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Abstract

We study the regularity of one-parameter families of physical measures. Firstly, we consider a
d degree family of intermittent circle maps, introduced in [79], which has a unique physical
or Sinai-Ruelle-Bowen (SRB) measure and using the cone technique of Baladi and Todd [28],
show some form of weak differentiability of this measure, giving linear response in the process.
Lifting the regularity from the base dynamics of the solenoid map with intermittency, we
show that this family is statistically stable.

Subsequently, considering a class of multi-dimensional piecewise expanding maps we
obtain, using the Keller-Liverani perturbation results [58], the Hölder continuity in the
parameter, of the invariant densities and entropies of the parameterised family of the physical
measures. We apply these results to a certain family of two-dimensional tent maps.





Resumo

Estudamos a regularidade de famílias a um parâmetro de medidas físicas. Primeiramente,
consideramos uma família de transformações intermitentes no círculo, de grau d, introduzida
em [79], que tem uma única medida física ou Sinai-Ruelle-Bowen (SRB) e usando a técnica
do cone de Baladi e Todd [28], mostramos uma forma de diferenciabilidade fraca desta medida,
obtendo resposta linear do processo. Fazendo o levantamento da regularidade da dinâmica de
base do solenoide com intermitência, mostramos que esta família é estatisticamente estável.

Subsequentemente, considerando uma classe de transformações multidimensionais ex-
pansivas por pedaços, obtemos, usando os resultados de perturbação de Keller-Liverani
[58], a dependência Hölder do parâmetro, as densidades invariante e as entropias da família
parametrizada de medidas físicas. Aplicamos estes resultados a uma certa família bidimen-
sional de tent maps.
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Chapter 1

Introduction

In the theory of Dynamical Systems, it is common to encounter examples of systems with
simple governing laws that exhibit highly complex and unpredictable behaviour. Prominent
examples include one-dimensional quadratic maps, two-dimensional Hénon quadratic diffeo-
morphisms, and the Lorenz system of quadratic differential equations in three-dimensional
Euclidean space. Despite their straightforward formulation, these systems display intricate
dynamical properties that have inspired significant mathematical developments over the past
few decades.

An approach to the understanding of Dynamical Systems exhibiting some chaos is by
studying their statistical properties. At the heart of this approach is the idea that it might
be far more easier to predict the evolution of measures rather than the behaviour of single
points. More precisely, the study of statistical properties of the dynamical systems concerns
itself with the evolution of such measures1.

One of the central areas of investigation in the theory of Dynamical Systems has been
the study of invariant measures that describe the statistical behavior of these systems over
time. Among these, Sinai-Ruelle-Bowen (SRB) measures, also known as physical measures2,
play a pivotal role. SRB measures are particularly important because they provide a way
to understand the asymptotic distribution of orbits for a wide range of initial conditions,
typically those that are of full measure with respect to the Lebesgue (volume) measure on
the phase space. In other words, they allow us to describe the long-term statistical behavior
of almost all initial points in a given region, making them essential tools for analysing chaotic
systems where individual trajectories may be unpredictable, but the statistical distribution
of orbits remains stable.

A key area of research in this field involves understanding the conditions under which SRB
measures exist, as well as their robustness to perturbations in the system. The continuous
dependence of these measures on the underlying dynamics is particularly significant, as it
reflects the stability of the system’s statistical properties in response to small changes. This
is not only important from a theoretical standpoint but also has practical implications, as

1The SRB measure or physical measure. In some settings, it may mean absolutely continuous invariant
measures.

2For subtlety on how both of them may differ, we refer the reader to [80]. In this thesis however, we shall
overlook this distinction and use them interchangeably.

1
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small perturbations often arise in real-world systems due to noise or external influences. In
particular, the continuity of the metric entropy – a quantity that measures the complexity
and unpredictability of the system – associated with SRB measures is a subject of extensive
study. Metric entropy quantifies the rate of information production in the system and is
directly related to the degree of chaos present.

Many results in the literature have been devoted to the study of SRB measures and
their associated metric entropies in various dynamical settings, including [4, 7, 10, 18, 29–
32, 36–38, 54, 60–62, 66, 70, 74]. These results range from classical systems like hyperbolic
maps and diffeomorphisms to more complex systems involving non-uniformly hyperbolic
dynamics or systems with piecewise smooth structures. Understanding how SRB measures
and their entropies behave under perturbations provides valuable insights into the stability
and predictability of chaotic systems, a topic that has been extensively explored in works
such as [8, 9, 12, 14–17, 22, 47, 48, 56]. This ongoing research continues to shed light on the
delicate interplay between deterministic chaos and statistical regularity, offering a deeper
comprehension of the fundamental nature of chaotic dynamical systems.

Let {fα}α∈A be a parameterised family of maps, where A is the parameter space. Suppose
that A is a neighbourhood of 0, we may view f0 as the unperturbed map and fα, α ≠ 0 as
its perturbation. A central question that is of interest to us in this thesis is:

Suppose that µα is the unique SRB measure of a one parameter family of dynamical
systems {fα}α∈A, how does this measure vary with respect to the parameter when
the dynamical system is perturbed?

In some cases, α 7→ µα changes continuously (called statistical stability)(see [5, 8, 15, 17]),
in some other cases it varies Hölder continuously [77], Lipschitz continuously, or is differentiable
(in such a case, we say that the system admits linear response) that is, it is the first order
approximation of the SRB of the system with respect to the SRB of the unperturbed system
and in that case a formula for this derivative is called the linear response formula of the
system.

One way that the question of statistical stability has been posed in the literature is to ask
whether the perturbed density hα converges to the unperturbed density h0 in the L1-norm,
this is usually known as strong statistical stability. However, the notion of statistical stability
we shall consider in this thesis is given in terms of the weak∗ convergence of the measures
µαn to µα0 as αn → α0, and sometimes it is referred to as weak statistical stability. Without
making any distinction, we shall simply call it statistical stability.

The notion of linear response has been around for quite some time in statistical mechanics.
A pioneering result in this area has been the work of Ruelle for Axiom A attractors [71] and
in the Anosov case [55], and for system with exponential decay of correlation or at least
summable decay of correlations [25, 27, 40, 46, 51, 71], and in random systems [23]. However,
linear response have been reported to fail in some cases [25–27]. To circumvent the lack of
linear response formula in a tent like family of maps, Bahsoun and Galatolo in [20] introduced
unbounded derivatives at the turning point of such families. For cases of systems which
decays rather slowly, linear response have been shown for the Pomeau-Manneville type maps,
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particularly, system containing an intermittent fixed point albeit using different techniques
[24, 28, 59].

An idea that has been shown to yield extraordinary results over the years in the study of
the statistical properties of piecewise expanding maps is that of understanding the spectral
properties of the Perron-Frobenius operator associated with the dynamics [39, 41] and using
these properties to deduce various statistical properties such as the existence of invariant
probability measures [1, 4, 38, 60], decay of correlations [38], large deviation [3] etc. We
should however note that it is not immediate, since the success of this approach very much
depends on choice of a suitable Banach space (B, ∥·∥),B ⊂ L1, such that the Perron-Frobenius
operator L : B → B is quasi-compact. Suppose that fα : X → X is a nonsingular map, quasi-
compactness allows us to recover good results, such as the existence of absolutely continuous
invariant measures, with density lying in B. Several function spaces have been used so far,
such as bounded variation [1, 4, 38, 60], generalized bounded p-variation [21, 22, 57] and
quasi-Hölder spaces [3, 73]. For the particular setting we have in mind, we shall perform our
analysis in the space of functions of bounded variation. A pioneering result in dimension 1 was
put forth by Lasota and Yorke [60], where they showed the existence of absolutely continuous
invariant measures for piecewise expanding C2 maps. Extensions to higher dimensions were
rather not so straight forward, due to the geometric intricacies partly due to the unavailability
of a precise definition of what it means for a function to have bounded variation in higher
dimension. A breakthrough in this direction was achieved when a distributional definition
was given in [49].

An overview of the structure of this thesis is as follows. Firstly, in Chapter 2, we introduce
key concepts and fundamental results that will be useful throughout the thesis.

In Chapter 3 we study the linear response for the intermittent circle map introduced in
[79]. Obtaining linear response in the strong form, that is, in some topology [20, 23, 24], is
not always possible. However, linear response may be given in a weak sense [28, 59]. By this,
we mean that for a fixed observable, say ψ, in a suitable class, the function

Rψ : [0, 1) → R

α 7→
∫
ψdµα,

with µα the unique SRB measure of fα is instead shown to be differentiable at 0. If the
formula for this derivative exists in terms of the unperturbed terms of f0, µ0, ψ and the
vector field v0 := ∂αfα|α=0, then we call this the linear response formula. We show that for
any ψ ∈ Lq, q ≥ 1, Rψ(α) is differentiable on α ∈ [0, 1 − 1/q). Another interesting dynamical
system to us is the solenoid map with intermittency, originally introduced in [13], where
the 2xmod 1 map in the base dynamics of the classical solenoid map was replaced by the
intermittent circle map. The linear response result in the base map of this dynamics implies
statistical stability and using the techniques from Alves and Soufi in [16] lift this regularity
to the SRB measure of the solenoid map with intermittency.

In Chapter 4, we consider a multi-dimensional parameterised family of piecewise expanding
maps. We apply the perturbation theory of Keller-Liverani to study the spectral properties
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of the perturbed operators, a seminal result developed in [58] to show Hölder continuity
of the spectrum, working with more “refined” spaces and assuming among other things,
quasi-compactness. As in the case of the one-dimensional dynamics, we use the notion of
bounded variation in multi-dimension.

Finally, we give future research directions and possible extensions in Chapter 5.



Chapter 2

Preliminaries on ergodic theory

This chapter introduces key concepts from ergodic theory and dynamical systems, along with
several results that are essential for the proofs of certain theorems presented later in this
thesis.

2.1 Invariant measures
Definition 2.1.1 (Non-singular maps). Let (X,A, µ) be a measure space, a measurable map
f : X → X is said to be non-singular with respect to µ if for any A ∈ A,

µ(A) = 0 ⇐⇒ µ(f−1(A)) = 0.

If µ(A) = µ(f−1(A)) for all A ∈ A, then µ is said to be invariant under f or measure
preserving with respect to µ.

From this definition, we note that any measure preserving transformation is non-singular.

Definition 2.1.2 (Push-forward). Suppose that (X,A, µ) is a measure space and f : X → X

a function. The pushforward of A is the σ-algebra

f∗A := {A ⊂ X|f−1(A) ∈ A}.

The pushforward of µ is the function f∗µ : f∗A → [0,∞] defined by

f∗µ(A) := µ(f−1(A)), for A ∈ f∗A. (2.1)

Definition 2.1.3 (Ergodicity). Let (X,A, µ) be a measure space, a measurable map f :
X → X is said to be ergodic if for every measurable set A satisfying µ(A∆f−1(A)) = 0, we
have that µ(A) = 0 or µ(X \A) = 0.

However, in practice, a useful characterization of ergodicity is given by the following
proposition.

Proposition 2.1.1. Let (X,A, µ) be a measure space, a measurable map f : X → X is
said to be ergodic if and only if for every A ∈ A satisfying f−1(A) = A, then µ(A) = 0 or
µ(X \A) = 0.

5
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Definition 2.1.4 (Absolute continuity). A measure µ is said to be absolutely continuous
with respect to the measure ν (written as µ ≪ ν) if ν(A) = 0 ⇒ µ(A) = 0. If both µ and ν
are absolutely continuous with respect to each other, then we say that they are equivalent.

Theorem 2.1.2 (Radon-Nikodym). Let (X,A) be a measurable space, with two σ-finite
measures µ and ν, such that µ ≪ ν. Then there is a function h ∈ L1(ν), such that for every
A ∈ A

µ(A) =
∫
A
h(x)dν.

The function h is sometimes written as h = dµ

dν
and it called the density of µ with respect

to ν or the Radon-Nikodym derivative of µ with respect to ν.
One of the most important classes of measures that captures the chaotic nature of

dynamical systems is the SRB (or physical) measures. Let f : M → M be a measurable map
on some metric space M and m the Lebesgue measure. We now define terminologies related
to this measure.

Definition 2.1.5 (Weak* convergence). A sequence of probability measures (µn)n ∈ P(M)
converges in the weak* topology to µ ∈ P(M) if for all φ ∈ Cb(M),∫

φdµn →
∫
φdµ.

Where Cb(M) is the space of bounded continuous real valued function on M and P(M) is
the space of probability measures on the Borel sets of M .

Definition 2.1.6 (Basin of attraction). Let µ be a Borel probability measure on M and
x ∈ M , its initial states. The set

B(µ) =
{
x ∈ M : 1

n

n−1∑
k=0

φ(fk(x)) →
∫
M
φdµ for any φ ∈ C0(M)

}
(2.2)

is the basin of attraction of µ.

If m(B(µ)) > 0 then µ is a physical measure. A physical measure is necessarily f -invariant
for every Borel set A ⊂ M .

Definition 2.1.7 (Decay of Correlation). The correlation function of observables φ,ψ ∈ C0(M)
with respect to an f -invariant probability measure µ is defined as

Corµ(φ,ψ ◦ fn) =
∣∣∣∣∫ φ(ψ ◦ fn) dµ−

∫
φdµ

∫
ψ dµ

∣∣∣∣ . (2.3)

For sufficiently regular observables, we may obtain the Corµ(φ,ψ ◦ fn) n→∞−−−→ 0, in that case,
we say that the correlation function decays.

2.2 Entropy
In this section, we recall some definitions about entropy, particularly, the metric entropy. For
a more detailed exposition we refer the reader to [78].
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Definition 2.2.1. Let (X,A,m) be a measure space, a family P of subsets of X is an m

mod 0 partition of X if there exists a measurable set X0 ⊂ X for which m(X \ X0) = 0
such that the elements in the family {ω ∩ X0 : ω ∈ P} are pairwise disjoint and satisfy
X0 =

⋃
ω∈P ω. In a situation where X0 can be equal to X, P is referred to as the partition

of X.

Two families P and Q of subsets of X are said to be m mod 0 equal if there exists a
measurable set X0 ⊂ X for which m(X \X0) = 0 such that the families {ω ∩X0 : ω ∈ P}
and {ω ∩ X0 : ω ∈ Q} coincide. The elements of the partitions are called atoms. Given a
mod 0 partition P, F : X → X the dynamics on X, set for n ≥ 0,

F−n(P) = {F−n(ω) : ω ∈ P}. (2.4)

Now, for all n ≥ 1, we have

Pn =
n−1∨
i=0

F−iP = {ω0 ∩ F−1(ω1) ∩ · · · ∩ F−n+1(ωn−1) : ω0, . . . , ωn−1 ∈ P}

and ∞∨
n=0

F−nP = {ω0 ∩ F−1(ω1) ∩ · · · : ωn ∈ P for all n ≥ 0}.

The increasing sequence (Pn)n of countable mod 0 partitions is a basis of Ξ0 if (Pn)n
generates A (mod 0) and

∨∞
n=0 Pn is a partition into single points (mod 0).

The entropy of a finite partition P is defined as

Hµ(P) := −
n−1∑
i=0

µ(ωi) log(µ(ωi)).

We make the following definition of entropy in a “static” sense as follows

h(µ) = Hµ(
n∨
i=1

Pi).

Assume that the transformation in (2.4) is measure preserving, we have the following
definition.

Definition 2.2.2. For P a finite partition of (X,A, µ, F ), then the entropy of F with respect
to the P is

hµ(F,P) = lim
n→∞

1
n
Hµ(Pn)

Finally, the entropy of F with respect to µ is given by

hµ(F ) = sup
P
hµ(F,P)

where the supremum is taken over all partitions with finite entropy.
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Theorem 2.2.1 (Kolmogorov-Sinai). Let P1 ≺ · · · ≺ Pn ≺ · · · be a non-decreasing sequence
of partitions with finite entropy such that

⋃∞
n=1 Pn generates the σ-algebra of measurable sets,

up to measure zero. Then,
hµ(F ) = lim

n
hµ(F,Pn).

Theorem 2.2.2 (Shannon-McMillan-Breiman). Given any partition P, with Hµ(P) < ∞,
the limit

hµ(F,P, x) = lim
n

− 1
n

logµ(Pn(x)) exists at µ-almost every point. (2.5)

The function x 7→ hµ(F,P, x) is µ-integrable, and the limit in (2.5) also holds in L1(µ).
Moreover, ∫

hµ(F,P, x) dµ(x) = hµ(F,P)

If (F, µ) is ergodic then hµ(F,P, x) = hµ(F,P) at µ-almost every point.

Theorem 2.2.3 (Rohlin’s formula). Let F : X → X be a locally invertible transformation
and µ be an F -measure preserving probability measure. If the the partition P is a generator
of A (mod 0) with finite entropy and every ωi ∈ P is an invertibility domain of F , then
hµ(F ) =

∫
log JµF dµ.

2.3 Perron-Frobenius operator
One of the main actors in this thesis will be the Perron-Frobenius operator. Here, we briefly
give its definition and state some of its properties.

Definition 2.3.1. Let (X,A, µ, f) be a measure preserving dynamical system. Then the
Koopman operator with respect to f is the linear operator Uf : L∞(µ) → L∞(µ), defined as

Uf (ψ) = ψ ◦ f ∀ψ ∈ L∞(µ). (2.6)

Definition 2.3.2 (Perron-Frobenius operator). The Perron-Frobenius operator L : L1 → L1

of the function f : X → X is the dual of the Koopman operator, defined as∫
X

Lφ · ψ dµ =
∫
X
φ · Ufψ dµ =

∫
X
φ · ψ ◦ f dµ, ψ ∈ L∞, φ ∈ L1. (2.7)

It is even more interesting to note that more properties of the dynamical system f like
existence of absolutely continuous invariant measures, mixing, ergodicity are translated to
spectral properties of L. Hence, using spectral theory, we can gain a lot of information about
the dynamical system f . Another useful representation of the Perron-Frobenius operator is
given as follows.

Let f : X → X be a non-singular piecewise C1 transformation, and suppose that there
exists countably many domain of smoothness P = {ωi}∞

i=1 of X, such that for each i, the
restriction of f to each domain ωi is one to one with inverse branches given as f−1

i and has a
non-zero determinant in the interior of ωi. Then for φ ∈ L1 we define the Perron-Frobenius
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operator L : L1(X) −→ L1(X) as

Lφ =
∑

{i:ωi∈P}

φ ◦ f−1
i

|Jf ◦ f−1
i |

χf(ωi), (2.8)

where Jf is the Jacobian function defined as Jf = | det(Df)|. It is well known that the
following properties hold for each L,

(C1) for all φ,ψ for which the integrals make sense, we have∫
X
ψLφdm =

∫
φψ ◦ f dm;

(C2) |Lφ| ≤ L(|φ|) and ∥Lφ∥1 ≤ ∥φ∥1, for all φ ∈ L1(X);

(C3) φ ∈ L1(X) is the density of an absolutely continuous f -invariant measure if and only if
φ ≥ 0 and Lφ = φ.

Remark 2.3.1. For any φ ∈ L1, f a piecewise monotonic and expanding interval map, (2.8)
can be written in a more compact form as

Lφ(x) =
∑

y∈f−1(x)

φ(y)
|f ′(y)| . (2.9)

The Perron-Frobenius operator enjoys other good properties such as

Proposition 2.3.2 (Linearity). L : L1 → L1 is a linear operator.

Proposition 2.3.3 (Postivity). Suppose that φ ∈ L1 and φ ≥ 0. Then Lφ ≥ 0.

Proposition 2.3.4 (Preservation of integrals).∫
X

Lφdm =
∫
X
φdm

Proof. ∫
X

Lφdm =
∫
X

Lφ1X dm
(C1)=

∫
X
φ1X ◦ f dm =

∫
X
φ1f−1(X) dm =

∫
X
φdm

For an excellent exposition and proof of the above propositions, we refer the reader to
the work of Góra and Boyarsky [39].

2.4 Bounded variation in higher dimension
We adopt the definition presented in [49] . Given f ∈ L1(Rd) with compact support, we
define the variation of f as

V (f) = sup
{∫

Rd
fdiv(g) dm : g ∈ C1

0 (Rd,Rd) and ∥g∥ ≤ 1
}
,
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where C1
0(Rd,Rd) is the set of C1 functions from Rd to Rd with compact support, div(g) is

the divergence of g and ∥ ∥ is the sup norm in C1
0 (Rd,Rd). Integration by parts gives that

if f is a C1 function with compact support, then

V (f) =
∫
Rd

∥Df∥ dm. (2.10)

We shall use the following properties of bounded variation functions whose proofs may be
found in [49], respectively in Remark 2.14, Theorem 1.17 and Theorem 1.28.

(B1) If f ∈ BV (Rd) is zero outside a compact domain K whose boundary is Lipschitz
continuous, f |K is continuous and f |int(K) is C1, then

V (f) =
∫

int(K)
∥Df∥ dm+

∫
∂K

|f | dm̄,

where m̄ denotes the (d− 1)-dimensional measure on ∂K.

(B2) Given f ∈ BV (Rd), there is a sequence (fn)n of C∞ maps such that

lim
n→∞

∫
|f − fn| dm = 0 and lim

n→∞

∫
∥Dfn∥ dm = V (f).

(B3) There is some constant C > 0 such that, for any f ∈ BV (Rd),

(∫
|f |p dm

)1/p
≤ C V (f), with p = d

d− 1 . (2.11)

This last property is known as Sobolev Inequality. Notice that p = d/(d − 1) is the
conjugate of d ≥ 1, meaning that

1
p

+ 1
d

= 1. (2.12)

Suppose that Ω ⊂ Rd, the space of bounded variation functions in Ω is given by

BV (Ω) =
{
f ∈ L1(Ω) : V (f) < +∞

}
.

Property (B3) gives in particular BV (Ω) ⊂ Lp(Ω), for some p > 1. Set for each f ∈ BV (Ω)

∥f∥BV = ∥f∥1 + V (f).

It is well known that this defines a norm, and BV (Ω) endowed with this norm becomes a
Banach space; see e.g. [49, Remark 1.12].

Proposition 2.4.1 (Lasota-Yorke type inequality). There are constants λ ∈ (0, 1) and K > 0
such that for every f ∈ BV (Rd)

V (Lf) ≤ λV (f) +K

∫
|f | dm.
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Theorem 2.4.2. [53] Let L : L1(Ω) → L1(Ω) and let it satisfy the following properties

(1) L ≥ 0,
∫

Ω Lf dm =
∫

Ω f dm, for f ∈ L1(Ω) which implies that

∥L∥1 = 1;

(2) there exist constants 0 < λ < 1, M > 0 such that

∥Lf∥BV ≤ λ∥f∥BV +M∥f∥1, and f ∈ BV (Ω);

(3) the image of any bounded subset of BV (Ω) under L is relatively compact in L1(Ω).

Then L is a quasi-compact operator on (BV (Ω), ∥·∥BV ). Thus, L has finitely many eigenvalues
{α1, . . . , αk} of modulus 1. The corresponding eigenspace Ei are finite dimensional subspaces
of BV (Ω). Furthermore, L admits the following decomposition

L =
k∑
i=1

αiΠi + T,

where Πi : BV (Ω) → BV (Ω) are linear projections with finite dimensional range onto the
Ei’s and

T : BV (Ω) → BV (Ω),

is a continuous linear operator. For 1 ≤ i, j ≤ k we have∫
ϕiψj dm = δij ,

where ϕi ∈ BV (Ω) and ψj ∈ L∞(Ω).

2.5 (Weak) Gibbs-Markov maps
Consider f : M → M and a measure m on M . Let Ξ0 ⊆ M be a Borel set on a σ-algebra F
of Ξ0 such that m(Ξ0) < ∞. We say that F : Ξ0 → Ξ0 is an induced transformation if there
exists a countable m mod 0 partition P of Ξ0 into pairwise disjoint subsets and a return
function R : P → N such that

F |ω = fR(ω)|ω, ∀ω ∈ P.

The function R is the return time associated with the induced map. Furthermore, if we
define

R(x) = inf{n ≥ 1 : fn(x) ∈ Ξ0},

then we say it is the first return time. We say that F is a weak Gibbs-Markov map if conditions
(G1)-(G5) below are satisfied.

(G1) Markov: F maps each ω ∈ P bijectively to a mod 0 union of elements of P.

(G2) Separability: the sequence (
∨n−1
i=0 F

−iP)n is a basis of Ξ0.
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It follows from (G2) that the separation time

s(x, y) = min{n ≥ 0 : Fn(x) and Fn(y) lie in distinct elements of P}

is well defined and finite for distinct points x, y in a full m measure subset of Ξ0. For
definiteness, set the separation time equal to zero for all other points.

(G3) Nonsingular: F has a strictly positive Jacobian JF i.e JF : Ξ0 → (0,∞) a measurable
function such that for every measurable set A ⊂ ω ∈ P,

m(F (A)) =
∫
A
JF dm.

