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Abstract
The wheel flat detection in trains using Artificial Intelligence (AI) has emerged as a critical advancement in railway maintenance
and safety practices. AI systems can effectively identify geometric deformation in wheel rotation patterns, indicative of
potential wheel flat damage, resorting to wayside monitoring systems and machine learning algorithms. This study aims to
propose an unsupervised learning algorithm to identify and localize railway wheel flats, which considers three stages: (i) wheel
flat detection to distinguish a healthy wheel from a damaged one using outlier analysis, achieving 100 percent accuracy; (ii)
localizing the damage to pinpoint the location of the defective wheel through the Hidden Markov Model (HMM); (iii)
classification of wheel damage based on its severity using k-means clustering technique. The unsupervised learning algorithm is
validated with artificial data attained from a virtual wayside monitoring system related to freight train passages with healthy
wheels and defective wheels with single and multiple defects. The proposed methodology demonstrated efficiency and
robustness for wheel flat detection, localization, and damage severity classification regardless of the number of defective
wheels and their position.
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Introduction

Defective wheels on railway vehicles significantly impact
both railway infrastructure and vehicle systems. Continuous
train operation with defective wheels raises the risk of track
misalignment and potential derailments. Over time, the
persistent impact of defective wheels can structurally
damage railway vehicles and their components, compro-
mising integrity and longevity. Thus, monitoring the geo-
metrical quality of railway vehicle wheels to detect and
classify wheel defects based on severity is essential, par-
ticularly for freight trains.1–3

The anticipated shift of goods transport from road to rail
in the coming years4 heightens the need for effective wheel
condition monitoring. Defects in freight trains can cause
derailments, affecting railway operations. This necessitates
novel solutions for the automatic detection and classifica-
tion of out-of-roundness (OOR) wheels. OOR defects can
induce vibrations, damaging both track and vehicle com-
ponents.5 These defects include flats, eccentricities, poly-
gons, corrugations, missing tread material, and other
irregularities.6–8 Wheel flats, a common type of wheel
damage, can be caused by braking forces that change the
wheel’s perimeter shape from round to flat.9 The General
Contract for the Use of Wagons10 mandates the immediate
replacement of wheelsets with flats longer than 60 mm on
wheels larger than 840 mm. Therefore, early automatic

detection of defective wheels is crucial for safety, track
reliability, and controlled maintenance costs.

Defective wheels can be detected using wayside or onboard
monitoring systems. Onboard techniques11,12 require all vehicle
wheels to have sensors, leading to high costs. To mitigate this,
wayside measurement systems are commonly used, monitoring
wheels of all vehicle types during train passage.9 Various
sensors, such as fiber Bragg gratings,13,14 acoustic emission
sensors,15,16 strain gauges,17,18 and accelerometers,9,17,19 are
employed to detect wheel flats.

Innovative automatic detection methods are continually
enhancing result reliability. Mosleh et al.3 used the envelope
spectrum method to distinguish defective wheels and
successfully tested on polygonal wheels.19 Chen et al.20

developed a two-level adaptive chirp mode decomposition
(ACMD) approach for wheel flat detection using vehicle
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vibration measurements. Nowakowski et al.21 proposed a
method using vibration signal processing in both frequency
and time domains to recognize wheel flats. Wang et al.22

combined conventional time and frequency domain anal-
ysis with a band pass filter for envelope analysis in wheel
flat detection.

In recent years, machine learning23 approaches have
been applied to detect vehicle system damage. Dernbakh
et al.24 used classifier methods such as support vector
machine (SVM) and convolutional neural networks (CNN)
to identify flat spots on wheels. Wan et al.25 proposed an
unsupervised method for detecting anomalies in passenger
train wheels using fiber Bragg grating (FBG) sensors. They
implemented four unsupervised learning techniques: non-
negative matrix factorization (NMF), one-class support
vector machine (OC-SVM), multilayer perceptron au-
toencoder (MLP-AE), and convolutional neural network
autoencoder (CNN-AE) to monitor train wheel conditions.
Shaikh et al.26 developed a methodology for wheel defect
detection based on hybrid deep learning using onboard
acceleration data. Ni and Zhang27 introduced a Bayesian
machine learning technique for train wheel damage de-
tection and condition assessment, providing more accurate
responses compared to offline methods. Mosleh et al.1,2

developed an unsupervised detection methodology using
acceleration and shear time histories on rails to distinguish
defective wheels, which was later applied by Mohammadi
et al.9 for wheel flat and polygonization detection.28

However, In the authors’ previous studies,2,3,9,17,29,30

wheel flat detection was performed considering only one
defective wheel per train passage. Therefore, in the first
stage of this manuscript, the robustness and accuracy of the
proposed methodology for wheel flat detection are evalu-
ated, assuming train passages with both single and multiple
defective wheels. Moreover, in none of the prior studies
conducted by the authors1–3,9,17,29–31 was the position of the
damaged wheel localized, even for a single defect. Addi-
tionally, the distinction between train passages with a single
defect and those with multiple defects has not been studied.
Thus, in the second stage of this research, it is intended to
localize the axle with defective wheels and distinguish multi
defects from single defect scenarios. In addition, in the
authors’ preceding works,1,31 damage classification was
conducted only for trains with a single damaged wheel.
Hence, in the final stage of the present study, damage
classification is performed to categorize wheel flat severities
regardless of the position or number of defects. The pro-
posed methodology can classify the severity of wheel flats
for each defective axle individually. Therefore, to overcome
mentioned limitations, this paper enhances the author’s
previous works and introduces a novel algorithm based on
machine learning techniques. This algorithm aims not only
to detect wheel flats but also to localize damage and classify
it into three severity levels: low, moderate, and severe. To
validate the proposed methodology, an artificial wayside
monitoring system is utilized, and numerical simulations
are conducted to assess the effectiveness of the proposed
methodology. Simulation of train passages, including
scenarios with both single and multiple defective wheels, is
conducted for freight trains. The defect identification is
based on an unsupervised machine learning technique

