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Abstract
Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this 
work is to present an unsupervised methodology to identify out-of-roundness (OOR) damage wheels, such as wheel flats 
and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on 
the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims 
to define a confidence boundary by using (healthy) measurements evaluated on the rail constituting a baseline. The second 
step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed 
procedure is based on a machine learning methodology and includes the following stages: (1) data collection, (2) damage-
sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder (SAE), 
(3) data fusion based on the Mahalanobis distance, and (4) unsupervised feature classification by implementing outlier and 
cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. 
Then, the trained SAE is capable to reconstruct test responses (not trained) allowing to compute the accumulative difference 
between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two 
most common types of OOR in railway wheels.

Keywords OOR wheel damage · Damage identification · Sparse autoencoder · Passenger trains · Wayside condition 
monitoring

1 Introduction

In recent times, the field of structural health monitoring 
(SHM) has noted the emergence of application artificial 
intelligence (AI) techniques [1–3], to predict future events 
based on historical data. In civil engineering field, these 
techniques are in the background of current approaches 
for damage detection [4–6], fatigue life prediction [7, 8], 
crack damage detection and evaluation [9], and autonomous 

structural visual inspection to detect various types of dam-
age [10].

Within the railway field, a key application of these tech-
niques involves increasing operational safety and proac-
tively addressing maintenance needs. The railway wheels 
are not perfectly circular, and their surfaces are not perfectly 
smooth, even immediately after manufacturing [11]. Wheel 
OOR represents a significant challenge within wheel–rail 
interaction, inducing substantial fluctuations in normal 
forces, vibrations, rolling noise, and impact noise between 
the wheel and rail. As a result, it substantially affects pas-
senger comfort and influences the railway system. This can 
lead to phenomena such as wheel axle instability, causing 
bending, damaged rolling bearings, cracks on the wheels, 
rails, and sleepers.

OOR wheels are typically categorized into two types of 
defects: wheel flat (Fig. 1a), a common tread defect mainly 
caused by repeated wheel/rail abrasion during the braking 
and the rolling of wheels over a long period of time [12]; 
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and wheel polygonal wear (Fig. 1b), defined as a periodic 
irregularity around the wheel circumference from the mean 
wheel radius [13].

In recent studies, several forms of OOR wheel conditions 
have been measured through experiments by assessing the 
structural implications arising from the dynamic phenom-
ena [12, 14, 15]. In the works of Wu et al. [16] and Cai 
et al. [17], a detailed investigation is conducted via field 
experiment about the mechanism of high-order polygonal 
wear of wheels in China high-speed trains. According to 
the studies, the basic condition for the polygon generation 
of wheels depends on the operating speed, the excited reso-
nant frequency, and the current characteristics of the wheels. 
In the results of Wu et al. [16], by changing the operating 
speed, the basic condition for polygon generation of wheels 
is changed and polygonal wear increases. For Cai et al. [17], 
the increase in the vehicle speed shifts the higher order of 
wheel polygonization to a lower order due to the “fixed-
frequency” mechanism. On the wheel flat cases, Chang et al. 
[12] conducted an experimental investigation on the wheel/
rail impact based on wheel flats with various characteris-
tics. These wheel flats were deliberately positioned around 
the rolling circle of the wheel tread, with testing conducted 
across speeds ranging from 0 to 400 km/h. The research-
ers observed that by increasing the speed, the wheel flat 
induced maximum wheel/rail dynamic impact force experi-
enced a rapid rise, reaching its peak around 35 km/h. Subse-
quently, the force gradually declined as the speed continued 
to increase. This aspect was also identified numerically by 
Vale [18] on both ballasted and non-ballasted tracks.

These unusual physical phenomena can be managed 
through appropriate measures. The installation of sensors 
is the most common solution for this and can be done by 
incorporating onboard systems [14, 19–21] or by setting 
up wayside systems, currently standing out as an optimal 
solution for acquiring dynamic responses [1, 2, 22]. Fur-
thermore, some researchers have formulated mathematical 
models and conducted numerical simulations to replicate 
train passages involving OOR wheels. These numeri-
cal simulations require the modeling of the different 

subsystems, i.e., track, vehicles and eventually bridges, 
which are typically calibrated based on modal parameters, 
namely frequencies and modal configurations [23, 24]. The 
methodologies for forecasting wheel/rail wear assessment 
involve the integration of a dynamic vehicle/track model 
and a wheel/rail damage model within a feedback loop. 
This entails a dynamic model to establish wheel/rail nor-
mal forces and contact patch creepage, and a pre-modeling 
of wear so that to iteratively update the wheel/rail profile.

Several authors implemented methods for damage detec-
tion based on dynamic responses and using different types of 
machine learning (ML) algorithms, such as artificial neural 
networks (ANN) [25], deep neural networks (DNN) [14, 26], 
principal component analysis (PCA) [27, 28], wavelet continu-
ous transform (CWT) [29] and autoregressive (AR) models 
[30]. Among them, artificial neural network and deep neural 
networks algorithms have been applied in diverse areas though 
the years. Often, these ML techniques are used in combination 
with other techniques for structural damage detection, i.e., a 
combination of a deep autoencoder with a one-class support 
vector machine (OC-SVM), proposed by Wang and Cha [4] 
which enables to detect future structural damage, and an ANN 
with a Gaussian process developed by Gonzalez and Karoumi 
[31] for detect damage on railway bridges.

The difference between ANN and DNN techniques is in 
the quantity of hidden layers, as DNN represents a more 
intricate network characterized by simultaneous combina-
tions of various ANNs. Being that, typically an ANN is con-
figured in three layers: The first one is the input layer and 
does not receive input from any previous layer; the second 
is called the hidden layer and takes as input the output of 
the input layer; and the third layer, the output layer, takes 
its input from the hidden layer and performs an analogous 
operation [31]. The DNNs are composed by multiple hidden 
layers and are capable to extract damage-sensitive features 
from the input data without any pre- or post-processing of 
them. Compared to ANN with a single hidden layer, the 
multiple hidden layers enable the DNN to learn mathemati-
cally more complex underlying feature representations of 
the input data [4].