(G4) Gibbs: there are C > 0 and 0 < β < 1 such that, for all x, y ∈ ω ∈ P

log JF (x)
JF (y) ≤ Cβs(F (x),F (y)).

(G5) Long branches: there is δ0 > 0 such that m(F (ω)) ≥ δ0, for all ω ∈ P.

If in addition to the above conditions, F satisfies (G′
5) below, then F is called a Gibbs-

Markov map.

(G′
5) Full branches: F maps each ω ∈ P bijectively to Ξ0(mod 0).



Chapter 3

Linear response for intermittent
circle maps

3.1 Introduction
The linear response of the Liverani-Saussol-Vaienti (LSV) map: f(x) : [0, 1] → [0, 1], given by

f(x) =

x(1 + 2αxα), 0 ≤ x < 1
2

2x− 1, 1
2 ≤ x ≤ 1.

has been tackled using several methods such as the coupling argument technique [59], inducing
technique [24] and cone technique [28]. For α ∈ (0, 1), these maps are mixing with polynomial
decay of correlations [52, 65, 79], summable when α < 1/2. In this chapter, we study the
linear response of a parameterised family of maps originally introduced by Young in [79].

An approach that has proven highly effective in analyzing positive operators is the cone
technique developed by Birkhoff [33]. This technique has found applications in tackling several
problems, such as, but not limited to decay of correlations [64], polynomial loss of memory
[2], in [35] among several other things to show differentiability of some equilibrium measures,
linear response for solenoidal attractors, a skew product with a uniformly expanding maps as
the base dynamics [19, 34], in [65] to show some ergodic theoretic property of the LSV map.
The method used in [65] has been shown to be useful in various scenarios, particularly in
showing the existence of invariant measures for maps with critical point [43]. Leppänen in
[63] using the approach of Baladi and Todd [28], showed linear response for the class of maps
introduced in [43] which is a specific case of the broader class of maps introduced in [42]. We
however remark that for uniformly expanding maps on a circle, a linear response formula was
proved by Baladi in [26]. The proof for the linear response formula in this chapter follows
the approach in [28]. Since at the heart of the mechanism is the summability of the decay of
correlation, we use a better decay estimate shown in [50] which allowed the linear response
result to hold for α ∈ [0, 1). The result for the linear response of the intermittent circle map
is particularly useful for us since we lifted the regularity to show the statistical stability of
the intermittent solenoid map.

13
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3.2 The intermittent circle map
Let f(x) and g(x) be real valued functions, we write f(x) ≲ g(x) (resp. f(x) ≈ g(x))
to mean that there exists a uniform constant C ≥ 1, such that f(x) ≤ Cg(x) (resp.
C−1 g(x) ≤ f(x) ≤ C g(x)) for all x. Observe that, f(x) ≈ g(x) means that both
f(x) ≲ g(x) and g(x) ≲ f(x) holds. The same notation is applicable to sequences, an, bn, for
all n. In what follows, for functions depending on both x and the parameter α, we write the
partial derivative with respect to the parameter as ∂α and the derivative with respect to x as
(·)′.

Let fα : S1 → S1, S1 = R/Z, be a degree d ≥ 2 circle map with α > 0 satisfying:

(s1) fα(0) = 0 and f ′
α(0) = 1;

(s2) f ′
α > 1 on S1 \ {0};

(s3) fα is C2 on S1 \ {0} and xf ′′
α(x) ≈ |x|α, for x close to 0.

By (s1) and (s3),

f ′
α(x) − 1 ≈ |x|α, (3.1)

integrating the above,
fα(x) ≈ x+ sgn(x)|x|α+1, (3.2)

where sgn is the signum function, defined as

sgn(x) =


−1, if x < 0;
0, if x = 0;
1, if x > 0;

with sgn(x) = x

|x|
= |x|

x
, for x ̸= 0. A map satisfying the condition (s1) is said to have an

indifferent (or neutral) fixed point.

3.2.1 Asymptotic behaviour near the fixed point

Restricting ourselves to fα|[0,ε0] (resp. fα|[ε′
0,0]), where (0, ε0] (resp. [ε′

0, 0)) is an interval
where the conditions (s1)-(s3) holds. When we say a degree d map, we mean that there exists
an m mod 0 partition of S1, {I1, . . . , Id} into open intervals, such that fα|Ii : Ii → S1 \ {0}
is a diffeomorphism, for each 1 ≤ i ≤ d. Let 0 ∼ 1 in such a way that 0 is the infimum of I1

and the supremum of Id. The intervals I1 and Id are further partitioned into countably many
subintervals Jn and J ′

n respectively as follows; define the sequences (zn)n and (z′
n)n as

fα(zn+1) = zn and fα(z′
n+1) = z′

n, n ≥ 0, z0 ∈ (0, ε0], z′
0 ∈ [ε′

0, 0).

Set for each n ≥ 1

Jn = (zn, zn−1) and J ′
n = (z′

n−1, z
′
n).
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The dynamics is related to the subintervals as follows

fα(Jn+1) = Jn and fα(J ′
n+1) = J ′

n.

The local analysis in the interval containing the intermittent point is given by zn ≈ n−1/α

[6, 79], i.e there exists a uniform constant C ≥ 1 such that

1
C
n−1/α ≤ zn ≤ Cn−1/α. (3.3)

3.2.2 Bounds on the invariant density

Here, we state a result that enables us to establish some bounds on the invariant density hα
of fα. Let {Ii : i = 1, . . . , d} be the partition of S1 into disjoint sub-intervals. We denote
by xi the unique fixed point of each partition Ii, 1 ≤ i ≤ d. Next, we define the following
functions

Gi(x) =
{

(x− xi) · (fα(x) − x)−1, if x ∈ Ii, x ̸= xi,

1, if x ∈ S1 \ Ii;

Fi(x) =
{

(x− xi) · (x− gα,i(x))−1, if x ∈ Ii, x ̸= xi,

1, if x ∈ S1 \ Ii.

(3.4)

Where gα,i : S1 → Ii is the inverse branch of fα,i, i ∈ {1, d}.
It follows from [6, Lemma 3.65] that fα has an induced transformation with a unique

ergodic absolutely continuous invariant measure, whose density is bounded from above and
below by positive constants. We now state a result due to Thaler [76] adapted particularly to
our setting.

Theorem 3.2.1. [76, Theorem 1] Let fα be the map satisfying (s1)-(s3), such that the
induced transformation possesses an invariant density bounded from above and below by
positive constants. Then, there exists positive constants c1, c2 such that the invariant density
hα satisfies

c1Gj(x) ≤ hα(x) ≤ c2 Fj(x), x ∈ S1 \ {0}.

Where j is the partition with x = 0.

By the above theorem, there exists positive constants c1, c2 such that the invariant density
of fα is bounded as follows

c1|x|−α ≤ hα(x) ≤ c2|x|−α, x ∈ S1 \ {0}, c2 ≥ c1 > 0, (3.5)

the singularity point of hα being at x = 0. Indeed, from equation (3.2), for x close to 0

|fα(x)|
|x|

≈ 1 + |x|α. (3.6)
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Observe that,

|x|α+1 = |fα(x)|α+1
( |fα(x)|

|x|

)−(α+1)
,

which together with (3.6) yields

|x|α+1 ≈ |fα(x)|α+1 (1 + |x|α)−(α+1) .

Again, from equation (3.2),

fα(x) ≈ x+ |fα(x)|α+1 sgn(x) (1 + |x|α)−(α+1)

x ≈ fα(x) − sgn(fα(x)) |fα(x)|α+1 (sgn(x))2 (1 + |x|α)−(α+1) ,

which leads us to conclude that

gα,i(x) ≈ x− sgn(x)|x|1+α · p(x), i ∈ {1, d}, (3.7)

where p(x) = (1 + |gα,i(x)|α)−(α+1). From equations (3.2), (3.4) and (3.7), we get

Gj(x) ≈ x

sgn(x)|x|α+1 = 1
|x|α

,

Fj(x) ≈ x

sgn(x)|x|α+1 · p(x) = 1
p(x)|x|α

,

which verifies equation (3.5).

3.3 The mechanism

Using the approach of Baladi and Todd [28], we explain the mechanism that will be used in
showing the linear response for the family of maps introduced in the previous section.

Firstly, we shall assume that the perturbation occurs at the image. That is, there exists a
vector field Xϱ such that

vϱ(x) := ∂αfα(x)
∣∣∣∣
α=ϱ

= Xϱ ◦ fϱ(x), α, ϱ ∈ V,

and V a small neighbourhood of 0. Since fα is defined in the neighbourhood of 0 and is
invertible on the branches i = {1, d}, from the above equation we have that

Xα,i(x) = vα ◦ gα,i(x), i = {1, d}. (3.8)

For x in the neighbourhood of 0, ϱ ∈ [0, 1). We have from equation (3.2) that

vϱ(x) = ∂ϱfϱ(x) ≈ sgn(x)|x|ϱ+1 ln(|x|), (3.9)
Xϱ,i(x) ≈ sgn(gϱ,i(x))|gϱ,i(x)|ϱ+1 ln(|gϱ,i(x)|). (3.10)
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Next, we shall make some assumptions on the map fϱ|Ii : Ii → S1 \ {0}.

(A1) There exists C ≥ 1 such that

vϱ(x) = ∂ϱfϱ(x) ≤ C sgn(x)|x|ϱ+1 ln(|x|), for x ∈ Ii, i = 1, d. (3.11)

(A2) For a d ≥ 2 branch map, we define the right end point of the first branch by I1,+ and
the left end point of the last branch by Id,− and assume that

vϱ(I1,+) = 0;
vϱ(Id,−) = 0.

(3.12)

(A3) ϱ 7→ fϱ,i ∈ C2 and the following partial derivatives exist, and also satisfy the commuta-
tion relation

∂ϱg
′
ϱ,i ≈ (∂ϱgϱ,i)′ and ∂ϱf

′
ϱ,i ≈ (∂ϱfϱ,i)′, i = 1, d. (3.13)

From equation (3.7), and x ∈ S1, i = 1, d, there exists C ≥ 1 such that,

gϱ,i(x) ≤ C x,

g′
ϱ,i(x) is bounded,
g′′
ϱ,i(x) ≤ C|x|ϱ−1,

g′′′
ϱ,i(x) ≤ C|x|ϱ−2.

(3.14)

Suppose that fα is the one parameter family of map with d ≥ 2 branches, satisfying the
assumptions (A1)-(A3). Let fα,1 : [0, κ] → S1, fα,d : [1 − κ, 1] → S1, κ = 1/d, be its first
and last branches respectively. The middle (d− 2) branches are piecewise expanding. Using
equation (3.14), there exists C̃ > 1 such that we bound equation (3.10) as follows

|Xϱ,i(x)| ≤ C̃|x|ϱ+1(1 + | ln(|x|)|). (3.15)

Subsequently, differentiating equation (3.10)

X ′
ϱ,i(x) ≈ g′

ϱ,i(x)|gϱ,i(x)|ϱ [1 + (1 + ϱ) ln |gϱ,i(x)|] , (3.16)

we bound the above equation using the bounds in equation (3.14)

|X ′
ϱ,i(x)| ≤ C|x|ϱ [1 + (1 + ϱ)(lnC + | ln(|x|)|)]

≤ C̃|x|ϱ(1 + | ln(|x|)|). (3.17)

Differentiating equation (3.16),

X ′′
ϱ,i(x) ≈ |gϱ,i(x)|ϱ−1

{
(1 + ϱ)sgn(gα,i(x))(g′

ϱ,i(x))2 +
[
ϱ sgn(gϱ,i(x))(g′

ϱ,i(x))2
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+ |gϱ,i(x)|g′′
ϱ,i(x)

]
· [1 + (1 + ϱ) ln(|gϱ,i(x)|)]

}
,

(3.18)

which we bound using equation (3.14) as

|X ′′
ϱ,i(x)| ≤ C̃|x|ϱ−1(1 + | ln(|x|)|). (3.19)

Differentiating equation (3.18)

X ′′′
ϱ,i(x) ≈|gϱ,i(x)|ϱ−1

{
2(1 + ϱ) sgn(gϱ,i(x))g′

ϱ,i(x) g′′
ϱ,i(x) + (1 + ϱ)[ϱ sgn(gϱ,i(x)) (g′

ϱ,i(x))2

+ |gϱ,i(x)| g′′
ϱ,i(x)]

g′
ϱ,i(x)
gϱ,i(x) + [1 + (1 + ϱ) ln(|gϱ,i(x)|)] · [2ϱsgn(gϱ,i(x))g′

ϱ,i(x)g′′
ϱ,i(x)

+ |gϱ,i(x)| g′′′
ϱ,i(x) + sgn(gϱ,i(x)) g′

ϱ,i(x) g′′
ϱ,i(x)]

}
+ (ϱ− 1)sgn(gϱ,i(x))g′

ϱ,i(x)|gϱ,i(x)|ϱ−2
{

(1 + ϱ) sgn(gϱ,i(x)) (g′
ϱ,i(x))2

+ [ϱ sgn(gϱ,i(x))(g′
ϱ,i(x))2 + |gϱ,i(x)|g′′

ϱ,i(x)] · [1 + (1 + ϱ) ln(|gϱ,i(x)|)]
}
,

using equation (3.14), we have the following bounds

|X ′′′
ϱ,i(x)| ≤ C̃|x|ϱ−2(1 + | ln(|x|)|). (3.20)

We now state here the main result of this chapter.

Theorem A. Suppose that fα is the family of circle maps described above for α ∈ (0, 1) and
satisfy the assumptions (A1)-(A3). Then for any ψ ∈ Lq(m) with q > (1 − α)−1,

lim
ε→0

∫
S1 ψ dµα+ε −

∫
S1 ψ dµα

ε
=
∫
S1
ψ(id −Lα)−1

 ∑
i∈{1,d}

(Xα,i Nα,i(hα))′

 dx. (3.21)

Taking limit ε → 0+, (3.21) holds for α = 0.

Where Lα is the Perron-Frobenius operator associated with fα and Nα,i the transfer
operator associated to fα in the ith branch, defined as

Lαφ(x) =
∑

fα(y)=x

φ(y)
f ′
α(y) , φ ∈ L1(m), (3.22)

this follows from equation (2.9) and (s2). Next, for φ ∈ L1(m),

Nα,iφ(x) = g′
α,i(x) · φ(gα,i(x)), i ∈ {1, d}. (3.23)
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3.3.1 Invariant cones
Definition 3.3.1 (Cone). Let E be a vector space. A cone in E is a subset C ⊂ E \ {0}
such that for φ ∈ C then λφ ∈ C, for each λ > 0.

Following the idea of [65] we define certain cones and show that they are invariant with
respect to the operators defined in equations (3.22) and (3.23). We denote the Lebesgue
measure on S1 by m and define

m(φ) =
∫
S1
φ(x) dm =

∫
S1
φ(x) dx, (3.24)

then, by Proposition 2.3.4,
m(Lαφ) = m(φ). (3.25)

Let a1, b1 > 0, and define the cone

C∗,1 =
{
φ ∈ C1(S1 \ {0})

∣∣∣∣0 ≤ φ(x) ≤ 2hα(x)
∫
S1
φdx, |φ′(x)| ≤

(
a1
|x|

+ b1

)
φ(x)

}
. (3.26)

It is straightforward to check that this is indeed a cone. Since 0 < α < 1 for the bounds
on the density in equation (3.5), it follows that C∗,1 ⊂ L1(m). Also, observe that

φ(x) ≤ 2c2
|x|α

m(φ), ∀φ ∈ C∗,1, x ∈ S1 \ {0}, (3.27)

and for β ≥ α ≥ 0,
C∗,1(α, 1, a1, b1) ⊂ C∗,1

(
β,
c2
c1
, a1, b1

)
. (3.28)

Lemma 3.3.1. C∗,1 is invariant with respect to the Perron-Frobenius operator, provided we
choose a1, b1/a1 big enough.

Proof. For φ ∈ C∗,1, we show that the first condition is invariant by Lα. Indeed, from
equation (3.22), we have that by (C2) and equation (3.25),

Lαφ(x) =
∑

fα(y)=x

φ(y)
f ′
α(y)

≤
∑

fα(y)=x

2hα(y)
∫
S1 φ(y) dy

f ′
α(y)

≤ 2
∫
S1
φ(y) dy

∑
fα(y)=x

hα(y)
f ′
α(y)

= 2Lαhα(x)m(φ) = 2hα(x)m(Lαφ).

Proposition 2.3.3 allows us to conclude the invariance of the first condition. Next, we
show the invariance by Lα of the second condition

|(Lαφ)′(x)| =

∣∣∣∣∣∣
∑

fα(y)=x

f ′′
α(y)

(f ′
α(y))3φ(y) + 1

(f ′
α(y))2φ

′(y)

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
∑

fα(y)=x

(
f ′′
α(y)

(f ′
α(y))2 + 1

φ(y)(f ′
α(y))φ

′(y)
)

φ(y)
(f ′
α(y))

∣∣∣∣∣∣
≤

∑
fα(y)=x

φ(y)
(f ′
α(y))

( |f ′′
α(y)|

(f ′
α(y))2 + 1

φ(y)(f ′
α(y)) |φ′(y)|

)

≤
∑

fα(y)=x

φ(y)
(f ′
α(y))

(
C|y|α−1

(f ′
α(y))2 + a1 + b1|y|

|y|(f ′
α(y))

)

≤
(
a1
|x|

+ b1

) ∑
fα(y)=x

φ(y)
(f ′
α(y)) sup

y∈S1

[
|fα(y)|

a1 + b1|fα(y)| ·
(
C|y|α−1

(f ′
α(y))2 + a1 + b1|y|

|y|(f ′
α(y))

)]

≤
(
a1
|x|

+ b1

)
Lαφ(x) sup

y∈S1

[(
|fα(y)|

a1 + b1|fα(y)| · C|y|α−1

(f ′
α(y))2 + |fα(y)|

|y| · f ′
α(y) · a1 + b1|y|

a1 + b1|fα(y)|

)]
.

We set

Ω1(y) = |fα(y)|
a1 + b1|fα(y)| · C|y|α−1

(f ′
α(y))2 + |fα(y)|

|y| · f ′
α(y) · a1 + b1|y|

a1 + b1|fα(y)| . (3.29)

To complete the proof, we need to show that Ω1(y) ≤ 1. We do this for y in the
neighbourhood of δ, δ small, and also for δ < y < 1 − δ.

For y in the neighbourhood of δ, we only need to show that

|fα(y)|
|y|f ′

α(y)

(
C|y|α+1

|y|f ′
α(y)(a1 + b1|fα(y)|) − |fα(y)|(a1 + b1|y|)

)
︸ ︷︷ ︸

Λ1(y)

≤ 1

Λ1(y) = |fα(y)|
|y|f ′

α(y)

(
C|y|α+1

a1(|y|f ′
α(y) − |fα(y)|) + b1|y||fα(y)|(f ′

α(y) − 1)

)

≤ |fα(y)|
|y|f ′

α(y)

(
C|y|α+1

a1(|y|f ′
α(y) − |fα(y)|)

)

From equations (3.2) and (3.1), |fα(y)|
|y| f ′

α(y) ≲ 1. Hence, there exists δ > 0 such that

choosing a1 big enough, Ω1(y) ≤ 1.
For 1 − δ > y > δ, there exists γ such that f ′

α(y) ≥ γ > 1, which implies that
1

f ′
α(y) ≤ 1

γ
< 1. Therefore,

|y| > δ ⇒ |y|α−1 < δα−1, for α ∈ [0, 1).

For b1 > 0, |fα(y)|
a1 + b1|fα(y)| ≤ 1

a1
. Simplifying, we have that

|fα(y)|
(

a1 + b1|y|
a1 + b1|fα(y)|

)
≤ a1

b1
+ |y|.
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Substituting values into equation (3.29),

Ω(y) ≤ 1
a1

· C|y|α−1

|f ′
α(y)|2 + 1

|y||f ′
α(y)| ·

(
a1
b1

+ |y|
)

≤ 1
a1

· Cδ
α−1

γ2 + a1
b1

· 1
δγ

+ 1
γ
.

Ω(y) ≤ 1, provided we choose a1 and b1/a1, big enough.

Proposition 3.3.2. If φ ∈ C∗,1, then

min
x∈S1\Bδ(0)

φ(x) ≥ δa1

2eb1(1−δ)

∫
S1
φ(x) dx,

choosing δ small enough.

Proof. Since φ ∈ C∗,1, we have the bounds

φ(x) ≤ 2hα(x)
∫
S1
φdx ≤ 2c2|x|−α

∫
S1
φ(x) dx

|φ′(x)| ≤
(
a1
|x|

+ b1

)
φ(x).

Now, for x, y ∈ S1, x ≥ y > δ, the second inequality gives

|x|−a1 sgn(x)e−b1x ≤ φ(x) ≤ |x|a1 sgn(x)eb1x. (3.30)

For simplicity, we suppose that
∫
S1 φ(x) dx = 1. Then, for x ∈ Bδ(0),

∫
Bδ(0)

φ(x) dx ≤ 2
∫ δ

0
2c2|x|−α dx ≤ 4c2

1 − α
sgn(δ)|δ|1−α. (3.31)

For x ∈ S1 \Bδ(0), from equation (3.30), we immediately see that the function is bounded
from below by a decreasing function and from above by an increasing function. Without loss
of generality, we make the calculations for x ∈ [δ, 1 − δ]

δ−a1e−b1δ ≤ maxφ(x) ≤ (1 − δ)a1e(1−δ)b1 ≤ e(1−δ)b1

e−b1(1−δ) ≤ (1 − δ)−a1e((1−δ)b1) ≤ minφ(x) ≤ δa1eb1δ

∫ 1−δ

δ
φ(x) dx = maxφ(x) · (1 − 2δ) ≤ maxφ(x)

≤ e(1−δ)b1 · e−b1(1−δ) · eb1(1−δ)δa1 · δ−a1

≤ δ−a1eb1(1−δ) minφ(x) · δa1eb1(1−δ)

≤ δ−a1eb1(1−δ) min
x∈S1\Bδ(0)

φ(x),
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provided we choose δ small enough.∫
S1
φ(x) dx =

∫
Bδ(0)

φ(x) dx+
∫
S1\Bδ(0)

φ(x) dx

≤ 4c2
1 − α

sgn(δ)|δ|1−α + δ−a1eb1(1−δ) min
x∈S1\Bδ(0)

φ(x). (3.32)

Taking δ small enough, we may bound 4c2
1 − α

sgn(δ)|δ|1−α ≤ 1
2. Equation (3.32) now

becomes

min
x∈S1\Bδ(0)

φ(x) ≥ δa1

2eb1(1−δ) .

Lemma 3.3.3. There exists a δ > 0 and γ > 0, such that

C∗,2 =
{
φ ∈ C∗,1

∣∣∣∣φ(x) ≥ γ

∫
S1
φ(x) dx, for |x| ≤ δ

}
(3.33)

is invariant with respect to the Perron-Frobenius operator.

Proof. For |x| ≤ δ, let f−1
α,i (x) = yi, i = 1, · · · , d. Denote by y∗ the yi on the first or last

branch such that |y∗| ≤ δ. Suppose also that µ = ∥f ′
α(yi)∥∞. We choose δ small enough such

that by equation (3.1), f ′
α(y) ≈ (1 + |y|α), so that

1
f ′
α(y∗) ≥ 1

C(1 + |y∗|α) ≥ 1
C

(1 − δα), C ≥ 1,

Proposition 3.3.2 and 1
C (1 − δα) + µ−1 > 1 holds. From equation (3.22), we have that

Lαφ(x) ≥ φ(y∗)
f ′
α(y∗) + φ(yi)

∥f ′
α(yi)∥∞

= (f ′
α(y∗))−1φ(y∗) + ∥f ′

α(yi)∥−1
∞ φ(yi)

≥
[ 1
C

(1 − δα) · γ
∫
S1
φ(x) dx+ µ−1φ(yi)

]
≥
[ 1
C

(1 − δα) · γ
∫
S1
φ(x) dx+ µ−1 min

{
γ

∫
S1
φ(x) dx, δa

2eb(1−δ)

∫
S1
φdx

}]
≥
[ 1
C

(1 − δα) · γ + µ−1 min
{
γ,

δa

2eb(1−δ)

}] ∫
S1
φdx

≥
[ 1
C

(1 − δα) · γ + µ−1 min
{
γ,

δa

2eb(1−δ)

}] ∫
S1

Lαφdx

≥ γ

∫
S1

Lαφdx.

