process.

4. Results

This section presents the main results obtained through the application of the methodol-
ogy proposed in section 3 to the calculated track responses. The methodology is applied
using damaged wheel passages for the three simulated train speeds (60, 80 and 100 km/h),
simultaneously.

4.1. Training hyperparameters in sparse autoencoder

The application of a Sparse Autoencoder (SAE) introduces constraints by using sparsity
hyperparameters (presented in section 3). By adjusting these hyperparameters, it is possible
to make the algorithm more efficient and improve the generalisation capabilities, as only
the most important features are retained. The optimisation of these hyperparameters is
performed through an iterative process that requires several tests and depends on the type
of data under analysis. Based on the principles of the SAE already outlined in other works
employing this type of neural network [47,73], in this study, the hyperparameters were
exclusively calibrated using the training of baseline data.

A total of 90 baseline cases are used for training, while the remaining 30 are saved for
testing, representing around 70% for training and 30% for testing, following the recom-
mendations of other study [73]. Table 3 shows the optimised hyperparameters obtained
for the two types of damage and considering the three speeds.
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Table 3. Hyperparameters used to train the SSAE.

Training hyperparameters
in Sparse Autoencoder Type of damage Polygonal wheel Wheel flat

Encode transfer function logsig logsig logsig
Decode transfer function logsig logsig logsig
Size of hidden layer (Bottleneck 1/Bottleneck 2) 3500/2000 1500/500 1000/500
Max. number of epochs (Bottleneck 1/Bottleneck 2) 5/10 50/300 50/300
L2 weights regularisation (Bottleneck 1/Bottleneck
2) (λ)

1× 10−4/1× 10−6 1× 10−4/1× 10−6 1× 10−4/1× 10−6

Sparsity Regularisation (Bottleneck 1/Bottleneck 2)
(β)

0.1/1 0.1/8 0.1/8

Sparsity Proportion (Bottleneck 1/Bottleneck 2) (ρ) 0.01/1× 10−3 0.01/1× 10−3 0.01/1× 10−3

Additionally, a Scaled Conjugate Gradient algorithm (SCG) was considered with a stop-
ping criterion when the model reached the value of 1 × 10−6 in the loss function (Esparse)
or the maximum number of epochs.

In the context of this study, the non-linear transfer functions (logsig) proved to be more
effective than the linear ones, being the ones used in all the studied cases. After analysing
Table 3, there is a similarity in the hyperparameters when comparing the two types of OOR
damage. It is observed that the data compression level is the same for both cases, around
93%, as 500 features are extracted in Bottleneck 2 from the initial input data with 7000
points.

Concerning the type of damage situation, the size of the ‘Bottleneck 1’ and ‘Bottleneck
2’ was increased to bring them even closer to the initial amount of input data. This can be
explained by the fact that two different types of damage are being evaluated in the same
analysis, making it challenging for the autoencoder to define relationships between the
data, hence requiring a larger number. On the contrary, the maximum number of epochs
was decreased since after several tests was found that the influence of the epochs was
minimal and have a negative influence on the calculation time.

It is also important to emphasise that of the various hyperparameters presented, the
ones that had the greatest impact on the results were the size of the hidden layer and the
maximum number of epochs.

Once the hyperparameters have been defined, all the steps of the methodology are
applied to the new dataset. For simplicity, in this section, only the last phase of the
methodology will be presented, namely an outlier analysis for damage detection and clus-
ter analysis for damage classification. For each sensor, a matrix n×m is created, where n
is the number of test passages (baseline scenarios+ damage scenarios), and m represents
the number of extracted features. So, the size of the matrices is 210× 2000 in case of the
type of damage, 75× 500 for each amplitude in polygonal wheel, and 120× 500 for wheel
flat.

4.2. Damage detection

Despite the visual distinction between healthy and damaged wheels based on the data pro-
cessing presented in subsection 3.2, unsupervised learning must use strategies capable of
automatically detecting damage. To this end, an outlier analysis is employed, which con-
sists of defining a confidence threshold using a significance level of 1% [36], represented



250 T. JORGE ET AL.

Figure 10. Automatic OOR damage detection based on outlier analysis.

by the green line in Figure 10. This approach makes it possible to successfully detect all
damage cases without any false positives since the damage index values are all above the
threshold line.

4.3. Classification of type of damageOOR

To distinguish the two types of OOR damage, a cluster analysis is performed. Figure 11
shows a clear distinction between the damage, even when using a dataset with three
different train speeds (60,80 and 100 km/h).. In the case of Figure 11a), using all four
accelerometers, it is possible to efficiently separate the set into two large clusters, despite
30 misclassifications (16 in the polygonisation and 14 in the flats). Even so, the accuracy
percentage is around 85%, which is a very good result. To analyse the sensitivity to the
number of sensors, only two sensors were used, one on each side (Figure 11b)). The results
improved, with a decrease in the number ofmisclassifications from 30 to 21 (13 for polygo-
nisation and 8 for flats). One explanation could be the disparity in sensor sensitivity to the
damage, where some sensors are more sensitive than others due to their spatial position-
ing in relation to the damage. By merging the data from the less sensitive sensors with the
more sensitive ones, this could have a negative impact on the results. Thus, the percentage
of accuracy in this case is around 90%.

