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A B S T R A C T

In this study, we provide a comprehensive review focused on the NW of the Iberian Peninsula identifying a great 
amount of research works, including 85 empirical rainfall thresholds for the triggering of landslides, some un-
published to date. While the compiled works provide valuable descriptive insights, the thresholds currently have 
limited predictive capability. The variety of data and approaches used by different authors complicates the 
comparison of the results and hinders the development of a global understanding of the study area. However, the 
statistical comparison of four critical accumulated precipitation-duration datasets for the triggering of landslide 
events from Gipuzkoa, Cantabria, and Asturias in Spain and the N of Portugal highlights a notable similarity in 
the critical conditions for rainfall-triggered landslides with durations in the range of 3–12 days. Despite the 
variety of statistical approaches applied, the unexpected similarity aligns with the homogeneous climatic and 
orographic characteristics across NW Iberia.

1. Introduction

The temporal forecasting of landslides is usually addressed by 
calculating empirical rainfall thresholds, i.e., equations based on the 
statistical analysis of critical rainfall conditions defined from a dataset of 
historical landslide records (Lagomarsino et al., 2015). This common 
approach represents a simplification, since the statistical treatment of 
the rainfall records preceding each landslide is prioritized over a more 
physical-based analysis considering morphological, geological, or hy-
drological factors (Guzzetti et al., 2007; Zêzere et al., 2015). Thus, the 
obtained results are often conditioned by constrains such as (1) the 
reliability of the landslide records source, (2) the size and representa-
tiveness of the analysed dataset, (3) the spatial and temporal resolution 
of the rainfall records, (4) the criterion used to define the critical rain-
fall, or (5) the type of statistical processing (Valenzuela, 2017; 

Caracciolo et al., 2017; Segoni et al., 2018; Marra, 2019; Gariano et al., 
2020). Therefore, the comparison of thresholds calculated following 
different approaches may entail some limitations (Lagomarsino et al., 
2015; Galanti et al., 2018), even if referring to the same or similar 
geological and climatic contexts. However, this comparison may be of 
interest, especially in those areas for which a reduced number of works 
focused on this subject are available.

The NW of the Iberian Peninsula is an area prone to rainfall-triggered 
landslides (Wilde et al., 2018), which every year cause significant 
damages on population and infrastructure (Bonachea et al., 2009; Per-
eira et al., 2014). The predominant Oceanic climatic conditions and a 
characteristic rainfall pattern with a winter maximum distinguish this 
area from (1) the S of the Iberian Peninsula, with a predominant Med-
iterranean climate, and (2) other peninsular zones with similar average 
annual rainfall but with summer or autumn maximums and a different 
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precipitation distribution over the year, such as the case of the Pyrenees 
Mountains. Since the late 1980 s, several Portuguese and Spanish 
research groups have focused on the study of the rainfall as a trigger of 
landslides. Although some descriptive work has been done (among 
others: Bateira and Soares, 1997; Domínguez-Cuesta et al., 1999; 
González-Díez et al., 2022), most of the research has been oriented to the 
calculation of empirical rainfall thresholds. However, these studies lack 
spatial and temporal continuity and show methodological disparity, 
particularly concerning the size and characteristics of the data pop-
ulations, the criteria to define the triggering rainfall and the statistical 
processing. These basic differences in the analytical approach generate 
background noise, rendering difficult to compare the achieved results 
and to obtain a complete overview of this issue in the area.

The aims of the present work are (1) to perform an in-depth review of 
the studies focused on the calculation of empirical rainfall thresholds in 
the NW of the Iberian Peninsula, (2) to describe in detail the different 
methodologies used in each work, and (3) to discuss the similarities and 
differences between the critical rainfall conditions defined and the po-
tential for integrating data from different studies to improve the deter-
mination of rainfall thresholds at a regional scale.

2. Study area

The NW of the Iberian Peninsula (Fig. 1A) is an area characterized by 
a rugged orography mainly conditioned by the presence of the Canta-
brian Range, with a W–E orientation parallel to the Cantabrian Coast, 
and the Caurel and Ancares Mountains and the Galaico-Leonés Massif, in 
the NW corner, which extends to the S through the Galaico-Durienses 
and Beira-Durienses Mountains (Casas-Sainz and de Vicente, 2009). 
The narrow coastal strip shows a gentle orography, although the 

Cantabrian Coast is mainly characterized by the presence of prominent 
rocky cliffs. The fluvial network of the area shows a general incision 
pattern, leading to valleys with steep slopes (Tejero et al., 2006). The 
northern slope of the Cantabrian Range is drained by rivers with rela-
tively small basins, while the Atlantic area is dominated by the large 
Miño and Duero basins.

From a geological point of view, the NW of the Iberian Peninsula is 
characterized by a complex geological structure and a great variety of 
lithologies. The E end of the area (Basque Country and Cantabria) is 
dominated by the presence of sedimentary rocks from the Mesozoic- 
Paleogene cover, deformed during the Alpine Orogeny (Alonso et al., 
1996). To the W, the cover disappears, allowing the outcrop of Pre-
cambrian and Paleozoic rocks from the Iberian Massif, mainly deformed 
during the Variscan orogeny and subsequently affected by the Alpine 
deformation (Martínez-González, 2009). From E to W, a geological 
evolution is apparent from the external zone of the Variscan orogen 
(Principality of Asturias), with a predominance of sedimentary rocks 
affected by a thin-skinned tectonic, to the internal zones, with an in-
crease in the metamorphic grade and the intrusion of igneous rocks, 
frequently affected by intense chemical weathering and predominant in 
the areas of Galicia and the N of Portugal. Extensive thick Tertiary and 
Quaternary deposits are not very common in our study area, although 
these may present local relevance, highlighting those related to fluvial, 
coastal, glacial, or gravitational processes. Focusing on the current 
geomorphological dynamics, metric- to decametric-size landslides of 
different types (rockfalls, slides, flows, or complex mass movements) are 
frequent along the whole study area. Slope instabilities usually affect the 
Quaternary deposits or the surficial weathered layer of the bedrock 
(Bonachea, 2006; Valenzuela, 2017) and are frequently conditioned by 
anthropic activities or infrastructure. Rainfall has been identified as the 

Fig. 1. A Location of the study area. B Average annual number of days with rainfall records ≥ 1 mm in the NW of the Iberian Peninsula. Modified from García Couto 
et al. (2011). C Landslide event datasets used to calculate regional empirical thresholds for [1] Gipuzkoa (Basque Country), [2] Cantabria, and [3] Principality of 
Asturias, represented as dots. Zones with local empirical thresholds for the Cantabrian area, represented as rhombus. Basque Country: [1.1] Deba Municipality 
(Gipuzkoa) − Rivas et al. (2022); Asturias: [3.1] Amieva-Restaño, [3.2] Bargaedo, [3.3] Oviedo, [3.4] Avilés, [3.5] Genestos, and [3.6] Zardaín − Valenzuela et al. 
(2019). D Landslide event dataset used to calculate regional empirical thresholds for [4] NW Portugal, represented as dots. Zones with local empirical thresholds for 
the NW Portuguese area, represented as rhombus: [4.1] Casal Soeiro (NW mountains) and [4.2] Vila Real (Douro valley) − Pereira et al. (2012), [4.3] Porto C1 and 
[4.4] Santa Marta de Penaguião C2 − Vaz (2021).
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main triggering factor in this area (Valenzuela et al., 2018a).
According to the Köppen–Geiger classification (Peel et al., 2007; 

García Couto et al., 2011), two main climatic domains may be differ-
entiated in NW Iberia. The eastern sector is dominated by a temperate 
climate Cfb, without dry season and with a temperate summer with 
average temperature ≤ 22 ◦C, equated to the typical Oceanic conditions. 
This domain includes the northern hillside of the Cantabrian Range, 
from the Basque Country to the Principality of Asturias. However, some 
restricted areas present the variant Cfa, without dry season but with a 
hot summer characterized by average temperature above 22 ◦C. More-
over, the highest mountains present the cold climate type D. In contrast, 
the western sector is dominated by a temperate climate Csb, charac-
terized by a short dry temperate summer (average temperature ≤ 22 ◦C). 
This subtype, predominating in central Galicia and northern Portugal, is 
interpreted as Oceanic conditions in transition towards a Mediterranean 
climate. Indeed, some areas of the Douro Valley in Portugal present 
temperate climate Csa, with a dry and hot summer, considered as typical 
Mediterranean conditions.