Fig. 1  Illustration of a wheel flat and b wheel polygonal wear

a) b)
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In an early application exploring various neural networks 
architectures, Kudva et al. [25] devised a method to identify 
damage in small structures using measured strain values. 
After trying out several alternatives, they established the 
optimal number of hidden layers and nodes per layer, which 
allowed them to train the neural network to deduce the dam-
age size and location from measured strain values at discrete 
locations. Nowadays, the application of deep learning has 
been commonly used due to the main advantage to extract 
damage-sensitive features during their training processes 
and the proficiency to capture nonlinear relationships and 
intricate patterns in the input data [7]. Cha [9] introduced 
a vision-based approach employing a convolutional neural 
network (CNNs) with a deep architecture for identifying 
concrete cracks in images without the need for computing 
defect features. The study demonstrated notable efficacy, 
particularly in detection thin cracks under challenging light-
ing conditions, where traditional methods struggle. None-
theless, implementing such techniques requires substantial 
training data to ensure the classifier’s robustness.

Among the various techniques in ANN and DNN, 
autoencoders have been widely used in the detection of 
structural damage. An autoencoder comprises an encoder 
and a decoder, which work together to map input variables. 
According to Lee et al. [7], an autoencoder with more than 
one hidden layer is called a DAE, and the additional encod-
ing and decoding processes are performed in each added 
hidden layer. In the standard approach, autoencoder-based 
anomaly detection techniques acquire an understanding of 
typical, unaffected behavior during the training phase. This 
encompasses characteristics like wave patterns and their 
associated amplitudes under undamaged circumstances. 
Subsequently, the anomaly detection process entails assess-
ing whether the test data align with the acquired model or 
not [32, 33]. In work developed by Wang and Cha [34], a 
comparative study is carried out between different machine 
learning and deep learning techniques for detecting struc-
tural damage in a steel bridge model using acceleration data. 
Among the techniques compared on the work stands out the 
deep autoencoder with Mahalanobis distance, where only 
the acceleration data measured from the intact structural 
scenarios are used to train the deep autoencoder. After test 
procedure, three indexes were used to quantify the recon-
struction losses and the Mahalanobis distance metric is 
applied to measure the similarity of testing data points to 
the training matrix. The method proposed by authors indi-
cated a highly performance for global health conditions of 
structures. Pathirage et al. [35] developed an unsupervised-
learning framework for structural damage assessment, which 
consists of a deep autoencoder for structural characteris-
tics dimension reduction, and a simple autoencoder for a 

regression task of predicting structural stiffness reduction. 
Likewise, Sarwar et al. [5] developed a method with a deep 
autoencoder to detect damage in a road bridge with accelera-
tion responses from various types of vehicles. The method 
consists in training the autoencoder for feature extraction, 
calculating the mean absolute error (MAE) and a statistical 
distribution. The results presented by the authors indicate 
that the method is capable of detecting damage effectively, 
producing robust results even when subject to multivariate 
operational conditions, such as variations in road profiles, 
vehicle properties and measurement noise. On the other 
hand, autoencoders can also be applied in a classification 
procedure, which requires encompassing all possible sce-
narios (damaged and undamaged) within the training process 
[14, 36].

Typically, the steps for damage identification methods 
are related to data collection, pre-processing data, feature 
extraction, feature normalization, data fusion, and feature 
classification [2, 5, 14]. The data collection can be evalu-
ated either with experimental or numerical data and its pre-
processing can be done by transferring variables to another 
spatial domain [14, 21]. The transformation of the data 
record into alternative information, where the correlation 
with the damage is easily visible, is called feature extraction 
[37, 38]. Feature normalization plays a vital role in prevent-
ing false alarms, since several environmental effects, such 
as temperature and operational factors like the speed of a 
train, can influence infrastructure response more than dam-
age. Data fusion techniques allow dimensional reduction 
while preserving the relevant information contained in the 
data, characterized by combining information from several 
indicators, of the same or different natures, to increase the 
reliability of the measured phenomenon. Mahalanobis dis-
tance is widely implemented to fuse all damage-correlated 
information [4, 29]. The classification process typically 
comprises outlier analyses, where a threshold is predicted 
based on the damage-sensitive features [14, 27] and a cluster 
analysis for automatic grouping [27, 39].

Given these aspects, the main goal of the present study is 
to develop a hybrid unsupervised ML strategy to detect OOR, 
namely wheel flats and polygonized wheels in passenger 
trains, identifying the type of the damage and the respective 
level of severity of the defect. The strategy proposed is vali-
dated based on a 3D numerical simulation of the train–track 
dynamic response for vehicle crossings. This model encom-
passes various vehicle properties and speeds, along with track 
irregularity profiles and noise. The core of the methodology 
involves training an autoencoder to obtain a damage index. 
For this purpose, the sparse autoencoder (SAE) was adopted, 
as it allows for obtaining better results, compared to common 
automatic autoencoders, due to sparsity restrictions [40]. The 
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input data for the autoencoder comprise the vertical accelera-
tions experienced by the vehicles while crossing the track. 
Once trained, the autoencoder is applied to predict the sub-
sequent vehicle responses. The disparity between the model-
based predictions and the original vehicle responses gives 
rise to the prediction error, defined as DI. To increase the 
sensitivity of the DI, the Mahalanobis distance between the 
DI obtained from each sensor is evaluated. An outlier analy-
sis is applied to detect damage, and a clustering technique is 
used to classify, both, the type of damage and the severity of 
each type of damage. The numerical implementation assesses 
the effectiveness of the proposed strategy across a range of 
simulated damage scenarios considering different geometric 
characteristics and defect amplitudes, as well as circulation 
speeds. Nevertheless, the architecture of the proposed meth-
odology exhibits sufficient flexibility to incorporate a damage 
location stage.

The main contributions of the present work in relation to 
the existing bibliography can be summarized as follows:

• Enable converting the challenge of monitoring OOR 
wheels into a hybrid unsupervised ML approach.

• Define an SAE architecture with a combination of hidden 
layers and hyperparameters that allows the best information 
gain from baseline responses.

• Detect two types of OOR wheel damage scenarios on dif-
ferent wheels and on distinct sides of the train.