From Proposition 3.3.2 and Lemma 3.3.3 we have that infS1 φ(x) ≥ γ
∫
S1 φ(x)dx, which

implies that
inf
n≥0

inf
S1

Ln1 ≥ γ > 0, (3.34)



3.3 The mechanism 23

particularly, since the constant function 1 ∈ C∗,1.
In the spirit of [28], we define the following cone for higher order derivatives, and show

that it is invariant with respect to the Perron-Frobenius operator. For a1, a2, a3, b1, b2, b3 > 0,
define the cone

C =
{
φ ∈ C(3)(S1 \ {0})

∣∣∣∣φ(x) ≥ 0, |φ′(x)| ≤
(
a1
|x|

+ b1

)
φ(x), |φ′′(x)| ≤

(
a2
x2 + b2

)
φ(x),

|φ′′′(x)| ≤
(
a3

|x|3
+ b3

)
φ(x), ∀x ∈ S1 \ {0}

}
.

(3.35)

Lemma 3.3.4. Suppose that min{a2,b2}
max{a1,b1} , min{a3,b3}

max{a1,b1} ,
min{a3,b3}
max{a2,b2} are large enough. Then the

cone is invariant with respect to the operators Lα and Nα,i, for i ∈ {1, d}.

Proof. From the definition of the operators in equation (3.22) and equation (3.23),

Lαφ(x) =
∑

y∈f−1
α,i (x), 2≤i≤d−1

φ(y)
f ′
α(y) +

∑
i∈{1,d}

Nα,iφ(x). (3.36)

Hence, we only need to show the invariance with respect to Nα,i since the invariance with
respect to Lα follows immediately. Indeed, from equation (3.36) and (s2),

Lαφ(x) −
∑

i∈{1,d}
(Nα,iφ) (x) ≤

∑
y∈f−1

α (x), 2≤i≤d−1

φ(y).

The proof of the invariance of the cone with respect to the first derivative of Nα,iφ(x) is
exactly as in Lemma 3.3.1. We remark that the first summation on the right hand side of
equation (3.36) is not applicable when d = 2.

Nα,iφ(x) <
∑

i∈{1,d}
Nα,iφ(x) ≤ Lαφ(x) ≤ 2hα(x)m(φ).

This together with what we shall show next implies that the cone C is invariant with
respect to this operator.

(Nα,iφ)′(x) =
φ(y) · f ′′

α,i(y)
(f ′
α,i(y))3 − φ′(y)

(f ′
α,i(y))2 (3.37)

|(Nα,iφ)′(x)| =
∣∣∣∣∣φ(y) · f ′′

α,i(y)
(f ′
α,i(y))3 − φ′(y)

(f ′
α,i(y))2

∣∣∣∣∣
≤
(
a1
|x|

+ b1

)
(Nα,iφ)(x) sup

y∈Ii

[
|fα(y)|

a1 + b1|fα(y)|

(
|f ′′
α,i(y)|

(f ′
α,i(y))2 + a1 + b1|y|

|y|(f ′
α,i(y))

)]
.

We set
Ω1(y) = |fα(y)|

a1 + b1|fα(y)|

(
|f ′′
α,i(y)|

(f ′
α,i(y))2 + a1 + b1|y|

|y|(f ′
α,i(y))

)
.
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Following exactly the steps in Lemma 3.3.1, we have

Ω1(y) ≤ 1, (3.38)

if we choose a1 > 0 and b1/a1 > 0 big enough. From (s3),

x2|f ′′′
α (x)| ≈ |x|α. (3.39)

To show the invariance of the third condition in C with respect to the operator, we have
that from equation (3.37),

(Nα,iφ)′′(x) = −3φ
′(y)f ′′

α(y)
(f ′
α(y))4 − φ(y)f ′′′

α (y)
(f ′
α(y))4 + 3φ(y)(f ′′

α(y))2

(f ′
α(y))5 + φ′′(y)

(f ′
α(y))3 (3.40)

∣∣(Nα,iφ)′′(x)
∣∣ ≤ φ(y)

f ′
α(y)

(
3 |φ′(y)||f ′′

α(y)|
φ(y)(f ′

α(y))3 + |f ′′′
α (y)|

(f ′
α(y))3 + 3(f ′′

α(y))2

(f ′
α(y))4 + |φ′′(y)|

φ(y)(f ′
α(y))2

)

≤ φ(y)
f ′
α(y)

(
3 |f ′′

α(y)|
(f ′
α(y))3 ·

(
a1 + b1|y|

|y|

)
+ |f ′′′

α (y)|
(f ′
α(y))3 + 3(f ′′

α(y))2

(f ′
α(y))4 + a2 + b2y

2

y2 · (f ′
α(y))2

)

≤ a2 + b2y
2

y2 Nα,iφ(x) sup
y∈Ii

[
fα(y)2

(a2 + b2fα(y)2)

(3C|y|α−1

(f ′
α(y))3 ·

(
a1 + b1|y|

|y|

)

+ C|y|α−2

(f ′
α(y))3 + 3|y|2(α−1)

(f ′
α(y))4 + a2 + b2y

2

y2 · (f ′
α(y))2

)]
.

We define the expression in the square bracket as

Ω2(y) = fα(y)2

(a2 + b2fα(y)2)

(
3C|y|α−1

(f ′
α(y))3 ·

(
a1 + b1|y|

|y|

)
+ C|y|α−2

(f ′
α(y))3 + 3|y|2(α−1)

(f ′
α(y))4 + a2 + b2y

2

y2 · (f ′
α(y))2

)
,

then show that Ω2(y) ≤ 1. We show this for y in the neighbourhood of δ, δ small enough.
Since a2, b2 > 0, we have the following estimates

1
a2 + b2(fα(y))2 ≤ 1

a2
.

From equation (3.2), there exists C ≥ 1 and λ2 ≥ 0 such that

a2 + b2y
2

a2 + b2(fα(y))2 = 1 − b2 (|fα(y)|2 − |y|2)
a2 + b2|fα(y)|2 = 1 − λ2,

where λ2 = b2 (|fα(y)|2 − |y|2)
a2 + b2|fα(y)|2 , λ2 ≤ 1. We estimate the following as

a1 + b1|y|
a2 + b2(fα(y))2 ≤ max{a1, b1}

min{a2, b2}

( 1 + |y|
(1 + (fα(y))2)

)
= ρ2

max{a1, b1}
min{a2, b2}

. (3.41)
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Ω2(y) =
(

1 + 3C|y|α

f ′
α(y) ρ2

max{a1, b1}
min{a2, b2}

+ 1
a2

C|y|α

f ′
α(y) + 1

a2

3|y|2α

(f ′
α(y))2 − λ2

)(
fα(y)

|y|f ′
α(y)

)2
≤ 1,

provided we choose min{a2, b2}
max{a1, b1}

and a2 large enough, observing from equations (3.1) and

(3.2) that |fα(y)|
|y| f ′

α(y) ≲ 1.

Now, for y ∈ (δ, κ] ∪ [1 − κ,−δ), we have that f ′
α(y) ≥ γ > 1, which implies that

1
f ′

α(y) ≤ 1
γ < 1. Suppose that 0 < b1 < b2,

(fα(y))2

(a2 + b2fα(y)2) ≤ 1
a2
,

fα(y)2
(

a1 + b1|y|
a2 + b2fα(y)2

)
≤ a1
b2

+ b1
b2

|y|,

fα(y)2
(

a2 + b2y
2

a2 + b2fα(y)2

)
≤ a2
b2

+ |y|2.

Now, for
|y| > δ ⇒ |y|α−1 < δα−1, for α ∈ [0, 1).

Ω2(y) = fα(y)2

(a2 + b2fα(y)2)

(
3C|y|α−1

(f ′
α(y))3 ·

(
a1 + b1y

2

y2

)
+ C|y|α−2

(f ′
α(y))3 + 3|y|2(α−1)

(f ′
α(y))4 + a2 + b2y

2

y2 · (f ′
α(y))2

)

≤ 3Cδα−3

γ3 · a1
b2

+ 3Cδα−2

γ3 · b1
b2

+ Cδα−2

γ3 · 1
a2

+ 3δ2(α−1)

γ4 · 1
a2

+ 1
δ2γ2 · a2

b2
+ 1
γ2

≤ 1,

for a2,
b2
b1
,
b2
a1
,
b2
a2

large enough. From equation (3.39),

x3f (iv)
α (x) ≈ |x|α. (3.42)

Differentiating equation (3.40), we have that

(Nα,iφ)′′′(x) = −4φ
′(y)f ′′′

α (y)
(f ′
α(y))5 −6φ

′′(y)f ′′
α(y)

(f ′
α(y))5 + 15φ

′(y)(f ′′
α(y))2

(f ′
α(y))6 + 10φ(y)f ′′

α(y)f ′′′
α (y)

(f ′
α(y))6

− 15φ(y)(f ′′
α(y))3

(f ′
α(y))7 − φ(y)f (iv)

α (y)
(f ′
α(y))5 + φ′′′(y)

(f ′
α(y))4

|(Nα,iφ)′′′(x)| ≤ φ(y)
f ′
α(y)

(
4 |φ′(y)||f ′′′

α (y)|
φ(y)(f ′

α(y))4 + 6 |φ′′(y)||f ′′
α(y)|

φ(y)(f ′
α(y))4 + 15 |φ′(y)||f ′′

α(y)|2

φ(y)(f ′
α(y))5

+ 10 |f ′′
α(y)||f ′′′

α (y)|
(f ′
α(y))5 + 15 |f ′′

α(y)|3

(f ′
α(y))6 + |f (iv)

α (y)|
(f ′
α(y))4 + |φ′′′(y)|

φ(y)(f ′
α(y))3

)
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≤
(
a3
|y|3

+ b3

)
Nα,iφ(x) sup

y∈Ii

[ |fα(y)|3

(a3 + b3|fα(y)|3)

(
4 |φ′(y)||f ′′′

α (y)|
φ(y)(f ′

α(y))4 + 6 |φ′′(y)||f ′′
α(y)|

φ(y)(f ′
α(y))4

+ 15 |φ′(y)||f ′′
α(y)|2

φ(y)(f ′
α(y))5 + 10 |f ′′

α(y)||f ′′′
α (y)|

(f ′
α(y))5 + 15 |f ′′

α(y)|3

(f ′
α(y))6 + |f (iv)

α (y)|
(f ′
α(y))4 + |φ′′′(y)|

φ(y)(f ′
α(y))3

)]
.

We define the expression in the square bracket as Ω3(y) and show that Ω3(y) ≤ 1. From
(s3), equation (3.39), equation (3.42) and φ ∈ C,

Ω3(y) = |fα(y)|3

(a3 + b3|fα(y)|3)

(
4C|y|α−2

(f ′
α(y))4 · a1 + b1|y|

|y|
+ 6C|y|α−1

(f ′
α(y))4 · a2 + b2|y|2

|y|2
+ 15C|y|2(α−1)

(f ′
α(y))5

· a1 + b1|y|
|y|

+ 10C|y|2α−3

(f ′
α(y))5 + 15C|y|3(α−1)

(f ′
α(y))6 + C|y|α−3

(f ′
α(y))4 + 1

(f ′
α(y))3 · a3 + b3|y|3

|y|3
)
.

We show that Ω3(y) ≤ 1 first for y in the neighbourhood of δ, δ small enough. Since
a3, b3 > 0, we have the following estimate

1
a3 + b3(fα(y))2 ≤ 1

a3

a3 + b3|y|3

a3 + b3|fα(y)|3 = 1 − b3
(
|fα(y)|3 − |y|3

)
a3 + b3|fα(y)|3 = 1 − λ3,

where λ3 = b3
(
|fα(y)|3 − |y|3

)
a3 + b3|fα(y)|3 , λ3 ≤ 1. In a similar calculation as (3.41),

a1 + b1|y|
a3 + b3|fα(y)|3 ≤ max{a1, b1}

min{a3, b3}

( 1 + |y|
1 + |fα(y)|3

)
= ρ3

max{a1, b1}
min{a3, b3}

,

a2 + b2|y|2

a3 + b3|fα(y)|3 ≤ max{a2, b2}
min{a3, b3}

(
1 + |y|2

1 + |fα(y)|3

)
= ρ4

max{a2, b2}
min{a3, b3}

Ω3(y) =
(

1 + 4C|y|α

f ′
α(y)ρ3

max{a1, b1}
min{a3, b3}

+ 6C|y|α

f ′
α(y)ρ4

max{a2, b2}
min{a3, b3}

+ 15 C|y|2α

(f ′
α(y))2 ρ3

max{a1, b1}
min{a3, b3}

+ 10 C|y|2α

(f ′
α(y))2 · 1

a3
+ 15 C|y|3α

(f ′
α(y))3 · 1

a3
+ C|y|α

f ′
α(y) · 1

a3
− λ3

)( |fα(y)|
|y|f ′

α(y)

)3

Ω3(y) ≤ 1 provided we choose min{a3, b3}
max{a1, b1}

, min{a3, b3}
max{a2, b2}

and a3, large enough. Now, for

y ∈ (δ, κ] ∪ [1 − κ,−δ), we have that f ′
α(y) ≥ γ > 1, which implies that 1

f ′
α(y) ≤ 1

γ < 1,

fα(y)3

(a3 + b3fα(y)3) ≤ 1
a3
, |fα(y)|3

(
a1 + b1|y|

a3 + b3|fα(y)|3
)

≤ a1
b3

+ b1
b3

|y|,

|fα(y)|3
(

a2 + b2|y|2

a3 + b3|fα(y)|3

)
≤ a2
b3

+ b2
b3

|y|2 and |fα(y)|3
(

a3 + b3|y|3

a3 + b3|fα(y)|3

)
≤ a3
b3

+ |y|3.



3.3 The mechanism 27

Now, for
|y| > δ ⇒ |y|α−1 < δα−1, for α ∈ [0, 1).

Ω3(y) =
(

4Cδ
α−3

γ4
a1
b3

+4Cδ
α−2

γ4
b1
b3

+ 6Cδ
α−3

γ4
a2
b3

+ 6Cδ
α−1

γ4
b2
b3

+ 15Cδ
2α−3

γ5
a1
b3

+ 15Cδ
2α−2

γ5
b1
b3

+ 10Cδ
2α−3

γ5 · 1
a3

+ 15Cδ
3(α−1)

γ6 · 1
a3

+ Cδα−3

γ4 · 1
a3

+ 1
δ3γ3

a3
b3

+ 1
γ3

)

Ω3 ≤ 1 provided we choose a3,
b3
a1
,
b3
b1
,
b3
b2
,
b3
a2
,
b3
a1
,
b3
a3

large enough.

3.3.2 A random perturbed operator and distortion property.

Before we state the rate of decay result with respect to the Lebesgue measure. Following the
approach in [65] we introduce the concept of random perturbation

Bε(x) =
{
y ∈ S1 : |x− y| ≤ ε

}
,

Aεφ(x) = 1
2ε

∫
Bε(x)

φ(y) dy, ε > 0, (3.43)

Pε = Lnε
α Aε, nε ∈ N, (3.44)

where Bε(x) is a ball centred around x, Aε and Pε are the averaging operator and the
perturbed operator respectively, with nε = O(ε−α). In the next lemma, we show that for
observables φ ∈ C∗,1, the Perron-Frobenius operator is approximated by the random perturbed
operator.

Lemma 3.3.5. For φ ∈ C∗,1,

∥Lnε
α φ− Pεφ∥1 ≤ k1∥φ∥1ε

1−α,

where k1 = 18c2 max{a1, b1, 1}
α(1 − α) .

Proof. From the definition of the perturbed operator and the property (C2) of the Perron-
Frobenius operator,

∥Lnε
α φ− Pεφ∥1 ≤ ∥φ− Aεφ∥1.

Assuming that m(φ) = 1, the estimates in equation (3.27) gives that

φ(x) ≤ 2c2|x|−α,

which would enable us get the desired bounds.

∥φ− Aεφ∥1 =
∥∥∥∥φ(x) − 1

2ε

∫
Bε(x)

φ(y) dy
∥∥∥∥

1

=
∫ 1

0

∣∣∣∣φ(x) − 1
2ε

∫
Bε(x)

φ(y) dy
∣∣∣∣ dx
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=
∫ 1−ε

ε

∣∣∣∣φ(x) − 1
2ε

∫
Bε(x)

φ(y) dy
∣∣∣∣ dx+

∫
Bε(0)

∣∣∣∣φ(x) − 1
2ε

∫
Bε(x)

φ(y) dy
∣∣∣∣ dx

=
∫ 1−ε

ε

∣∣∣∣ 1
2ε

∫
Bε(x)

[φ(x) − φ(y)] dy
∣∣∣∣ dx+

∫
Bε(0)

∣∣∣∣φ(x) − 1
2ε

∫
Bε(x)

φ(y) dy
∣∣∣∣ dx

≤ 1
2ε

∫ 1−ε

ε

∫
Bε(x)

|φ(x) − φ(y)| dy dx+
∫
Bε(0)

∣∣∣∣φ(x) − 1
2ε

∫
Bε(x)

φ(y) dy
∣∣∣∣ dx

≤ 1
2ε

∫ 1−ε

ε

∫
Bε(x)

|φ(x) − φ(y)| dy dx+
∫
Bε(0)

|φ(x)| dx

+ 1
2ε

∫
Bε(0)

∫
Bε(x)

|φ(y)| dy dx.

By changing the order of integration in the last integral, we have that

∥φ− Aεφ∥1 ≤ 1
2ε

∫ 1−ε

ε

∫
Bε(x)

|φ(x) − φ(y)| dy dx+
∫
Bε(0)

φ(x) dx+
∫
B2ε(0)

φ(y) dy

≤ 1
2ε

∫ 1−ε

ε

∫
Bε(x)

|φ(x) − φ(y)| dy dx+ 2
∫ 2ε

−2ε
φ(y) dy.

The integrand in the first integral is bounded as follows. For x, y ∈ S1 such that |x−y| ≤ ε,
by equations (3.26) and (3.27),

|φ(x) − φ(y)| ≤ sup
z∈[x,y]

|φ′(z)|ε ≤ 2c2ε(a1|x|−1−α + b1|x|−α).

We have that

∥φ− Aεφ∥1 ≤ c2

∫ 1−ε

ε

∫
Bε(x)

(a1|x|−1−α + b1|x|−α) dy dx+ 8c2

∫ 2ε

0
|y|−α dy

= 2c2ε

∫ 1−ε

ε
(a1|x|−1−α + b1|x|−α) dx+ 8c2

∫ 2ε

0
|y|−α dy

= 2c2ε

[
a1

sgn(x)|x|−α

α

∣∣∣∣ε
1−ε

+ b1
sgn(x)|x|1−α

1 − α

∣∣∣∣1−ε

ε

]
+ 8c2

sgn(x)|x|1−α

1 − α

∣∣∣∣2ε
0

= 2c2ε

[
a1

(
ε−α

α
− (1 − ε)−α

α

)
+ b1

((1 − ε)1−α

1 − α
− ε1−α

1 − α

)]
+ 8c2

(2ε)1−α

1 − α

≤ 2c2 max{a1, b1}ε·(
(1 − α)ε−α − (1 − α)(1 − ε)−α + α(1 − ε)1−α − αε1−α

α(1 − α)

)
+ 8c2

(2ε)1−α

1 − α

≤ 2c2 max{a1, b1}ε·(
ε−α

α(1 − α) + α(1 − ε)1−α − (1 − α)(1 − ε)−α − αε−α − αε1−α

α(1 − α)

)
+ 8c2

(2ε)1−α

1 − α

≤ 2c2 max{a1, b1} ε1−α

α(1 − α) + 16c2ε
1−α

α(1 − α)

∥φ− Aεφ∥1 ≤ 18c2 max{a1, b1, 1}
α(1 − α) ε1−α.
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From equations (3.22), (3.43), (3.44) and the kernel Kε(x, z) := 1
2εLnε

α χBε(z)(x),

Pεφ(x) = Lnε
α

1
2ε

∫
Bε(x)

φ(y) dy

= 1
2ε

∑
fnε

α (y)=x

∫ 1
0 χBε(y)(z)φ(z) dz

(fnε
α )′(y)

= 1
2ε

∑
fnε

α (y)=x

∫ 1
0 χBε(z)(y)φ(z) dz

(fnε
α )′(y)

= 1
2ε

∫ 1

0
Lnε
α χBε(z)(x)φ(z) dz

=
∫ 1

0
Kε(x, z)φ(z) dz. (3.45)

Next, for an appropriate choice of nε, we verify the positivity of the kernel Kε(x, z), an
estimate that plays a crucial role in establishing the desired decay properties. Since the
Perron-Frobenius operator for this class of maps lacks the spectral gap property, the positivity
of this kernel provides a key estimate for demonstrating the decay of correlation despite this
absence.

Proposition 3.3.6. There exists nε = O(ε−α) and γ > 0 such that for each ε > 0, x, z ∈ S1,

Kε(x, z) ≥ γ. (3.46)

Proof. Firstly, recall the definition

2εKε(x, z) = Lnε
α χBε(z)(x).

We have from equation (3.22) that,

Lnε
α χBε(z)(x) =

∑
fnε

α (y)=x

χBε(z)(y)
(fnε
α )′(y)

= χfnε
α (Bε(z))(x)

∑
fnε

α (y)=x

1
(fnε
α )′(y)

≥ χfnε
α (Bε(z))(x) inf

y∈Bε(z)

1
(fnε
α )′(y) .

Hence, we have to control
inf

y∈Bε(z)

1
(fmα )′(y) ,

where m is the time needed for an interval J = Bε(z) of length at least 2ε to cover the whole
circle. In addition, we estimate

nε := inf{n ≥ 1 : fnα (J) = S1, for all J with |J | ≥ 2ε}.
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To check the distortion and thus the positivity of the kernel, we follow closely the strategy
of proof in [2, 65]. Now, we fix the notation that we shall be using. Recall the definition of
zk (resp. z′

k) in Subsection 3.2.1, setting −zk = z′
k and let I0 = Bzk

(0) (for a fixed k) be the
intermittent region and Ic0 = S1 \Bzk

(0) be the hyperbolic region, we note that the map is
uniformly expanding in the hyperbolic region, and possesses a uniformly bounded second
derivative.

Consider the interval J and its iterates which we call K = fnα (J), for some n. Controlling
the distortion, we explore different possibilities that the dynamics might take. K takes one
of the following

1 K ∩ I0 = ∅;

2 K ∩ I0 ̸= ∅ and K contains, at most, one zl or z′
l for l > k;

3 K ∩ I0 ̸= ∅ and K contains more than one zl or z′
l for l > k.

Remark 3.3.7. The proof for the above cases when d = 2 and d ≥ 3 are similar, since for
d ≥ 3, the middle branches are covered by the case 1. Thus, we proceed with the proof for
d = 2.

Case 1: Now, suppose that we are in the scenario 1 we let n1 ≥ 1 be the time spent
iterating the interval K in the region Ic0 before it enters the I0 region and case 2 or 3 occurs.

Let D := sup
ξ∈Ic

0

f ′′
α(ξ)

(f ′
α(ξ))2 . By the property (s2) of the map, for y ∈ Ic0, 1

f ′
α(y) ≤ 1

λ < 1, by

the standard distortion estimate we have that, for all x, y ∈ K, using the mean value theorem
twice, there exists η, ξ ∈ K, such that

log |f ′
α(x)|

|f ′
α(y)| = log

(
1 + |f ′

α(x) − f ′
α(y)|

|f ′
α(y)|

)
≤ |f ′

α(x) − f ′
α(y)|

|f ′
α(y)| = f ′′

α(ξ) |x− y|
|f ′
α(y)|

= |f ′′
α(ξ)|

|f ′
α(y)|

|fα(x) − fα(y)|
f ′
α(η) .

Since we are in the hyperbolic region, f ′
α > 1, also fα is C2 on a compact space, |f ′′

α(ξ)| is
bounded. Therefore,

log |f ′
α(x)|

|f ′
α(y)| ≤ D|fα(x) − fα(y)|.

Now, by the chain rule,

log (fn1
α )′(x)

(fn1
α )′(y) ≤

n1−1∑
j=0

∣∣∣log f ′
α(f jα(x)) − log f ′

α(f jα(y))
∣∣∣ ≤ D

n1−1∑
j=0

∣∣∣f jα(x) − f jα(y)
∣∣∣

≤ D
n1−1∑
j=0

1
λn1−j |fn1

α (x) − fn1
α (y)| ≤ D

λ− 1 |fn1
α (K)| .

Hence,

(fn1
α )′(x)

(fn1
α )′(y) ≤ exp

(
D

λ− 1 |fn1
α (K)|

)
.
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Integrating with respect to y,

(fn1
α )′(x) |K|
|fn1
α (K)| ≤ exp

(
D

λ− 1 |fn1
α (K)|

)
,

we therefore deduce that

Ln1
α χBε(z)(x) ≥ χfn1

α (Bε(z))(x) |K|
|fn1
α (K)| exp (−N1 |fn1

α (K)|) ,

taking N1 = D
λ−1 .

Case 2: Let us assume that K is in I0, such that K ⊂ (zl, zl−2) or K ⊂ (z′
l−2, z

′
l), where

l = k + k1. Here, after k1 iterations, the image will be in the hyperbolic region Ic0 and we
continue the algorithm as in case 1. We control the distortion while K traverses I0 using the
Koebe principle, which we state below for completeness.