where a confidence boundary is computed to detect wheel
defects. Afterward, an automatic segmentation technique is
utilized to cut and segment the signal for wheel flat lo-
calization and to distinguish single from multi-damage
scenarios. Finally, clustering analysis is performed to
classify defect based on its severity regardless of the
number of defective wheels.

This research work has made the following significant
contributions:

- developing an unsupervised damage identification
methodology using an accelerometer-based mea-
surements to distinguish defective wheels either train
passages including single or multiple damaged
wheels, from healthy ones.

- localizing the defect to define the position of the
damage and distinguish train passages with a single
defective wheel from multiple ones.

- Proposing cluster analysis using the k-mean tech-
nique in the classification of wheel flat severity to
categorize the intensity of the defect into three
classes, namely low, medium, and severe, regardless
of the number of defects per train passage and po-
sition of the damage.

Numerical modeling

This section presents the numerical simulations of the train,
track, and the interaction between the wheel and the rail.
Moreover, the proposed virtual wayside monitoring system
for wheel flat detection, localization, and damage severity
classification is also described in this section.

In the present study, simulations of the numerical dynamic
interaction between trains and tracks are performed using the
in-house software Vehicle-Structure-Interaction (VSI), al-
lowing the generation of synthetic measurement responses.
The Vehicle-structure interaction software is described in
detail in the study of Montenegro and Calçada.32 This nu-
merical tool, developed in MATLAB,33 imports the structural
matrices from the structure (in this case, the track) and the
vehicle that has previously been modeled in a Finite Element
(FE) package. In spite of the fact that these subsystem models
are originally created individually in the FE program, the VSI
software uses a fully linked technique to couple them. The
train is coupled to the track by a 3D wheel-rail contact model
using Hertzian theory.34 Normal and tangential contact forces
caused by rolling friction creep are calculated by the USETAB
routine.35 Moreover, The simulation of the track is conducted
using the software ANSYS.36 Beam elements are used to
model rails and sleepers, while spring-dashpot components are
used to simulate the behavior of the track flexible layers, that
is, ballast, fasteners/pad, and mass point components to
consider the ballast mass. ANSYS36 has also been used to
model the train, which is a freight Laagrss-type vehicle
composed of five wagons, each one with two axles. The train
modeling uses a multibody formulation in which mass point
elements are placed at the center of gravity of each body,
specifically the carbody and wheelsets, allowing inertial and
mass effects to be simulated. The work of Mosleh et al.3,17

thoroughly describes in detail themechanical characteristics of
both the track and train components. The graphical depiction
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of the numerical simulation of the wayside monitoring system
is shown in Figure 1.

In the authors’ previous studies,1,2 different sensitivity
analyses have been implemented to evaluate the effect of the
sensors position on the accuracy of the proposed methodology
for wheel flat detection. From the results of the mentioned
studies, the proposed methodology can detect wheel flat re-
gardless of the number and position of the accelerometers
installed on the rail or sleeper. The location of the sensors in
the proposed virtual wayside monitoring system is shown in
Figure 1(d). The wheel flat-identification system is composed
of eight accelerometers installed on the midspan of the right
and left rails. The accelerometers on the right side are iden-
tified by measurement points 1 to 4. Additionally, the ac-
celerometers located on the left side of the track are
represented by measurement points 5 to 8. The distance be-
tween the accelerometers is considered equal to 0.6 m.
Moreover, one strain gauge is installed on themidspan near the
accelerometer 1 to obtain strain for the damage localization
process (stage 2).

AI-based methodology for wheel flat
identification

In this research, the proposed methodology to identify wheel
flat automatically includes three stages, as presented in
Figure 2, according to a machine learning methodology1,2,37:

In the first stage, the rail baseline responses are used to
establish a confidence boundary, while the second stage lo-
calizes the defective wheels and distinguishes single-damage
from multi-damage passages. Finally, the third stage identifies
the severity of the damages and classifies them into three
categories (low, moderate, and severe damage).