2  Sparse autoencoder

An autoencoder (AE) is an unsupervised neural network 
model and is used to estimate input variables (reconstruction) 
by learning the relationships and statistical patterns between 
the input variables [7]. The term “autoencoder” comes from 
the model trying to encode and then decode the input data, 
aiming to reconstruct the original data as accurately as pos-
sible [5]. The encoder module maps the input data x (original 
acceleration response) into arbitrary lower dimensional space 
z as an output x̂ (reconstructed acceleration response). The 
autoencoder process for each k neuron is expressed as follows:

where j is the number of acceleration response vectors, xj 

is the jth element of the input data, and x̂j is the jth element 
of the output data; wkj,w

′
kj and bk, b

′

k are the weight matrices 

(1)zk = �

(
J∑

j=1

wkj ⋅ xj + bk

)
,

(2)x̂j = 𝜑�

(
J∑

j=1

w
�

kj
⋅ zk + b

�

k

)
,

and bias vectors for encoder and decoder modules, respec-
tively, while � and �′ are the activation functions of encoder 
and decoder, which can be linear or nonlinear. The number 
of epochs (iterations) of a training process allows for adjust-
ing the weights and biases of the encoder and the decoder. 
In that period, the autoencoder tries to learn a compact rep-
resentation in the hidden layer, enabling it to reconstruct the 
input data with minimal error [38]. A sparse autoencoder is 
a variant of the standard autoencoder that includes a sparsity 
constraint on the activation functions of the hidden layer. 
The sparsity constraint encourages the autoencoder to learn 
a more concise and sparse representation of the input data. 
Mathematically, the main difference in a sparse autoencoder 
lies in the regularization term added to the loss function to 
impose the sparsity constraint [41]. The cost function (E) for 
training a sparse autoencoder is an adjusted mean squared 
error function as follows:

where xjn is the nth element of xj ; x̂jn is the nth element 
of x̂j ; � is the coefficient for regularization term; � is the 
coefficient for the sparsity regularization term; � is the aver-
age desired information gain, the sparsity proportion. These 
terms can be specified while training an autoencoder; and  
�̂j is the average information gain in the train process. The 
Kullback–Leibler (KL) divergence is a function for measur-
ing how different two distributions are. In this case, it takes 
the value zero when � and �̂j are equal and become larger as 
they diverge from each other. Minimizing the cost function 
forces this term to be small; hence � and �̂j to become close 
to each other [41].

With this type of tool, depending on its architecture 
and the given input, it is possible to develop a network 
with the necessary characteristics to solve the problem 
for which it was created. The SAE models are skilful at 
accurately estimating intricate patterns and nonlinear con-
nections within input variables. Therefore, the SAE model 
serves as a valuable tool for anomaly detection, identi-
fying unusual instances through substantial reconstruc-
tion errors [7]. In detecting structural damage, the input 
can consist of the dynamic responses of the structure or 
images. Given the various applications of neural networks 
in the field of engineering, the present work is based on 
a traditional SAE that uses a training process to extract 
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features from response measurements during the crossing 
of vehicles with healthy wheels.

3  Numerical modeling

This section is dedicated to assessing the data utilized in 
the ongoing study. The vehicle–track interaction is detailed 
in Sect. 3.1 along with the description of numerical mod-
els and the software used to extract dynamic responses. In 
Sect. 3.2, the virtual wayside system is presented. The simu-
lated scenarios are shown in Sect. 3.3 along with theorical 
background of OOR defects, and Sect. 3.4 comprises the 
vertical acceleration responses obtained for each simulated 
scenario.

3.1  Vehicle–track interaction

For this study, the numerical simulations of train–track 
dynamic interaction were conducted using an in-house 
software called vehicle–structure interaction analysis (VSI). 
The analysis of vehicle–structure interaction is thoroughly 
explained and validated in the work of Montenegro et al. [42, 
43], and it has been successfully applied in various other 
applications [27–30]. A 3D model of wheel–rail contact 
integrates the train and track through Hertzian theory [44]. 
It employs the USETAB routine [45] to calculate normal 
contact and computes tangential forces resulting from roll-
ing friction creep. While these subsystem models were ini-
tially constructed separately, the VSI program interconnects 
them through a comprehensive coupling approach [43]. The 
graphical illustration of this process is presented in Fig. 2.

The numerical tool for these computations is imple-
mented in  MATLAB® [46] and imports the structural 

matrices from both the vehicle and track previously mod-
eled in  ANSYS® [47]. The 3D ballast track numerical model 
employed in this study is a simplified version derived from 
the model validated with modal parameters as presented in 
Ribeiro et al. [48]. The vehicle adopted in this work consists 
on the Alfa Pendular train, which operates in the Portuguese 
Northern Railway line connecting Porto to Lisbon at the 
maximum speed of 220 km/h. The vehicle was also modeled 
in  ANSYS® [47], utilizing a simplified model derived from 
the experimentally calibrated model based on modal param-
eters outlined in work of Ribeiro et al. [49]. A comprehen-
sive description of both track and train model characteristics 
can be found in Mosleh et al. [50].

Rail irregularities in real-track conditions exist even in 
a healthy condition, and their effects on wheel–rail contact 
cannot be neglected [51]. At regular intervals of six months, 
the Railway Network Administration conducts assessments 
of track irregularities along the northern line of the Portu-
guese railway network. Moreover, power spectral density 
(PSD) curves are constructed using empirical data, and syn-
thetic profiles of unevenness were generated. Consequently, 
rail surface irregularity patterns are generated for wave-
lengths spanning from 1 to 75 m with a maximum amplitude 
of 6 mm [28]. The wavelengths and amplitudes represent a 
good track condition as specified by the European Stand-
ard EN 13848-2 [52]. More details about the generation of 
unevenness profiles are originally provided by Mosleh et al. 
[53] and subsequently applied in numerous studies [27–30].

3.2  Virtual wayside monitoring system

A virtual wayside monitoring system is defined to measure 
rail accelerations due to the passage of a train. The system 
is composed of a set of 6 accelerometers mounted on the rail 
at mid-span between two sleepers, as illustrated in Fig. 3. 