The study area is characterized by the abundance of precipitation, 
with average annual records over 1000 mm year− 1, reaching values over 
2200 mm year− 1 in some areas of Galicia, and the N of Portugal. Pre-
cipitation is fairly evenly distributed throughout the year, with 
maximum records during winter (December to February) and minimum 
records in summer (July and August) (de Luis et al., 2010; García Couto 
et al., 2011). Average annual number of rainy days is over 100 for re-
cords ≥ 1 mm in 24 h and over 75 for records ≥ 10 mm in 24 h, resulting 
in frequent and meaningful rainy periods. In addition, the frequency of 
days per year with rainfall ≥ 30 mm in 24 h is over 5, reaching more 
than 10 days in western Galicia and Portugal, as well as in some areas of 
the Principality of Asturias, Cantabria, and the Basque Country. Average 
annual temperature ranges from 5 ◦C, in the highest mountainous areas, 
to 10–17.5 ◦C in the rest of the area (García Couto, 2011; Fig. 1B).

3. Thresholds overview

Here we review the research works on empirical rainfall thresholds 
developed to date within NW Iberia, focused on the following areas: the 
Gipuzkoa province (Basque Country), Cantabria, and the Principality of 
Asturias, within Spain, and the districts of Viana do Castelo, Braga, 
Oporto, Aveiro, Vila Real, and Viseu, on NW Portugal. We could not find 
any works focusing on Galicia, even though slope processes are not 
uncommon in this area. A total of 13 works containing 85 thresholds 
describing different landslide-triggering rainfall and soil moisture con-
ditions are compiled in the present study. Almost 62 % of them come 
from works with a wider dissemination: 5 articles, 1 book chapters, and 
2 extended abstracts. The remaining 38 % come from 4 PhD thesis and 1 
master dissertation. These 85 thresholds are the result of statistical 
analysis of the triggering conditions, based on data pairs of accumulated 
precipitation–duration (ED) or precipitation intensity–duration (ID) and 
expressed as a mathematical equation. An exhaustive account of the 
works developed in each area is presented below (Fig. 1C and D; 
Table 4).

Concerning the Basque Country area, Rivas and other authors 
analyzed the landslides triggered during six multiple occurrence 
regional landslide events (MORLEs) (October 1953, August 1983, July 
1988, October 1992, August 2002, and November 2011) within the 
Deba municipality (Gipuzkoa), publishing some preliminary result in 
Rivas et al. (2016) and finally addressing a statistical approach to 
calculate three ID thresholds (Rivas et al., 2022). Moreover, Bornaetxea 
and other authors proposed a regional scale approach, performing a 
statistical analysis of landslide records occurred within the Gipuzkoa 
province during a 10-year period (January 2006–December 2015) and 
computing two ED thresholds (Bornaetxea, 2018; Bornaetxea et al., 
2018; Fig. 1C).

San Millán (2015) proposed an approach at regional scale for Can-
tabria. This author addresses the statistical analysis of the rainfall- 

triggering conditions of a dataset of landslides recorded during a 9- 
year period (January 2006–February 2015), enabling the calculation 
of four ID thresholds (Fig. 1C).

Focusing on the Principality of Asturias, Valenzuela et al. (2018b)
calculated 16 ID thresholds based on rainfall and soil moisture condi-
tions during two short but intense rainfall episodes: one in June 2010, 
which resulted in a MORLE affecting the entire region, and another 
period of intense landslide activity in November–December 2008. 
Moreover, Valenzuela and other authors have characterized the relation 
rainfall–landslides during 8 hydrological years, from October 2008 to 
September 2016, using landslide records from the Principality of Astu-
rias Landslide Database (BAPA for its Spanish acronym; Valenzuela 
et al., 2017). Valenzuela (2017) determined four regional ED thresholds 
and eight ED thematic thresholds considering different factors, such as 
seasonal period, type of slope, type of landslides, or affected substratum. 
In addition, 18 local ED thresholds have been calculated for different 
areas of Asturias (Valenzuela et al., 2019; Fig. 1C).

In the case of NW Portugal, Pereira (2009) and Pereira et al. (2010, 
2012) initiated a systematic study addressing the computation of 
thresholds for the areas of Casal Soeiro, in the NW mountains, and Vila 
Real, in the Douro Valley, based on a landslide inventory compiled for 
the period 1960–2001. Thus, two ID thresholds and two thresholds 
combining the rainfall event (72 h) and the antecedent rainfall (10 days) 
were computed and subsequently updated and transformed into ED 
thresholds by Zêzere et al. (2015). The most extensive work was 
developed by Vaz (2021), who benefited from a landslide inventory 
which covers the period 1865–2010. This work includes 13 local ED 
thresholds for the Porto area, showing different probabilities of land-
slide occurrence, 4 local ED thresholds for the Santa Marta de Penaguião 
area, and 4 regional ED thresholds for mountain and plateaux in the NW 
of Portugal, although the latter include some landslide events occurred 
outside the study area of the present work (Fig. 1D).

4. Description of The thresholds

Here we describe and compare the characteristics of the 85 empirical 
rainfall thresholds abovementioned in detail to understand their sig-
nificance and representativeness. Three main issues are considered: type 
of landslide inventories analyzed, meteorological data series used, and 
methodological approach applied. It should be noted that the landslide 
inventory of an area can lead to the calculation of several equations.

4.1. Landslide inventories

The statistical thresholds were calculated based on datasets extracted 
from seven landslide inventories (Table 1). Three of these inventories 
were specifically collected for the calculation of thresholds, while Per-
eira (2009), Valenzuela (2017), Vaz (2021) [a in Table 1] and Rivas 
et al. (2022) used data from databases with wider aims and spatial 
scales: (1) the database developed by Remondo (2001) and Bonachea 
(2006) for the Deba municipality, (2) the NPLD database (Pereira et al., 
2014), (3) the BAPA database (Valenzuela et al., 2017) and (4) the 
DISASTER database (Zêzere et al., 2014). Five inventories used press 
archives as their main data source, one used photointerpretation, and 
the other one used data from Civil Protection (Table 1). All but one of the 
inventories (Vaz, 2001; b in Table 1) used auxiliary sources to complete 
or verify the information from the main source, including data from (1) 
archival sources (press, technical reports, and scientific publications), 
(2) population surveys, (3) public security forces and Civil Protection 
archives, and (4) insurance companies archives. Photointerpretation 
and mapping data were used in six out of seven inventories to geore-
ference landslides. Fieldwork was used to obtain new data or validate 
information from other sources in three databases (Table 1).

Four of the reviewed works (Pereira, 2009; Valenzuela, 2017; Bor-
naetxea, 2018; Vaz, 2021) classified the temporal information in accu-
racy levels, showing that between 51 and 100 % of the landslides could 
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be located at daily scale with reasonable reliability. In addition, 15–22 % 
of the records present some reference to the moment of the day, and in 
13–29 % the time of occurrence is mentioned. In terms of temporal 
resolution, only one inventory (Bornaetxea, 2018) was developed on an 
hourly basis. In this case, the time of occurrence had to be estimated 
based on available information or directly assigned according to some 
fixed criterion for a relevant percentage of the analyzed landslides (51 
%). While in some inventories (Bornaetxea, 2018; Vaz, 2021) only re-
cords with exact date of occurrence were considered, other databases 
(Pereira, 2009; San Millán, 2015; Valenzuela, 2017) also included re-
cords with lower levels of temporal accuracy, regardless of their sub-
sequent rejection for the calculation of the thresholds. In such 
inventories based on photointerpretation (Remondo, 2001; Bonachea, 
2006; Rivas et al., 2022), the temporal location of the landslides could 
not be addressed at daily scale, since the time interval between aerial 
photographs usually covers months or even years. For this reason, it was 
necessary to consult complementary archival sources to obtain the 
precise date of occurrence in those cases in which a relationship 
extraordinary rainfall event–landslide could be established. In view of 
the scarcity of reliable time data, the daily scale was considered 
reasonable for addressing the temporal location of the landslides in six 
out of seven inventories reviewed.

Regarding landslide location, the inventories based on photointer-
pretation (Remondo, 2001; Bonachea, 2006) show exact coordinates for 
all the records represented as points or polygons. The inventories based 
on press archives also include a relevant percentage of landslides with 
exact coordinates: 78 % (Pereira, 2009), 60 % (Valenzuela, 2017), 44 % 
(Bornaetxea, 2018), or 19 % (Vaz, 2021; a in Table 1); records are 
represented as a dot corresponding to the centroid of the landslide. Some 
authors (Pereira, 2009; Valenzuela, 2017) benefited from photos and 
other graphical information present in archival sources and free online 
cartographic servers (e.g., Google Earth or Google Street View) to refine 
landslide location. However, most authors considered the location of 
landslides at municipality scale to be the minimum requirement for their 
use to compute thresholds, prioritizing temporal over spatial accuracy. 
For example, Vaz (2021; b in Table 1) only included records located in 
the parish centroid.