The purpose behind presenting these two plots was to demonstrate that, whether
using 4 sensors or 2 sensors, the classification remains remarkably robust, showing low
misclassifications in both scenarios.

4.4. Classification of severity

After identifying the type of OOR damage, a cluster analysis is performed once again to
classify the severity of each damage separately. Regarding polygonal wheels, the classifi-
cation involves both amplitude and harmonic orders, leading to the clusters depicted in
Figure 12. Initially, amplitude classification is essential, as depicted in Figure 12a). Here,
the obtained clusters reasonably reflect the two amplitude groups, with all misclassifica-
tions associated with the H6-8 harmonic cases (17 misclassifications). Once the amplitude
is identified, harmonic classification must be carried out separately for each of the ampli-
tudes. In Figure 12b), related to amplitude A1, it is observed that the obtained clusters
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Figure 11. Automatic OOR damage classification based on cluster analysis using: a) 4 sensors; b) 2
sensors.

are nearly perfect, with only 3 misclassifications. In Figure 12c), there are only 3 misclas-
sifications, totalling 8 misclassifications in the classification of the number of dominant
harmonics.

The classification of harmonic order is only possible with the separation of amplitudes,
otherwise, the algorithm becomes less accurate.

Figure 13 presents the clusters obtained for the wheel flat cases. The separation between
the less severe group and baseline cases and intermediate (cluster 3) and severe cases (clus-
ter 4) is reduced, resulting in a total of 19 misclassifications. Nevertheless, this result shows
that the methodology efficiently distinguishes the three severity groups with an accuracy
rate of about 84%. One possible reason for this significant number of misclassifications
could be directly associated with the number of impacts captured by the sensor.

5. Conclusions

In order to contribute to the safety of railway transportation and service quality, an auto-
matic methodology based onmachine learning has been proposed. This methodology can
accurately detect and classify two types of OOR wheel damage in railway vehicles allow-
ing to mitigate problems at both track and vehicle level, such as derailments or material
degradation. It includes a new technique for feature extraction based on a dedicated neural
network, the Sparse Autoencoder. This non-linear technique is an upgrade concerning the
commonly used linear techniques for feature extraction since it allows a better normalisa-
tion of the operational effects in the analysed data, as well as the reduction of large amounts
of data without relying on other techniques, while keeping the most valuable informa-
tion. These improvements are achieved through the use of different hyperparameters in
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Figure 12. Automatic classification of polygonal wheels based on cluster analysis: a) amplitude A1-A2;
b) harmonic orders for A1; c) harmonic orders for A2.

Figure 13. Automatic classification of wheel flats based on cluster analysis.

the calculations, such as non-linear activation functions and sparsity terms. Consequently,
it becomes possible to identify relationships in the data independently on the speed of
circulation. Particularly in the railway engineering field, the inclusion of this technique
showed a good potential to deal with variable train speeds, essentially due to the amplify-
ing effect on the measured track dynamic responses which could induce errors in damage
identification.

The application of themethodology to the data set proved to be very successful in detect-
ing and classifying the two types of OOR damages. Damage detection was perfect, without
any false detection. In terms of classifying the type of damage, the results are very good,
with a success rate of around 85%, but if only two accelerometers are considered the success
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rate increases to around 90%. These results are encouraging since the range of speeds con-
sidered in the analysis, between 60 and 100 km/h, is the most representative of in-service
freight trains. Also, the results show that including the Sparse Autoencoder has a positive
effect in the normalization of the train speed in the damage data set.

Regarding the severity classification for each type of damage, the methodology proved
equally successful in clustering the different damage severities. For polygonal wheels, the
methodology efficiently distinguishes the severity groups in terms of defect amplitude, fail-
ing only for the H6-8 harmonic cases, and in terms of harmonic orders for each amplitude,
with almost perfect results. For wheel flats, the methodology efficiently distinguishes the
three severity groups, though with some misclassifications between the less severe group
and baseline cases and between intermediate and severe cases. A success rate of around 86%
is achieved in the classification of polygonal wheel severities and 84% in the classification
of wheel flat severities. Even so, these high success rates of over 80% show the robustness
of this methodology in damage classification regardless of the train speed.

Future works include experimental tests to validate the proposed methodology based
on on-site measurements. Additionally, this methodology could be carried out for other
types of railway vehicles, for example, passenger vehicles, since the dynamic responses are
different from freight vehicles. In that case, exploring other recent types of autoencoders,
such as the ensemble autoencoder could also be an option [74].

To increase the complexity of the problem, the objective is to explore the concept of
multiple damages (same or different OOR types). For this, it will be necessary to incorpo-
rate a new stage in themethodology, the damage location stage, which will make it possible
to distinguish isolated damage from multiple damage, as well as their respective location.
Thus, damage will be identified using cut signals, which will then be used to classify the
data.
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