Fig. 2  Vehicle–track interaction model schematization
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The numbers 1-to-6 in Fig. 3 represent the positions of the 
measurement points, in the right (1–3) and left (4–6) rails. 
Acceleration signals are assessed at a sampling frequency 
of 10 kHz. Subsequently, a low-pass Chebyshev type II 
digital filter [27, 28] with a cut-off frequency of 1500 Hz 
is applied to filter all-time series. This sampling high fre-
quency can thus increase the variance of the subsequently 
extracted damage features [54]. Additionally, an artificial 
noise equivalent to 5% of the amplitude is incorporated into 
the numerical signal for a more realistic representation of 
the measured rail response [27, 28].

3.3  Simulated scenarios

The several train crossings simulated are classified into two 
groups, as shown in Table 1. The first group represents the 
baseline condition, composed of 120 undamaged scenarios, 
corresponding to the train passage with healthy wheels. 
The second group represents the passage of the train with 

a defective wheel, composed of two subgroups, the wheel 
flats and the polygonal wheels, in a total of 30 and 40 cases 
for each speed, respectively. These two types of defects were 
modeled by transforming the wheel defect into an equivalent 
and spaced rail defect, over which runs a perfect wheel [18], 
such as realized in many studies [28–30].

Within vibration-based damage detection methodologies, 
the sensitivity to damage depends on the location. To this end, 
two different types of damage were simulated on different 
sides of different wagons of the Alfa Pendular train, as shown 
in Fig. 4. The simulation of defects is guaranteed by superim-
posing them on the track, according to recent studies [28, 30].

3.3.1  Baseline

To establish a solid groundwork that addresses a broad spec-
trum of situations aimed at identifying instabilities, multiple 
baseline simulations are performed. These simulations cover 
diverse load configurations, track condition variations, and 

Fig. 3  Virtual wayside monitoring system: a back view; b top view

Table 1  Baseline and damage scenarios

Baseline scenario Damage scenario

Train type Alfa Pendular Alfa Pendular
Loading schemes 3 (full, half, empty) 1 (full)
Irregularities profile 1–4 1
Speeds 40–220 km/h 120 and 200 km/h
Flat characteristics – Flat lengths/depths (mm):

 L1 [10–20]/D1 [0.02–0.06]
 L2 [25–35]/D2 [0.09–0.16]
 L3 [40–50]/D3 [0.23–0.36]

Polygonal characteristics – Harmonic order: H6–8, H12–14, H19–20, H29–30
– Amplitude range (mm): A1[0.25–0.35], A2[0.55–0.65]

Total number of analyses 120 140
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vehicle speeds. The assumptions that form the basis of these 
fundamental scenarios are succinctly presented in Table 1. 
This table outlines three distinct loading setups, four profiles 
of track irregularities (designated as 1 to 4), and a range of 
ten varying speeds (ranging from 40 to 220 km/h in incre-
ments of 20 km/h). The loading scenarios examined cover 
empty, half-load, and fully loaded conditions.

3.3.2  Wheel flat

As a result of frequent and force braking in urban traffic 
conditions, railway wheels often exhibit a propensity to 
develop flat spots [18]. As shown in Table 1, for the wheel 
flats scenarios, 10 cases are considered for each severity 
group (L1–L3) making up a total of 30 passages for each 
speed. According to Chang et al. [12], the L1 group (low) 
presents a range of defect geometries that are admitted into 
circulation, denominated early flat. The L2 group (moder-
ate), on the other hand, is characterized by a geometric range 
that includes flats in a more advanced state compared to L1, 
but which are still within the admissible range. Group L3 
(severe) comprises wheel flat situations considered as dam-
age. In this case, the flat is located on the left wheel of the 
last wheel set of the third vehicle, according to Fig. 4. The 
characteristics of the flats were selected according to several 
studies from the bibliography [12, 29, 50]. The wheel flat 
depth ( D ) is defined by the following expression [29]:

where L is the flat length, and Rw is the radius wheel (equal 
to 0.45 m ). The vertical profile deviation (Z) of the wheel 
flat is characterized as follows [29]:

where h represents the Heaviside periodic function, and x
w
 is 

the coordinate aligned with the track longitudinal direction. 

(4)D =
L2

16Rw

,

(5)
Z =

D

2

(
1 − cos

2πxw

L

)
⋅ h

[
xw −

(
2πRw − L

)]
,

0 ≤ xw ≤ 2πRw,

Figure 5 shows one example of the wheel flat profile for each 
simulated case.

3.3.3  Polygonized wheel

In the railway context, these irregularities typically mani-
fest themselves in distinct wavelengths varying from 
10 cm to over 3 m corresponding to high-order polygo-
nal OOR down to lower order or eccentricity around the 
rim's circumference, presenting amplitudes of the order 
of 1 mm [13]. Research articles in this domain detail the 
harmonic elements of these OOR irregularities, with their 
wavelengths (�) determined by

where � = 1, 2, 3,… , n (harmonic components) and Rw is 
the radius wheel (equal to 0.45m ). The polygonal wheel 
profiles (Fig. 6b, c) are defined based on experimentally 
measured profiles (Fig. 6a) with dominant harmonic orders 
of H6–8 [55], H12–14 [56], H19–20 [57], and H29–30 [17]. 
The lower orders (H6–8 and H12–14) are obtained for a 
speed circulation of 120 km/h; the higher orders (H19–20 
and H29–30) are acquired for the vehicle’s circulation of 
200 km/h. For the amplitude of defects, two ranges are con-
sidered based on the study of Nielsen and Johansson [13], 
making up forty passages for each speed. According to Peng 

(6)� =
2πRw

�
,

1 2 3 4 5 6

Fig. 4  Localization of damage

Fig. 5  Wheel flat characteristics
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[58] and Iwnicki et al. [15], the range A1 is characterized by 
an amplitude in initial format of wear and the range A2 is a 
type of higher wear where the wheel should be re-profiled. 
In this case, the polygonal wheel is in the right wheel of the 
first wheelset of the first vehicle, according to Fig. 4.