Lemma 3.3.8. (Koebe Principle, [44, Theorem IV.1.2]) Let g be a C3 diffeomorphism with
non-positive Schwarzian derivative. Then for constants τ > 0 and C = C(τ) > 0. For any
subinterval J1 ⊂ J2 such that g(J2) contains a τ -scaled neighbourhood of g(J1), then

g′(x)
g′(y) ≤ exp

(
C

|g(x) − g(y)|
|g(J1)|

)
for all x, y ∈ J1.

Remark 3.3.9. The Schwarzian derivative of a C3 diffeomorphism f , Sg(·) is given by

Sg(x) = g′′′(x)
g′(x) − 3

2

(
g′′(x)
g′(x)

)2
.

Let U ⊂ V be two intervals, V is said to contain a τ -scaled neighbourhood of U if both
components of V \ U has a length of at least τ · |U |. Where |U | is the length of U .

There exists a δ > 0 such that the Schwarzian derivative of fα is non-positive for x close
to 0. Indeed, this is so since by (s3), f ′′′

α < 0 close to 0 and f ′
α > 0. This particularly implies

that we can fix a k such that Sfα ≤ 0 on [0, zk−3] (resp. [z′
k−3, 1]). We define g(·) = fk1

α (·) on
[0, zl−3] i.e g : [0, zl−3] → [0, zk−3]. We define J1 = [zl, zl−2], hence g(J1) = [zk, zk−2]. Now,
we choose β small enough such that β < zl and g(β) < zk

2 . Next, we choose J2 = [β, zl−3],
with g(J2) = [g(β), zk−3]. The Schwarzian derivative of g is non-positive on J2, since the
composition of maps with non-positive Schwarzian derivative is also non-positive. Next, we
show that g(J2) contains a τ -scaled neighbourhood of g(J1). Indeed, if we refer to the left
and right components of g(J2) \ g(J1) as Kl and Kr respectively,

|Kl| ≥ zk
2 ≥ τ |g(J1)| = τ |zk−2 − zk|,

taking τ ≤ zk
2(|zk−2−zk|) .

|Kr| ≥ |zk−3 − zk−2| ≥ τ |zk−2 − zk|,
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where τ ≤ |zk−3−zk−2|
|zk−2−zk| . If we choose τ ≤ min

{
zk

2(|zk−2−zk|) ,
|zk−3−zk−2|

|zk−2−zk|

}
, then by the Koebe

principle, there exists C = C(τ) > 0 such that

(fk1
α )′(x)

(fk1
α )′(y)

≤ exp
(
C

|(fk1
α )(x) − (fk1

α )(y)|
|(fk1

α )(J1)|

)
≤ exp

(
M |(fk1

α )(x) − (fk1
α )(y)|

)
for all x, y ∈ J1,

taking M = C

f
k1
α (J1)

. Since K ⊂ J1, we have that for all x, y ∈ K,

(fk1
α )′(x)

(fk1
α )′(y)

≤ exp
(
M |fk1

α (K)|
)
.

Integrating with respect to y implies that

Lk1
α χK(x) ≥ χ

f
k1
α (K)(x) |K|

|fk1
α (K)|

exp
(
−M1

∣∣∣fk1
α (K)

∣∣∣) .
A similar calculation also applies when x, y ∈ K ⊂ (z′

l−2, z
′
l).

Case 3: Suppose that K contains more than one zl or z′
l for l > k and more than

one-third of K is in Ic0, then we consider K ∩ Ic0, such that the fixed k is sufficiently large to
contain zk−1, which brings us to case 1, such that after a finite number of iterations, is sent
to the whole of S1 and ultimately ends the algorithm. Otherwise, we split this into sub-cases.
To present these sub-cases, we define l′ as the least integer such that [zl′+1, zl′ ] belongs to K.
The first of the sub-cases we consider is when |b− zl′ | > |K|

3 , where b is the right end-point
of K. This then leads us back to case 2. Now, set K ′ = [zl′ , b] such that |K ′| ≥ |K|

3 . Since,
K ′ ⊂ [zl′ , zl′−1] and after l′ − k iterations, the image of K ′ will be in the hyperbolic region,
we use the estimate from case 2

Ll′−kα χK(x) ≥ Ll′−kα χK′(x) ≥ χ
f l′−k

α (K′)(x) |K ′|
|f l′−kα (K ′)|

exp
(
−M1

∣∣∣f l′−kα (K ′)
∣∣∣)

≥ χ[zk,zk−1](x) |K ′|
|f l′−kα (K ′)|

exp
(
−M1

∣∣∣f l′−kα (K ′)
∣∣∣)

≥ 1
3χ[zk,zk−1](x) |K|

|f l′−kα (K ′)|
exp

(
−M1

∣∣∣f l′−kα (K ′)
∣∣∣) ,

we note that fk+1
α ([zk, zk−1]) = S1 and we have that f ′

α is bounded from above by N > 0

Ll′+1
α χK(x) ≥ 1

3Nk+1
|K|

|f l′−kα (K ′)|
exp

(
−M1

∣∣∣f l′−kα (K ′)
∣∣∣) .

Next, suppose that K = [a, zl′ ], where a > 0, and we choose K ′ in such a way that
|K ′| ≥ |K|

3 , K ′ ⊃
⊔l′
l=l∗ [zl+1, zl],∣∣∣∣∣∣

l′⊔
l=l∗

[zl+1, zl]

∣∣∣∣∣∣ ≥ |K ′|
3 ≥ |K|

9 ,
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taking the minimal number of zl to make this happen. We therefore estimate l∗ as follows,
|[a, zl∗−1]| ≥ 2|K′|

3 ≥ 2|K|
9 . From (3.3), we have that C(l∗ − 1)1/α ≥ zl∗−1 ≥ zl∗−1 − a ≥ 2|K|

9 ,
which leads to l∗ = O(|K|−α).

Llαχ[zl+1,zl] ≥ χf l
α([zl+1,zl])(x) |zl − zl+1|

|f lα([zl+1, zl])|
exp

(
−M |f lα([zl+1, zl])|

)
Hence, by the computation in case 2, we have that

Ll∗+1
α χK(x) ≥

l′∑
l=l∗

Ll∗+1
α χ[zl+1,zl](x)

=
l′∑
l=l∗

Ll∗−l
α Ll+1

α χ[zl+1,zl](x)

≥
l′∑
l=l∗

Ll∗−l
α χf l+1

α ([zl+1,zl])(x) (zl − zl+1)
|f l+1
α ([zl+1, zl])|

exp
(
−M1

∣∣∣f l+1
α ([zl+1, zl])

∣∣∣)

=
l′∑
l=l∗

Ll∗−l
α χ[1/2,1](x) 2(zl − zl+1) exp

(
−M1

2

)

≥ 2Ll∗−l
α χ[1/2,1](x) exp

(
−M1

2

) l′∑
l=l∗

(zl − zl+1)

≥ γ

9 |K| exp
(

−M1
2

)

We note that f l+1
α ([zl+1, zl]) = [1/2, 1]. Where γ is as defined in equation (3.34).

Let J be as defined starting out from any part of S1, we associate to J a sequence of
integers n1,m1, n2,m2, · · · , np, such that iterating it n1 times, we are in Ic0 (if J starts out
from Ic0, then n1 = 0) and hence, satisfies case 1. Then after m1 iterations, it is in case 2.
Taking n2 iterations, we leave I0 and are back in the hyperbolic region and so on, until we
fall into case 3 (for d = 2) or the iterates contains at least one Ii (for d ≥ 3). These two
situations lead to the end of the algorithm. However, we only focus on the situation where it
leads to case 3, such that [zl′ , b] < |K|

3 .
For n ≥ n1 +m1 + · · · + np + l∗ + 1, we have that

LnαχJ(x) ≥ Ln−(n1+m1+···+np+l∗+1)
α Ll∗+1

α Lnp
α · · · Lm1

α Ln1
α χJ

≥ Ln−(n1+m1+···+np+l∗+1)
α Ll∗+1

α Lnp
α · · · Lm1

α χfn1
α (J)

|J |
|fn1
α (J)| exp (−N1 |fn1

α (J)|)

≥ Ln−(n1+m1+···+np+l∗+1)
α Ll∗+1

α Lnp
α · · ·χ

f
n1+m1
α (J)

|fn1
α (J)|

|fn1+m1
α (J)|

|J |
|fn1
α (J)|

exp
(
−M1|fn1+m1

α (J)| −N1 |fn1
α (J)|

)
≥ (Ln−(n1+m1+···+np+l∗+1)

α χ)γ9 |fn1+m1+···+np
α (J)| |fn1+···+mp−1

α (J)|
|fn1+m1+···+mp−1+np
α (J)|

· · · |fn1
α (J)|

|fn1+m1
α (J)|

|J |
|fn1
α (J)| exp

(
−M1|fn1+m1+···+np

α (J)| − · · · −M1|fn1+m1
α (J)| −N1 |fn1

α (J)| − M1
2

)
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≥ γ2

9 |J | exp
(

−M1|fn1+m1+···+np
α (J)| − · · · −M1|fn1+m1

α (J)| −N1 |fn1
α (J)| − M1

2

)
≥ γ2

9 |J | exp
(
−2 max{M1, N1}(λn1 + λn1+n2 + · · · + λn1+n2+···+np)

)
≥ γ2

9 |J | exp
(−2 max{M1, N1}λ

1 − λ

)
=: γ̂|J |.

Furthermore, we have that n1 + m1 + · · · + np + l∗ + 1 = O(ε−α). Observe that n1 +
m1 + · · · + np ≤ nε = O(ε−α) and hence has not covered the whole of S1. As seen in case 3,
we showed that l∗ = O(|K|−α) = O(ε−α). We claim that nε = O(ε−α), to prove the claim,
let us go through possible scenarios that the dynamics may take. If after iteration, a given
scenario coincides with a previous one, we use the estimate of the previous scenario, even
though the image of J is bigger this time. We assume that the length of J is at least ε.

a. J ⊃ [0, ε] (or J ⊂ [1 − ε, 1]): there exists l ≥ 1 such that zl ≤ ε ≤ zl−1 (resp. z′
l−1 ≤

ε ≤ z′
l). Such that f lαJ = S1. From equation (3.3), we have that zl−1 ≤ C(l − 1)−1/α

(resp. z′
l−1 ≤ C(l − 1)−1/α), thus we have that (l − 1) = O(ε−α).

b. J ⊃ [ε, 1 − ε] and contains at least one Ii, i = 2, · · · , d− 1, then in one step, it covers
S1. Otherwise, that is for d = 2 the image of J will cover S1 after O(log 1

ε ) steps.

c. J ⊃ [δ, δ + ε] (or J ⊃ [δ − ε, δ] ) with δ ≤ z0 ≤ δ + ε (or δ − ε ≤ z′
0 ≤ δ) then after one

iteration, we are back to the scenario a, b or contain at least one Ii, i = 2, · · · , d− 2
and will therefore cover S1 in fewer steps than O(ε−α).

d. J ⊂ I1 \ {0, z0} (or J ⊂ Id \ {z′
0, 1}) and J = [a, b] contains at least two zl, l ≥ 2, we

choose l as the smallest integer such that [zl, zl−1] ⊂ J , that is we have the following
inequality a ≤ zl < zl−1 ≤ b < zl−2. Here, there is a possibility that |b − zl−1| > |J |

3
or |b − zl−1| < |J |

3 . For |b − zl−1| > |J |
3 , we define J1 = J ∩ [zl−1, zl−2]. Iterating

l − 1 times, leads us to the previous scenario with size bigger than or equal to ε/3
which terminates in O(ε−α) steps. And thus, ε/3 ≤ |J |

3 ≤ |J1| ≤ zl−2 − zl−1 ≤ zl−2 ≤
C(l − 2)−1/α and thus (l − 2) = O(ε−α). Next, in the sub-case |b − zl−1| < |J |

3 , we
define J1 = J ∩ [a, zl−1] = [a, zl−1]. Iterating l times, we have that f lαJ1 ⊃ f lαIl, hence,
it takes l+ 1 iterations to cover S1. We estimate the time it takes to cover S1 by taking
J2 = [0, |J1|], we choose m such that zm ≤ |J2| ≤ zm−1. Just as in scenario a, we have
that (m− 1) = O(|J2|−α) = O(ε−α), assuming that l < m.

e. J ⊂ I1\{0, z0} (or J ⊂ Id\{z′
0, 1}) and J contains exactly one zl, l ≥ 2. We observe that

after l iterations we are in scenario c, which ends in O(ε−α) steps. But J ⊂ [zl+1, zl−1]
and thus we have that ε ≤ |J | ≤ zl−1 − zl+1 ≤ C(l− 1)−1/α, which leads to l = O(ε−α).

f. J ⊂ I1 \ {0, z0} (or J ⊂ Id \ {z′
0, 1}), and J contains no zl, l ≥ k, that is J ⊂ (zl+1, zl)

(or resp. J ⊂ (z′
l, z

′
l+1)). After iterating l + 1 times, we have that f (l+1)

α J ⊂ (z′
0, 1) (or

f
(l+1)
α J ⊂ (0, z0)) or contains at least one Ii, i = 2, · · · , d− 1, d ≥ 3 and after a finite
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iteration ends the algorithm and thus cover S1 or in one of the cases showed above. We
estimate l as follows: ε ≤ |J | ≤ zl − zl+1 ≤ zl ≤ Cl−1/α and thus l = O(ε−α). Observe
that there is also a possibility of looping between this and J ⊂ Id \ {z′

0, 1}, and after a
finite number of iterations, we come out of this loop by condition (s2) into one of the
previous scenarios given, since the length of J grows with time, and thus cover S1 in
O(ε−α) steps.

Using the previous results, we prove that the random perturbed transfer operator decays
at an exponential rate.

Proposition 3.3.10. For φ ∈ L1, with
∫

Ω φ(x) dx = 0, we have that

∥Pk
εφ∥1 ≤ (1 − γ)k∥φ∥1, for all k ∈ N.

Proof. From equations (3.43) and (3.44), Pε1 = Lnε
α 1 = L∗

α
nε1 = Pε1 = 1. Now, set Ω = S1,

and define Ω0 = {x ∈ Ω : φ(x) ≥ 0},Ω1 = {x ∈ Ω : Pεφ(x) ≥ 0}. We observe that∫
Ω

|Pεφ(x)| dx = 2
∫

Ω1
Pεφ(x) dx.

We use the bound in equation (3.46) and (3.45) to get the following estimate

∥Pεφ∥1 =
∫

|Pεφ| dx = 2
∫

Ω1

(∫
Ω

Kε(x, y)φ(y) dy
)
dx

= 2
∫

Ω1

(∫
Ω

Kε(x, y)φ(y) dy
)
dx− 2Ω1γ

∫
Ω
φ(x) dx,

(
⇐
∫

Ω
φ(x) dx = 0

)
= 2

∫
Ω

(∫
Ω1

(Kε(x, y) − γ) dx
)
φ(y) dy

≤ 2
∫

Ω

(∫
Ω

(Kε(x, y) − γ) dx
)
φ(y) dy

≤ 2
∫

Ω0

(∫
Ω

(Kε(x, y) − γ) dx
)
φ(y) dy

= 2
∫

Ω0
(Pε1 − γ)φ(y) dy

= 2
∫

Ω0
(1 − γ)φ(y) dy

= (1 − γ)∥φ∥1.

Iterating the above estimate, we get

∥Pk
εφ∥1 ≤ (1 − γ)k∥φ∥1, ∀k ∈ N. (3.47)
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3.3.3 Decay estimate
The success of the mechanism we shall employ depends on the decay estimate (with respect
the Lebesgue measure) of the system under consideration. The estimates in Lemma 3.3.6
and Lemma 3.3.10 will be particularly useful in proving the following result.

Lemma 3.3.11. For C1 > 0, φ ∈ C∗,1 + R,
∫
φdx = 0 and ψ ∈ L∞(m),∣∣∣∣ ∫ ψLnϱφdx

∣∣∣∣ ≤ C1∥φ∥1∥ψ∥∞n
1−1/ϱ(logn)1/ϱ.

Proof. For each n = knε + j with k ∈ N, j < nε, in order to get the required estimate, we
decompose the Perron-Frobenius operator as follows∣∣∣∣ ∫ ψLnϱφdx

∣∣∣∣ ≤ ∥ψ∥∞
(
∥Lnϱφ− Pk

εLjϱφ∥1 + ∥Pk
εLjϱφ∥1

)
. (3.48)

By Proposition 3.3.10,

∥Pk
εLjϱφ∥1 ≤ (1 − γ)k∥Ljϱφ∥1 ≤ (1 − γ)k∥φ∥1 ≤ exp(−γk)∥φ∥1. (3.49)

From Lemma 3.3.5, we have that

∥Lnϱφ− Pk
εLjϱφ∥1 ≤

k−1∑
i=0

∥∥∥L(i+1)nε
ϱ Ljϱφ− Pk

εLinε
ϱ Ljϱφ

∥∥∥
1

≤ Ck∥φ∥1ε
1−ϱ

≤ C∥φ∥1
n

nε
ε1−ϱ. (3.50)

From equations (3.49) and (3.50), we obtain the following estimate for equation (3.48)∣∣∣∣∫ ψLnϱφdx
∣∣∣∣ ≤ C∥ψ∥∞

(
C∥φ∥1

n

nε
ε1−ϱ + exp(−γk)∥φ∥1

)
≤ C∥ψ∥∞∥φ∥1

(
C
n

nε
ε1−ϱ + exp

[
−γ

(
n

nε
− j

nε

)])
≤ C∥ψ∥∞∥φ∥1

(
C
n

nε
ε1−ϱ + exp(γ) exp

(
−γ n

nε

))
≤ C∥ψ∥∞∥φ∥1n

1−1/ϱ(logn)1/ϱ, (3.51)

provided we take ε = Cγ,ϱn
−1/ϱ(logn)1/ϱ.

Define the cone

C0 =
{
φ ∈ C0(S1 \ {0})

∣∣φ ≥ 0 and φ is decreasing
}
,

it is easy to check that C0 is invariant with respect to Lα. Let κ = 1
d as defined, then

(1 − κ)
∫ κ

0
φdx+ κ

∫ 1

1−κ
φdx ≥ κm(φ), ∀φ ∈ C0. (3.52)
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Indeed,

κm(φ) = κ

∫
S1
φ(x) dx = κ

∫ κ

0
φ(x) dx+ κ

d−2∑
i=1

∫ li+1

li

φ(x) dx+ κ

∫ 1

1−κ
φ(x) dx, li = i

d
,

since φ(x) ≥ 0 and decreasing, we have that κ
∑d−2
i=1

∫ li+1
li

φ(x) dx ≤ κ(d− 2)
∫ κ

0 φ(x) dx

κm(φ) ≤ (1 − κ)
∫ κ

0
φ(x) + κ

∫ 1

1−κ
φ(x)dx.

Remark 3.3.12. We have equality in equation (3.52) when d = 2. hα ∈ C0 ∩ C ∩ C∗,1, for
a1, b1 large enough. In addition, hα is Lipschitz.

Proposition 3.3.13. For α ∈ (0, 1), a1 and b1 big enough. Then

Nα,i

(
C∗,1(α, 1, a1, b1) ∩

{
(1 − κ)

∫ κ

0
φdx+ κ

∫ 1

1−κ
φdx ≥ κm(φ)

})
⊂ C∗,1(α, (d−1), a1, b1),

d the number of branches and κ = 1
d . Furthermore, for any ψ ∈ L∞(m) and φ ∈ C∗,1(α) + R,

with zero average, there exists C > 0 independent of α, a1, b1, such that∣∣∣∣∫ 1

0
ψLk0(φ) dx

∣∣∣∣ ≤ Cab1
(1 − β)(log k)k−2+1/β ∥ψ∥∞∥φ∥1, ∀k ≥ 1, β ∈ (0, 1).

Proof.

(1 − κ)m(Nα,iφ(x)) = (1 − κ)
∫ κ

0
φdx+ (1 − κ)

∫ 1

1−κ
φdx

≥ (1 − κ)
∫ κ

0
φdx+ κ

∫ 1

1−κ
φdx

≥ κm(φ) (using equation (3.52)).

Hence, m(φ) ≤ (d− 1)m(Nα,iφ(x)), we remark that when d = 2 this is an equality and we
are back to equation (3.25). By equation (3.38) and the fact that Nα,ihα ≤ hα, the invariance
of Nα,i follows. Next, we show the decay of correlations at α = 0.

We fix β for any β ∈ (0, 1). Recall the inclusion in equation (3.28) for a parameter say
ϱ = 0, we then have from Lemma 3.3.5, for φ ∈ C∗,1(β) that

∥Lnε
0 (id −Aε)φ∥1 ≤ 18c2 max{a1, b1, 1}

β(1 − β) ∥φ∥1ε
1−β.

we may take nε = | log ε|
log 2 in the proof of Proposition 3.3.6. From Lemma 3.3.11, taking

ε = n−1/α, we get the result.

Theorem 3.3.14. [79, Theorem 5] Let Lα be the Perron-Frobenius operator associated with
fα the circle map with parameter α ∈ (0, 1), and hα its density, then for all Hölder continuous
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function φ : S1 → R, ψ ∈ L∞(m) with
∫
φdm = 1,∫

|Lnα(φ) − hα| dm ≈ n1−1/α. (3.53)

For α = 0 ∣∣∣∣ ∫ (ψ ◦ fn0 )φdµ−
∫
φdµ

∫
ψ dµ

∣∣∣∣ ≤ Cθn, (3.54)

θ < 1 depending only on the Hölder exponents of the observables.

Theorem 3.3.15. [6, Theorem 3.62] Let fα be the circle map with α ∈ (0, 1). Then fα has
a unique SRB measure µα. Moreover, µα is exact, equivalent to m, its basin covers m almost
all of S1 and for every Hölder continuous function φ : S1 → R and ψ ∈ L∞(m)∣∣∣∣ ∫ (ψ ◦ fnα )φdµ−

∫
φdµ

∫
ψdµ

∣∣∣∣ ≲ ( 1
n1/α−1

)
(3.55)

Proposition 3.3.16. [50, Corollary 2.4.6] For all Hölder function φ with mean zero, α ∈ (0, 1)
and ψ a bounded function which cancel each other in the vicinity of 0, we have∫

φ · ψ ◦ fnα dx = O
( 1
n1/α

)
.

For the particular mechanism we shall deploy, the rate of decay given in Proposition 3.3.16
shall play a pivotal role when 1/2 ≤ α < 1.

Theorem 3.3.17. [50, Theorem 2.4.14] Let fα be the intermittent circle map with the
parameter α ∈ (0, 1) and φ be a zero average Hölder function with φ(0) = 0, satisfying
|φ(x)| ≤ Cxγ, for a certain γ > 0. Then

∥Lnφ∥1 = O
( 1
nmin{λ,λ(1+γ)−1}

)
,

where λ = 1
α .

Remark 3.3.18. Although the above results in [50] were stated for the LSV map, the
theorems are written in the general setting of the Young tower and applies to the circle map
with indifferent fixed points we are considering.

3.3.4 Some properties of the transfer operator
For α 7→ Lαφ(x), and φ : S1 → R sufficiently regular, we give some properties of ∂αLα that

will be particularly useful going forward.

Lemma 3.3.19. For α ∈ (0, 1), α 7→ gα,i(y), and for all x ∈ S1 \ {0},

∂αgα,i(x) = − Xα,i(x)
f ′
α(gα,i(x)) , i ∈ {1, d}; (3.56)

∂αg
′
α,i(x) = −

X ′
α,i(x)

f ′
α,i(gα,i(x)) +Xα,i(x)

f ′′
α,i(gα,i(x))

(f ′
α,i(gα,i(x))3 , i ∈ {1, d}. (3.57)
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Proof. Since for x ∈ S1 \ {0}, fα,i(gα,i(x)) = x. Then by the chain rule, we have that

(∂αgα,i(x)) f ′
α(gα,i(x)) + ∂αfα(gα,i(x)) = 0,

using equation (3.8), gives equation (3.56). Using the chain rule, we have that

g′
α,i(x) = 1

f ′
α,i(gα,i(x)) . (3.58)

Now,

g′
α+ε,i(x) − g′

α,i(x) = 1
f ′
α+ε,i(gα+ε,i(x)) − 1

f ′
α,i(gα,i(x))

=
f ′
α,i(gα,i(x)) − f ′

α+ε,i(gα+ε,i(x))
f ′
α+ε,i(gα+ε,i(x)) · f ′

α,i(gα,i(x)) (3.59)

To simplify equation (3.59), we first multiply by f ′
α+ε,i(gα,i(x))
f ′

α+ε,i(gα,i(x)) , then add and subtract
f ′
α+ε,i(gα+ε,i(x)) · f ′

α,i(gα,i(x)) to the numerator, we get

g′
α+ε,i(x) − g′

α,i(x) =
f ′
α,i(gα,i(x)) − f ′

α+ε,i(gα,i(x))
f ′
α+ε,i(gα+ε,i(x)) · f ′

α+ε,i(gα,i(x))︸ ︷︷ ︸
(I)

+
f ′
α+ε,i(gα,i(x)) − f ′

α+ε,i(gα+ε,i(x))
f ′
α+ε,i(gα,i(x)) · f ′

α+ε,i(gα+ε,i(x)) .︸ ︷︷ ︸
(II)

(3.60)

But ∂αg′
α,i(x) = limε→0

g′
α+ε,i(x)−g′

α,i(x)
ε . To simplify (I) and (II) above, recall that by

Taylor’s formula, we have that

f ′
α+ε,i(y) = f ′

α,i(y) + ε · ∂αf ′
α,i(y) + O(ε2), (3.61)

hence, (I) simplifies to

(I) =
−ε · ∂αf ′

α,i(gα,i(x)) − O(ε2)
f ′
α+ε,i(gα+ε,i(x)) · f ′

α,i(gα,i(x))

lim
ε→0

(I)
ε

=
−∂αf ′

α,i(gα,i(x))
(f ′
α,i(gα,i(x)))2 .