Stage 1: Detection

Damage detection is performed by applying six distinct
steps which are shown in Figure 2. First, data acquisition
collects dynamic responses from accelerometers. Next,
feature extraction reduces the data dimension using
Continuous Wavelet Transform (CWT) to convert time-
series data into damage-sensitive features. Principal
Component Analysis (PCA) then mitigates environ-
mental and operational effects on vibration characteris-
tics. PCA is used to reduce model orders,38 perform
modal analyses,39 update nonlinear models,40 validate
sensors, and locate damage.41 Afterward, features are
merged into a damage index (DI) using Mahalanobis
Distance (MD), simplifying data analysis by reducing
multivariate data to a single DI. MD measures the sim-
ilarity between undamaged and damaged features;
shorter distances indicate higher similarity. Data fusion
enhances damage sensitivity for CWT-PCA-based fea-
tures. An unsupervised discrimination algorithm defines
a confidence boundary (CB) for each accelerometer using

Figure 1. Numerical modeling of the track-side monitoring system.
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outlier analysis. Mahalanobis squared distance is ap-
proximated by chi-squared distributions, allowing a
Gaussian distribution for MD. The Gaussian inverse
cumulative distribution function (ICDF) estimates the
CB for outlier detection, considering the baseline feature

vector’s mean and standard deviation. A feature is an
outlier if its damage indicator meets or exceeds the CB,
with a 1% threshold based on Sousa Tomé et al.42 and
other works.2,9,37 Finally, defective scenarios are iden-
tified and used to localize damaged wheels.43,44

Figure 2. Flowchart of wheel flat detection, localization, and classification of the severity.

Figure 3. Structure of a sparse autoencoder model.

4 Proc IMechE Part F: J Rail and Rapid Transit 0(0)



Stage 2: Localization

The method divides the signal to capture detailed vibration
patterns to localize a defective wheel, aiding in obtaining
specific characteristics in both time and frequency domains.
This segmentation counts and labels each wheel’s passage,
allowing further analysis of wheel-rail interactions. The
Hidden Markov Model (HMM) is chosen for its processing
speed and ability to link observation sequences to hidden
states.45 The Baum-Welch algorithm deduces model param-
eters using an Expectation-Maximization strategy,46 while the
Viterbi and Forward-Backwards algorithms define probability
vectors and grids.47 This method links reliable signal sections
to the associated wheel, enhancing the examination of wheel-
rail interactions and pinpointing specific points for comparing
patterns across wheel movements. Gaussian emissions be-
tween 2 and 5 states were considered for adjusting hyper-
parameters, with a 3-state HMM chosen for segmentation as it
effectively eliminated segments between wheel movements.

The segmentation captures three phases of a wheel’s move-
ment: approach, detection, and departure from the sensor. This
detailed segmentation helps identify the effects of a defective
wheel on the accelerometer signal. With wheel damage, the
accelerometer signal’s amplitude varies, while the strain gauge
signal remains consistent, facilitating automatic segmentation
of significant signal portions for each passage. Following
segmentation, axles are individually counted and separated,
and defective wheels are localized based on acceleration peak
variations in both single and multi-damage scenarios. These
scenarios can be distinguished by specific amplitude variation
trends, as discussed in the results and discussion section for
wheel flat localization.

Stage 3: Classification

Damage classification is performed to categorize defects
based on the defect severity. For this proposal, the first

Table 1. Damaged and undamaged scenarios.

Baseline scenario

Damaged scenario

Single damage Multi-damage

Train Freight – Laagrss wagon Freight – Laagrss wagon Freight – Laagrss wagon
Number of loading schemes 6 1 (full capacity) 1 (full capacity)
Unevenness profiles 4 1 1
Speeds (km/h) 40 – 120 80 80
Noise ratio 5% 5% 5%
Flat lengths (mm) — - 10–20 mm (low)

- 25–50 mm (moderate)
- 55–100 mm (severe)

Number of numerical analyses 113 30 12

Figure 4. Baseline scenarios.
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output of the second stage, the cut signals corresponding
to axles with defective wheels, is used as input data in the
third stage. Afterwards, to reduce the size of the dynamic
response matrices, feature extraction is conducted. For
this intention, the CWT is used to convert time-series data
into features sensitive to the damage. Afterward, the
sparse autoencoder is implemented to estimate input
variables (reconstruction). The encoder component
transforms the input data yj into a lower-dimensional
space S and produces an output represented as byj. The
autoencoder process for each layer L is described as
follows:

sh ¼ φ

 Xn
j¼1

whj � yj þ bh

!
(1)

byj ¼ φ0
 Xn

j¼1

w0
hj � sh þ b0h

!
(2)

In which, n represents the number of elements in the
acceleration response vector, yj denotes the jth element in
the original CWT-based damage-sensitive feature re-
sponse data, byj represents jth element in the reconstructed
CWT-based damage-sensitive feature response data.
w,w0 and bh, b0h are the weight matrices and bias vectors
for encoder and decoder modules, respectively, while
φ, φ0 are the activation functions of the encoder and
decoder. The cost function utilized for training the sparse
autoencoder is a modified version of the mean squared
error function, shown as follows:

E ¼ 1

n

Xn
j¼1

Xh
h¼1

�
yhj � byh�2 þ λ � 1

2

Xn
j¼1

Xh
h¼1

�
whj

�2
þ β �

XL
h¼1

KL
�
ρ
��bρj�

(3)

Where, λ represents the coefficient for the regularization
term, β represents the coefficient for the sparsity regula-
rization term and ρ denotes the average desired information
gain, which reflects the sparsity proportion, while bρj is the
average information gained in the training process. The
Kullback-Leibler48 divergence is a mathematical function
used to quantify the disparity between two distributions. In
this case, it considers a zero value when ρ and bρj are
identical and escalate as they move further apart. Mini-
mizing the cost function makes this term small; therefore, ρ
and bρj become close to each other. For the training process
of the SAEmodel, the Scaled Conjugate Gradient algorithm
(SCG)49 with stopping criteria when the model achieves the
maximum number of epochs. Thereafter, Mean Squared
Error (MSE) and Mean Absolute Error (MAE) are com-
puted between original CWT-based features yj and re-
constructed onesbyj as new features by equations (4) and (5),
respectively:

MSE ¼ 1

n
�
Xn
j¼1

�
yj � byj�2 (4)

MAE ¼ 1

n
�
Xn
j¼1

�
yj � byj� (5)

Figure 5. Multi-damage scenario simulations.
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It is possible to differentiate between defect severities
through calculated errors (MSE and MAE). Defective
wheels with low, medium and, severe damage come with
lower, medium and, higher MSE and MAE, respectively.
Data fusion is implemented by computing Mahalanobis
Distance to increase the sensitivity of the features (MSE and
MAE) to the damage. Data fusion can involve two steps.
Firstly, the computed MSE and MAE from the autoencoder
are merged for each sensor separately (feature fusion).
Secondly, the MSE and MAE from all sensors are fused in
the subsequent step. A diagram depicting the employed
SAE architecture is shown in Figure 3 as follows:

Finally, the k-means clustering technique is applied to
classify damage severities, necessitating the predefining
number of clusters. To determine the appropriate number of
classes, the global silhouette index (SIL) is used. Through
the k-means algorithm, the centroid (CD) of each cluster is
then identified. The k-means clustering is implemented
through the following equation:

dðx, cÞ ¼
Xp
j¼1

��xj � cj
�� (6)

Where p is the number of the damage indexes (DI), x, and c
represent each DI and centroid of each cluster, respectively.

Damaged and undamaged scenarios

In order to test and validate the automatic wheel flat identi-
ficationmethod developed in this study, baseline (undamaged)
and damaged wheel scenarios are considered. The baseline
scenario describes the train passing with healthy wheels,
whereas the damaged scenario represents a train passing with
defective wheels. As shown in Figure 1, three defective layout
cases are considered for the damage scenarios, including one
single damage and two multi-damage scenarios: (i) flat in the
left wheel of the rear wheelset of the third wagon corre-
sponding to single-damage scenarios which is presented in red
color (Figure 1(a)), (ii) defects on the left wheel of the rear
wheelset of the first wagon and the left wheel of the front
wheelset of the last wagon which is presented with blue
wheels correspond to multi-damage scenarios (Figure 1(b))
and, (iii) flats in the left wheel of the rear wheels of the first and
second wagon are shown in blue, related to multi-damage
scenarios (Figure 1(c)).

To simulate defective wheels on train, different wheel flat
severities are also taken into account in this study. Based on
the wheel flat lengths (L), three intervals are defined for
defective wheels, namely low, moderate, and severe. In each
interval, the uniform distributions U (10, 20), U (25, 50), and
U (55, 100) define the lower and upper limits for the wheel’s

Figure 6. The output of automatic damage detection damage detection using measurements from accelerometer on position 5: (a) feature
extraction; (b) feature normalisation; (c) data fusion; (d) outlier analysis.
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flat length, respectively. The wheel flat depth (D) is computed
by the following equation50:

D ¼ L2

16Rw
(7)

in which Rw and L represent the radius of the wheel and the
length of the flat length, respectively.

Moreover, a wheel flat’s vertical profile is calculated as
follows50:

Z¼�D

2

�
1� cos

2πx
L

�
:Hðx�ð2πRw �LÞÞ,0≤x≤2πRw

(8)

where x is the coordinate aligned with the track longitudinal
direction, and H represents the Heaviside periodic function.
In real-world conditions, where rails are not completely
smooth, track irregularities significantly affect wheel-rail
contact force values.51,52 Thus, it is important to consider
these irregularities even though they are very small in the
numerical analyses. In accordance with the European
Standard EN 13848-2,53 rail unevenness profiles are gen-
erated for wavelengths between 1 m and 75 m. Using actual
data, PSD curves are developed to create artificial un-
evenness profiles. An overview of how unevenness profiles
are generated can be found in Mosleh et al.54 In order to
apply the proposed methodology, dynamic responses are
measured at sensors (shown in Figure 1(d)) along the rail in
both baselines (undamaged) and damaged scenarios whose
assumptions are indicated in Table 1.

For the baseline scenario, 113 simulations are per-
formed, as shown in Figure 4, by considering four

unevenness profiles of the rail, five train speeds (vary
between 40 and 120 km/h), and six loading schemes: (i)
empty train; (ii) half-loaded train; (iii); fully loaded train
with longitudinal and transversal unbalanced loads (UNB1,
UNB2, and UNB3). The unbalanced loading schemes for
the wagon model are defined based on the UIC loading
guidelines,10 where the cargo gravity centre is offset in
longitudinal and transversal directions. Additionally, the
ratio between reaction forces in the axles is described in
Figure 4,10 in which E1, E2, R1, and R2 represent reaction
forces in the front, rear, left, and right axles, respectively.

To simulate damaged cases, 42 scenarios are considered
with different flat geometries while the train speed is 80 km/h
containing 30 ton load per wagon. 30 simulations include the
train passing with one damaged wheel, and the other
12 simulations involve multi-damage cases. In the case of
single damage, 30 analyses are conducted for each flat length
interval (low, moderate, and severe), as illustrated in Table 1.