The wheel profiles are characterized by the wavelengths 
( w ) in the first 30 harmonics [28], based on the sum of sine 
functions ( H = 30) as follows:

where xw is the distance along wheel circumference; �� is 
phase angle; and A� is the amplitude of the sine function for 
each � , which is calculated by

where wref = 1 μm . The wheel irregularity level (Lw) values 
are selected based on the irregularity spectrums (Fig. 5a) for 

(7)
w
(
xw
)
=

H∑

�=1

A� ⋅ sin
(
2π

�
xw + ��

)
,

0 ≤ xw ≤ 2πRw,

(8)A� =
√
2 ⋅ 10Lw∕10 ⋅ wref,

all scenarios. By assigning phase angles ( �� ) to sine func-
tions in a uniformly and randomly distributed manner within 
the range of 0–2π , five cases for each amplitude of wear of 
wheel irregularities are generated based on each spectrum.

Table 1 compiles all information relative to the simulated 
scenarios, covering the range of operating conditions that 
was examined.

3.4  Track accelerations responses

Figure 7 presents the baseline time-series of the accelerom-
eter installed on the rail in position 1. These plots show the 
influence of different loading schemes (Fig. 7a) and irregular-
ity profiles on the track (Fig. 7b) for the speed of 160 km/h. 
Independently of the type of load considered during vehi-
cle operation, this does not induce changes in the dynamic 
response. On the other hand, the results show some variations 
in the dynamic responses for different irregularity profiles. 
Figure 7c shows acceleration responses for three distinct 
speeds, highlighting the significant impact of train speed.

Fig. 6  Characteristics of polygonal wheels: a experimental spectra of measured irregularities; b, c one example of each wheel profile simulation 
based on the respective spectra for amplitude A1 and A2, respectively
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Fig. 7  Acceleration responses measured in position 1 for baseline scenarios: a comparison between empty, half, and full load schemes; b com-
parison between track irregularities; c comparison between speeds of 120, 160 and 200 km/h
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Fig. 8  Comparison between acceleration responses measured in position 1, considering wheel flat scenarios and the wagon crossing at a 
120 km/h and b 200 km/h



430 J. Magalhães et al.

1 3 Railway Engineering Science (2024) 32(4):421–443

For the damage scenarios, Fig. 8 illustrates the wheel flat 
scenarios, while Fig. 9 presents the polygonal wheel scenar-
ios, both captured by accelerometers positioned at location 
1 of the rail. These plots depict various simulated scenarios, 
showing the effect of amplitude and speed on each type of 
damage. Regarding wheel flats (Fig. 8), the different peaks 
resulting from the impact of the flat are visible according to 
the respective severity. In the polygonal wheels (Fig. 9), the 
periodicity of the defect produces more evident impact along 
the dynamic response. According to simulated polygonized 
wheel profiles (Fig. 6), there is a noticeable impact from 
the H29–30 harmonic order on the dynamic response for  
120 km/h, and from the H12–14 order for 200 km/h. This 
observation highlights the greater sensitivity of the last har-
monic order to changes in speed.

4  Proposed methodology

The current section initially presents an overview of the 
proposed methodology. Then, specific aspects regarding the 
model’s architecture as well as the proposed damage index 
are presented.

4.1  Overview

The proposed methodology for damage detection and clas-
sification is presented in Fig. 10. First, the vertical accelera-
tion responses of all accelerometers are evaluated through 
numerical simulations, using only data obtained from the 

baseline scenarios (undamaged scenarios) for training the 
sparse autoencoder (SAE). The selection of the best hyper-
parameters of the training process consisted in a sensitivity 
analysis with 16 types of traditional SAE from  MATLAB® 
[46]. With the prediction in the SAE of the baseline (ones 
not trained) and damage cases, the damage index (DI) is 
calculated by some metrics of the reconstructed losses. How-
ever, the new damage index, the natural logarithmic mean 
squared error (ln(MSE)) and a mean absolute error (MAE) 
were the most accurate metrics in the present work. Fur-
thermore, the Mahalanobis distance is applied to fuse the 
damage index with ln(MSE) of all six sensors to increase the 
damage sensitivity. Finally, a statistical threshold for auto-
matic damage detection is applied, and a cluster analysis 
is performed in two steps. The first step of cluster analysis 
consists in evaluating the type of damage using the features 
achieved after the fusion, with ln(MSE). The second one 
enables classification in terms of severity of each damage 
identified using only the MAE.

4.2  Data collection

The proposed strategy for damage detection is numeri-
cally evaluated using simulated data generated through the 
vehicle–track dynamic interaction outlined in Sect. 3. The 
acceleration responses are obtained through a virtual way-
side monitoring system with six sensors localized in the rail 
at mid-span between two sleepers, as represented in Fig. 3. 
All acceleration responses with a time step of 10−4 s are 
converted as a function of the track position (with a step of 

Fig. 9  Comparison between acceleration responses measured in position 1, considering polygonized wheels scenarios and the wagon crossing at 
a 120 km/h and b 200 km/h
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0.0062 m) to uniformize all data. The vehicle model has a 
total of 158.9 m long, whereby the dimension of the accel-
eration vectors comprises a maximum of 165 m of track.

4.3  SAE model

The baseline scenarios, constituting 80% for training and 20% 
for testing [14], include all speeds and load conditions to 

ensure the SAE model’s independent from track conditions. 
Consequently, the SAE model is trained on passages contain-
ing three of the four types of track irregularities (comprising 
80% of the data, making a total of 95 crossings), while the 
remaining irregularity is reserved for testing (the remaining 
20% of the data, making a total of 25 crossings). All damage 
scenarios are included in test procedure. Table 2 summarizes 
all information used for training and testing the SAE model.