The inventories reviewed in the present work cover time intervals of 
different lengths. Most of them were compiled during extended periods 
of time, in the range of 4 to 146 years, registering a great number of 
individual landslides and multiple landslide events; the exception is the 
inventory compiled for the Deba municipality (Remondo, 2001; Bona-
chea, 2006; Rivas et al., 2022), which only considers specific events with 
similar characteristics. Regarding the spatial dimension, one inventory 
shows local representativeness, covering the extension of the munici-
pality of Deba, while the remaining inventories were compiled at 
regional scale, covering large areas defined by some administrative limit 
(e.g., one or more provinces/districts) but with variable extensions in 
the range of 1980 to 29 542 km2. It is worth mentioning that Valenzuela 
(2017) and Vaz (2021) analyzed the spatial and temporal homogeneity 
of their inventories, defining those periods were the databases reached a 
higher level of completeness and representativeness.

Regarding the remaining data usually included in the inventories, 
three aspects are considered relevant to either select or dismiss the 
landslide records for the calculation of thresholds: type of landslide, 
natural or artificial character of the affected slope, and information 
about the triggering factor. Four out of seven inventories show infor-
mation about the type of landslide for a variable percentage of the re-
cords: 76 % (Pereira, 2009), 66 % (Vaz, 2021; a in Table 1), 47 % 
(Valenzuela, 2017), and 8 % (Bornaetxea, 2018). In the inventories 
developed by Remondo (2001) and Bonachea (2006), only shallow 
translational slides were included from the beginning of the compila-
tion. Valenzuela (2017) included information about the slope for 48 % of 
the landslides, other inventories only included landslides affecting nat-
ural slopes (Remondo, 2001; Bonachea, 2006) or artificial cut slopes 
(San Millán, 2015), and the remaining databases present no information Ta
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related to this matter. Two inventories included information regarding 
the triggering factor for 68 % (Valenzuela, 2017) and 23 % (Bornaetxea, 
2008) of the records. In Pereira (2009) and Vaz (2021) inventories, 
landslide records with a triggering factor different from rainfall were 
dismissed from the beginning.

4.2. Meteorological data series

Precipitation data series used to be correlated with the landslide 
inventories show different structure and characteristics. Most of the 
works (73 %) considered precipitation records from rainfall gauges, 
including data in vectorial format with restricted spatial meaning. The 
number of considered gauges ranged from 1 to 76. The remaining works 
(27 %) used data series in raster format, representing the precipitation 
spatial variability over the territory through the interpolation of data 
from several rain gauges (Table 2). In one case (Rivas et al., 2022), the 
rasters were developed as part of the work through inverse distance 
weighted (IDW) interpolation of data from 15 rain gauges. In the cases of 
Valenzuela et al. (2018b) and Vaz (2021; a in Table 1), the rasters were 
previously developed by different scientific institutions (Spanish Mete-
orological Agency, AEMET for its Spanish acronym; Portuguese Institute 
of Sea and Atmosphere, IMPA for its Portuguese acronym) using kriging 
interpolation.

Different criteria were used to spatially associate each individual 
landslide to the most representative data source. In the case of vectorial 
data, a proximity criterion was considered in five out of eleven works 
(San Millán, 2015; Valenzuela, 2017; Valenzuela et al., 2018; Bornaet-
xea, 2018; Vaz, 2021). When different rain gauges were located at 
similar distances from the landslide, additional selection criteria were 
considered: altitude, general climatic–geographical conditions, or 
completeness of the rainfall data series. For the Civil Protection in-
ventory developed by Vaz (2021; b in Table 1), the parish centroid was 
considered for the application of proximity criteria, since the exact/ 
approximate location of landslides was unknown. In other three cases, 

some rain gauges were selected as representative of a specific area due to 
the geographical and climatic characteristics of their location or the 
completeness of their data series. After that, the selection of the land-
slides linked to each rain gauge was addressed through the definition of 
its influence area following different approaches, including the use of an 
expert criterion (Pereira, 2009), the definition of Thiessen polygons 
(Valenzuela et al., 2019), or the assessment of the variability of the 
correlation rainfall–landslide with the distance (Vaz, 2021). For the 
series in raster format, data were extracted from the cell that coincided 
with the location of each landslide. The cell size, the radius of the in-
fluence area, and the distance landslide–gauge were interpreted as 
proxies of the spatial resolution of the rainfall data, showing the exis-
tence of a certain level of spatial uncertainty from some hundreds of 
meters to more than 40 km.

The temporal resolution of the rainfall data series is conditioned by 
the characteristics of the corresponding landslide inventories. Thus, 
most works used daily precipitation records, except Bornaetxea (2018), 
who used records per minute converted to hourly scale. The length of the 
considered rainfall data series does not necessarily coincide with the 
temporal extension of the landslide inventories; this is conditioned by 
different factors such as data availability, in the case of the raster data 
series from the IPMA (Vaz, 2021), or use of methodologies considering 
the calculation of the return period (Valenzuela et al., 2019). Two works 
focused on the study of specific landslide events (Valenzuela et al., 2017, 
Rivas et al., 2022) used short rainfall data series ranging from 2 months 
to a few days. Two other works (Valenzuela, 2017; Vaz, 2021) consid-
ered hydrological or climatological years instead of natural years to 
delimit the rainfall data series. Finally, Valenzuela et al. (2018b) used 
daily data of the hydrogeological index Available Water Capacity (AWC) 
to represent the evolution of soil moisture conditions for periods of 2 and 
3 months. These AWC data in raster format (5 km cell size) were 
extracted from the Daily Water Balance Models developed by the 
AEMET (Botey and Moreno, 2012).

Table 2 
Characteristics of the precipitation data series. Author; .

Author Source Time lap Data structure 
(N. of gauges)

T 
accur.

Data selection criteria Spatial resolution

Bornaetxea, 
2018

Euskalmet Jan. 2006–Dec. 2015 (10 
years)

Vectorial data 
(22)

H Nearest gauge to the Ld; data gaps < 1 month —

Rivas et al., 
2022

AEMET, 
Euskalmet, DFG

Jan. 1953–Dec. 2015 
(60 years)*

IDW raster 
(15)

D Cell coinciding with the Ld 0.1 km Cs 

San Millán, 
2015

AEMET Jan. 2006–Feb. 2015 
(9 years) 

Vectorial data 
(36)

D Nearest gauge to the Ld; similar altitude —

Valenzuela, 
2017

AEMET Oct. 2007–Sep. 2016 
(8 hydro. years)

Vectorial data 
(74)

D Nearest gauge to the Ld; similar geographical- 
climatic conditions

0.2–24 km (mean 
6.4—km) Ld-ga

Valenzuela 
et al., 2018b

AEMET Oct.–Dec. 2008 and 
May–Jun. 2010 
(5 months)

Vectorial data 
(16–21)

D** Nearest gauge to the Ld —

​ AEMET Oct.–Dec. 2008 and 
May–Jun. 2010 
(5 months)

Kriging raster 
(~800)

D** Cell coinciding with the Ld 5 km Cs

Valenzuela 
et al., 2019

AEMET Oct. 1979–Sep. 2016 (37 
hydro. years)

Vectorial data 
(6)

D Gauges representative of geographic/climatic 
conditions; data gaps < 10 %

1.5–48.4 km (mean 
18.4 km) Ld-ga

Pereira, 2009 SNIRH, IPMA Jan. 1960–Dec. 2001 (42 
years) 

Vectorial data 
(2)

D Gauges representative of geographic/climatic 
conditions; complete data series

≤ 30 km Ld-ga

Vaz, 2021 IPMA Sep. 1906–Aug. 2006 
(100 clim. years)

Vectorial data 
(1)

D Gauges representative of geographic/climatic 
conditions; long-complete data series

≤ 15 km Ld-ga

​ IPMA Sep. 1950–Aug. 2008 (58 
clim. years)

Kriging raster 
(806)

D Cell coinciding with the Ld 22.2 km Cs 
(0.2◦ × 0.2◦)

​ SNIRH Jan. 2006–Oct. 2008 (~3 
years)

Vectorial data 
(76)

D Proximity to the parish centroid ≤ 15 km Ld-ga

Source: [Euskalmet] Basque Meteorological Agency, [AEMET] Spanish Meteorological Agency, [DFG] Provincial Council of Gipuzkoa rain gauge network, [SNIRH] 
National Water Resources Information System-Portugal, [IPMA] Portuguese Institute of Sea and Atmosphere; Time lap of the precipitation data series: [hydro.] hy-
drologic year from October to September, [clim.] climatic year from September to August, *only data from some specific date were considered for the calculation of the 
thresholds; Data structure; Temporal accuracy of the data series: [D] daily accuracy, [H] hourly accuracy, **data with daily accuracy but expressed in h; Data selection 
criteria; Spatial resolution: [Cs] cell size, [Ld-ga] distance landslide–gauge
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4.3. Methodology

Dataset selection
A key issue for the calculation of rainfall thresholds is the selection of 

the landslide dataset used to perform the statistical analysis. None of the 
works reviewed considered the complete landslide inventories. Instead, 
a great variety of criteria was applied in an attempt to ensure the reli-
ability and representativeness of the dataset. Table 3 presents 16 se-
lection criteria considered to define 19 landslide datasets.