For multi-damage scenarios, 12 analyses are performed
(Figure 5). Six of these analyses involve two defective
wheels with the same severities, namely (low-low,
moderate-moderate, and severe-severe) for both the first
and second wagons (train passages 31, 32, and 33), iden-
tified as far-multi-damaged (Figure 1(c)), as well as for both
first and last wagons (simulations 37, 38 and 39), termed
near-multi-damaged (Figure 1(b)). Additionally, six ana-
lyses examine two defective wheels with different sever-
ities, including low and moderate, low and severe, and
moderate and severe flat properties (train passages 34, 35,
and 36), for both the first and last wagons (Figure 1(b)), as
well as for the first and second wagons for simulations 40,
41, and 42 (Figure 1(c)).

Figure 7. Acceleration signal segmentation considering healthy train passage from accelerometer 1: (a) complete signal; (b) axle 1; (c) axles
2–3; (d) axles 4–5; (e) axles 6–7; (f) axles 8–9 (g) axle 10.
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A sampling frequency of 10 kHz is used to evaluate
acceleration signals for baseline and damaged scenarios and
based on the literature,3,17,55 an artificial noise (5% of
amplitude) is used to pollute the numerical signal for a more
realistic reproduction of the measured rail response . Then, a
low-pass Chebyshev type II digital filter with a cut-off
frequency of 500 Hz is also implemented to filter all
time series.

Results and discussion

The output of the current study is presented in three distinct
sections. Initially, defective wheels are distinguished from
healthy ones, while damaged wheels are localized through
the second stage. Finally, damage classification is per-
formed based on the defect severity.

Wheel flat detection

This section summarizes the results of four techniques for
wheel flat detection: feature extraction, feature normali-
zation, data fusion, and outlier analysis (Figure 2, stage 1).

Detailed studies on each technique have been previously
published by the authors.2,9,30,55

Figure 6 shows the damage detection output for each
technique. Features and damage indexes are classified into
baseline (first 113 passages) and damaged scenarios (next
42 passages). Each damage scenario is indicated by symbols
representing different wheel flat severity levels. Simulations
114–123 represent low severity (10–20 mm, SD-low), 124–
133 moderate severity (25–50 mm, SD-moderate), and 134–
143 severe damage (55–100 mm, SD-severe). Simulations
144–155 show multi-damage scenarios detailed in section 4.
From time series data, 468 features are extracted per accel-
erometer as damage-sensitive indicators. The analysis includes
155 simulations for both baseline and damaged scenarios
(Table 1). Applying Continuous Wavelet Transform (CWT)
produces a three-dimensional matrix (155 × 468 × 8) for each
of the eight measurement points (Figure 1(d)). Figure 6(a)
illustrates features extracted by CWTat position 5, showing an
ascending pattern in single-damage scenarios with clear
amplitude differences. However, no clear distinction between
baseline and damage scenarios is observed due to environ-
mental and operational factors, leading to feature
normalization.

Figure 8. Damage localization considering defective scenarios using measured acceleration from accelerometer 1: (a, b) complete signal;
(a1, b1) axle 1; (a2, b2) axles 2–3; (a3, b3) axles 4–5; (a4, b4) axles 6–7; (a5, b5) axles 8–9 (a6, b6) axle 10.
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Afterward, PCA is applied to create an 8 × 468 feature
matrix based on CWT features for each passage. The first
15 components are discarded, as they account for over 80%
of variance. Figure 6(b) shows feature normalization,
suppressing changes from environmental and operational
variations (EOVs). Despite clear sensitivity patterns for
single-damage scenarios, distinguishing between undam-
aged and damaged wheels after PCA is not possible.
Therefore, data fusion is implemented to increase damage
sensitivity.

Data fusion is implemented to compute Mahalanobis
Distance (MD) obtaining a damage index (DI) to transform
each sensor and passage into a damage-sensitive feature
based on 453 PCA-CWT parameters. This results in 155 ×
1 vectors of MD for each of the 8 accelerometers.
Figure 6(c) shows improved damage sensitivity at accel-
erometer 5, with varying sensitivities across the sensor,
resulting in different damage indexes.

Figure 6(d) shows the methodology’s effectiveness in
distinguishing undamaged from damaged scenarios by
comparing confidence boundaries (113 baseline passages) and
damage indices. Healthy wheels come with DIs below the
confidence boundary (CB) for the first 113 passages while for
defective scenarios, DIs exceeds CB. The robustness of the
confidence boundary (CB) improves as more baseline data is
added daily, enabling more accurate detection of defective
wheels in real-time. Once the confidence boundary is estab-
lished, a single passage with defective wheel is sufficient to
test the accuracy of the proposed methodology.2 This meth-
odology effectively detects all damage scenarios without false
positives or negatives, indicating that a single sensor is

sufficient for damage detection regardless of the number and
position of the defect.