Fig. 10  Overview of the methodology for damage detection and classification

Table 2  Characteristics of data for SAE model

Characteristics of operability Data for training (baseline sce-
nario)

Data for testing

Baseline scenario Damage scenario

Train type Alfa Pendular Alfa Pendular Alfa Pendular
Loading schemes 3 (full, half, empty) 3 (full, half, empty) 1 (full)
Irregularities profile 1–3 4 1
Speeds 40–220 km/h 40–220 km/h 120 and 200 km/h
Record duration 2.5–16 s 2.5–16 s 3 and 5 s
Wheel flat – – L1/L2/L3
Polygonized wheels – – H6–8, H12–14, H19–20, 

H29–30 with A1 and 
A2

Total number of analyses 95 25 140
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4.3.1  Configuration of SAE

The architecture of SAE is designed using the ‘trainAutoen-
coder’ algorithm from MATLAB [46]. According to Wang 
et al. [40], the sparsity constraints must be determined to 
obtain the best results. By analogy with the mechanism of 
the human brain, when the brain is stimulated by a given 
stimulus, most neurons are inhibited, so it becomes evident 
that a small number of neurons can lead to a better selec-
tion of the essential characteristics of the data. Table 3 dis-
plays the 16 alternative types of SAE models considered for 
model selection using sigmoid activation functions across all 
instances. The different types of SAE models considered are 
divided into four groups (A–D) and each of these into four 
subgroups (1–4). Firstly, hidden size (number of neurons in 
the hidden layer) and epoch values are fixed, establishing the 
four different groups. This allows to examine the connection 
between the increase in hidden units and the increase in the 
number of iterations. Even so, the results within each sub-
group were analyzed to understand the relationship between 
the reduction in the coefficient of the regularization term (λ) 
as sparsity regularization (β) and the percentage of activa-
tion of the hidden unit (ρ) increase. The order of magnitude 
of each one parameter was stipulated considering the algo-
rithm’s default values.

Each SAE model’s training process involved the utiliza-
tion of the scaled conjugate gradient algorithm (SCG), with 
a stopping criterion of either achieving a loss function (E) 
value of 10−6 or reaching the maximum number of epochs 
(iterations). All models training and numerical computations 
were performed on PC with AMD Ryzen™ 7 3700U Mobile 

with Radeon™ RX Vega 10 Integrated Graphics, R7 proces-
sor and 16 GB RAM.

Each individual model was employed within the dam-
age detection methodology, evaluating all the results at each 
stage of the procedure. With that, the best SAE model found 
was B4, which comprises the following hyperparameters: 
� = 10−5, � = 15 and � = 0.9 , 6 hidden layers (k = 6), sig-
moid function for activation functions and with a maximum 
of 500 epochs. This selection is explained in the next steps 
of the proposed methodology. A schematic representation of 
the SAE architecture used is presented in Fig. 11.

4.3.2  Prediction of responses

The SAE model maps the feature space into a continu-
ous domain, enabling accurate predictions of acceleration 
responses even for diverse circulation characteristics. After 
the training process, all test responses are reconstructed with 
the SAE model. For a more comprehensive assessment of 
signal reconstruction loss, three instances for each simulated 
scenario of two sensors were investigated, just to see the 
difference between the original and reconstructed response. 
In Fig. 12, the recorded acceleration responses from the 
first pair of accelerometers (1 and 4, Fig. 3) are compared 
with the reconstructed responses using SAE model, high-
lighting the difference between both, herein called error. 
Errors observed during baseline passages remain consist-
ently minimal and nearly identical, as would be expected, 
given that SAE training is only performed with baseline 
responses. However, in the event of damage, the model could 
not reproduce the response with the same level of accuracy. 

Table 3  Different network architectures and hyperparameters used for model selection

Group Hidden size Epoch λ β ρ SAE model

A 3 250 10–2 6 0.15 A1
10–3 9 0.30 A2
10–4 12 0.60 A3
10–5 15 0.90 A4

B 6 500 10–2 6 0.15 B1
10–3 9 0.30 B2
10–4 12 0.60 B3
10–5 15 0.90 B4

C 9 750 10–2 6 0.15 C1
10–3 9 0.30 C2
10–4 12 0.60 C3
10–5 15 0.90 C4

D 12 1000 10–2 6 0.15 D1
10–3 9 0.30 D2
10–4 12 0.60 D3
10–5 15 0.90 D4
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Fig. 11  Architecture of a sparse autoencoder model

Fig. 12  Difference between original and reconstructed responses at the speed of 120 km/h for a baseline, b wheel flat L2, and c polygonal wheel 
H12–14
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The increased reconstruction loss is attributed to wheel dam-
age, which influences the dynamic response of the track. 
That fact introduces inaccuracies in the reconstruction of the 
acceleration response. Since the SAE is exclusively trained 
for the healthy condition, its ability to accurately reconstruct 
responses is compromised when confronted with data from 
a damaged scenario.

4.4  Damage index

The damage index (DI) is computed individually for each 
passage and each sensor, quantifying the disparity between 
the measured response and the response reconstructed by the 
trained SAE model. This computation establishes a direct 
correlation: higher errors reflect more pronounced accel-
erations generated by the vehicle on the track. It is relevant 
that the two types of damage are distinct in nature and were 
simulated on different sides of the train. This distinction 
reinforces the significant impact of damage location on 
the dynamic response obtained and, subsequently, on the 
resulting DI. To compute the DI, the responses that were 
not part of the training process are predicted using the best 
SAE model.

Firstly, four indexes are used to quantify the reconstruc-
tion losses between the inputs and outputs of the sparse 
autoencoder, the original response xj and reconstructed 
response x̂j , respectively. These indexes are mathematically 
expressed as follows:

where n is the number of vertical acceleration response 
points in a sampling time period T  , and g denotes the gravi-
tational acceleration.

Three of these demonstrated indexes were applied in dam-
age detection works using autoencoders. The overall recon-
struction signal ratio (ORSR) and the difference of Arias 
intensity (DAI) were damage-sensitive features evaluated 

(9)ORSR = 10 log10

∑n

j=1
x2
j

∑n

j=1
x̂
2
j

,

(10)DAI =
π

2g

⎛
⎜
⎜
⎝

T

∫
0

xj(t)
2dt −

T

∫
0

x̂j(t)
2dt

⎞
⎟
⎟
⎠
,

(11)MAE =
1

n
⋅

n∑

j=1

(
xj − x̂j

)
,

(12)ln (MSE) = ln

[
1

n
⋅

n∑

j=1

(
xj − x̂j

)2
]
,

in work of Wang and Cha [34] on a steel bridge model and 
the mean absolute error (MAE) was used in work of Sarwar 
et al. [5] to detect damage in a road bridge. The natural loga-
rithmic of mean squared error (ln(MSE)) is a new damage 
index proposed in the current work.