The definition of the areas and periods studied allows for a first data 
selection within the landslide inventories. In the case of the time span, 
some works focused on specific MORLEs (Valenzuela et al., 2018b; Rivas 
et al., 2022), while others only used those periods in which the inventory 
is more complete and representative (Valenzuela, 2017). Vaz (2021)
defined the datasets considering an area with common geomorpholog-
ical characteristics: mountains and plateaux in NW Portugal.

Other group of criteria is based on the available information recor-
ded within the inventories. The spatial and temporal accuracy of the 
landslide records is considered for the selection of the dataset in those 
inventories that include records with different accuracy levels (San 
Millán, 2015; Valenzuela, 2017), dismissing those landslides with un-
known date of occurrence. Other authors considered data regarding the 
landslide triggering, discarding records with a known anthropic cause 
(Valenzuela, 2017; Bornaetxea, 2018), while landslides with an un-
known origin are generally used. Some works defined datasets 

considering a specific type of landslides, such as Pereira (2009), with 
only debris flows, or thematic datasets based on the type of landslides 
and slope or the seasonal period (Valenzuela, 2017). Bornaetxea et al. 
(2018) dismissed also some landslides due to general doubts about the 
reliability of the information.

Some aspects linked to the precipitation data series were also used as 
selection criteria, especially those regarding the existence of certain 
degree of correlation between rainfall and landslide records. San Millán 
(2015) and Bornaetxea (2018) discarded landslides without a clear link 
with rainfall events. San Millán (2015) also dismissed landslides related 
to rainfall events without rainfall records for the date of occurrence. 
Similarly, Valenzuela (2017) and Vaz (2021) dismissed those cases in 
which accumulated precipitation during the 5 days previous to the 
landslide occurrence was less than 20 mm. The length of the rainfall 
data series also represented a limiting factor, as in Vaz (2021), resulting 
in a reduction of the landslide inventory time span used in this study. 
Moreover, in those works where representative rain gauges were used, 
the analyzed landslides were limited to those located within the influ-
ence area of the gauge, as in Pereira (2009), Valenzuela et al. (2019), 
and Vaz (2021). In this last study, an additional constraint was applied 
for those antecedent rainfall conditions defined using raster data series, 
since the considered landslide datasets were restricted to those raster 
cells where a number of landslide events equal to or higher than 20 was 
defined (Vaz, 2021).

Finally, the methodology followed to characterize the critical rainfall 

Table 3 
Criteria for the selection of the landslide dataset used for the calculation of the statistical thresholds reviewed. Study area; Author: [a] Bornaetxea et al., 2018, [b] Rivas 
et al., 2022, [c] San Millán, 2015, [d] Valenzuela et al., 2018b, [e] Valenzuela, 2017, [f] Valenzuela et al., 2019, [g] Vaz, 2021, [h] Pereira, 2009; [i] Zêzere et al., 
2015; Number of landslides from the original inventory; Selection criteria; Final dataset; Percentage of data used from the original inventory. *Dataset used by Pereira 
(2009), 14 for Casal Soeiro and 14 for Vila Real, was updated in Zêzere et al. (2015), increasing the number of analyzed landslides in 15 for Casal Soeiro and 19 for Vila 
Real.
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Table 4 
Empirical thresholds compiled for the NW of the Iberian Peninsula. Author; Study area; Spatial extension: [R] regional, [L] local; Precipitation data structure: [Ve] 
vectorial, [R] raster; Temporal accuracy: [H] hourly, [D] daily, *daily accuracy with data expressed in h; Number of individual landslides analyzed; Number of 
landslide events analyzed; Type of threshold: [ED] accumulated precipitation–duration, [ID] precipitation intensity–duration, [E] based on the rainfall event, [A] 
based on the antecedent rainfall, [EA] based on rainfall event + antecedent rainfall; Equation; Probability of exceedance in percentage; False Alarm rate; Threat Score; 
Meaning.

Author Study area SE P dat. T acc. Lds. Events Th. Typ. Equation PE% FAR TS Meaning

Bornaetxea et al., 2018 Gipuzkoa R Ve H 298 298 ED, E E = 4.4 ± 0.7⋅D0.47 ± 0.04 5 ​ ​ Minimum
​ ​ R Ve H 298 298 ED, E E = 3.0 ± 0.5⋅D0.47 ± 0.04 1 ​ ​ Minimum
Rivas et al., 2022 Deba basin L Ra D 688 6 ID, E I = 50.73⋅D− 0.428 5 ​ ​ Minimum
​ ​ L Ra D 688 6 ID, E I = 66.078⋅D− 0.428 25 ​ ​ ​
​ ​ L Ra D 688 6 ID, E I = 77.165⋅D− 0.428 50 ​ ​ ​
San Millán, 2015 Cantabria R Ve D* 33 33 ID, E I = 0.4846⋅D− 0.539 ​ ​ ​ Minimum
​ ​ R Ve D* 33 33 ID, E I = 27.109⋅D− 0.621 ​ ​ ​ Minimum
​ ​ R Ve D* 33 33 ID, E I = 9.3293⋅D− 1.132 ​ ​ ​ Minimum
​ ​ R Ve D* 97 97 ID, E I = 59.19⋅D− 0.488 ​ ​ ​ Maximum
Valenzuela et al., 2018 Asturias R Ve D* 43 43 ID, E I = 0.70⋅D− 0.25 5 ​ ​ Minimum
​ ​ R Ve D* 43 43 ID, E I = 1.20⋅D− 0.25 25 ​ ​ ​
​ ​ R Ve D* 43 43 ID, E I = 2.36⋅D− 0.25 50 ​ ​ ​
​ ​ R Ve D* 43 43 ID, E I = 4.64⋅D− 0.25 75 ​ ​ ​
​ ​ R Ra D* 43 43 ID, E I = 0.94⋅D− 0.27 5 ​ ​ Minimum
​ ​ R Ra D* 43 43 ID, E I = 1.49⋅D− 0.27 25 ​ ​ ​
​ ​ R Ra D* 43 43 ID, E I = 2.64⋅D− 0.27 50 ​ ​ ​
​ ​ R Ra D* 43 43 ID, E I = 4.69⋅D− 0.27 75 ​ ​ ​
​ ​ R Ve D* 41 41 ID, E I = 44.89⋅D− 0.80 5 ​ ​ Minimum
​ ​ R Ve D* 41 41 ID, E I = 61.71⋅D− 0.80 25 ​ ​ ​
​ ​ R Ve D* 41 41 ID, E I = 91.87⋅D− 0.80 50 ​ ​ ​
​ ​ R Ve D* 41 41 ID, E I = 136.77⋅D− 0.80 75 ​ ​ ​
​ ​ R Ra D* 41 41 ID, E I = 52.03⋅D− 0.84 5 ​ ​ Minimum
​ ​ R Ra D* 41 41 ID, E I = 68.17⋅D− 0.84 25 ​ ​ ​
​ ​ R Ra D* 41 41 ID, E I = 95.54⋅D− 0.84 50 ​ ​ ​
​ ​ R Ra D* 41 41 ID, E I = 133.92⋅D− 0.84 75 ​ ​ ​
Valenzuela, 2017 Asturias R Ve D 463 367 ED, E E = 1.19⋅D0.55 5 ​ ​ Minimum
​ ​ R Ve D 463 367 ED, E E = 2.15⋅D0.55 20 ​ ​ ​
​ ​ R Ve D 463 367 ED, E E = 6.92⋅D0.55 50 ​ ​ ​
​ ​ R Ve D 463 367 ED, E E = 22.71⋅D0.55 80 ​ ​ ​
​ ​ R Ve D 92 52 ED, E E = 2.61⋅D0.71 20 ​ ​ Dry period
​ ​ R Ve D 371 315 ED, E E = 0.77⋅D0.72 20 ​ ​ Wet period
​ ​ R Ve D 169 99 ED, E E = 6.02⋅D0.40 20 ​ ​ Slides/flows
​ ​ R Ve D 152 121 ED, E E = 0.79⋅D0.70 20 ​ ​ Rockfalls
​ ​ R Ve D 80 72 ED, E E = 5.93⋅D0.38 20 ​ ​ Nat. slope
​ ​ R Ve D 164 149 ED, E E = 1.60⋅D0.60 20 ​ ​ Art. slope
​ ​ R Ve D 153 128 ED, E E = 2.85⋅D0.51 20 ​ ​ Surfic. dep.
​ ​ R Ve D 183 159 ED, E E = 1.42⋅D0.61 20 ​ ​ Bedrock
Valenzuela et al., 2019 Zardaín L Ve D 60 43 ED, A E = 6.21⋅D + 90.8 7 0.93 0.07 Minimum
​ ​ L Ve D 60 43 ED, A E = 6.98⋅D + 181.3 28 0.72 0.22 Best-fit
​ ​ L Ve D 60 43 ED, A E = 7.28⋅D + 248.7 100 0 0.07 Maximum
​ Genestoso L Ve D 26 21 ED, A E = 7.13⋅D + 69.5 2 0.98 0.02 Minimum
​ ​ L Ve D 26 21 ED, A E = 7.71⋅D + 132.6 9 0.91 0.08 Best-fit
​ ​ L Ve D 26 21 ED, A E = 3.05⋅D + 298.3 100 0 0.05 Maximum
​ Avilés L Ve D 72 34 ED, A E = 4.91⋅D + 91 9 0.91 0.09 Minimum
​ ​ L Ve D 72 34 ED, A E = 4.73⋅D + 171.4 50 0.50 0.32 Best-fit
​ ​ L Ve D 72 34 ED, A E = 5.58⋅D + 187.3 100 0 0.20 Maximum
​ Oviedo L Ve D 62 43 ED, A E = 4.91⋅D + 48.9 7 0.93 0.07 Minimum
​ ​ L Ve D 62 43 ED, A E = 4.97⋅D + 128.2 52 0.48 0.36 Best-fit
​ ​ L Ve D 62 43 ED, A E = 5.87⋅D + 143.9 100 0 0.19 Maximum
​ Bargaedo L Ve D 41 23 ED, A E = 6.22⋅D + 104.3 4 0.96 0.04 Minimum
​ ​ L Ve D 41 23 ED, A E = 5.98⋅D + 206.6 7 0.93 0.06 Best-fit
​ ​ L Ve D 41 23 ED, A E = 7.06⋅D + 284.1 100 0 0.04 Maximum
​ Amieva L Ve D 43 22 ED, A E = 8.81⋅D + 96.2 5 0.95 0.05 Minimum
​ ​ L Ve D 43 22 ED, A E = 8.59⋅D + 235.5 50 0.50 0.35 Best-fit
​ ​ L Ve D 43 22 ED, A E = 10.11⋅D + 235.4 100 0 0.18 Maximum
Pereira, 2009 Vila Real L Ve D 14 8 ED, EA E = 1435⋅D− 0.67 ​ ​ ​ Minimum
​ ​ L Ve D 14 8 ID, A I = 109⋅D− 0.42 ​ ​ ​ Best-fit
​ Casal Soeiro L Ve D 14 9 ID, A I = 109⋅D− 0.42 ​ ​ ​ Best-fit
Zêzere et al., 2015 Vila Real L Ve D 19 11 ED, EA E = 2167.9⋅D− 0.755 ​ ​ ​ Minimum
​ ​ L Ve D 19 11 ID, A I = 73.72⋅D− 0.438 ​ ​ ​ Best-fit
​ ​ L Ve D 19 11 ED, A E = 9.69⋅D + 133.31 ​ ​ ​ Best-fit
​ Casal Soeiro L Ve D 15 10 ED, EA E = 20290⋅D− 1.089 ​ ​ ​ Minimum
​ ​ L Ve D 15 10 ID, A I = 73.72⋅D− 0.438 ​ ​ ​ Best-fit
​ ​ L Ve D 15 10 ED, A E = 13.45⋅D + 292.53 ​ ​ ​ Best-fit
Vaz, 2021 NW Mount. R Ra D 326 299 ED, E E = 0.5⋅D0.9 5 ​ ​ Minimum
​ ​ R Ra D 326 299 ED, E E = 1.1⋅D0.9 50 ​ ​ ​
​ ​ R Ve D 161 152 ED, E E = 1.08⋅D0.72 5 ​ ​ Minimum
​ ​ R Ve D 161 152 ED, E E = 2.39⋅D0.72 50 ​ ​ ​
​ Porto L Ve D 82 53 ED, A E = 7.7⋅D + 57.9 ​ 0.90 0.10 Minimum
​ ​ L Ve D 82 53 ED, A E = 73.4⋅D0.54 ​ 0.51 0.33 Best-fit