Since α 7→ fα,i ∈ C2, therefore by the definition in equation (3.8)

lim
ε→0

(I)
ε

=
−v′

α,i(gα,i(x))
(f ′
α,i(gα,i(x)))2 =

−X ′
α,i(x)

f ′
α,i(gα,i(x)) , (3.62)

the above follows since from (3.8), we have that

X ′
α,i(x) =

v′
α,i(gα,i(x))
f ′
α,i(gα,i(x)) . (3.63)
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Next, to simplify (II), we note that from Taylor’s formula,

f ′
α+ε,i(gα+ε,i(x)) = f ′

α,i(gα,i(x))+ε·∂αf ′
α,i(gα,i(x))+ε·∂αgα,i(x)·f ′′

α,i(gα,i(x))+O(ε2). (3.64)

Using equation (3.61) and equation (3.64),

lim
ε→0

(II)
ε

=
−∂αgα,i(x) · f ′′

α,i(gα,i(x))
(f ′
α,i(gα,i(x)))2

and by equation (3.56),

lim
ε→0

(II)
ε

= Xα,i(x)
f ′
α,i(gα,i(x)) ·

f ′′
α,i(gα,i(x))

(f ′
α,i(gα,i(x)))2 . (3.65)

From equation (3.62) and equation (3.65),

∂αg
′
α,i(x) = −

X ′
α,i(x)

f ′
α,i(gα,i(x)) +Xα,i(x)

f ′′
α,i(gα,i(x))

(f ′
α,i(gα,i(x))3 , i ∈ {1, d}.

Lemma 3.3.20. For φ ∈ C1(S1 \ {0}), then for all x ∈ S1 \ {0}, α ∈ (0, 1), and i ∈ {1, d},

∂αLαφ(x) = −
∑

i∈{1,d}
(Xα,i Nα,iφ)′(x). (3.66)

In particular, m(∂αLαφ(x)) = 0.

Proof. From the assumption on fα and equation (3.23),

∂αLαφ(x) =
∑

i∈{1,d}
∂αNα,iφ(x)

=
∑

i∈{1,d}

[
∂αg

′
α,i(x) · φ(gα,i(x)) + φ′(gα,i(x)) · ∂αgα,i(x) · g′

α,i(x)
]
.

Substituting equation (3.56) and equation (3.58) into the above,

∂αLαφ(x) =
∑

i∈{1,d}

[
∂αg

′
α,i(x) · φ(gα,i(x)) −Xα,i(x) · φ′(gα,i(x))

(f ′
α,i(gα,i(x)))2

]
.

To simplify the right hand side of the above equation, we use equation (3.57) to get that

∂αg
′
α,i(x) · φ(gα,i(x)) = −X ′

α,iNα,iφ(x) +Xα,iNα,i(φf ′′
α,i/(f ′

α,i)2)(x)

and observe that

Xα,i(x) · φ′(gα,i(x))
(f ′
α,i(gα,i(x)))2 = Xα,i(x)Nα,i(φ′/f ′

α,i)(x).
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Therefore,

∂αLαφ(x) =
∑

i∈{1,d}

[
−X ′

α,iNα,iφ(x) −Xα,i(x)Nα,i(φ′/f ′
α,i)(x) +Xα,iNα,i(φf ′′

α,i/(f ′
α,i)2)(x)

]
=

∑
i∈{1,d}

[
−X ′

α,iNα,iφ(x) −Xα,i(x)
(
Nα,i(φ′/f ′

α,i)(x) − Nα,i(φf ′′
α,i/(f ′

α,i)2)
)

(x)
]

= −
∑

i∈{1,d}
(Xα,iNα,iφ)′(x).

Using integration by parts, for i ∈ {1, d},∫ 1

0
(Xα,iNα,iφ)′dx = Xα,i(1)Nα,iφ(1) −Xα,i(0)Nα,iφ(0) = 0. (3.67)

Indeed, by equation (3.12) and for i = 1, gα,1(0) = 0, from equation (3.10),

Xα,1(0) = 0 = Xα,1(1),

for i = d, gα,d(1) = 1, similarly, from equation (3.10),

Xα,d(0) = 0 = Xα,d(1).

Therefore, from equation (3.66), we have that m(∂αLαφ(x)) = 0.

Lemma 3.3.21. For α 7→ Xα,iNα,iφ(x) ∈ C3, for i ∈ {1, d},

∂2
αLαφ(x) =

∑
i∈{1,d}

[
−((∂αXα,i)(Nα,iφ))′(x) +X ′

α,i(Xα,iNα,iφ)′(x) +Xα,i(Xα,iNα,iφ)′′(x)
]
.

(3.68)

Proof. From Lemma 3.3.20, we have that

∂2
αLαφ(x) = −

∑
i∈{1,d}

∂α(Xα,i · Nα,iφ)′(x)

= −
∑

i∈{1,d}

(
∂α(X ′

α,i · Nα,iφ+Xα,i · N ′
α,iφ)(x)

)
= −

∑
i∈{1,d}

(
(∂α(X ′

α,i)Nα,iφ+X ′
α,i∂αNα,iφ+ ∂α(Xα,i) · N ′

α,iφ+Xα,i · ∂αN ′
α,iφ)(x)

)
= −

∑
i∈{1,d}

(
(∂α(X ′

α,i)Nα,iφ+ ∂α(Xα,i) · N ′
α,iφ+X ′

α,i∂αNα,iφ+Xα,i · ∂αN ′
α,iφ)(x)

)
= −

∑
i∈{1,d}

(
((∂αXα,i Nα,iφ)′ +X ′

α,i∂αNα,iφ+Xα,i · (∂αNα,iφ)′)(x)
)

Lemma3.3.20= −
∑

i∈{1,d}

[(
(∂αXα,i Nα,iφ)′ −X ′

α,i(Xα,iNα,iφ)′ −Xα,i · (Xα,iNα,iφ)′′
)

(x)
]

=
∑

i∈{1,d}

[
−(∂αXα,i Nα,iφ)′(x) + (X ′

α,i(Xα,iNα,iφ)′)(x) + (Xα,i(Xα,iNα,iφ)′′)(x)
]
.
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By the Leibniz integral rule, m(∂2
αLαφ(x)) = ∂αm(∂αLαφ(x)) = 0, from Lemma 3.3.20.

Remark 3.3.22. The use of the Leibniz integral rule above is justified by the bound shown
in equation (3.88) that |∂2

t Lt(Ln−1−j
α (1))| < ∞.

3.4 The linear response formula
The remainder of this chapter will be dedicated to proving the linear response formula
in Theorem A, firstly for observables ψ ∈ L∞(m), thereafter show how the result can be
extended to ψ ∈ Lq(m). We achieve the proof in three main steps outlined as follows. Firstly,
we shall show that our claimed linear response formula is well-defined. Subsequently, we will
show that the map β 7→

∫
ψ ◦ fnβ dx is locally Lipschitz continuous at β = α ∈ [0, 1). Finally,

we show the linear response formula indeed holds.

3.4.1 Well-defined formula

Let ψ ∈ L∞(m), we show that the right hand side of equation (3.21) is well-defined. We first
recall equation (3.67), ∫ 1

0

∑
i=1,d

(Xα,iNα,iφ)′dx = 0.

Next, we show that it is Lebesgue integrable, for each i ∈ {1, d} and α ∈ [0, 1),

∥(Xα,iNα,i(hα))′∥1 = ∥Xα,i(Nα,i(hα))′ +X ′
α,iNα,i(hα)∥1 < ∞. (3.69)

Indeed, the above is true for α = 0. From equation (3.2), we have that g0,i(x) ≤ Ĉ x,
Ĉ > 0 and g′

α,i(x) ≤ k, k > 0. Since h0|S1 = 1 we have from equation (3.23) that

N0,ih0(x) ≤ k for i = 1, d,

from the above equation and equation (3.17),∫ ∣∣(X0,iN0,i(h0))′∣∣ dx ≤
∫ ∣∣∣X ′

0,i(x)N0,ih0(x)
∣∣∣ dx

≤ Ĉ

∫
(1 + | ln(|x|)|) dx, ∀x ∈ S1,

whose integral is finite.
For 0 < α < 1, equation (3.5) gives the following bounds,

Nα,i(hα)(x) ≤ hα(x) ≤ c2|x|−α, |h′
α(x)| ≤ c2|x|−(1+α), c2 > 0. (3.70)

From Lemma 3.3.4, it implies that

|(Nα,i(hα))′(x)| ≤
(
a1
|x|

+ b1

)
Nα,i(hα)(x) ≤ c2(a1|x|−(1+α) + b1|x|−α), a1, b1, c2 > 0.

(3.71)
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Recalling equations (3.15) and (3.17), together with equations (3.70) and (3.71)

∥(Xα,iNα,i(hα))′∥1

= ∥Xα,i(Nα,i(hα))′ +X ′
α,iNα,i(hα)∥1

≤
∫ 1

0

[
C̃|x|α+1(1 + | ln(|x|)|) · c2|x|−(1+α)(a1 + b1|x|) + C̃|x|α(1 + | ln(|x|)) · c2|x|−α

]
dx

≤ C̃

∫ 1

0
[1 + (a1 + b1|x|)] (1 + | ln(|x|)|) dx < ∞.

By the Neumann series,

(id −Lα)−1 =
∞∑
j=0

Ljα,

hence, the right hand side of equation (3.21) may be written as∣∣∣∣∣∣
∞∑
j=0

∫
S1
ψLjα

 ∑
i∈{1,d}

(Xα,i(Nα,i(hα))′)

 dx
∣∣∣∣∣∣ ≤

∞∑
j=0

∣∣∣∣∣∣
∫
S1
ψLjα

 ∑
i∈{1,d}

(Xα,i(Nα,i(hα))′)

 dx
∣∣∣∣∣∣ .

(3.72)

Our next task is to show that this series is absolutely convergent for α ∈ [0, 1). We
achieve this in two parts. Firstly for α ∈ (0, 1), then for α = 0. For α ∈ (0, 1), we check the
hypothesis of Theorem 3.3.17. We define the function

Fα(x) =
∑

i∈{1,d}

(Xα,iNα,i(hα))′(x)
hα(x) ,

the bounds for hα in equation (3.5) gives that Fα(0) = 0. By Lemma 3.3.20 we have that∫
Fαhαdx = 0 . We also claim that Fα is in fact Lipschitz. Indeed,

Fα(x) =
∑

i∈{1,d}
Xα,i(x)(Nα,i(hα))′(x)

hα(x) +
∑

i∈{1,d}
X ′
α,i(x)Nα,i(hα)(x)

hα(x) , (3.73)

X ′
α,i (resp. Xα,i) being Lipschitz, follows from equation (3.19) (resp. (3.17)) that X ′′

α,i (resp.
X ′
α,i) is bounded. We simplify the second sum above using equation (3.36),

∑
i∈{1,d}

X ′
α,i(x)Nα,i(hα)(x)

hα(x) ≤ max
i
X ′
α,i(x)

∑
i∈{1,d}

(Nα,i(hα))(x)
hα(x)

= max
i
X ′
α,i(x) − max

i
X ′
α,i(x)

∑
y∈f−1

α,i (x),2≤i≤d−1

hα(y)
hα(x)f ′

α(y) .

We have used the fact that Lαhα = hα in the last equation. hα(y) is Lipschitz and 1
hα(x)

is Lipschitz, with f ′
α bounded. From equation (3.71), we have that the first sum in (3.73) is

also Lipschitz continuous. The product and sum of bounded Lipschitz functions is Lipschitz.
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We observe from equations (3.15), (3.17), (3.70) and (3.71) that for any ε > 0, there
exists some Mε > 0 such that for x ∈ S1 \ {0},

|Fα(x)| ≤ |x|α [1 + (a1 + b1|x|)] (1 + | ln(|x|)|)
≤ Mε|x|α(1−ε/2).

From Theorem 3.3.17, taking γ = α(1 − ε/2) > 0, then

min
{ 1
α
,

1
α

(1 + γ) − 1
}

= 1
α

(1 + γ) − 1 > 1/α− ε.

By the duality of the Perron-Frobenius operator, we have that

∞∑
j=0

∣∣∣∣∣∣
∫
S1
ψLjα

 ∑
i∈{1,d}

(Xα,iNα,i(hα))′

 dx
∣∣∣∣∣∣ =

∞∑
j=0

∣∣∣∣∫
S1
ψLjα (Fα · hα) dx

∣∣∣∣
=

∞∑
j=0

∣∣∣∣∫
S1
ψLjαFα dµα

∣∣∣∣
≤ ∥ψ∥∞

∞∑
j=0

∫
S1

∣∣∣LjαFα∣∣∣ dµα
≤ CKα∥ψ∥∞

1
j(1/α)−ε . (3.74)

This series is only summable only when ε < 1
α − 1.

Now, for α = 0, applying Proposition 3.3.13 with β ∈ (0, 1) fixed, there is a constant
Cq > 0 such that to (X0,iN0,i(h0))′ + Cq ∈ C∗,1(β, 1, a, b1). For

φ = (X0,iN0,i(h0))′ ≤ C̃(1 + | ln (|x|)|) ∈ C∗,1 + R,∣∣∣∣∣∣
∫ 1

0
ψLj0

 ∑
i∈{1,d}

(X0,iN0,i(h0))′

 dx
∣∣∣∣∣∣ ≤ Cab1

(1 − β)(log j)j−2+1/β ∥ψ∥∞, ∀j ≥ 1,

hence, the claimed linear response formula is well-defined.

3.4.2 Local Lipschitz continuity

Next, we assume without loss of generality that
∫
ψdµα = 0, for ψ ∈ L∞(m). Our aim is to

show that β 7→
∫
ψ ◦ fnβ dx is Lipschitz continuous at β = α. We may write the zero average

function Fϱ as
Fϱ = hϱ − 1 ∈ C∗,1 + R, ϱ > 0,

then apply the rate of decay result in Lemma 3.3.11 to get an estimate for the decay of
correlation

Cor(Fϱ, ψ ◦ fnα ) =
∣∣∣∣∫ Fϱ(ψ ◦ fnα ) dx−

∫
Fϱ dx

∫
ψ ◦ fnα dx

∣∣∣∣
=
∣∣∣∣ ∫ ψLnϱFϱ dx

∣∣∣∣ (
⇐
∫
Fϱ dx = 0

)
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=
∣∣∣∣ ∫ ψLnϱhϱ dx−

∫
ψLnϱ1 dx

∣∣∣∣
=
∣∣∣∣ ∫ ψ dµϱ −

∫
1(ψ ◦ fnϱ ) dx

∣∣∣∣. (3.75)

In the last equality, we use the fact that Lnϱhϱ = hϱ and the duality property of the
Perron-Frobenius operator.

Let ϱ = α > 0 , then from Lemma 3.3.11, we have that∣∣∣∣ ∫ 1(ψ ◦ fnα ) dx
∣∣∣∣ ≤ Cα∥ψ∥∞

(logn)1/α

n1/α−1 . (3.76)

By Theorem 3.3.14, the unperturbed system, ϱ = α = 0 has the following estimate∣∣∣∣ ∫ 1(ψ ◦ fn0 ) dx
∣∣∣∣ ≤ Cθn, θ < 1. (3.77)

Suppose that ϱ is any β > 0, equation (3.75) becomes

∣∣∣∣ ∫ ψLnβFβ dx
∣∣∣∣ =

∣∣∣∣ ∫ ψ dµβ −
∫

1(ψ ◦ fnβ ) dx
∣∣∣∣ ≤ Cβ∥ψ∥∞

(logn)1/β

n1/β−1 . (3.78)

Choosing n large enough, depending on α and β. Equations (3.76), (3.77), (3.78) are
O(β − α). That is, fixing ξ > 0, there is C > 0 such that for all

n(α, β, ξ) =: n > C
(
Cmax{α,β}(β − α)−(1+ξ)

)1/(−1+1/max{α,β})
, (3.79)

we have that ∣∣∣∣ ∫ (ψ ◦ fnα ) dx
∣∣∣∣+ ∣∣∣∣ ∫ ψ dµβ −

∫
(ψ ◦ fnβ ) dx

∣∣∣∣ ≤ C(β − α)1+ξ. (3.80)

What we want to ultimately show is that

lim
β→α

1
β − α

[(∫
ψ dµβ −

∫
ψ dµα

)
−
(∫

(ψ ◦ fnβ ) dx−
∫

(ψ ◦ fnα ) dx
)]

= 0.

We have that the term in the square bracket is bounded by (3.80). Suppose that
n := n(α, β, ξ), and let 1 be the constant function ≡ 1, we have by using the duality property
of the Perron-Frobenius operator and telescoping sum that for every α, β, n,

Lnβ1 − Lnα1 =
n−1∑
j=0

Ljβ(Lβ − Lα)Ln−1−j
α (1).

Hence, we have that

1
β − α

(∫
(ψ ◦ fnβ ) dx−

∫
(ψ ◦ fnα ) dx

)
= 1
β − α

∫ 1

0
ψ(Lnβ1 − Lnα1) dx
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= 1
β − α

∫ 1

0
ψ
n−1∑
j=0

Ljβ(Lβ − Lα)Ln−1−j
α (1) dx

=
n−1∑
j=0

∫ 1

0
ψLjβ

((Lβ − Lα)
β − α

(Ln−1−j
α (1))

)
dx. (3.81)

Taylor’s formula gives that for any φ ∈ C2 (S1 \ {0}
)
, β ̸= α, x ̸= 0

(Lβ − Lα)φ(x)
β − α

= ∂αLαφ(x) + 1
β − α

∫ β

α
(β − t)∂2

t Ltφ(x) dt. (3.82)

Assuming that β > α > 0, n ≥ 1 in equation (3.81), Lemma 3.3.20 and Lemma 3.3.21
gives that

n−1∑
j=0

∫ 1

0
ψLjβ

((Lβ − Lα)
β − α

(Ln−1−j
α (1))

)
dx =

n−1∑
j=0

∫ 1

0
ψLjβ

(
∂αLα(Ln−1−j

α (1))

+ 1
β − α

∫ β

α
(β − t)∂2

t Lt(Ln−1−j
α (1)) dt

)
dx

n−1∑
j=0

∫ 1

0
ψLjβ

((Lβ − Lα)
β − α

(Ln−1−j
α (1))

)
dx = −

n−1∑
j=0

∫ 1

0
ψLjβ

 ∑
i∈{1,d}

(Xα,iNα,iLn−1−j
α (1))′

 dx
︸ ︷︷ ︸

An

+
∫ β

α

β − t

β − α

n−1∑
j=0

∫ 1

0
ψLjβ

(
∂2
t Lt(Ln−1−j

α (1))
)
dx dt

︸ ︷︷ ︸
Bn

.

(3.83)

Case 1 : We use the Theorem 3.3.17 to show that An and Bn are summable, for 0 < α < 1.

Summability of An : Checking the assumptions of Theorem 3.3.17, allows us to give
conclusions about the summability of this series. By equation (3.67) (Xα,iNα,iLn−1−j

α (1))′

is a zero average function. Next, (Xα,iNα,iLn−1−j
α (1))′ is bounded. Finally, to check that

Hα(x) =
∑

i∈{1,d}

(Xα,iNα,i(Ln−1−j
α (1)))′

hα
is Hölder, it is sufficient to check that there exists

an M ≥ 0 such that

|H ′
α(x)| ≤

∑
i∈{1,d}

∣∣∣∣∣hα(x)(Xα,iNα,i(Ln−1−j
α (1)))′′(x) − (Xα,iNα,i(Ln−1−j

α (1)))′(x)h′
α(x)

h2
α(x)

∣∣∣∣∣ ≤ M.

Indeed, by equation (3.5) and the calculations below, this is bounded. Also, Hα(0) = 0,
hence, same as in the calculations of equation (3.74), and the fact that we assumed that
0 < α < β < 1, we have that
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n−1∑
j=0

∫
S1

∣∣∣∣ψLjβ
( ∑
i∈{1,d}

(Xα,iNα,i(Ln−1−j
α (1)))′

)∣∣∣∣ dx ≤ Cβ∥ψ∥∞

n−1∑
j=0

1
j1/β−ε ,

which is summable as n → ∞.

Summability of Bn : Now, we have that from equation (3.68), let φ = Ln−1−j
α (1) ∈ C ∩ C∗,1,

by the invariance of the cone, for any α ≤ t ≤ β, Lt(Ln−1−j
α (1)) ∈ C.

Claim: |∂2
t Lt(Ln−1−j

α (1))| < ∞.

Proof of claim: We find the bounds on ∂αXα,i(x) and ∂αX
′
α,i(x). Using the chain rule,

we note from equation (3.8) that,

∂αXα,i(x) = (∂αgα,i(x)) (v′
α ◦ gα,i(x)) + ∂2

αfα ◦ gα,i(x).

By equations (3.1) and (3.9),

∂αf
′
α(x) ≈ |x|α ln(|x|),

∂2
αfα(x) ≈ ln(|x|)∂αfα(x).

(3.84)

Hence, from equations (3.56), (3.84), (3.8)

∂αXα,i(x) ≈
(

− 1
f ′
α(gα,i(x)) |gα,i(x)|α + 1

)
ln(|gα,i(x)|)Xα,i(x). (3.85)

Using the estimate gα,i(x) ≤ Cx, equation (3.15) and (s2),

|∂αXα,i(x)| ≤ C̃|x|α+1(1 + | ln(|x|)|)2, (3.86)

next, differentiate equation (3.85) with respect to x, to get the following bounds

|∂αX ′
α,i(x)| ≤ C|x|α(1 + | ln(|x|)|)2. (3.87)

Now, we see that since φ ∈ C∗,1(α) ∩ C, Lemma 3.3.4 implies that

|(Nα,iφ)′′(x)| ≤
(
a2
x2 + b2

)
Nα,iφ(x) ≤

(
a2
x2 + b2

)
· 2c2

|x|α
m(φ) ≤ 2c2|x|−(α+2)(a2 + b2x

2).

From Lemma 3.3.21, we have that

∂2
t Ltφ(x) =

∑
i∈{1,d}

[−((∂tXt,i)(Nt,iφ))′(x)︸ ︷︷ ︸
(I)

+X ′
t,i(Xt,iNt,iφ)′(x)︸ ︷︷ ︸

(II)

+Xt,i(Xt,iNt,iφ)′′(x)︸ ︷︷ ︸
(III)

]

Now, differentiating and simplifying the terms above, we have that

(I) = −
[
∂tXt,i(x) (Nt,iφ(x))′ + ∂tX

′
t,i(x) (Nt,iφ(x))

]
,
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(II) = (X ′
t,i(x))2 Nt,iφ(x) +X ′

t,i(x)Xt,i(x) (Nt,iφ(x))′,

(III) = Xt,i(x)
[
X ′′
t,i(x) Nt,iφ(x) + 2X ′

t,i(x) (Nt,iφ(x))′ +Xt,i(x) (Nt,iφ(x))′′
]
.

From equations (3.15), (3.17), (3.19), (3.26), (3.3.4), (3.86) and (3.87), we bound the
above as follows

|(I)| ≤
(
C̃|x|t+1(1 + | ln(|x|)|)2 · 2c2|x|−(α+1)(a1 + b1|x|)m(φ)

)
+
(
C̃|x|t(1 + | ln(|x|)|)2 · 2c2|x|−αm(φ)

)
≤ C|x|t−α(1 + | ln(|x|)|)2[max{a1, b1}(1 + |x|) + 1].

|(II)| ≤
(
C|x|2t(1 + | ln(|x|)|)2 · 2c2|x|−αm(φ)

)
+
(
C|x|t(1 + | ln(|x|)|) · |x|t+1(1 + | ln(|x|)|) · 2c2|x|−(α+1)(a1 + b1|x|)m(φ)

)
≤ C|x|2t−α(1 + | ln(|x|)|)2[max{a1, b1}(1 + |x|) + 1].

|(III)| ≤ |x|t+1(1 + | ln(|x|)|)
[
|x|t−1(1 + | ln(|x|)|) · 2c2|x|−α + 4Cc2|x|t(1 + | ln(|x|)|)·

|x|−(α+1)(a1 + b1|x|) + |x|t+1(1 + | ln(|x|)|) · 2c2|x|−(α+2)(a2 + b2x
2)
]
m(φ)

≤ C|x|2t−α(1 + | ln(|x|)|)2[1 + max{a1, a2} + max{b1, b2}|x|].