Figure 13 visually presents the outcomes achieved in 
each specified DI, considering accelerometer number 1 with 
damage cases considering a train speed of 120 km/h. This 
graphical presentation enables to take conclusions regard-
ing the DI from various viewpoints, given that the spatial 
domain is different in each index. From the graphical aspect, 
it is visible some similarities between ln(MSE) and ORSR, 
and between MAE and DAI.

With a focus on the results archive from ORSR and 
ln(MSE), it becomes evident that the DI obtained with 
ln(MSE) exhibits a more noticeable differentiation among 
various scenarios (undamaged, wheel flat, and polygonal 
wheel). Additionally, the impact of speed in the undamaged 
scenarios is more pronounced in the results obtained through 
ORSR. When comparing the results acquired using the DAI 
and the MAE, a resemblance is observed in the divergence 
of the DI across all scenarios. However, it is remarkable that 
the disparity among different DI is significantly greater in 
the case of the DAI, as opposed to from the MAE. This dis-
crepancy may inhibit the application of cluster analysis. Due 
to these minor distinctions, resulting in the exclusion of the 
DI derived from ORSR and DAI, the assessments focused on 
the DI obtained from ln(MSE) and MAE across all sensors.

As illustrated in Figs. 14 and 15, estimating the DI with 
ln(MSE) and MAE, respectively, the impact of the damage 
in the track responses is more pronounced in cases involv-
ing wheel flats. However, in scenarios involving polygonal 
wheels, the effects of the damage are felt in both tracks, even 
with reduced intensity. In the case of wheel flats, the sensors 
positioned on the rail opposite to the damaged side (1–3) 
exhibit DI values relatively lower, which indicates the need 
for all sensors to contribute to the damage detection meth-
odology. These results were determined with the best SAE 
model (B4), although at this stage of the methodology, all 
autoencoders presented equivalent results only with decimal 
changes in both DI values.

4.5  Data fusion

After computing the DI, the ln (MSE) is chosen, and a 
data fusion technique is applied to enhance the sensitivity 
of the damage index. Consequently, a new damage index 
(DI) is obtained for each simulation. The primary goal 
of data fusion is to condense the extracted data while 
retaining the most pertinent information, specifically, to 
improve the ability to characterize OOR damage wheels 
[2]. To achieve this, the Mahalanobis distance (MD) is 
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used to transform the multivariate data into a single DI, 
as applied in previous works due to its simplicity and 
computational efficiency [27–30]. The MD calculates 
the distance between the damage and baseline scenarios, 
thereby quantifying their similarities. Smaller MD values 
indicate stronger similarities between the scenarios. The 
Mahalanobis distance is applied to merge the ln(MSE) 
values of all the sensors per each passage, increasing the 
damage index as follows:

where xi is the matrix with MSE of potential damage cases, x 
is the matrix with the mean of estimated MSE in the baseline 
scenario, and Sx is the covariance matrix of the baseline simu-
lations. Figure 16 shows the fusion of the damage index from 

(13)MD =

√(
xi − x

)
⋅ S

−1
x

⋅

(
xi − x

)T
,

the SAE model B4, highlighting the formation of two different 
damage groups. The idea behind merging data from all sensors 
is also to consider the possibility of damage on both sides.

4.6  Damage detection

The present stage of the ML-based methodology for auto-
matically detecting OOR damage wheels involves data 
discrimination. In this proposed approach, the outlier 
analysis is employed for damage detection, utilizing the 
damage index obtained through data fusion. To distinguish 
between baseline and damage scenarios, a confidence 
boundary (CB) is implemented. The CB is calculated 
using the Gaussian inverse cumulative distribution func-
tion (ICDF), considering the mean value ( � ) and standard 
deviation (σ) of the baseline feature vector:

Fig. 13  Comparison between different damage indices (DIs)
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Fig. 14  Damage index ln(MSE) considering test passages with damage scenarios at a 120 km/h and b 200 km/h
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Fig. 15  Damage index MAE considering test passages with damage scenarios at a 120 km/h and b 200 km/h
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where

Consequently, when DI is equal to or higher than CB, 
the feature is an outlier. The chosen significance level is set 
at 1%, in line with common practices in various structural 
health monitoring studies to identify damage [2, 27–30]. 
Figure 15 illustrates the efficiency of the proposed strat-
egy in the best SAE models of each group (A4, B4, C1, 
D1), demonstrated through a comparison between the CB 
(depicted as a red line) and different damage indexes for 
each of the 70 train crossings with damage. These selected 
models were the best ones of each group according to low 
number of false positives. In Fig. 17a, b, a false positive is 
visible, exhibited by a passage at 220 km/h with the vehicle 
operating at half load. For Fig. 17c, d the identification of 
OOR wheels is accomplished perfectly.

4.7  Damage classification

Subsequently, for damage classification, a clustering process 
is proposed to split datasets into distinct clusters that are 
both compact and well-separated. In this study, the k-means 
clustering technique is adopted, utilizing the city-block dis-
tance metric. The k-means clustering operates as a vector 
quantization technique, with the objective of separate a set 
of n data points into k clusters, with each data point assigned 
to the nearest cluster center [59–61]. This automatic classi-
fication technique is widely used in damage detection works 
[27, 62, 63].
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4.7.1  Damage identification

The clustering process is automated by implementing the 
global ‘Silhouette’ index (SIL) for finding k clusters [2]. 
Based on the achieved results with data fusion matrix, Fig. 16 
shows the clusters obtained from the same SAE models evalu-
ated with the outlier analysis. Figure 18a, d shows the cluster 
for all polygonal wheels (cluster P), and seven misclassifica-
tions on the wheel flat cases (cluster F). Figure 18b presents 
the best results achieved, where the k-means method can clus-
ter the two different OOR damaged wheels and the undam-
aged (cluster B) perfectly, which justifies the choice of model 
B4 as the best SAE model. The worst results are in Fig. 18c, 
presenting nine misclassifications on both OOR scenarios.