(continued on next page)
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conditions was also used to define the analyzed dataset in some cases. 
Pereira (2009), Valenzuela et al. (2019), and Vaz (2021) limited the 
analyzed dataset to those landslides whose antecedent rainfall condi-
tions showed the highest return period, always over 3 years. Further-
more, San Millán (2015) defined a dataset with those landslides whose 
critical rainfall conditions for the date of occurrence and the previous 5  
days were below the respective median, considering the whole analyzed 
landslides.

As presented in Table 3, the implementation of such selection criteria 
significantly reduces the number of analyzed landslide records 
compared with the size of the original inventories. In the case of regional 
datasets, the number of selected landslide records oscillates between 33 
and 463, which represents 17 to 88 % of the original inventories. 
However, for local-scale approaches, the number of cases included in 
each dataset ranges from 14 to 82 landslides, which represents 1 to 9 % 
of the original inventories. In contrast, the landslide dataset represent-
ing six MORLE events, selected by Rivas et al. (2022), include 58 % of 
the landslides from the corresponding inventory.

Definition of landslide event.
Two of the works (Valenzuela et al., 2018b; Rivas et al., 2022) 

focused on the analysis of specific MORLEs, while the remaining works 
studied more extended landslide data series, including many landslide 
events of different sizes. Most authors (Valenzuela, 2017; Valenzuela 
et al., 2019; Pereira, 2009; Vaz, 2021) defined a landslide event as one or 
more landslides reported on the same day and related to the same rain 
gauge or grid cell. In these cases, the number of landslides per event is 
strongly dependent on the gauge influence areas or the raster cell size. 
For regional approaches, the use of raster data or a larger number of rain 
gauges to cover the whole studied territory implied a reduction of the 
influence areas. Consequently, a great number of events (152 to 367) 
with a lower average number of landslides per event (1.06 to 1.3) was 
defined. In contrast, the rate landslide–event is slightly higher in the 
case of local approaches, in which only one representative rain gauge 
with a larger area of influence is considered, resulting in a lower number 
of events (8–76) with a higher average number of landslides per event in 
the range of 1.2 to 1.8. The remaining works (San Millán, 2015; 
Valenzuela et al., 2018b; Bornaetxea et al., 2018; Rivas et al., 2022) 
considered each individual landslide as an event.

Definition of critical rainfall conditions.
The works reviewed here follow three main approaches to determine 

the critical rainfall conditions by defining: (1) specific rainfall episode 
that triggered the landslide, (2) longer previous rainfall conditions, and 
(3) rainfall episode vs. antecedent rainfall conditions. In the first case, 
the rainfall episode is defined as a period of continuous precipitation 
between the failure and the time when the rainfall event started, while 
the accumulated precipitation during this period is the critical amount 
of rainfall. A period with negligible or no rainfall records is usually 
considered to separate two successive rainfall events, showing different 
durations depending on seasonal variability. Vaz (2021) used a heuristic 

criterion, considering rainfall records < 1 mm during 2 days for the dry 
period (May–September) and 4 days for the wet period (October–April) 
to separate rainfall episodes in NW Portugal. Similarly, Bornaetxea et al. 
(2018) considered the absence of rainfall for the same intervals and 
seasonal periods in Gipuzkoa, defining the episodes automatically using 
the algorithm proposed by Melillo et al. (2015). Other authors defined 
the critical period based on the percentage of soil moisture. Valenzuela 
et al. (2018b) considered the lapse with AWC levels between 99 and 100 
% before the initiation of the failure at each landslide location in the 
Principality of Asturias. The same authors generalized this criterion 
through the analysis of the number of days without rainfall required to 
drop those critical AWC levels, defining a period of 1 day for the dry 
season (June–September) and 3 days for the wet season (October–May; 
Valenzuela, 2017). In addition, Rivas et al. (2022) considered an expert 
criterion to define the critical rainfall conditions at the location of each 
landslide based on available information regarding each specific MORLE 
event.

Following a different approach, Pereira (2009), Valenzuela et al. 
(2019), and Vaz (2021) considered the antecedent rainfall for each 
landslide event. Critical conditions were defined as the rainfall with the 
highest return period of a series of rainfall values accumulated for 
different fixed time intervals prior to the landslide occurrence. All au-
thors considered intervals of 1, 2, 3, 4, 5, 10, 15, 30, 40, 60, and 90 days 
and, additionally, Vaz (2021) considered intervals of 20 and 50 days. In 
all three works, the return period was calculated using the Gumbel 
distribution (Gumbel, 1958). Historical rainfall data series equal to or 
greater than 30 years were used in these analyses.