Wheel flat localization

The second stage of the current study represents the outputs of
the damage localization to diagnose the axles, including the
defective wheels. As described in section 3, damage locali-
zation is performed based on the segmentation technique
explained in detail in the work of Lourenço et al.56 Initially, the
HMM was tailored to the contour of the gauge signal, taking
into account 2 to 5 states of Gaussian emissions. All states
managed to distinguish between successive wheels even when
wagons were closely linked. Yet, only when using 2 and
3 hidden states was a consistent division for every wheel
movement. Although other segmentations effectively con-
formed to the shape of the monitoring signal, they proved
unreliable in cases with high levels of noise and defective
conditions. As a result, the HMMwith 3 states was selected for
automatic segmentation since it effectively eliminated the
wheel signal segments between wheel movements. Addi-
tionally, it can be noted that the proposed methodology for
signal segmentation is unable to segment the signal for each

Figure 9. Damage localization considering defective scenarios using measured acceleration in the frequency domain from accelerometer 1:
(a) single damage; (b) multi-damage.

Table 2. SAE model characteristics.

Number of hidden
layers

Maximum
number
of epoch λ B α

Activation
function

10 1000 10̂�3 1 0.7 Sigmoid
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wheel individually. The segmentation method currently em-
ployed divides the signal into segments, each representing two
wheels, except for the defective wheel on the first and the last
wagons. To implement thementioned segmentationmethod, it
is necessary to use both strains and accelerations measured by
sensors while the train is passing with the defective wheel.

Figure 7 illustrates the acquired acceleration from ac-
celerometer 1 (Figure 1(d)) for train passage without de-
fective wheel. Figure 7(a) represents the complete signal
before the implementation of the segmentation technique.
Figure 7(b) and (g) show the segmented acceleration signal
for the first and last axles individually, while Figure 7(c)–(f)
represent the signal for the other axles as a pair of front and
rear wheels of wagons in succession after segmentation. As
shown in these figures, when the train is passing consid-
ering all wheels in healthy condition, the measured ac-
celeration does represent any impact and significant peak.

Figure 8 represents damage localization for both single and
multi-damage scenarios using measured acceleration on po-
sition 1 (Figure 1(d)). Figure 8(a) illustrates the measured
acceleration for a train passage with a single damaged wheel
located on the third wagon (L = 97 mm), showing the
complete signal before segmentation. Figure 8(a)1,6 display the
segmented acceleration signal for the first and last axles, re-
spectively, while Figure 8(a)2-5 represent the signal for the

other axles in pairs (front and rear wheels of successive
wagons) post-segmentation. As seen in Figure 8(a)4, the
maximum acceleration peak occurs on axles 6–7, indicating
significant discrepancies. The dynamic response in Figure 8(a)

2 shows a higher acceleration peak compared to the healthy
condition (Figure 11(e)), suggesting the defective wheel is at
axles 6–7. Additionally, the acceleration peaks increase from
axle 1 to axles 6–7 and decrease from axles 6–7 onward, a
trend not observed in healthy train passages (Figure 8(a)1-6).
Sensor 1 captured a single impact from the defective wheel,
notifying the presence of only one damaged wheel. Thus,
when responses from different axles come with a lag, it can be
indicated as a wheel flat.

Figure 8(b) presents the damage localization for multi-
damage scenarios with defective wheels on the first and last
wagons (L = 68, 72 mm), showing the complete signal before
segmentation. Figure 8(b)1, 6 illustrate the segmented signals
for the first and last axles, respectively, while Figure 8(b)2-5
display the segmented signals for the other axles in pairs. As
shown in Figure 8(b)1,6, accelerometer 1 detects two signif-
icant peaks, the first at the first axle and the second at the last
axle. The acceleration peak decreases from axle 1 to axles 6–7,
then increases from axles 8–9 to axle 10, with the second peak
at the last axle. This pattern indicates two impacts recorded by
accelerometer 1, confirming a multi-damaged wheel scenario.

Figure 10. Automatic wheel flat damage classification considering both single and multi-damage scenarios using dynamic responses from
accelerometers: (a) accelerometer 1, (b) accelerometer 5, (c) all accelerometers.
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Comparing Figure 8(b)1,6 with Figure 7(b) and (g), it is evident
that a wheel flat causes a significant lag in acceleration am-
plitude across different axles, whereas healthy wheels show
insignificant lag. The difference in acceleration peak ampli-
tude between healthy and defective scenarios further helps
localize damagedwheels. Hence, train passages with defective
wheels exhibit higher acceleration peaks than healthy sce-
narios (Figure 8(b)1,6 compared to Figure 7(b) and (g)).

Figure 9(a) and (b) illustrate the measured acceleration
from accelerometer 1 in the frequency domain, considering
train passages with single and multiple damaged wheels,
respectively. For single damage scenarios (Figure 9(a)),
axles 6–7 exhibit a higher frequency peak compared to
other axles, indicating the presence of a damaged wheel at
these axles. By comparing the frequency data from indi-
vidual axles (Figure 8(a)1,6) and paired axles (Figure 8(a)2-
5), a significant frequency lag between axles 6–7 and the
others is evident. This suggests that accelerometer 1 detects
a substantial impact caused by the wheel defect, confirming
a single defective wheel scenario.

Figure 9(b) shows the damage localization results for
multi-damage cases, where two damaged wheels are located
on the first and last wagons. This is identified using seg-
mented measured acceleration in the frequency domain.
The figure highlights two prominent acceleration peaks,

corresponding to axle 1 and axle 10, represented by orange
and purple colors, respectively. This indicates defective
wheels on the first and last axles. Additionally, there is a
noticeable acceleration lag between these axles and the
other paired axles, confirming the presence of two defective
wheels. The higher acceleration peak for the last axle
compared to the first axle is due to the longer flat length of
72 mm on the last axle’s defective wheel, which causes a
more intense impact than the 62 mm flat length of the first
axle’s defective wheel.