Additionally, for the best SAE model (B4), when imple-
menting automatic clustering process based on the results 
obtained through data fusion into a single vector that com-
bines the two speeds of each type of damage (120 and 
200 km/h), k-means algorithmic demonstrates an effective 
classification performance, with only four misclassifications 
in wheel flats scenarios (cluster F), as shown in Fig. 19.

4.7.2  Severity of damage

After the classification of type of damage, it is possible to 
identify the severity of each one with the best SAE model. 
In this step, the clustering process is defined with a matrix 
composed by the mean values of the MAE for all sensors 
(Fig. 12) and k = 3 clusters to obtain only three severity lev-
els: low (cluster 1), medium (cluster 2) and high (cluster 3), 
using the global validation index ‘CalinskiHarabasz’ [64, 
65]. The main objective of this step is to show the influ-
ence of each damage on the track. As the amplitude of the 
dynamic response increases, so does the damage index. This 

Fig. 16  Data fusion-merging of all sensors for damage detection for a speed of a120 km/h and b 200 km/h
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leads to the observation that higher DI values correspond to 
higher levels of damage severity.

Figure 20 shows the severity of wheel flats with a single 
misclassification in cluster 2. This event is due to the value 
of the amplitude of acceleration response obtained for that 
passage, which is of the same order of magnitude as the 
passages in cluster 3. The classification for severity levels 
was the same for both crossing speeds, clearly identifying 
the three simulated wheel flat scenarios.

On the polygonized wheels, the objective is to understand 
which harmonic orders cause greater accelerations in the 
track. According to polygonal profiles shown in Sect. 3.3, 
the classification is shown in Fig. 21, where it is easily 
observed that the harmonics of H12–14 and H29–30 are 

more harmful than those of H6–8 and H19–20 for the two 
speeds studied. Each level in each type of harmonic demon-
strates each amplitude of defect considered (Table 1). This 
means that the presence of a polygonal effect of order H6–8 
and H19–20, with an amplitude of defect A2, displays the 
same level of severity as a polygonal effect of order H12–14 
and H29–30 with an amplitude A1 (cluster 2). It should be 
remembered that irregularity profiles of order H6–8 and 
H12–14 were experimentally measured for a circulation 
speed of 120 km/h and those of H19–20 and H29–30 for a 
speed of 200 km/h. Nevertheless, the classification for the 
severity levels was the same for both crossing speeds, which 
allows identifying the harmonics that exert more significant 
impact forces on the track.

Fig. 17  Outlier analysis in SAE model: a A4; b B4; c C1; d D1
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5  Conclusions

This paper introduced an automated unsupervised strategy 
that employs hybrid machine learning techniques for detect-
ing and identifying damage. In a broader context, the pro-
posed strategy involves several steps: (1) pre-process the 
acquired data with the space transformation of accelerations 
response, (2) predict the responses in SAE model, (3) deter-
mine the DI with the ln(MSE) and MAE between original 
and reconstructed response, (4) merge DI from all sensors, 
and (5) discriminate the DI through the implementation of 
outlier analysis for damage detection and cluster analysis for 
classification by type and severity of damage.

Fig. 18  Cluster analysis in SAE model: a A4; b B4; c C1; d D1

Fig. 19  Cluster analysis in SAE B4 for all scenarios together
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The pre-processing of the data allowed the standardiza-
tion of the dynamic responses and guaranteed the valid-
ity of using ln(MSE) and MAE as DI. These two different 
damaged indices extracted from a SAE model comprise two 
objects, one consisting of identifying the type of damage 
(ln(MSE)) and the other based on identifying the severity 
of each damage (MAE). To capture the range of variability 
within the DI, a Mahalanobis distance metric was employed 
across the values of ln(MSE) associated with each sensor. 
This analysis revealed that various sensors exhibited vary-
ing degrees of sensitivity, contingent upon the location of 
the damage. This approach enabled an enhanced assessment 
of wheel damages, improving the overall effectiveness of 
the damage detection system. This step was crucial for the 
selection of the best SAE model. The choice of SAE B4 as 
the best model was due to the performance acquired in the 
identification phase of the type of damage; however, with 
this model, a false positive occurs in the detection phase. All 
simulated SAE models present a logic in the combination of 
hyperparameters to understand their impact with the number 
of neurons in hidden layer and the number of epochs. The B4 
model corresponds to the optimal parameters, according to 
the purpose for which it was developed, for the autoencoder 

training process. With this selection, it was possible to clas-
sify the severity for each OOR scenario.

The observed lower damage index for wheel flat, in com-
parison with polygonal wheel, is attributed to the relatively 
lesser impact of flat damage on the opposing rail, as opposed 
to polygonal defects. This physical phenomenon created a 
great challenge in damage detection, given that the objec-
tive was to know about the presence and type of damage, 
regardless of its location. To confrontation that, some dam-
age indexes were evaluated before the step of data fusion.

These results demonstrate the immense potential of this 
novel technique in the railway sector, especially concerning 
infrastructure management. Although the proposed meth-
odology was specifically designed to assess singular dam-
age in a particular railway vehicle, it could also show good 
performance across various vehicles if the damage index is 
adjusted to account for the absence of vehicle dimensions. 
To eliminate these gaps and enhance the current methodol-
ogy, potential further developments must include different 
types of vehicles with multiple OOR defects and the pos-
sibility of precisely localizing damage. The main challenge 
of damage localization consists in the type of monitoring 
system that was considered, i.e., the wayside system. This 

Fig. 20  Cluster analysis of wheel flat at a 120 km/h and b 200 km/h

Fig. 21  Cluster analysis of polygonal wheels at a 120 km/h and b 200 km/h
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adds complexity to the issue, as the goal is to localize dam-
age on vehicle wheels based on the dynamic responses of the 
track. Also, as a future research work, it will be planned that 
a dedicated experimental campaign in which vehicles with 
predefined and well-characterized OOR defects will pass on 
a specific instrumented track section. In case of wheel flat, 
the defects are previously introduced on the wheels. In the 
case of polygonal wheels, the dominant harmonic order will 
be measured after a series of kilometers traveled at different 
speeds. This will allow to precisely validate the methodol-
ogy proposed on this work.
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