Since x ∈ S1 \ {0} and 0 < α ≤ t ≤ β < 1,

|∂2
t Ltφ(x)| ≤ C|x|t−α(1 + | ln(|x|)|)2[1 + max{a1, a2} + max{b1, b2}|x|], (3.88)

which proves our claim. Next, we check the hypothesis of Theorem 3.3.17. Firstly, observe
that just as in section 3.4.1, we can find a γ > 0 such that

|∂2
t Lt(Ln−1−j

α (1))| ≤ Cγ |x|γ ,

where Cγ is independent of n and j. We see also that from Lemma 3.3.21, that ∂2
t Lt(Ln−1−j

α (1))
has zero mean. Define a Hölder function

Gα(x) = ∂2
t Lt(Ln−1−j

α (1))(x)
hα(x) .

Indeed, it is sufficient to show that there exists M ≥ 0 such that

∣∣G′(x)
∣∣ =

∣∣∣∣∣hα(x)(∂2
t Lt(Ln−1−j

α (1))(x))′ − ∂2
t Lt(Ln−1−j

α (1))(x)h′
α(x)

(hα(x))2

∣∣∣∣∣ ≤ M.
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From the bounds we got above and the bounds in equation (3.5), to get the bounds on
|G′

α(x)| ≤ M , we only need get the bounds on (∂2
t Lt(Ln−1−j

α (1))(x))′. By the commutation
relation equation (3.13), we have to differentiate each of the three terms (I) − (III) above.
The bounds on ∂αX

′′
α,i(x), is

∂αX
′′
α,i(x) ≤ C|x|α−1(1 + | ln(|x|)|)2. (3.89)

We have that

(I′) = −
[
∂tXt,i (Nt,iφ)′′ + 2∂tX ′

t,i (Nt,iφ)′ + ∂tX
′′
t,i (Nt,iφ)

]
,

(II′) = 2(X ′
t,i)2(Nt,iφ)′ + 2X ′

t,iX
′′
t,iNt,iφ+X ′

t,iXt,i(Nt,iφ)′′ +X ′′
t,iXt,i(Nt,iφ)′,

(III′) = Xt,i

[
X ′′′
t,iNt,iφ+X ′′

t,i(Nt,iφ)′ + 4X ′
t,i · (Nt,iφ)′′ + 2X ′′

t,i · (Nt,iφ)′ +Xt,i · (Nt,iφ)′′′
]

+X ′
t,i

[
X ′′
t,iNt,iφ+ 2X ′

t,i · (Nt,iφ)′
]
,

which we bound as follows, taking φ = Ln−j−1
α (1) ∈ C∗,1(α) ∩ C. Using the equations (3.15),

(3.17), (3.19), (3.20), (3.86), (3.87), (3.89), there is a C > 0 such that

∣∣(I′)
∣∣ ≤ C|x|t−α−1(1 + | ln(|x|)|)2 [1 + max{a1, a2} + max{b1, b2}|x|],∣∣(II′)
∣∣ ≤ C|x|2t−α−1 (1 + | ln(|x|)|)2 [1 + max{a1, a2} + max{b1, b2}|x|] ,∣∣(III′)
∣∣ ≤ C|x|2t−α−1 (1 + | ln(|x|)|)2 [1 + max{a1, a2, a3} + max{b1, b2, b3}|x|],

for x ∈ S1 \ {0} and 0 < α ≤ t ≤ β < 1,

|(∂2
t Lt(Ln−1−j

α (1))(x))′| ≤ C|x|t−α−1(1 + | ln(|x|)|)2 [1 + max{a1, a2, a3} + max{b1, b2, b3}|x|],

which is finite and thus allows us to conclude that G(x) is in fact Lipschitz continuous. Also,
G(0) = 0. Since it satisfies the assumptions of Theorem 3.3.17, we easily bound Bn as follows

∫ β

α

β − t

β − α

n−1∑
j=0

∫ 1

0
ψLjβ

(
∂2
t Lt(Ln−1−j

α (1))
)
dx dt ≤ ∥ψ∥∞

β − α

∫ β

α
(β − t)

Cβ n−1∑
j=0

1
j1/β−ε

 dt

= ∥ψ∥∞ · (β − α)

Cβ n−1∑
j=0

1
j1/β−ε

 , (3.90)

as in equation (3.74), the term in the bracket is summable, and equation (3.90) → 0 as
β → α. In the same vein, for α ∈ (0, 1), with β < α, we get the same estimate as before, on
substituting

n−1∑
j

Ljβ(Lβ − Lα)Ln−j−1
α = −

n−1∑
j

Ljα(Lα − Lβ)Ln−j−1
β

into equation (3.81). Hence, the Taylor’s formula now is for any φ ∈ C2(S1\{0}), β ̸= α, x ̸= 0

(Lα − Lβ)φ(x)
α− β

= ∂βLβφ(x) + 1
α− β

∫ α

β
(t− β)∂2

t Ltφ(x)dt (3.91)
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Case 2 : For α = 0, the equation (3.81) can also be bounded in a similar manner, using
instead, Proposition 3.3.13. The decomposition in the Taylor’s formula can be done as thus,

n−1∑
j

Ljβ(Lβ − L0)Ln−j−1
0 = −

n−1∑
j

Lj0(L0 − Lβ)Ln−j−1
β . (3.92)

Substituting α = 0 into equation (3.81),

1
β

(∫
(ψ ◦ fnβ ) dx−

∫
(ψ ◦ fn0 ) dx

)
=

n−1∑
j=0

∫ 1

0
ψLjβ

((Lβ − L0)
β

(Ln−1−j
0 (1))

)
dx,

and make the substitution from equation (3.92), we have

1
β

(∫
(ψ ◦ fnβ ) dx−

∫
(ψ ◦ fn0 ) dx

)
= −

n−1∑
j=0

∫ 1

0
ψLj0

((L0 − Lβ)
β

(Ln−1−j
β (1))

)
dx.

From equation (3.91), we have that

1
β

(∫
(ψ ◦ fnβ )dx−

∫
(ψ ◦ fn0 ) dx

)
=

n−1∑
j=0

∫ 1

0
ψLj0

(
∂βLβ(Ln−1−j

β (1))

+ 1
β

∫ β

0
(t− β)∂2

t Lt(Ln−1−j
β (1)) dt

)
dx,

next, using Lemma 3.3.20 and Lemma 3.3.21 as before, we have

1
β

(∫
(ψ ◦ fnβ ) dx−

∫
(ψ ◦ fn0 ) dx

)
= −

n−1∑
j=0

∫ 1

0
ψLj0

( ∑
i∈{1,d}

(Xβ,iNβ,iLn−1−j
β (1))′

)
dx

︸ ︷︷ ︸
An0

+
∫ β

0

t− β

β

n−1∑
j=0

∫ 1

0
ψLj0

(
∂2
t Lt(Ln−1−j

β (1))
)
dx dt

︸ ︷︷ ︸
Bn0

.

The summability of An0 and Bn0 follows from Proposition 3.3.13. This shows that for
ψ ∈ L∞(m) and β ∈ [0, 1), β 7→

∫
ψ ◦ fnβ dx is locally Lipschitz.

3.4.3 Convergence to the limit

Finally, we show the differentiability of β 7→
∫
ψdµβ, at β = α ∈ [0, 1). The idea is to show

that as β → α, Bn → 0 (resp. Bn0 → 0) , and An (resp. An0) converges to the claimed entity.
Recall equation (3.80), with n as in equation (3.79), setting n(β) = n(α, β, ξ) for small ξ > 0.
It suffices to check that when β → α+ = 0,
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n(β)∑
j=0

∫ 1

0
ψLjβ

( ∑
i∈{1,d}

(Xα,iNα,iLn−j
α (1))′

)
dx

+
∫ β

α

β − t

β − α

n(β)−1∑
j=0

∫ 1

0
ψLjβ

(
∂2
αLt(Ln−1−j

α (1))
)
dx dt, (3.93)

converges to

∞∑
j=0

∫
S1
ψLjα

( ∑
i∈{1,d}

(Xα,iNα,i(hα))′
)
dx =

∫
S1
ψ

∞∑
j=0

Ljα
( ∑
i∈{1,d}

(Xα,iNα,i(hα))′
)
dx, (3.94)

the linear response formula. By the summability of Bn (see equation (3.90)), the second term
of equation (3.93)

∫ β

α

β − t

β − α

n(β)−1∑
j=0

∫ 1

0
ψLjβ

(
∂2
αLt(Ln−1−j

α (1))
)
dx dt → 0, as β → α.

Next, for α ∈ [0, 1), fix η > 0, we can take R = Rη large enough so that the tail of the
series in equation (3.94) < η

4 , while the tail of the first term of equation (3.93) < η
4 uniformly

in β. Let η > 0 (small),

∞∑
j=Rη

∫ 1

0
ψLjα

( ∑
i∈{1,d}

(Xα,iNα,i(hα))′
)
dx <

η

4 ,

n(β)∑
j=Rη

∫ 1

0
ψLjβ

( ∑
i∈{1,d}

(
Xα,iNα,iLn−1−j

α (1)
)′
)
dx <

η

4 ,

since both series converges (from section 3.4.1 and section 3.4.2). Now for every fixed
0 ≤ j ≤ Rη, we show that the difference tends to 0, as β → α+ = 0

∞∑
Rη

{∫ 1

0

[
(ψ ◦ f jβ)

( ∑
i∈{1,d}

(Xα,iNα,i(Ln(β)−j
α (1))′)

)
− (ψ ◦ f jα)

( ∑
i∈{1,d}

(Xα,iNα,i(hα))′
)]

dx

}

=
∞∑
Rη

ς. (3.95)

It is enough now to show that |ς| < η
2Rη

i.e ∀j ≤ Rη and for β = β(η) → α as η → 0.
Naturally, as η → 0, β(η) → α. So it is sufficient to show that ∃ Nη ≥ 1 so that∥∥∥∥ ∑

i∈{1,d}
(Xα,iNα,i(Lnα(1)))′ −

∑
i∈{1,d}

(Xα,iNα,i(hα))′
∥∥∥∥

1

=

∥∥∥∥∥∥
∑

i∈{1,d}

(
(Xα,iNα,i(Lnα(1)))′ − (Xα,iNα,i(hα))′)∥∥∥∥∥∥

1

≤ η

2Rη
, ∀n ≥ Nη. (3.96)

Case 1 : At α = 0, this holds trivially by equation (3.96) and since h0 = 1.
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Case 2 : α ∈ (0, 1), fix α. Now, set

ϕn := Lnα(1)

By the Leibniz rule, we get∥∥∥∥∥∥
∑

i∈{1,d}

[
(Xα,iNα,i(Lnα(1)))′ − (Xα,iNα,i(hα))′]∥∥∥∥∥∥

1

=

∥∥∥∥∥∥
∑

i∈{1,d}

[
X ′
α,iNα,i(ϕn) +Xα,i(Nα,i(ϕn))′ −X ′

α,iNα,i(hα) −Xα,i(Nα,i(hα))′
]∥∥∥∥∥∥

1

≤

∥∥∥∥∥∥
∑

i∈{1,d}

[
X ′
α,iNα,i(ϕn) −X ′

α,iNα,i(hα)
]∥∥∥∥∥∥

1

+

∥∥∥∥∥∥
∑

i∈{1,d}

[
Xα,i(Nα,i(ϕn))′ −Xα,i (Nα,i(hα))′

]∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥max
i
X ′
α,i

∑
i∈{1,d}

Nα,i(ϕn − hα)

∥∥∥∥∥∥
1︸ ︷︷ ︸

(I)

+

∥∥∥∥∥∥
∑

i∈{1,d}

[
Xα,i (Nα,i(ϕn − hα))′

]∥∥∥∥∥∥
1︸ ︷︷ ︸

(II)

(3.97)

X ′
α,i ∈ L∞(m), by the Hölder inequality, equation (3.36), and (C2)

(I) ≤
∥∥∥∥max

i
X ′
α,i

∥∥∥∥
∞

∥∥∥∥∥∥
∑

i∈{1,d}
Nα,i(ϕn − hα)

∥∥∥∥∥∥
1

≤
∥∥∥∥max

i
X ′
α,i

∥∥∥∥
∞

∥Lα(ϕn − hα)∥1

≤ Cα∥ϕn − hα∥1.

From Theorem 3.3.14, we have that

(I) ≤ Cαn
1−1/α, (3.98)

which is only summable for α < 1/2. However, it tends to zero for all α ∈ (0, 1).

Remark 3.4.1. Setting ψ = 1 and φ = 1 − hα, we may as well use Lemma 3.3.11 to bound
(I) above.

Since Xα,i ∈ L∞(m) we need only show that (II) < η

2Rη
. Now, same as before, we let

φ ∈ {1, hα}, for any x̄ ∈ S1 \ {0}, n ≥ 0, Xα,i ∈ L∞(m), by the Hölder inequality

(II) ≤

∥∥∥∥∥∥
∑

i∈{1,d}

[
Xα,i (Nα,i(ϕn − hα))′

]∥∥∥∥∥∥
1

=
∫
S1

∣∣∣∣∣∣
∑

i∈{1,d}

[
Xα,i (Nα,i(ϕn − hα))′

]∣∣∣∣∣∣ dz
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=
∫ x̄

0

∣∣∣∣∣∣
∑

i∈{1,d}

[
Xα,i (Nα,i(ϕn − hα))′

]∣∣∣∣∣∣ dz︸ ︷︷ ︸
(A)

+
∫ 1−x̄′

x̄

∣∣∣∣∣∣
∑

i∈{1,d}

[
Xα,i (Nα,i(ϕn − hα))′

]∣∣∣∣∣∣ dz︸ ︷︷ ︸
(B)

+
∫ 1

x̄′

∣∣∣∣∣∣
∑

i∈{1,d}

[
Xα,i (Nα,i(ϕn − hα))′

]∣∣∣∣∣∣ dz︸ ︷︷ ︸
(C)

.

We recall the bounds equations (3.15) and the definition of the cone equation (3.26) and
in Lemma 3.3.4 with φ = {hα,1}, there exists a1, b1, c2 > 0 such that

|(Nα,iLn(φ))′(x)| ≤
(
a1
|x|

+ b1

)
Nα,i(φ)(x) ≤ c2(a1|x|−(1+α)+b1|x|−α), ∀n ≥ 1, x ∈ S1\{0}.

(A) ≤ 2
∑

i∈{1,d}

∫ x̄

0

∣∣∣Xα,i(z) (Nα,iLn(φ))′ (z)
∣∣∣ dz

≤ C̃

∫ x̄

0
|z|α+1(1 + | ln(|z|)|)(a1|z|−(1+α) + b1|z|−α) dz, C̃ ≥ 1

≤ C̃

∫ x̄

0
(1 + | ln(|z|)|)(a1 + b1|z|) dz

≤ C̃x̄

[
a1 (|ln(|x̄|)| + 2) + b1|x̄|

2

(
2 + |x̄|

2

)]
. (3.99)

The estimate for (C) is similar. We observe that equation (3.99) is small for small x̄. To
estimate (B), we choose n large enough, so that this is so small, and we bound it. Now, by
Hölder inequality and equation (3.36)

(B) ≤
∫ 1−x̄′

x̄

∣∣∣∣∣∣max
i
Xα,i

∑
i∈{1,d}

(Nα,iLn(1 − hα))′

∣∣∣∣∣∣ dz
≤ Cα

∫ 1−x̄′

x̄

∣∣∣(Ln+1
α (1 − hα))′(z)

∣∣∣ dz + Cα
∑

y∈f−1
α,i (x),2≤i≤d−1

∫ 1−x̄′

x̄

∣∣∣∣∣(Lnα(1 − hα))′(gα,i(x))
f ′
α(gα,i(x))

∣∣∣∣∣ dz.
(3.100)

The second integral is ignored, of course, if it is a d = 2 branch circle map. To estimate
the first integral in the above equation, we proceed as follows. For x0 (resp. x′

0) in the
neighbourhood of the intermittent fixed point, define x0 ∈ (0, ε0] and

x̄ = xl = glα,1(x0) and x̄′ = x′
l = glα,d(x′

0), l ≥ 1, (3.101)

we define similarly glα,d in the neighbourhood around [−ε0, 0). This gives rise to the sequence,
(xl)l (resp. (x′

l)l ). From [6, Remark 3.63],

xl ≈ l−1/α and x′
l ≈ l−1/α for l ≥ 1. (3.102)
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Next, for every 1 ≤ m ≤ n, and l ≥ 1, set

ym(xl) = gmα,1(xl) = gmα,1(glα,1)(x0) = gl+mα,1 (x0) = xl+m for l ≥ 1,
ym(x′

l) = gmα,d(x′
l) = gmα,d(glα,d)(x′

0) = gl+mα,d (x′
0) = x′

l+m for l ≥ 1.
(3.103)

Set
ϕ = ϕn+1−m − hα, (3.104)

with Lnα(1) = ϕn. Hence,

Lmα (ϕ) = Lmα (Ln+1−m
α (1) − hα) = Ln+1

α (1 − hα),

and

(Lmα (ϕ))′(x) =
∑

fm
α (y)=x

1
(fmα )′(y) · ϕ(y)

(fmα )′(y)

(
ϕ′(y)

(fmα )′(y) − ϕ(y) (fmα )′′(y)
((fmα )′(y))2

)
,

taking −x̄ = x̄′, we see however that
∫ 1−x̄′

x̄
|(Ln+1

α (1 − hα))′(z)| dz =
∫
S1

∣∣∣χ|x|>x̄
[
(Ln+1

α (1 − hα))′(z)
]∣∣∣ dz

≤
∥∥∥ χ|x|>x̄

[
(Ln+1

α (1 − hα))′(z)
]∥∥∥

1

=
∥∥∥ χ|x|>x̄

[
(Lmα (ϕ))′(z)

]∥∥∥
1

≤
∥∥∥∥Lmα (χ|y|>ym

|ϕ′|
(fmα )′

)∥∥∥∥
1

+
∥∥∥∥Lmα (χ|y|>ym

|ϕ||(fmα )′′

((fmα )′)2

)∥∥∥∥
1

≤
∥∥∥χ|y|>ym

∣∣ϕ′∣∣ · ((fmα )′)−1
∥∥∥

1︸ ︷︷ ︸
M

+
∥∥∥χ|y|>ym

· |ϕ|
∣∣∣(fmα )′′((fmα )′)−2

∣∣∣∥∥∥
1︸ ︷︷ ︸

N

M ≤ ((fmα )′)−1∥χ|y|>ym
|ϕ′|∥1

To estimate ((fmα )′)−1 for some |y| ≥ ym(xl), we use the bounded distortion property, of
fα [79, Lemma 5] on (ym, fα(ym)) = (ym, ym−1), by equations (3.2), (3.102) and (3.103)

((fmα )′)−1 ≤ C
fα(ym) − ym
fα(xl) − xl

≤ C
sgn(ym)|ym|α+1

sgn(xl)|xl|α+1 = C
sgn(xl+m)|xl+m|α+1

sgn(xl)|xl|α+1

≤ Cα

(
1 + m

l

)−(1+1/α)
. (3.105)

From equations (3.71), (3.103) and (3.104)

∥∥∥χ|y|>ym
|ϕ′|
∥∥∥

1
≤
∥∥∥χ|y|>ym

(
|ϕ′
n+1−m| + |h′

α|
)∥∥∥

1
≤ Cα

∫ ym(x′
l)

ym(xl)
c2
(
a1|x|−(1+α) + b1|x|−α

)
dy
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≤ Cα

(−a1c2sgn(y)
α

|y|−α + b1c2sgn(y)
(1 − α) |y|(1−α)

) ∣∣∣∣ym(x′
l)

ym(xl)
≤ Cαy

−α
m ≤ Cα(l +m).

(3.106)

Hence, we have from equations (3.105) and (3.106) that

M ≤ Cα l

(
1 + m

l

)−1/α
. (3.107)

From equations (3.98), we have that

N ≤ Cα,m∥ϕn+1−m − hα∥1 ≤ Cα,m(n+ 1 −m)1−1/α, (3.108)

where Cα,m = supm supx |(fmα )′′((fmα )′)−2|.

To estimate the second integral in equation (3.100), we use the change of variables, and
this gives ∫ 1

gα,i(x̄)
Xα,i(fα(v))Lnα(φ))′(v) dv

and then proceed as in the first integral.

We choose l ≥ 1, such that x̄ is small enough to make (A) and (C) (see equation (3.99))
small, m ≥ l so that equation (3.107) is small and we choose β close enough to α, so that n(β)
is large enough to make equation (3.108) small. Which shows what we want for ψ ∈ L∞(m).

3.4.4 Observables in Lq

In this section, we generalize the result to any ψ ∈ Lq(m), (1 − α)−1 < q < ∞, for α ∈ [0, 1).
Let us define a bounded function

ψM (x) = min{ψ(x),M},

by the Chebyshev’s inequality, for ψ ∈ Lq(m),

Leb({ψ(x) > M}) ≤
∥ψ∥qq
M q

.

Letting ∥ψ∥q = 1 in the above equation, we have

Leb({ψ(x) > M}) ≤ M−q, (3.109)

and ∥ψ − ψM∥r ≤ M1−q/r, for r ≥ 1. Indeed,

ψM (x) =


ψ(x), if ψ(x) ≤ M ;

M, if ψ(x) > M,
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From equation (3.109), we have that

∥ψ − ψM∥r ≤
(∫

ψ(x)>M
dx

)1/p(∫
ψ(x)>M

|ψ − ψM |q dx
)1/q

,
1
p

+ 1
q

= 1
r
,

≤ (Leb(ψ(x) > M))1/p∥ψ∥q
≤ M1−q/r. (3.110)

Decomposing ψ(x) into

ψ(x) = (ψ(x) − ψM (x)) + ψM (x), (3.111)

we show that the limit is well defined (just as in subsection 3.4.1) for ψ ∈ Lq(m). We only
need show that

∣∣∣∣∫ ψLjα (Fαhα) dx
∣∣∣∣ is summable.

∣∣∣∣∫ ψLjα (Fαhα) dx
∣∣∣∣ =

∣∣∣∣∫ [(ψ(x) − ψM (x)) + ψM (x)]Ljα (Fαhα) dx
∣∣∣∣ .

If ψM (x) = ψ(x), the above is trivially true. So, for ψM (x) = M(j) := jη∣∣∣∣∫ ψLjα (Fαhα) dx
∣∣∣∣ ≤

∣∣∣∣∫ (ψ(x) − ψM (x))Ljα(Fαhα)dx
∣∣∣∣︸ ︷︷ ︸

(I)

+
∣∣∣∣∫ ψM (x)Ljα(Fαhα) dx

∣∣∣∣ ,︸ ︷︷ ︸
(II)

by the Hölder inequality, and from equation (3.110)

(I) ≤ ∥ψ − ψM∥r · ∥Fα∥r′ ≤ Cjη(1−q/r),

where 1/r + 1/r′ = 1 and Fα is bounded.

We simplify (II) as in equation (3.74), using Theorem 3.3.17

(II) ≤ jη
∫

|Ljα(Fαhα)|dx

≤ jη ·Kα
1

j(1/α)−ε

≤ Kα
1

j(1/α)−ε−η .

(I) and (II) are summable for 1
(q/r − 1) < η < 1/α− ε− 1.

To extend Subsection 3.4.2 to ψ ∈ Lq(m), we use the same decomposition of ψ and follow
a similar calculation as above to show the summability of An and Bn. In subsection 3.4.3,
we take M(n) = nη, η ∈ (0, 1/α− 1). Using the decomposition of ψ from equation (3.111)
in equation (3.95), we have that
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ς =
{∫

S1

[
((ψ − ψM ) ◦ f jβ)

( ∑
i∈{1,d}

(Xα,iNα,i(Ln(β)−j
α (1))′)

)
−
(
(ψ − ψM ) ◦ f jα

)

·
( ∑
i∈{1,d}

(Xα,iNα,i(hα))′
)]

dx

}
+
{∫

S1

[
(ψM ◦ f jβ)

( ∑
i∈{1,d}

(Xα,iNα,i(Ln(β)−j
α (1))′)

)

− (ψM ◦ f jα)
( ∑
i∈{1,d}

(Xα,iNα,i(hα))′
)]

dx

}
=: (I) + (II).