Wheel flat classification

Based on the methodology presented in section 3, it is possible
to detect a wheel flat automatically in the first stage, utilizing
the complete signal. Subsequently, in the second stage, defect
positions are determined based on the segmentation technique
corresponding to each axle individually. Following that, the
severity of wheel flat is classified in 42 passages with damaged
wheels, including both single and multi-damage scenarios. It’s
important to note that only truncated signals (not complete
signals) are considered in this third stage. Following this, the
methodology involves the extraction of features using Con-
tinuous Wavelet Transform, application of autoencoder, and
data fusion techniques to determine a damage index. The

Figure 11. Automatic classification of wheel flat damage using accelerometer data for the second wheel of the 3rd wagon:
(a) accelerometer 1, (b) accelerometer 5, (c) all accelerometers.
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severity of the defect is classified using the k-means technique
based on the defect severity. Themodel training and numerical
computations are performed on PC with processors including
Intel (R) Core i7 – 10700CPU@double 2.90GHz and 40GB
RAM. The design of the SAE structure is based on the train
Autoencoder algorithm in MATLAB software.33 To train the
Sparse Autoencoder model, the baseline cases are used.
Moreover, all damaged scenarios are utilized for the testing
phase. The implemented SAE is designed considering a co-
efficient for the regularization term (λ), the coefficient for the
sparsity regularization term ðβÞ, and the percentage of acti-
vation of the hidden unit (α). Table 2 represents the SAE
model as follows:

Figure 10 shows automatic wheel flat classification
considering segmented responses obtained from each ac-
celerometer. As shown in this figure, the damaged scenarios
are divided into two sections by red line. The initial 30 trains
refer to passages including single defective wheels, while the
remaining 24 indicators correspond to multi-damage sce-
narios involving two defective wheels. As indicated in
Table 1, multi-damage scenarios include 12 damaged train
passages. However, as detailed in stage 2, each acceleration
signal is segmented separately for all 2 single and 4 pair
axles. Given that each multi-passage involves two damaged
wheels, therefore, multi-defective scenarios consist of
24 signals. It’s worth noting, as depicted in Figure 1, that
defective wheels are observed in both the far wagons
(Figure 1(b)) and the near wagons (Figure 1(c)).

From the results illustrated in Figure 10(a) and (b), it is
possible to conclude that the proposed methodology can
classify damaged wheels based on their severity (low,
moderate, and severe) with only one sensor, regardless of

whether the train has single or multiple damaged wheels.
The damage index for each defective wheel is computed by
implementing only the first part of the data fusion, which
merges the features for each sensor separately. As depicted
in Figure 10(a) and (b), wheel flat classification using only
one sensor exhibits only two misclassifications.

One of these damage indexes corresponds to single
damage scenarios, where the length of the flat measures
27.5 mm. This value closely approaches the boundary of
low damage severity (10–20 mm), leading to this mis-
classification. Conversely, the second misclassification
occurs in near-multi-damage scenarios, where the defective
wheel is located on the second wagon with a flat length of
40 mm. Therefore, it can be mentioned that the proposed
unsupervised methodology is capable of classifying dam-
age severities into three classes namely, low, moderate, and
severe defects, regardless of the number of defective wheels
in each train passage with acceptable accuracy using the
fused features for each accelerometer separately.

In order to modify the clustering analysis and clarify the
mentioned misclassifications which are train passages 20 and
46, including defective wheels with flat lengths = 27.5 and
40mm respectively, the second step of the data fusionwhich is
fusing the sensors is implemented. As shown in Figure 10(c),
the damaged classification is performed without
any misclassification for single-damage scenarios. Regarding
multi-damage scenarios, clustering analyses come with one
misclassification belonging to the near-multi-damage scenario
when the defective wheel is located on the first wagon with a
flat length equal to 15mm. This defective wheel belongs to the
train passage including 2 defective wheels, 1 low damage on
the first and 1 severe damage on the second wagons.

Figure 12. Automatic classification of wheel flat damage using accelerometer data for the first wheel of the first wagon: (a) accelerometer
1, (b) accelerometer 5.
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Therefore, it can be mentioned that the dynamic effect of the
defective wheel located on the second wagon (L = 75 mm)
increased the peak of the acceleration of the damagedwheel on
the first vehicle. It is possible to conclude that this defect is
classified as moderate damage when it occurs near the severe
defect. As described in Figure 10(c), the proposed algorithm is
able to classify damaged wheels with low, moderate and,
severe intensity by yellow, blue and, green indicators re-
spectively, considering both single and multi-damage sce-
narios with admissible accuracy.

Figure 11(a) and (b) represents automatic wheel flat
damage classification using the dynamic responses from
accelerometers 1 and 5 considering 30 simulated damaged
wheels on the third wagon, as shown in Figure 11(a). The
characteristics of the wheel flat are detailed in Table 1. The
passages from 1 to 10 represent defects with low damages
and indicators from 11 to 20 describe moderate defects, and
the remaining train passages correspond to severe defects.