Finally, the relationship between the accumulated rainfall at the 
landslide time of occurrence and the accumulated rainfall during the 
previous days was used, although with some variations, in two other 
works. Pereira (2009) calculated the accumulated rainfall for 1, 2, and 
3 days (triggering conditions) and for 5, 10, 15, 30, 40, 60, 75, and 90  
days (preparatory conditions) before the landslide occurrence. Different 
combinations of triggering–preparatory conditions were iteratively 
assessed, selecting those with the highest return period. The best cor-
relation with the analyzed landslide events was obtained through the 
combination 3-day event rainfall and 10-day antecedent rainfall, 
considered as the critical triggering conditions. San Millán (2015) fol-
lowed a simpler approach, considering the accumulated rainfall during 
the day of the landslide occurrence and the previous 5 days; in this case, 
the antecedent rainfall duration was only conditioned by data 
availability.

In the approaches followed in Pereira (2009), Valenzuela et al. 
(2019), and Vaz (2021), not only landslide-triggering conditions, but 
also those that did not trigger known landslides were defined for the 
same fixed intervals of days and subsequently used for the threshold 
calculation. However, some nontriggering conditions were dismissed to 
clarify the analysis, such as (i) conditions (from 1 to 90 days) from those 
days with known landslides but not considered as critical due to its low 

Table 4 (continued )

Author Study area SE P dat. T acc. Lds. Events Th. Typ. Equation PE% FAR TS Meaning

​ ​ L Ve D 82 53 ED, A E = 9.7⋅D + 116.4 ​ 0.65 0.24 Best-fit
​ ​ L Ve D 82 53 ED, A E = 7.7⋅D + 222.8 ​ 0 0.26 Maximum
​ ​ L Ve D 82 53 ED, A E = 7.7⋅D + 100.8 20 0.80 0.19 ​
​ ​ L Ve D 82 53 ED, A E = 7.7⋅D + 128 30 0.70 0.26 ​
​ ​ L Ve D 82 53 ED, A E = 7.7⋅D + 153.6 40 0.60 0.27 ​
​ ​ L Ve D 82 53 ED, A E = 7.7⋅D + 173.3 50 0.50 0.30 ​
​ ​ L Ve D 82 53 ED, A E = 7.7⋅D + 188.3 60 0.40 0.30 ​
​ Porto C1 L Ra D 45 33 ED, A E = 8.83⋅D + 54.92 ​ 0.88 0.12 Minimum
​ ​ L Ra D 45 33 ED, A E = 64.53⋅D0.58 ​ 0.71 0.22 Best-fit
​ ​ L Ra D 45 33 ED, A E = 10.26⋅D + 103.03 ​ 0.72 0.22 Best-fit
​ ​ L Ra D 45 33 ED, A E = 11.25⋅D + 165.75 ​ 0 0.12 Maximum
​ Penagui. C2 L Ra D 30 20 ED, A E = 9.6⋅D + 81.9 ​ 0.89 0.11 Minimum
​ ​ L Ra D 30 20 ED, A E = 78.26⋅D0.59 ​ 0.60 0.29 Best-fit
​ ​ L Ra D 30 20 ED, A E = 10.48⋅D + 197.53 ​ 0.61 0.23 Best-fit
​ ​ L Ra D 30 20 ED, A E = 8.46⋅D + 375.58 ​ 0 0.30 Maximum

P. Valenzuela et al.                                                                                                                                                                                                                             Catena 255 (2025) 108983 

8 



return period and (ii) conditions (from 1 to 90 days) of the days 
following a landslide event with accumulated rainfall values over the 
minimum thresholds defined for each rain gauge.

The different approaches strongly condition the duration of the 
critical rainfall periods defined in each case, as shown in Fig. 2. Thus, the 
critical conditions calculated considering only the triggering rainfall 
episode present shorter durations. In Gipuzkoa and Cantabria (Fig. 2A: 
a, b, c), the events show durations in the range of 1–7 days, while in the 
Principality of Asturias and the NW of Portugal, the events show longer 
durations in the range of 1–53 days and average duration values of 
13–22 days (Fig. 2A: d, e, f). Although less frequent, this first approach 
also defines events longer than these ranges, as shown by the outliers 
represented in Fig. 2A. Conversely, approaches considering the ante-
cedent rainfall resulted in longer periods with average durations in the 
range of 33–49 days (Fig. 2B). The same difference is also observed in 
the accumulated precipitation during those periods, showing average 
values from 86 to 349 mm in the first case (Fig. 2C) and from 431 to 
794 mm in the second one (Fig. 2D).

Most works used accumulated precipitation–duration (ED) data pairs 
to describe the critical rainfall conditions, although some authors 
(Pereira, 2009; San Millán, 2015; Valenzuela et al., 2017; Rivas et al., 
2022) used intensity–duration (ID) data pairs, obtaining daily intensity 
values by dividing the accumulated precipitation by the number of days 
of the delimited critical period.

4.4. Statistical analysis

Each of the defined landslide datasets was analysed to calculate 85 
statistical thresholds expressed as linear or power equations (Table 4) 
following two main statistical approaches. On the one hand, 35 out of 85 
thresholds (41 %) were calculated using a frequentist approach, previ-
ously defined by Brunetti et al. (2010) and subsequently modified by 
Peruccacci et al. (2012) and Gariano et al. (2015), which allows for the 
characterization of the probability of landslide occurrence. In this case, 

the calculated functions were assumed as a power law: 

Y = aXb 

where Y is the accumulated event rainfall (E) or the daily rainfall in-
tensity (I), depending on each work, X is the duration (D) of the event 
rainfall (in hours or days), b is the intercept or scaling parameter, and a 
defines the slope of the power low curve. The calculation of the pa-
rameters a and b was performed using the frequency analysis of the 
empirical data pair (ED or ID) resulting in known landslides. Data were 
log-transformed prior to their plotting on a scatter plot. Then, the dis-
tribution of the data pairs was fitted throughout the least squared 
method by means of a linear equation: 

log(Y) = log(a)+ blog(X)

Residuals were determined as the difference δ(X) between the logarithm 
of the empirical Y value, log [Y (D)], of each event and the logarithm of 
the theoretical Y value corresponding to the best-fit line, log [Yf (D)], for 
the same duration. 

δ(X) = log[Y(X)] − log[Yf (X)]

Then, the probability density function of the residual’s distribution was 
calculated with the Kernel Density Estimation (Venables and Ripley, 
2002) by using a Gaussian fit. Based on the function obtained, proba-
bility of exceedance lines for different percentages were calculated ac-
cording to each author: 1 %, 5 %, 20 %, 25 %, 50 % or best-fit, 75 %, and 
80 %. The distance between the mean value of the function and the 
quantile corresponding to each probability (denoted δ* by Brunetti 
et al., 2010) was used to define the new intercepts for each line. Those 
new intercepts were calculated by subtracting the corresponding δ* 
value from the intercept of the best-fit line (a50). However, the b 
parameter remained unchanged. For this reason, all the calculated 
probability of exceedance lines are parallels to the best fit line. This 
approach was used by Valenzuela (2107), Bornaetxea et al. (2018), Vaz 

Fig. 2. Comparison between duration (h) and accumulated precipitation (mm) of critical rainfall conditions calculated following different approaches. A, C 
Considering the rainfall episode: [a] Deba basin (Rivas et al., 2022); [b] Gipuzkoa (Bornaetxea et al., 2018); [c] Cantabria (San Millán, 2015); [d] Principality of 
Asturias (Valenzuela, 2017); [e and f] Mountains and plateaux NW Portugal (Vaz, 2021). B, D Considering the antecedent rainfall conditions: [g] Principality of 
Asturias (Valenzuela et al., 2019); [h] Vila Real (Pereira, 2009); [i] Casal Soeiro (Pereira, 2009); [j] Porto (Vaz, 2021); [k] Porto-C1 (Vaz, 2021); [l] Santa Marta de 
Penaguião-C2 (Vaz, 2021).
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(2019), and Rivas et al. (2022). In the case of Bornaetxea et al. (2018), 
the methodology was automatically applied through the algorithm 
developed by Melillo et al. (2015).

On the other hand, in the remaining 50 thresholds (59 %), the au-
thors obtained different equations by applying linear or power regres-
sion to all or a part of the ID or ED pairs of critical conditions, 
represented in a scatter plot, based on the following equations: 

Y = aX+ b 

Y = aXb 

where Y is the accumulated event rainfall (E) or the daily rainfall in-
tensity (I), X is the duration (D) of the event rainfall (in hours or days), b 
is the intercept or scaling parameter, and a defines the slope of the 
function. The adjustment type was selected in each case considering the 
best correlation coefficient (R2) values obtained for each line. A simpler 
approach was applied by San Millán (2015), considering only those ID 
conditions that caused landslides. In this case, the whole dataset and a 
subdataset including those data pairs with I and D values under the 
median were considered, and between 2 and 3 ID data pairs were 
selected and adjusted through power regression to calculate minimum 
and maximum regional thresholds. In addition, Pereira (2009), Valen-
zuela et al. (2019), and Vaz (2021) followed a more complex method-
ology previously developed by Trigo et al. (2005) and Zêzere et al. 
(2005, 2008) to establish thresholds at local scale. This approach de-
scribes a threshold as a line in the scatter plot that separates rainfall 
conditions that have triggered landslides from those that have not. 
Pereira (2009) defined three different datasets considering ID, ED, and 
3 days vs. 10 days conditions. In all the cases, best-fit thresholds (50 % 
probability of exceedance) were calculated with lineal and power 
regression by adjusting only the landslide triggering conditions, 
although the nontriggering conditions were considered for a visual 
analysis. In Valenzuela et al. (2019) and Vaz (2021), triggering and 
nontriggering ED conditions were analyzed together. Thus, best-fit 
thresholds were calculated considering all ED triggering conditions, 
while the minimum thresholds were calculated considering only the two 
lowest ED triggering conditions. Moreover, maximum thresholds were 
represented considering the two highest ED conditions that did not 
trigger any known landslide for each dataset. The landslide occurrence 
probability represented by each threshold was calculated considering all 
the conditions that triggered and did not trigger landslides over the 
corresponding line; this probability was expressed as the percentage of 
the conditions that triggered events over the total conditions above the 
threshold.