(I) ≤ M (1−q/r)
(
∥Xα,iNα,i(Ln(β)−j

α (1))′∥r′ + ∥Xα,iNα,i(hα))′∥∞
)
.

Hence, choosing M(n) big enough, we can bound the above by η/2Rη. (II) → 0 as β → α.
Now, we can choose β = β(η,M(n)) such that |(II)| < η/2Rη.

3.5 Example

Here, we present an example of a degree 2 circle map that satisfies the conditions (s1)-(s3) in
section 3.2. For 0 < α < 1, Let

fα(x) =

x(1 + 2αxα), 0 ≤ x < 1
2

x− 2α(1 − x)(α+1), 1
2 ≤ x ≤ 1.

We now proceed to verify the assumptions (A1)-(A3). Indeed, for α ∈ (0, 1) and x ∈ I1,
∂αfα,1(x) = 2αxα+1 ln(2x), and for x ∈ I2, ∂αfα,2(x) = −2α (1 − x)α+1 ln(2(1 − x)). This
verifies the assumption (A1). To verify assumption (A2), observe that I1,+ = I2,− = 1

2 ,
∂αfα,1(1

2) = ∂αfα,2(1
2) = 0. The assumption (A3) is easily verified.

3.6 Statistical stability for the solenoid map

Consider a solid torus M = S1 × D, where D is the unit disk, Fα : M → M defined by

(x,y) 7→ (fα(x), gx(y)) := Fα(x,y) =
(
fα(x), 1

2 cos(2πx) + 1
5y,

1
2 sin(2πx) + 1

5z
)

(3.112)

fα : S1 → S1, the intermittent circle map, with an ergodic SRB measure µα.

The solenoid map contained in the solid torus M ∈ R3, defined as a skew product between
a solid disc and a circle. Geometrically, the transformation stretches the torus to twice its
length, shrinks its diameter by a factor of 5, then twists it and doubles it over, placing the
object back into the solid torus without self-intersecting. Fα an embedding into itself by
means of the a degree d = 2 circle map and intersects each disk in two smaller disks of 1/5
the diameter. At each iterate, Fα contracts volume by a factor of 2, yet there is expansion
in the x direction albeit non-uniform, since contrary to the classical solenoid attractor, the
solenoid with intermittency introduced in [13] has the intermittent map in the base dynamics.
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It is easy to see from (3.112) that there exists a semi-conjugacy between fα and Fα, given
by

fα ◦ π = π ◦ Fα, (3.113)

with π : M → S1, the natural projection. The next result gives the existence of a probability
measure on M .

Lemma 3.6.1. [6, Lemma 4.31] For 0 < α < 1, there exists an F-invariant Borel probability
measure ηα on M such that π∗ηα = µα. Moreover, the support of ηα coincides with Ω.

Where Ω is a compact attractor. To keep the notations simple, we drop the subscript for
µα, ηα and simply write µ, η. In what follows, we will show that the measure η in Lemma
3.6.1 is in fact the unique SRB measure of F . Firstly, we shall state results that enables us
to establish this claim.

Theorem 3.6.2. [6, Theorem 3.18] Let fR : ∆0 → ∆0 be an induced map for f : S1 → S1

and µ0 an fR-invariant probability measure. If

ν =
∞∑
j=0

f j∗ (µ0|{R > j}),

and µ0 is ergodic, then ν is ergodic.

We remark that taking ∆0 = S1, the circle map induced over the S1 was shown to be a
weak Gibbs-Markov induced map, with return times R = n for the first and last branches
and R = 1 for the middle branches.

In the Gibbs Markov case, we have the following result.

Corollary 3.6.3. [6, Corollary 3.21] Let fR : ∆0 → ∆0 be a Gibbs-Markov map and µ0 ≪ m

its unique fR-invariant probability measure. If f∗m ≪ m and ν =
∑∞
j=0 f

j
∗ (µ0|{R > j}) and

ν is finite, then

µ = 1∑∞
j=0 µ0{R > j}

∞∑
j=0

f j∗ (µ0|{R > j})

is the unique ergodic f -invariant probability measure such that µ ≪ m and µ(∆0) > 0.

In the next result, take M = S1 × D and F to be the solenoid map with intermittency.

Theorem 3.6.4. [6, Lemma 4.9] If F : M → M has a set Λ with a Young structure with
integrable recurrence time R, then F has a unique ergodic SRB measure η with η(Λ) > 0.
Moreover, the measure η is given by

η = 1∑∞
j=0 η0{R > j}

∞∑
j=0

F j∗ (η0|{R > j}),

where η0 is the unique SRB measure for fR, and R ∈ L1(η0).

The next result shows that our claim is true for the induced system.
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Lemma 3.6.5. [6, Lemma 4.5] Let Λ be a set with Young structure and F : γ0 ∩ Λ → γ0 ∩ Λ
a quotient of the return map fR : Λ → Λ. If η0 is an SRB measure for fR, then

1. µ0 = (Θγ0)∗η0 is the unique F -invariant probability measure such that µ0 ≪ mγ0;

2. η0 is ergodic.

Proposition 3.6.6. Suppose that µ is an SRB measure and π∗η = µ, then η is the unique
SRB measure.

Proof. We know that R is constant on stable disks, hence we have that

∞∑
j=0

η0{R > j} =
∞∑
j=0

η0{R ◦ π > j} =
∞∑
j=0

π∗η0{R > j} =
∞∑
j=0

µ0{R > j}. (3.114)

Let A ⊂ S1 be any Borel measurable set. using (3.114) From Corollary 3.6.3, Theo-
rem 3.6.4, Lemma 3.6.5, and the semi-conjugacy property of the projection map, π : M → S1,
we get

π∗η(A) = 1∑∞
j=0 µ0{R > j}

∞∑
j=0

F j∗ (η0(π−1(A))|{R > j})

= 1∑∞
j=0 µ0{R > j}

∞∑
j=0

η0(F−j ◦ π−1(A)|{R > j})

= 1∑∞
j=0 µ0{R > j}

∞∑
j=0

f j∗π∗(η0(A)|{R > j})

= 1∑∞
j=0 µ0{R > j}

∞∑
j=0

f j∗ (µ0(A)|{R > j}) = µ(A).

Since the η is the unique SRB measure of F , we now show that it is statistically stable.
For any continuous ϕ : M → R, let ϕ+/− : S1 → R defined for each x ∈ S1 by

ϕ−(x) = inf
p∈π−1(x)

ϕ(p) and ϕ+(x) = sup
p∈π−1(x)

ϕ(p).

From [6, Lemma 4.31],∫
ϕdηα = lim

k→∞

∫
(ϕ ◦ F kα)+ dµα = lim

k→∞

∫
(ϕ ◦ F kα)− dµα. (3.115)

For ease of notation, we shall write the subscript αn simply as n and the map and measure
at α0 as F and µ respectively. The density of fα, hα ∈ Lp(m).

Lemma 3.6.7. For any k ≥ 1, we have

lim
n→∞

∫
(ϕ ◦ F kn )+ dµn =

∫
(ϕ ◦ F k)+ dµ
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Proof.∣∣∣∣ ∫ (ϕ ◦ F kn )+ dµn−
∫

(ϕ ◦ F k)+ dµ

∣∣∣∣ ≤∣∣∣∣ ∫ ((ϕ ◦ F kn )+ − (ϕ ◦ F k)+
)
dµn

∣∣∣∣︸ ︷︷ ︸
(A)

+
∣∣∣∣∫ (ϕ ◦ F k)+ dµn −

∫
(ϕ ◦ F k)+ dµ

∣∣∣∣︸ ︷︷ ︸
(B)

.

By the Hölder inequality, we have that

(A) ≤
∫ ∣∣∣hn [(ϕ ◦ F kn )+ − (ϕ ◦ F k)+

]∣∣∣ dm
≤ ∥hn∥p

(∫ ∣∣∣(ϕ ◦ F kn )+ − (ϕ ◦ F k)+
∣∣∣q dm)1/q

, with 1
p

+ 1
q

= 1.

For a fixed k, since the solenoid maps are continuous, we have that for n big enough,
(A) → 0. The linear response result in Theorem A implies statistical stability on S1. Hence,
(B) → 0 as n → ∞.

Theorem B. lim
n→∞

∫
ϕdηn =

∫
ϕdη.

Proof. Given an arbitrary ε > 0, take δ > 0 such that d(p, q) < δ ⇒ |ϕ(p) − ϕ(q)| < ε, for
p, q ∈ M . We have that each disk π−1(x), is contracted by Fn by a factor of 1/5. There is a
k0 ≥ 1 such that for all k ≥ k0 and x ∈ S1

diam(F kn (π−1(x))) < δ.

For all k ≥ k0 and m ≥ 0

(ϕ ◦ F k+m
n )+(x) − (ϕ ◦ F kn )+(fm(x)) = sup(ϕ ◦ F k+m

n |π−1(x)) − sup(ϕ ◦ F kn |π−1(fm(x))).

Since F k+m
n (π−1(x)) ⊂ F kn (π−1(fm(x))), this then implies that the above equation is

bounded by

sup(ϕ ◦ F k+m
n |π−1(x)) − sup(ϕ ◦ F kn |π−1(fm(x)))

≤ sup(ϕ ◦ F k+m
n |π−1(x)) − inf(ϕ ◦ F k+m

n |π−1(x)) < ε.

By the invariance of µn, we have that
(∫

(ϕ ◦ F k+m
n )+(x) dµn

)
k,n

is uniformly Cauchy.

Therefore,

lim
n→∞

lim
k→∞

∫
(ϕ ◦ F kn )+(x) dµn = lim

k→∞
lim
n→∞

∫
(ϕ ◦ F kn )+(x) dµn,

and from equation (3.115) and Lemma 3.6.7

lim
n→∞

∫
ϕdηn = lim

k→∞

∫
(ϕ ◦ F k)+ dµ,
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using equation (3.115) again, completes the proof.





Chapter 4

Hölder continuity for piecewise
expanding maps

4.1 Introduction
We study the Hölder continuity of the densities and the entropies of a multi-dimensional
family of piecewise expanding maps with countable domains of smoothness, under small
perturbations.

We focus on absolutely continuous invariant probability measures (ACIPs), a class of
measures that are absolutely continuous with respect to the Lebesgue measure, and often
coincide with SRB measures in the context of non-uniformly hyperbolic systems. Specifically,
we present general results concerning the Hölder continuity of the densities and metric
entropies of ergodic ACIPs for certain classes of piecewise expanding maps in any finite
dimension. We achieve this by studying the spectral properties of the perturbed Perron-
Frobenius operator associated with this family. More precisely, we employ the abstract result
of Keller and Liverani in [58], which provides a powerful framework for establishing continuity
properties of dynamical quantities in systems with expanding behavior.

Our primary application of these theoretical results is focused on a particular family of
two-dimensional tent maps introduced in [67]. This family is especially interesting because
it is related to limit return maps that arise when a homoclinic tangency is unfolded by
a family of three-dimensional diffeomorphisms, as discussed in [67, 75]. The existence of
ergodic ACIPs for these tent maps was established in [68], and the continuity of the densities
of these measures, along with their entropies, was demonstrated in [14, 15]. Building on
these foundational results, we now strengthen the previous conclusions by showing that the
densities and metric entropies associated with these ACIPs vary Hölder continuously with
the dynamics.

4.2 Hölder continuity of the densities
Here we present the general setting under which our main results will be obtained. Let Ω be
a compact subset of Rd, for some d ≥ 1. Consider m the Lebesgue measure on Ω and, for
each 1 ≤ p ≤ ∞, the respective space Lp(Ω) endowed with its usual norm ∥ ∥p. Absolute

63
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continuity will be always meant with respect to m. Let (ϕt)t∈I be a family of transformations
ϕt : Ω → Ω, where I is a metric space. We assume that there exists N ∈ N ∪ {∞}, and for
each t ∈ I, there exists an m mod 0 partition {Rt,i}N−1

i=1 of Ω such that each Rt,i is a closed
domain with piecewise C2 boundary of finite (d− 1)-dimensional measure. Assume also that
each

ϕt,i = ϕt|Rt,i (4.1)

is a C2 bijection from int(Rt,i), the interior of Rt,i, onto its image, with a C2 extension to
the boundary of Rt,i. Consider the Jacobian function

Jt = | det(Dϕt)|,

defined on the (full Lebesgue measure) subset of points in Ω where ϕt is differentiable. Next
we state some properties for our family of maps.

(P1) there exists σt > 0 such that for all 1 ≤ i < N and all x ∈ int(ϕt(Rt,i))

∥Dϕ−1
t,i (x)∥ ≤ σt.

(P2) there exists ∆t ≥ 0 such that for all 1 ≤ i < N and all x, y ∈ int(Rt,i)

log Jt(x)
Jt(y) ≤ ∆t ∥ϕt(x) − ϕt(y)∥.

(P3) there exist αt, βt > 0 and, for each 1 ≤ i < N , there exists a C1 unitary vector field Xt,i

on ∂ϕt(Rt,i)1 such that:

(a) the line segments joining each x ∈ ∂ϕt(Rt,i) to x+ αtXt,i(x) are pairwise disjoint,
contained in ϕt(Rt,i) and their union is a neighborhood of ∂ϕt(Rt,i) in ϕt(Rt,i);

(b) for each x ∈ ∂ϕt(Rt,i) and v ∈ Tx∂ϕt(Rt,i) \ {0}, we have |sin∠(v,Xt,i(x))| ≥ βt,
where ∠(v,Xt,i(x)) denotes the angle between v and Xt,i(x).

(P3) is a geometric condition which allows the extension made on [38] in [4]. This
condition is basically that the image of the domains of smoothness ϕt,i should not be too
small (sizes uniformly bounded away from zero), and the angles at the border corners should
also be bounded from below.

Remark 4.2.1. For a finite number of domains of smoothness, the constant αt > 0 always
exists. The condition (P3)(a) is satisfied in the one dimensional case, when the elements in
{Rt,i}Ni=1 are intervals whose images have sizes of that are uniformly bounded away from zero.
To make sense of the condition (P3)(b) in one dimension, an optimal value of βt is βt = 1
[15, Remark 3.2].

1At the points x ∈ ∂ϕt(Rt,i) where ∂ϕt(Rt,i) is not smooth the vector Xt,i(x) is a common C1 extension
of Xt,i restricted to each (d − 1)-dimensional smooth component of ∂ϕt(Rt,i) having x in its boundary.
The tangent space at any such point is the union of the tangent spaces to the (d − 1)-dimensional smooth
components that point belongs to.
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Under the conditions (P1)-(P3), it was established in [4, Theorem 5.2] and under similar
conditions for a finite domain of smoothness [38] that each ϕt possess some ergodic absolutely
continuous invariant probability measure. Assuming the uniqueness of this measure for each
t, the continuity of the measure in relation to the parameter t was proven in [15] under the
following uniformity condition:

(U) there exists ℓ ≥ 1 such that ϕjt satisfies (P1)-(P3) for each 1 ≤ j ≤ ℓ; moreover, there
exist 0 < θ < 1 and M > 0 such that, for all t ∈ I and 1 ≤ j ≤ ℓ,

σt,ℓ

(
1 + 1

βt,ℓ

)
≤ θ, σt,j

(
1 + 1

βt,j

)
≤ M and ∆t,j + 1

αt,jβt,j
+ ∆t,j

βt,j
≤ M,

where σt,j ,∆t,j , αt,j , βt,j are the constants in (P1)-(P3) for the map ϕjt .

We give extra conditions that allows us to establish the Hölder continuous variation of
these measures and their entropies. Set for each s, t ∈ I and 1 ≤ i < N

Kt,s,i = ϕ−1
s,i (ϕt(Rt,i) ∩ ϕs(Rs,i)) and ψt,s,i = ϕ−1

t,i ◦ ϕs,i|Kt,s,i .

Naturally, we consider ψt,s,i only when Kt,s,i ̸= ∅. In fact, assumptions (1)-(3) of
Theorem C below essentially mean that the sets ϕt(Rt,i) and ϕs(Rs,i) are close to each other
and the maps ϕs,i and ϕt,i are close to each other. Let id denote the identity map on Rd,
possibly restricted to some subset of Rd. Define the difference set

A = {s− t : s, t ∈ I}.

Given a compact set K ⊂ Rd and a function ψ : K → Rd, let

∥ψ∥0 = sup
x∈K

∥ψ(x)∥,

where ∥ ∥ is for the Euclidean norm in Rd.

Theorem C. Let (ϕt)t∈I be a family of maps for which (U) holds and each ϕt has a unique
ergodic absolutely continuous invariant probability measure µt. Assume that there exists a
function E : A → R+ such that, for all s, t ∈ I

1.
N∑
i=1

m
(
ϕ−1
t,i (ϕt(Rt,i) \ ϕs(Rs,i))

)1/d
≤ E(t− s);

2.
N∑
i=1

∥ψt,s,i − id ∥0 ≤ E(t− s);

3.
N∑
i=1

∣∣∣∣∣ Js
Jt ◦ ψt,s,i

− 1
∣∣∣∣∣ ≤ E(t− s).

Then, there exist C > 0 and 0 < η < 1 such that for all s, t ∈ I,∥∥∥∥dµtdm
− dµs
dm

∥∥∥∥
1

≤ C[E(t− s)]η.
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The factor 1/d in assumption (1) is related to an application of Sobolev and Hölder
inequalities in the proof of Proposition 4.2.4. Notice that, in the case that N is finite, we just
need the bounds for the summands.

The main ingredient for the proof of the above theorem is the notion of variation for
functions in multidimensional spaces (see Section 2.4). Firstly, we obtain a general fact about
bounded variation functions that plays a key role in the proof of Proposition 4.2.4.

Lemma 4.2.2. If K is a compact subset of Rd and ψ : K → Rd is a diffeomorphism onto its
image, then there exists C > 0 such that, for all f ∈ BV (Rd),∫

K
|f ◦ ψ − f | dm ≤ C∥ψ − id ∥0V (f).

Proof. We start by proving the result for a continuous piecewise affine function f . More
precisely, suppose that the support ∆ of f can be decomposed into a finite number of domains
∆1, . . . ,∆N such that the gradient ∇f of f is a constant vector ∇if on each ∆i. Using (B1),
we obtain ∫

K
|f ◦ ψ − f | dm ≤

∫
K

∥ψ − id ∥0 · ∥∇f∥ dm ≤ ∥ψ − id ∥0V (f).

The next step is to deduce the result for any C1 function f . For this, we take a sequence
(fn)n of continuous piecewise affine functions such that

∥f − fn∥0 → 0 and ∥Df −Dfn∥0 → 0, when n → ∞

(the derivatives Dfn are defined only in the interior of the smoothness domains). Then,
using (2.10) and the dominated convergence theorem, we have

V (f) =
∫

∥Df∥ dm = lim
n→∞

∫
∥Dfn∥ dm = lim

n→∞
V (fn)

and ∫
K

|f ◦ ψ − f | dm = lim
n→∞

∫
K

|fn ◦ ψ − fn| dm.

Using the case already seen, we get the conclusion also for f .
For the general case, we know by (B2) that given f ∈ BV (Rd) there is a sequence (fn)n

of C1 maps for which

lim
n→∞

∫
|f − fn| dm = 0 and lim

n→∞
V (fn) = V (f). (4.2)

We have∫
K

|f ◦ ψ − f | dm ≤
∫
K

|f ◦ ψ − fn ◦ ψ| dm+
∫
K

|fn ◦ ψ − fn| dm+
∫
K

|fn − f | dm.

Taking ρ = 1/| detDψ| ◦ ψ−1, we may write∫
K

|fn ◦ ψ − f ◦ ψ| dm =
∫
ψ(K)

|fn − f | · ρ dm ≤ ∥ρ∥0

∫
|fn − f | dm.
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The conclusion in this case follows from equation (4.2) and the previous case.

Next, we study the action of the Perron-Frobenius operators on the space of bounded
variation functions in Ω. Let Ω ⊂ Rd be the common domain of the maps in the family
(ϕt)t∈I . For each t ∈ I, consider the Perron-Frobenius operator

Lt : L1(Ω) −→ L1(Ω),

defined for each f ∈ L1(Ω) by

Ltf =
N∑
i=1

f ◦ ϕ−1
t,i

Jt ◦ ϕ−1
t,i

χϕt(Rt,i),

where {Rt,i}Ni=1 are the domains of smoothness of ϕt : Ω → Ω and ϕt,i are the maps introduced
in equation (4.1).

Proposition 4.2.3. Under assumption (U), there exist 0 < λ < 1 and C > 0 such that, for
all t ∈ I, f ∈ BV (Ω) and n ≥ 1, we have

∥Lnt f∥BV ≤ Cλn∥f∥BV + C∥f∥1.

Proof. Take ℓ ≥ 1 as in (U). It is a standard fact that Lℓt is the Perron-Frobenius operator
for ϕℓt. By [4, Lemma 5.4], we have for any f ∈ BV (Ω)

V (Lℓtf) ≤ σt,ℓ

(
1 + 1

βt,ℓ

)
V (f) +M∥f∥1 ≤ θV (f) +M∥f∥1, (4.3)

and so
∥Lℓtf∥BV ≤ θV (f) + (M + 1)∥f∥1. (4.4)

Given n ≥ 1, consider q ≥ 0 and 0 ≤ r < ℓ such that n = ℓq + r. It follows from (C2) and
equation (4.3) that

V (Lℓqt f) ≤ θV (Lℓ(q−1)
t f) +M∥f∥1

≤ θ2V (Lℓ(q−2)
t f) + (θ + 1)M∥f∥1

...
≤ θqV (f) + (θq−1 + θq−2 + · · · + 1)M∥f∥1.

It follows that

∥Lℓqt f∥BV = V (Lℓqt f) + ∥Lℓqt f∥1 ≤ θqV (f) +
(

1 +M
∑
j≥0

θj
)

∥f∥1. (4.5)

On the other hand,

V (Lrtf) ≤ σt,r

(
1 + 1

βt,r

)
V (f) +M∥f∥1 ≤ MV (f) +M∥f∥1. (4.6)
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Finally, using equations (4.5) and (4.6), we get

∥Lnt f∥BV = ∥Lℓqt Lrtf∥BV

= θqV (Lrtf) +
(

1 +M
∑
j≥0

θj
)

∥f∥1

≤ θqMV (f) +
(
M + 1 +M

∑
j≥0

θj
)

∥f∥1.

Now, observe that

θq = θ(n−r)/ℓ =
(
θ1/ℓ

)n
θ−r/ℓ ≤

(
θ1/ℓ

)n
θ−1.

Take

λ = θ1/ℓ and C = max

Mθ ,M + 1 +M
∑
j≥0

θj


and recall that V (f) ≤ ∥f∥BV .

It follows from the previous result that Lt(BV (Ω)) ⊂ BV (Ω). From here on, we assume
Lt as an operator from the space BV (Ω) into itself. Given a bounded linear operator
T : BV (Ω) → BV (Ω), consider

|||T ||| = sup
{f∈BV (Ω):∥f∥BV ≤1}

∥Tf∥1.

Next, we show that for s, t ∈ I, Lt is close to Ls in an appropriate topology.

Proposition 4.2.4. Under the assumptions of Theorem C, there exists C > 0 such that, for
all s, t ∈ I,

|||Lt − Ls||| ≤ CE(t− s).

Proof. We need to show that there exists some constant C > 0 such that, for all f ∈ BV (Ω),
we have

∥Ltf − Lsf∥1 ≤ CE(t− s)∥f∥BV .