As shown in this figure, damage classification comes
with only one misclassification with flat length equal to
27.5 mm, which belongs to the last train passage with
moderate damage. As explained in the previous section, this
value closely approaches the threshold for low damage
severity (10–20 mm), resulting in misclassification. To
adjust the clustering analysis and address the noted

misclassification (from train passage 20 including damaged
wheel with flat length = 27.5 mm), the second phase of data
fusion is implemented, which involves integrating features
from all sensors. As depicted in Figure 11(c), the damage
classification was executed without any misclassification
and the result of the clustering analysis is robust.

Figure 12 represents the classification of wheel flat damage
for the first wheel of the first wagon considering acceler-
ometers 1 and 5, which includes 6 low damage severity and
4 moderate defects, and 2 severe damages. As shown in this
figure, the damage classification is performed accurately
without any misclassification, and the first phase of the data
fusion, merging the features for each sensor separately, is
enough to increase the sensitivity to the damage.

Figure 13 illustrates the classification of wheel flat damage
for the second wheel of the second wagon considering ac-
celerometers 1 and 5, which includes 1 low damage severity
and 2 moderate defects and 3 severe damage. As depicted in
Figure 13(a) and (b), damage classification comes with
1 misclassification corresponding to flat length equal to
40 mm. To address this misclassification, sensor fusion is
implemented to merge all accelerometers. As shown in
Figure 13(c), sensor fusion increases the sensitivity to the
damage and the clustering analysis comes with reliable per-
formance while the defect is located on the second wagon.

Figure 13. Automatic classification of wheel flat damage using accelerometer data for the second wheel of the second wagon:
(a) accelerometer 1, (b) accelerometer 5, (c) all accelerometers.
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Figure 14. Automatic classification of wheel flat damage using accelerometer data for the second wheel of the 5th wagon:
(a) accelerometer 1, (b) accelerometer 5.

Figure 15. The output of the current study using proposed unsupervised methodology to identify and localize wheel flat considering train
passages with multi-defective wheels.
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Figure 14 depicts the classification of wheel flat damage
for the second wheel of the 5th wagon, incorporating data
from accelerometers 1 and 5. This includes one low damage
severity, two moderate defects, and three cases of severe
damage. As shown in this figure, all defective scenarios that
are defined for the damaged wheel on the last wheel are
classified appropriately, considering only merging the
features for each sensor individually.

Figure 15 summarizes the output of the current study for
wheel flat detection, damage localization, and defect severity
classification considering single and multi-damage scenarios.
As represented in Figure 1(b) and (c), two layouts are con-
sidered to simulate scenarios with multi-damaged wheels.
Additionally, different damage severities are considered to
generate wheel flats for these cases (Table 1). As depicted in
Figure 15, the proposed unsupervised methodology identifies
12 defects on the first axle (6 low, 4 moderate, and 2 severe
damages), while more 6 damages are identified on both axles
2–3 and axle 10 (1 low, 2 moderate, and 3 severe damages).
Therefore, it can be inferred that the proposed methodology is
capable of detecting, localizing, and classifying the wheel flat
regardless of the number of defective wheels and the position
of the damages.

Conclusions

This research study presents an unsupervised discrimina-
tion algorithm for detecting, localizing and classifying train
wheel flat based on damage severity, in three stages: (i)
wheel flat detection using the establishment of confidence
boundary; (ii) damage localization based on an automatic
segmentation technique; (iii) classification of wheel damage
based on its severity. The unsupervised learning algorithm
is validated with artificial data attained from a virtual
wayside monitoring system related to freight train passages
with healthy wheels and defective wheels with single and
multiple defects. The proposed methodology provides ef-
ficiency and robustness for damage identification and lo-
calization regardless of the number of defective wheels and
their position. As a result of the research study presented
herein, the following conclusions can be drawn:

⁃ the proposed methodology is capable of wheel flat
identification based on the damage severity;

⁃ defective and undamaged wheels can be distinguished
by outlier analysis based on the confidence boundary
at an early stage;

⁃ defective wheels can be localized by segmented ac-
celeration signals corresponding to single axles (first
and last ones) and pair (combination of front and rear
wheels of wagons in succession) axles individually.

⁃ the feature set can be analyzed and separated according
to the wheel conditions in a completely automated
manner by using k-means;

⁃ the developed methodology is effective in classifying
the wheel flat severity for each axle individually;

⁃ the proposed methodology distinguishes train passages
including multiple from single-defective wheels and
defines the position of the defect in the damage lo-
calization stage;

⁃ damage detection comes with appropriate results using
only one sensor even when train passages include
multi-defective wheels;

⁃ the proposed methodology can classify damaged wheels
based on their severity (low, moderate, and severe) re-
gardless of whether the train has single or multiple
damaged wheels, even when the defective wheels are
situated in either distant or adjacent wagons;

⁃ it can be concluded that when there is a lag between the
responses evaluated from different axles, it indicates
the detection of a flat. Conversely, when the responses
evaluated from different axles are very similar (no
lag), it indicates the absence of flats;

⁃ further development is intended to be done to assess the
performance of proposed methodology to identify
multiple wheel flats on single defective wheel.

Results such as these clearly demonstrate that this in-
novative application of data mining in the railway industry
has great potential, especially for infrastructure managers.
Using on-site measurements, the proposed methodology
will be validated in a future field trial. Additionally, it is
considered to improve the segmentation technique to obtain
the signal for each wheel individually. Moreover, proposing
an indicator to perform damage localization automatically is
one of the innovative phases for future work.
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