Uncertainty and performance assessment.
Only some of the reviewed works addressed the assessment of the 

uncertainty linked to the developed thresholds. Valenzuela et al. (2019)
and Vaz (2021) interpreted the difference between maximum and 
minimum thresholds as a way of characterizing the range of uncertainty 
related to the definition of the functions. Bornaetxea et al. (2018)
applied the bootstrapping statistical technique (Peruccacci et al., 2012) 
to calculate the uncertainty range of the thresholds, showing the level of 
variability of the resulting functions with respect to the introduced data.

Valenzuela et al. (2019) and Vaz (2021) addressed the quantitative 
characterization and validation of the performance of those thresholds 
calculated using both triggering and nontriggering conditions. For this 
purpose, they used contingency tables and ROC metrics. Four skill scores 
were calculated by both authors for each threshold following the ter-
minology proposed by Staley et al. (2012): (i) True Positive rate shows 
the proportion of events correctly predicted; (ii) False Positive rate 
shows the proportion of positive predictions when the event did not 
occur, also called false alarms; (iii) False Alarm rate is the ratio between 
the number of false alarms and the number of true forecasts; and (iv) 
Threat Score is a measure of the overall performance of the threshold 
where a perfect model score would equal one (Schaefer, 1990). 

Additionally, Vaz (2021) calculated the Positive Prediction rate as the 
inverse of the False Alarm rate. In both works, all but one of the local 
thresholds corresponding to the best-fit function showed the highest 
Threat Score values; the exception is the case of Santa Marta de 
Penaguião-C2, where the highest values is shown by the upper thresh-
olds (Table 4). However, some of these thresholds show elevated False 
Alarm rate values, especially those with probabilities of exceedance 
under 50 %. For both authors, the best performance for the forecasting 
of landslides is observed in those thresholds with probability of ex-
ceedance of 50 % and 60 %, when the False Alarm rate and the Threat 
Score values are more equilibrated (Table 4). Furthermore, Vaz (2021)
evaluated the spatial performance of the minimum threshold by 
analyzing landslides that occurred outside the 15 km-radius influence 
area around the Porto gauge, confirming its validity up to a distance of 
40 km.

Finally, it is worth mentioning that the vast majority of the reviewed 
statistical thresholds has not been validated with data from subsequent 
landslide events, nor periodically updated or implemented in early 
warning system. This lack of validation significantly limits their prac-
tical applicability for forecasting purposes. Only the thresholds calcu-
lated by Pereira (2009) and Pereira et al. (2010, 2012) have been 
updated (Zêzere et al., 2015).

5. Comparison of datasets

We selected four approaches for their statistical comparison (San 
Millán, 2015; Valenzuela, 2017; Bornaetxea et al., 2018; Vaz, 2021; in 
Table 4). These are the only works in which the thresholds were 
calculated following reasonably similar methodologies, and together 
cover most of the proposed study area, being representative of NW 
Iberia. Thus, the organization of the subsequent analysis in four zones is 
conditioned by the spatial scope of these works, rather than by 
geological or climatic criteria. Each of these works includes more than 
one threshold with different characteristics and meanings (Table 4). All 
four represent rainfall-triggering conditions defined at regional scale, 
calculated considering only the rainfall-triggering event and based on 
the analysis of press archives. Datasets from Gipuzkoa, the Principality 
of Asturias, and N Portugal consider all the types of landslides, while in 
Cantabria, only landslides affecting cut slopes are included. However, 
these works also show relevant differences, such as (1) size of the 
analyzed database (97, 298, 299 and 367 landslide events), (2) study 
period (from 8 to 58 years), (3) temporal scale of the rainfall records 
(hourly data for Gipuzkoa/daily data for all other cases), (4) parameters 
analyzed (rainfall intensity for Cantabria/rainfall duration for all other 
cases), and (5) methodology used to define the critical rainfall period 
(previously detailed in section 4.3), among others. None of these works 
includes a validation of the thresholds.

The comparison of equations derived from ED and ID data pairs may 
pose difficulty. Peruccacci et al. (2012) proposed a mathematical rela-
tion to converse ID functions in ED functions, only when the original 
databases present the same temporal scale (daily, hourly); otherwise, 
the equations cannot be compared in a straightforward manner, 
rendering necessary their recalculation with data at the same temporal 
scale. In this case, a new equation, different from that proposed by the 
original authors, is obtained. Moreover, the statistical method chosen to 
calculate each fitting function can consider the whole or a part of the 
critical conditions, determining the probability of occurrence of land-
slides associated to each equation. When the equations show many 
differences, as in the present case, their comparison should be discarded, 
and instead the analysis of the original ED data pairs is recommended. 
Thus, our analysis focuses on the original ED data pairs derived from 
each work, which together account for a population of 1061 data.

Most events from Gipuzkoa and Cantabria show durations in the 
range of 1 to 7 days (24–168 h) and an average accumulated precipi-
tation of 86 and 107 mm, respectively. Duration of the events in the case 
of the Principality of Asturias and N Portugal shows greater variability, 
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with most values in the range of 1 to 40 days (24–960 h) in Asturias and 
1 to 53 days (24–1272 h) in N Portugal, resulting in average accumu-
lated precipitation values of 181 and 349 mm, respectively. In general, 
events defined for Asturias are shorter than those from Portugal. In 

contrast, the percentage of events of 1–7 days represents only the 30 % 
for Asturias and 15 % for N Portugal.

Precipitation duration values (D) in h vs. accumulated precipitation 
during the same period (E) in mm were represented in scatter plots. In 

Fig. 3. Linear regression best-fit functions obtained for different ED datasets (dashed black lines); red lines represent the upper and lower standard deviation 
boundaries of the regression lines. Spearman, p-value and R2 coefficients are shown for each dataset. Areal datasets: A Gipuzkoa; B Cantabria; C Principality of 
Asturias; D N of Portugal. Remaining datasets: E All ED data except Gipuzkoa; F All ED data except Cantabria; G All ED data except Asturias; H All ED data except N 
of Portugal.
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the left insets of Fig. 3 (A, B, C, and D), we represent the datasets from 
the works focused on each region (areal datasets) and their corre-
sponding regression lines. Likewise, in the right insets (Fig. 3; E, F, G, 
and H) we exclude one of the datasets, merging the datasets of the 
remaining areas (remaining dataset) and calculating their regression 
lines. The upper and lower standard deviations variations (red lines) 
were calculated for each regression. All eight best-fit regression lines 
could be interpreted as non-validated thresholds at a 50 % probability of 
exceedance. However, their main function is to serve as an element of 
comparison to determine whether each areal dataset falls within the 
overall variance when considering only the remaining datasets together. 

Removal of the outliers from the beginning of the analysis was discarded 
since the difference between the coefficient of determination values (R2) 
of the best-fit lines with and without outliers was not relevant. The 
frequency distributions of the original datasets show some differences 
between the datasets and the statistical frequency curves are poorly 
Gaussian. Consequently, we opted to use Spearman’s rank correlation 
coefficient and checked whether the obtained correlation coefficient 
was significantly different from 0, computing the associated p-value to 
assess the significance of the correlations (see Fig. 3). We observed that 
all p-values were below the threshold of 0.05, indicating that the 
Spearman coefficient is statistically significant in all cases and 

Fig. 4. Mean E areal deviation values vs. Mean E remaining deviation values for different durations in (A) Gipuzkoa, (B) Cantabria, (C) Principality of Asturias, and 
(D) N Portugal. Areal dataset deviation/Remaining dataset deviation ratio (AD/RD) for ED events with durations of (E) 1–2 days, (F) 3–6 days, (G) 7–12 days, and 
(H) 13–24 days.
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discarding the null hypothesis. Additionally, the calculated coefficient of 
determination (R2) values obtained provided a general overview of the 
variance explained by each regression.