Indeed,

∥Ltf − Lsf∥1 ≤
N∑
i=1

∫
Ω

∣∣∣∣∣ f ◦ ϕ−1
t,i

Jt ◦ ϕ−1
t,i

χϕt(Rt,i) −
f ◦ ϕ−1

s,i

Js ◦ ϕ−1
s,i

χϕs(Rs,i)

∣∣∣∣∣ dm
=

N∑
i=1

∫
ϕt(Rt,i)∩ϕs(Rs,i)

∣∣∣∣∣ f ◦ ϕ−1
t,i

Jt ◦ ϕ−1
t,i

−
f ◦ ϕ−1

s,i

Js ◦ ϕ−1
s,i

∣∣∣∣∣ dm︸ ︷︷ ︸
(I)

+

+
N∑
i=1

∫
ϕt(Rt,i)\ϕs(Rs,i)

∣∣∣∣∣ f ◦ ϕ−1
t,i

Jt ◦ ϕ−1
t,i

∣∣∣∣∣ dm︸ ︷︷ ︸
(II)

+
N∑
i=1

∫
ϕs(Rs,i)\ϕt(Rt,i)

∣∣∣∣∣ f ◦ ϕ−1
s,i

Js ◦ ϕ−1
s,i

∣∣∣∣∣ dm︸ ︷︷ ︸
(III)



4.2 Hölder continuity of the densities 69

We just need to obtain the appropriate bounds for (I), (II) and (III). To estimate (I),
note that by the change of variables y = ϕs,i(x), we have

∫
ϕt(Rt,i)∩ϕs(Rs,i)

∣∣∣∣∣ f ◦ ϕ−1
t,i

Jt ◦ ϕ−1
t,i

−
f ◦ ϕ−1

s,i

Js ◦ ϕ−1
s,i

∣∣∣∣∣ dm =
∫
ϕ−1

s,i (ϕt(Rt,i)∩ϕs(Rs,i))

∣∣∣∣∣ f ◦ ϕ−1
t,i ◦ ϕs,i

Jt ◦ ϕ−1
t,i ◦ ϕs,i

− f

Js

∣∣∣∣∣ Js dm.
Set ψt,s,i = ϕ−1

t,i ◦ ϕs,i|ϕ−1
s,i (ϕt(Rt,i)∩ϕs(Rs,i)). Therefore,

(I) =
N∑
i=1

∫
Kt,s,i

∣∣∣∣∣ f ◦ ϕ−1
t,i ◦ ϕs,i

Jt ◦ ϕ−1
t,i ◦ ϕs,i

− f

Js

∣∣∣∣∣ Js dm
≤

N∑
i=1

∫
Kt,s,i

|f ◦ ψt,s,i − f |
∣∣∣∣∣ Js
Jt ◦ ψt,s,i

∣∣∣∣∣ dm+
N∑
i=1

∫
Kt,s,i

∣∣∣∣∣ Js
Jt ◦ ψt,s,i

− 1
∣∣∣∣∣ |f | dm.

By assumption (3) of Theorem C, there exists some C0 > 0 such that, for each 1 ≤ i < N ,∣∣∣∣∣ Js
Jt ◦ ψt,s,i

∣∣∣∣∣ ≤ 1 + sup
1≤i<N

∣∣∣∣∣ Js
Jt ◦ ψt,s,i

− 1
∣∣∣∣∣ ≤ 1 +

N∑
i=1

∣∣∣∣∣ Js
Jt ◦ ψt,s,i

− 1
∣∣∣∣∣ ≤ C0.

By Lemma 4.2.2 and the assumptions of Theorem C, we may write

(I) ≤ C0

N∑
i=1

∥ψt,s,i − id ∥0 V (f) +
N∑
i=1

∣∣∣∣∣ Js
Jt ◦ ψt,s,i

− 1
∣∣∣∣∣ ∥f∥1

≤ CE(t− s)∥f∥BV ,

for some uniform constant C > 0. To estimate (II), note that, by change of variables,

∫
ϕt(Rt,i)\ϕs(Rs,i)

∣∣∣∣∣ f ◦ ϕ−1
t,i

Jt ◦ ϕ−1
t,i

∣∣∣∣∣ dm =
∫
ϕ−1

t,i (ϕt(Rt,i)\ϕs(Rs,i))
|f | dm =

∫
Ω
χϕ−1

t,i (ϕt(Rt,i)\ϕs(Rs,i))|f | dm.

Observe that, by the Sobolev inequality (B3), we have f ∈ Lp(Ω), with p = d/(d − 1)
and d being conjugate. It follows from Hölder and Sobolev inequalities and assumption (1) of
Theorem C that there exists some C > 0 such that

(II) =
N∑
i=1

∫
Ω
χϕ−1

t,i (ϕt(Rt,i)\ϕs(Rs,i))|f | dm

≤
N∑
i=1

∥χϕ−1
t,i (ϕt(Rt,i)\ϕs(Rs,i))∥d∥f∥p

≤ C
N∑
i=1

m
(
ϕ−1
t,i (ϕt(Rt,i) \ ϕs(Rs,i))

)1/d
∥f∥BV

≤ CE(t− s)∥f∥BV .

We are done for (II). The calculations follow similarly for (III).

The density ρt ∈ BV (Ω) [15, Corollary 3.4].
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4.2.1 Spectral decomposition of Lt

In the situation where 1 is the only eigenvalue of L, with modulus 1. We decompose the
Perron-Frobenius operator as follows

Lt = Πt +R

where R : BV (Ω) → BV (Ω) is a bounded operator on BV (Ω) with a spectral radius strictly
less than 1, satisfying

ΠtR = RΠt = 0,

and Πt is the projection. In this setting, we have the following result.

Theorem 4.2.5. [72, Theorem 3] There exists non-negative functions φ1, . . . , φκ ∈ BV (Ω)
and ψ1, . . . ψκ ∈ L∞(Ω) such that:

(a) For every f ∈ L1(Ω),

Πf =
κ∑
i=1

φi

∫
Ω
ψif dm. (4.7)

(b) Ltφi = φi, ψi ◦ T = ψi for i = 1, . . . , κ.

(c)
∫

Ω φiψi dm = δij ψi ∧ ψj = 0 = ψj ∧ ψi as i ̸= j;
∫

Ω φi dm = 1 for i = 1, . . . , κ.

(d) There exists measurable sets C1, . . . Cκ ⊂ X such that ψi = χCi a.e. for i = 1, . . . , κ and
X = ∪κi Ci a.e.

(e) ∩∞
n=1T

n(L1) = ∩∞
n=1T

n(L∞) = span{ψ1, . . . , ψκ};

(f) for every f ∈ L1(Ω), f ◦ Tn → Π∗f in the σ(L1, BV )-topology; for every f ∈ L∞(Ω),
f ◦ Tn → Π∗f in σ(L∞, L1)- topology and

Π∗f =
κ∑
i=1

ψi

∫
Ω
φif dm.

We remark that m is a d dimensional Lebesgue measure.

4.2.2 Proof of Theorem C
In this section we prove Theorem C. We will use the Keller-Liverani stability result in [58].
Recall that there exists C > 0 such that, for all t, s ∈ I,

(KL1) |||Lt − Ls||| ≤ E(t− s);

(KL2) ∥Lnt ∥1 ≤ C, for all n ≥ 1;

(KL3) ∥Lnt f∥BV ≤ Cλn∥f∥BV + C∥f∥1, for all n ≥ 1 and f ∈ BV (Ω);

(KL4) 1 is an isolated eigenvalue of Lt and has multiplicity one.

Now we state a result by Keller-Liverani
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Proposition 4.2.6. [58, Corollary 1] Suppose that {Pt}t∈I is a family of bounded operators
satisfying (KL1)-(KL4). Fix δ > 0 and r ∈ (α,M) and set η := 1 − log r/M

logα/M . If in addition, λ
is an isolated eigenvalue of Ps with |λ| > r and if δ > 0 is such that Bδ(λ) ∩ σα(Ps) = {λ}.
Then there are constants C = C(δ, r) > 0 and ε0 = ε0(δ, r) > 0 such that 0 ≤ s, t ≤ ε0

|||Πs − Πt||| ≤ C [E(t− s)]η for all s, t ∈ I.

Where Bδ(λ) is the unit open ball of radius δ around λ, σ(Ps) the spectrum of Ps and
σα(Ps) := {z ∈ C : |z| ≤ α} ∪ σ(Ps).

In fact, (KL1) is given by Proposition 4.2.4, (KL2) follows from (C2), and (KL3) is
given by Proposition 4.2.3. Regarding (KL4), notice that 1 is an isolated eigenvalue by the
theorem of Ionescu Tulcea and Marinescu [53](Theorem 2.4.2), since Lt is quasicompact;
the multiplicity one holds because we assume that each ϕt has a unique ergodic absolutely
continuous invariant probability measure; recall (C3).

Since (KL1)-(KL4) hold, we conclude using Proposition 4.2.6 that there exist C > 0 and
0 < η < 1 such that

|||Πs − Πt||| ≤ C[E(t− s)]η, (4.8)

where Πt,Πs are the projections onto the eigenspaces of the eigenvalue 1 with respect to the
operators Lt,Ls, respectively. By virtue of property (KL4), it follows from Theorem 4.2.5
that, for all s ∈ I, there exists ρs ∈ BV (Ω) with ρs ≥ 0 and

∫
ρs dm = 1 such that, for every

f ∈ L1(Ω),
Πsf = ρs

∫
f dm.

This allows us to conclude that

∥ρs − ρt∥1 =
∥∥∥∥ρs − ρt

∫
ρs dm

∥∥∥∥
1

= ∥Πsρs − Πtρs∥1 ≤ |||Πs − Πt|||.

The conclusion of Theorem C then follows from equation (4.8).

4.3 Hölder continuity of the entropies
For some basic notions on entropy, we refer the reader to Section 2.2.

4.3.1 Existence of entropy formula
For the sake of completeness, in this section we present conditions under which the existence of
an entropy formula for an absolutely continuous invariant probability of piecewise expanding
maps is guaranteed, see [11, 12] for the full branch Markov maps setting. The Markovian
property was weakened in [14] to quasi-Markovian property (see [45] for a similar condition),
which is defined as follows.

Definition 4.3.1. The partition {Rt,i}Ni=1 into domains of smoothness of ϕt : Ω → Ω is said
to be quasi-Markovian with respect to a measure µt, if there exits η > 0 such that for µt
almost every x ∈ Ω there are infinitely many values of n ∈ N for which

m(ϕnt (Rnt (x))) ≥ η.
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Where Rnt (x) is the element in {Rnt,i}Ni=1 containing x ∈ Ω. The following important
criterion was set in order to establish the quasi-Markovian property for the partition of a
piecewise expanding map with absolutely continuous invariant probability measure.

Definition 4.3.2. The singular set of a piecewise expanding map ϕt : Ω → Ω is defined as

Sϕt =
⋃

R∈Rt

∂R.

Where ∂ is the boundary and the bar stands for the closure (A, is the closure of set A).

Remark 4.3.1. If N < ∞, then the singular set is the finite union of (d− 1)-dimensional
submanifolds of Rd.

The piecewise expanding maps ϕt behaves as a power of the distance close to Sϕt if there
exists constants K, ρ > 0 such that

(S1) ∥Dϕt(x)∥ ≤ K

dist(x,Sϕt)ρ
;

(S2) log ∥Dϕt(x)−1∥
∥Dϕt(y)−1∥

≤ K

dist(x,Sϕt)ρ
dist(x, y);

for every x, y ∈ M \ Sϕt , M a compact manifold, with dist(x, y) < dist(x,Sϕt)
2 .

In [14, Proposition 3.4], an explicit criterion to check the quasi-Markovian property for
a C1-piecewise expanding map was given, and subsequently gave a sufficient condition for
establishing the entropy formula for such classes of maps. As a by product, the following
result gives a sufficient condition for the existence of an entropy formula for our class of maps
of interest (piecewise expanding maps with long branches).

Proposition 4.3.2 ([14]). Let ϕt : Ω → Ω with Ω ⊂ Rd be a C1 piecewise expanding
map with bounded distortion and large branches for which (S1)-(S2) and (U) hold. If
log dist(·,Sϕt) ∈ Ld(m) and µt is an ergodic absolutely continuous invariant probability
measure for ϕt such that Hµt(Rϕt) < ∞, then

hµt(ϕ) =
∫

log Jtdµt. (4.9)

4.3.2 Hölder continuity of the entropies
Let ϕt : Ω → Ω be a family of piecewise expanding maps and P the partition of Ω, it has been
established in [11, 12, 14] under different settings that for a finite entropy of the partition
Hµt(P), the entropy formula for an absolutely continuous invariant probability measure µt is,

hµt(ϕt) =
∫

log Jtdµt.

For each t ∈ I, let hµt(ϕt) denote the entropy of the transformation ϕt with respect to
the ϕt-invariant measure µt.
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Theorem D. Let (ϕt)t∈I be a family of maps for which (U) holds and each ϕt has a unique
absolutely continuous invariant probability measure µt. Assume that

1. there exists a function E : A → R+ such that, for all s, t ∈ I,

∥log Js − log Jt∥d ≤ E(t− s) and
∥∥∥∥dµtdm

− dµs
dm

∥∥∥∥
1

≤ E(t− s);

2. hµt(ϕt) =
∫

Ω
log Jt dm, and there is M > 0 such that ∥ log Jt∥∞ ≤ M, for all t ∈ I.

Then, there exists some constant C > 0 such that, for all s, t ∈ I,

|hµt(ϕt) − hµs(ϕs)| ≤ CE(t− s).

Proof Theorem D. For each t ∈ I, let ρt denote the density of µt with respect to m. Since
the entropy formula in assumption (2) holds, we have for all s, t ∈ I

|hµs(ϕs) − hµt(ϕt)| =
∣∣∣∣∫ log Jsdµs −

∫
log Jt dµt

∣∣∣∣
≤
∣∣∣∣∫ (log Js − log Jt) dµs

∣∣∣∣+ ∣∣∣∣∫ log Jt dµs −
∫

log Jt dµt
∣∣∣∣

≤
∣∣∣∣∫ (log Js − log Jt) ρs dm

∣∣∣∣+ ∣∣∣∣∫ log Jt(ρs − ρt) dm
∣∣∣∣ .

Using Hölder inequality and the bound in assumption (2), we get∣∣∣∣∫ log Jt(ρs − ρt) dm
∣∣∣∣ ≤ M∥ρs − ρt∥1. (4.10)

On the other hand, it follows from Proposition 4.2.3 that, for all n ≥ 1,

∥Lns f∥BV ≤ Cλn∥f∥BV + C∥f∥1,

for all f ∈ BV (Ω) and s ∈ I. Since ρs is a fixed point for Ls with ∥ρs∥1 = 1 and the last
inequality holds for all n ≥ 1, we get

∥ρs∥BV ≤ C.

Taking p = d/(d − 1), it follows from Sobolev inequality that there exists a constant
C ′ > 0 such that

∥ρs∥p ≤ C ′. (4.11)

Hence, using Hölder Inequality and equation (4.11) we get∣∣∣∣∫ (log Js − log Jt) ρs dm
∣∣∣∣ ≤ ∥ρs∥p ∥log Js − log Jt∥d ≤ C ′ ∥log Js − log Jt∥d . (4.12)

The conclusion follows from equations (4.10), (4.12) and assumption (1).
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4.4 Application to two dimensional tent maps

The result in this section will be obtained as an application of previous theorems to a family of
two-dimensional piecewise expanding maps introduced in [67]. Consider the triangle Ω ⊂ R2,
which is the union of the two triangles

R1 = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x1}

and
R2 = {(x1, x2) : 1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2 − x1}.

Consider the map ϕ1 : Ω → Ω, given by

ϕ1(x1, x2) =
{

(x1 + x2, x1 − x2), if (x1, x2) ∈ R1;
(2 − x1 + x2, 2 − x1 − x2), if (x1, x2) ∈ R2.

ϕ1(x, y) is conjugate to the one dimensional tent map fa : [−1, 1] → [−1, 1] defined by
fa(x) = 1 − a|x|, for a = 2 with a the rate of expansion, and hence displays some nice
properties such as the consecutive pre-images of the critical set {ϕ−n

1 (C)}n∈N define a sequence
of partitions such that diam(ϕ−n

1 (C)) → 0, as n → ∞ of Ω, therefore, ϕ1 is conjugate to the
one sided shift map with two symbols, Hence, it follows that ϕ1 is transitive in Ω. ϕ1 posses
an absolutely continuous ergodic invariant probability measure [69].

The family of two dimensional tent maps ϕt : Ω → Ω are defined for 0 < t ≤ 1 by

ϕt = tϕ1. (4.13)

Note that R1 and R2 are the smoothness domains of ϕt, separated by the common straight
line segment C = {(x1, x2) ∈ Ω : x1 = 1}. These tent maps can be described geometrically as
follows: first the triangle Ω is folded through C, making R2 overlap R1; then a flip of this
domain is made and expanded to Ω, thus obtaining ϕ1(Ω); for the other maps ϕt, we apply a
final contraction by the factor t.

Fig. 4.1 The tent maps

It was proved in [68] that, for each t ∈ [τ, 1], with

τ = 1√
2

(
√

2 + 1)1/4, (4.14)
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the map ϕt exhibits a strange attractor in Ω, thereby extending the results obtained in [69]
only for t = 1. The existence and uniqueness of an ergodic absolutely continuous ϕt-invariant
probability measure µt was obtained in [68], for each t ∈ [τ, 1]. Moreover, any exponent of ϕt
also possess an ACIEP which coincides with µt. In the next result we improve the conclusions
of [14, 15], on the continuity of the measures and respective entropies for this family of maps,
by showing that they in fact vary Hölder continuously.

Theorem E. There exists C > 0 and 0 < η < 1 such that, for all s, t ∈ [τ, 1],∥∥∥∥dµtdm
− dµs
dm

∥∥∥∥
1

≤ C|t− s|η and |hµt(ϕt) − hµs(ϕs)| ≤ C|t− s|η.

According to [15, Section 4], the uniformity condition (U) is satisfied with ℓ = 6. For the
sake of completeness, We shall show it below

(ϕℓt)t∈[τ,1].

For ϕ6
t , we have 64 domain of smoothness, hence {Rt,i}64

i=1, the (m mod 0) partition of Ω.

∥(Dϕ6
t )−1(x)∥ = 1

8t6 := σt,6.

For each t ∈ [τ, 1], σt,6 < 1, hence (P1) is satisfied. (P2) is satisfied with ∆t,6 = 0 on each
{Rt,i}64

i=1, since we have that ϕ6
t is linear. the linearity of ϕ6

t on each t in Rt,i and preserves
angles, this will allow to show the (P3) condition for the domains of smoothness instead on
their images. Since, the boundary of each domain of smoothness is formed by at most five
straight line segments having slope −1, 0, 1 and ∞, meeting at an angle at least π4 . Then
there is a piecewise C1 unitary vector field Xt,i in ∂Rt,i such that

βt,6 =: sin π8 ≤ | sin∠(v,Xt,i(x))|

for every x ∈ ∂Rt,i and v ∈ Tx∂Rt,i \ {0}. Next, since the {Rt,i}64
i=1 depend continuously on

t, so it is possible to choose a uniform α such that (P3) holds for each t ∈ [τ, 1]. Hence, we
have that for each t ∈ I

σt,ℓ

(
1 + 1

βt,ℓ

)
= 1

8t6
(

1 + 1
sin π/8

)
≤ θ

∆t,ℓ + 1
αt,ℓβt,ℓ

+ ∆t,ℓ

βt,ℓ
= 1
αt,6 sin(π/8) ≤ M.

Now that we have established the conditions (P1)-(P3) and (U), we are in the setting to
prove Theorem E. We achieve this by applying Theorem C and Theorem D to the family
of tent maps (ϕt)t∈[τ,1] presented above. We know that R1 and R2 are the only domains of
smoothness of every ϕt. Therefore, for each t ∈ [τ, 1] and i = 1, 2, we have

ϕt,i = ϕt|Ri , Kt,s,i = ϕ−1
s,i (ϕt(Ri) ∩ ϕs(Ri)) and ψt,s,i = ϕ−1

t,i ◦ ϕs,i|Kt,s,i .
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Existence and uniqueness of an ergodic absolutely continuous ϕt-invariant probability
measure µt was obtained in [68], for all t ∈ [τ, 1]. Moreover, the entropy formula holds for
this family of maps, by [14, Theorem G]. We are left to verify the assumptions of Theorem C
and Theorem D with adequate estimates to deduce Theorem E. It is enough to show that
there exists some constant M > 0 such that, for all s, t ∈ [τ, 1] and i = 1, 2, we have

(a) m
(
ϕ−1
t,i (ϕt(Ri) \ ϕs(Ri))

)
≤ M |t− s|;

(b) ∥ψt,s,i − id ∥0 ≤ M |t− s|;

(c)
∣∣∣∣∣ Js
Jt ◦ ψt,s,i

− 1
∣∣∣∣∣ ≤ M |t− s|;

(d) ∥log Js − log Jt∥d ≤ M |t− s|;

(e) ∥ log Jt∥∞ ≤ M.

Indeed, from equation (4.13), we easily deduce that, for all (y1, y2) ∈ ϕt,1(R1), we have

ϕ−1
t,1 (y1, y2) =

( 1
2t(y1 + y2), 1

2t(y1 − y2)
)

and, for all (y1, y2) ∈ ϕt,2(R2), we have

ϕ−1
t,2 (y1, y2) =

( 1
2t(4t− y1 − y2), 1

2t(y1 − y2)
)
.

Moreover, each map ϕt is piecewise linear with

Dϕt(x1, x2) =
(
t t

t −t

)

for all (x1, x2) ∈ R1 \ C, and

Dϕt(x1, x2) =
(

−t t

−t −t

)

for all (x1, x2) ∈ R2 \ C. Therefore, we have

Jt = 2t2,

for all (x1, x2) ∈ Ω \ C and τ ≤ t ≤ 1.

Proof of (a) Observe from the dynamics of ϕt, that ϕt,1(R1) = ϕt,2(R2) and, moreover the
Jacobian of ϕt,1 is constant and equal to the Jacobian of ϕt,2. Therefore, it is enough to show
the conclusion for i = 1. In fact, for t > s (and for t < s there is nothing to be proved, since
in that case ϕt(R1) ⊂ ϕs(R1)), we have

m(ϕt(R1) \ ϕs(R1)) ≤ lenght(ϕt(C)) ∥ϕt(1, 0) − ϕs(1, 0)∥
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=
√

2t∥(t, t) − (s, s)∥ = 2t(t− s). (4.15)

Since the Jacobian of ϕt,1 is constant and equal to 2t2, we deduce that the Jacobian of
ϕ−1
t,1 is 1/(2t2), which together with equation (4.15) yields

m
(
ϕ−1
t,i (ϕt(Ri) \ ϕs(Ri))

)
≤ (t− s)

t
≤ (t− s)

τ
.

Proof of (b) For each (x1, x2) ∈ R1 and τ ≤ t ≤ 1, we have

∥ψt,s,i − id ∥0 = sup
(x1,x2)∈R1

∥ϕ−1
t,1 ◦ ϕs,1(x1, x2) − (x1, x2)∥

= sup
(x1,x2)∈R1

∥∥∥∥ (st − 1
)

(x1, x2)
∥∥∥∥

≤
√

2
τ

|t− s|,

and for each (x1, x2) ∈ R2, we have

∥ψt,s,i − id ∥0 = sup
(x1,x2)∈R2

∥ϕ−1
t,2 ◦ ϕs,2(x1, x2) − (x1, x2)∥

= sup
(x1,x2)∈R2

∥∥∥∥(st − 1
)

(x1 − 2, x2)
∥∥∥∥

≤
√

2
τ

|t− s|.

Proof of (c) For all τ ≤ s, t ≤ 1, we have∣∣∣∣∣ Js
Jt ◦ ψt,s,i

− 1
∣∣∣∣∣ =

∣∣∣∣∣s2

t2
− 1

∣∣∣∣∣ =
∣∣∣∣(s− t)(s+ t)

t2

∣∣∣∣ ≤ 2
τ2 |t− s|.

Proof of (d) By the mean value theorem, we have that for all τ ≤ s, t ≤ 1

∥log Js − log Jt∥2 =
(∫

Ω

(2
τ

(s− t)
)2

dm

)1/2

≤ 2
τ
m(Ω)|t− s|.

Proof of (e) For all τ ≤ t ≤ 1, we have

∥ log Jt∥∞ = | log(2t2)| ≤ log 2.

Recall that the expression for τ in (4.14) gives 1 < 2τ2 ≤ 2t2 ≤ 2.





Chapter 5

Conclusion

The regularity of physical measures and their metric entropies play a fundamental role in
understanding the stability of dynamical systems, particularly those exhibiting complex or
chaotic behavior. By addressing their regularity, we aim to provide deeper insights into the
intricate relationship between the dynamics of a system and the statistical properties of its
invariant measures. Understanding this relationship is key to predicting the robustness of
complex dynamical systems under perturbations, a question that has far-reaching implications
in various fields, from mathematical theory to applied sciences. This research sheds light
on the subtle and quantitative ways in which physical measures and their metric entropy
responds to changes in the underlying system, offering a more nuanced understanding of the
stability and variability of chaotic systems. Through this investigation, we contribute to the
broader goal of characterizing the resilience of dynamical systems to fluctuations, and thus
advancing the overall theory of dynamical stability.

We now present some questions that would be interesting to study in the future. In
[34] the problem of linear response was considered for solenoidal attractors where the base
dynamics is a uniformly expanding map. An interesting problem would be to study linear
response in the solenoid map where in the base dynamics a nonuniformly expanding map
is considered, particularly the circle map with intermittency. An ultimate goal would be to
extend the result to partially hyperbolic attractors.

In the case of the one dimensional tent maps studied by Baladi and Smania (see [25, 27]),
the linear response fails under certain transversality condition of the topological class. A
recent result by Bahsoun and Galatolo shows that linear response holds if the critical point
in the one dimensional tent map is replaced by a singularity (see [20]). As a next step, an
interesting problem to tackle would be to check whether changing the dimension of the system
affects the existence of a linear response formula. In particular, it would be interesting to
investigate whether linear response holds within the higher dimensional family of tent maps
that was considered in Chapter 4.
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