The best-fit line obtained for Gipuzkoa shows an R2 coefficient of 
0.05 and a Spearman coefficient of 0.47, consistent with the high 
dispersion observed in its population data. The trend lines obtained for 
Cantabria and the Principality of Asturias show R2 values around 0.4 
and associated Spearman coefficients near the value of 0.6. In contrast, 
the N Portugal dataset shows the best linear fit, reaching an R2 value of 
0.73 with a Spearman coefficient equal to 0.83. The fit of data is better in 
the case of the joint datasets that include data from N Portugal, reaching 
R2 values between 0.66 and 0.78 and Spearman values between 0.74 
and 0.78. For the joint dataset without data from N Portugal both, the R2 

value and the Spearman coefficient are lower, with 0.47 and 0.65 
respectively. Considering the linear regression functions and the stan-
dard deviation values shown in Fig. 3 B and F, Cantabria shows the most 
relevant differences between the areal dataset and the remaining data-
set, which could be due to the small size of the analyzed areal dataset. 
All best-fit functions show good positive correlations values, slightly less 
in the case of Gipuzkoa. Despite the general dispersion observed in the 
eight datasets, which results in the production of fitting functions with 
highly variable variance, we consider the comparison of these functions 
useful for evaluating the similarity of each regional data population with 
the other three selected datasets. Given that landslide-related precipi-
tation datasets naturally exhibit high levels of dispersion, our goal in this 
comparison was to determine if there is comparable variance between 
the datasets. Therefore, we conducted an empirical analysis of the re-
siduals. The absolute deviation between the empirical E values and the 
theoretical E values represented by the best-fit functions was calculated 
in each case considering the best-fit line of (1) the areal dataset and (2) 
the remaining dataset. Thus, the ratio of Areal dataset deviation to 
Remaining dataset deviation (AD/RD) was interpreted as a proxy for the 
similarity of the variance of the datasets, with maximum similarity 
approaching a value 1.

Fig. 4 (A, B, C, and D) graphically represents the mean E deviation 
values for each D value, calculated considering the best-fit line of each 
areal dataset and of the remaining datasets. In view of the distribution of 
deviation values for Gipuzkoa data population, both functions show a 
good fit for events between 39 and 279 h; for events under 39 h, data 
show a better fit with the trend of the remaining datasets, while for 
events longer than 279 h, the fit with the Gipuzkoa fitting line is better. 
Cantabria also shows a good fit between both functions for events in the 
range of 48 to 144 h, while for events under 48 h, the dataset is better 
fitted to its own areal trend. The behavior of the Asturian dataset is 
similar to that observed in Gipuzkoa, with a good coincidence between 
both functions for periods in the range of 48 to 240 h. Northern Portugal 
dataset shows a general good fit with their own best-fit line, with a 
significant coincidence between both functions in the range of 72 to 
192 h. In general, the four populations show lower similarity for events 
of very short and very long durations.

To compare the four data populations, data series were divided into 
four duration intervals: 1–2 days (24–48 h), 3–6 days (72–144 h), 
7–12 days (168–288 h), and 13–24 days (312–576 h); the ratio AD/RD 
was calculated for each interval to quantify the similarity of data pop-
ulations and its evolution with the critical rainfall duration (Fig. 4 E, F, 
G, and H). The rainfall events with durations between 3 and 6 days 
show 50 % of the AD/RD values closer to 1 and a moderate dispersion, 
which is particularly reduced in the cases of Asturias and N Portugal, 
while in Gipuzkoa and Cantabria, AD/RD values show a slightly higher 
dispersion, always under 2.6. This fact may be interpreted as a relevant 
similarity of the variance between each areal dataset and the remaining 
datasets. For events with durations between 7 and 12 days, the range 
Q1–Q3 of the AD/RD distribution also shows values close to 1, with a 
reduced dispersion in the cases of Gipuzkoa and the Principality of 
Asturias, in the range of 0–2, and a wider dispersion in the case of N 
Portugal, in the range of 0–2.6. Regarding variance, these observations 

are also interpreted as a relevant level of similarity between areal and 
remaining datasets. In this second case, no data for Cantabria are 
available. In contrast, the events with durations between 1 and 2 days 
and between 13 and 24 days show AD/RD values further away from 1, 
which may be interpreted as a lower similarity of the ED events of each 
population.

The results from the analysis performed suggest that the four ED data 
populations show a remarkable similarity for the critical rainfall events 
defined for durations between 3 and 12 days (72 and 288 h), which 
show a similar range of dispersion of the E values. The same analysis 
shows relevant differences for the events with durations equal or less 
than 2 days (48 h) and equal or longer than 13 days (312 h). The range 
of durations between 3 and 12 days includes 485 ED conditions, rep-
resenting 43 % of total data analyzed.

6. Discussion

The definition of a study area with almost homogeneous climatic and 
orographic conditions makes it possible to disregard these factors for the 
analysis, focusing on the influence of the methodological constrains. 
Thus, our review highlights important differences between the landslide 
datasets used to calculate the equations: (1) period covered, (2) accuracy 
of the spatial and temporal location of the landslides, (3) type of land-
slide, and (4) type slope affected by the landslide (natural or cut-slope). 
The use of different data sources clearly conditioned the availability and 
reliability of the information on these topics. Moreover, the different 
spatial and temporal resolution of the analyzed meteorological data 
series and the variety of criteria considered to correlate rainfall records 
and landslide events introduced a relevant level of uncertainty; this fact 
is particularly striking in the spatial terms, since the distance between 
the location of the rainfall gauge and the landslide can be longer than 
45 km in some cases. In those works where a landslide event is defined 
as the number of landslides triggered during the same day and spatially 
related to the same rainfall data source, the size of the event is condi-
tioned by the resolution of the spatial rainfall data. Table 3 presents the 
high variety of criteria used by the authors to select the landslide records 
analyzed in their works, further widening the gap between the different 
landslide datasets and reducing their size.

However, it has been observed that the influence of these physically 
based constrains could be masked by statistical factors such as: (1) size 
of the analyzed landslide dataset, (2) methodology used to define the 
critical rainfall conditions, (3) expression of these critical conditions (ID 
or ED data pairs), and (4) calculation of the equation. Focusing on the 
second factor, the consideration of an individual rainfall-triggering 
episode or more extensive antecedent rainfall conditions strongly af-
fects the results of the analysis. Thus, the works conducted following the 
first approach resulted in critical conditions of shorter duration and 
lower accumulated precipitation than those defined following the sec-
ond approach, as shown in the Fig. 2. The first approach is based on a 
physical criterion, considering the rainfall event preceding the landslide 
and directly related to its occurrence. In contrast, the second approach 
applies a nonphysical criterion, considering an interval of antecedent 
rainfall with a high return period; this criterion preferentially selects 
extraordinary events, which ensures a robust relation rainfall–landslide. 
Considering these basic differences observed, the critical conditions 
obtained from these two approaches should not be analyzed together.

The performance of the equations was validated through ROC met-
rics in 35 out of 85 of the compiled thresholds (41 %), all of them local 
approaches focused on Asturias and N Portugal (Valenzuela et al., 2019
and Vaz, 2001), while in the remaining 50 thresholds, no validation 
assessments were addressed. Moreover, none of the thresholds has been 
systematically updated. These two facts significantly limit its usefulness 
for predictive purposes.

Focusing on the joint analysis of the four selected ED datasets defined 
by San Millán (2015), Valenzuela (2017), Bornaetxea et al. (2018), and 
Vaz (2021), the above-mentioned methodological factors also 
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determined the obtained results for each area, distorting the influence of 
other morphological, geomorphological, geological, or climatic 
conditions.

Critical rainfall periods defined in Gipuzkoa and Cantabria are of 
shorter duration (average duration of 3–5 days) compared with those 
defined for the Principality of Asturias and N Portugal (average duration 
of 13–22 days), which influences the accumulated precipitation 
(average rainfall of 76–98 mm for the former and 162–245 mm for the 
latter). This difference is considered relevant, since in the four cases only 
the previous rainfall event was considered. In the first two areas, the 
short duration could be related to the methodology used to define the 
critical conditions, which considers hourly data in the case of Gipuzkoa 
and fixed periods of 6 days in the case of Cantabria. In Asturias and N 
Portugal, the longer duration of the events could be attributed to the use 
of daily rainfall records, although the ones from N Portugal are even 
longer than those from Asturias. The reason of this difference could be in 
the number of days without rainfall considered to define the events in 
Asturias (1 day for June–September and 3 days for October–May); this 
criterion is less restrictive than the one used for N Portugal (rainfall 
records < 1 mm during 2 days for May–September and 4 days for 
October–April). Moreover, in N Portugal, the landslide database covers a 
wider period, so that the number of extraordinary rainfall events 
recorded could be higher than in the other datasets. Four ED datasets 
show an overall high level of data dispersion, being even higher for 
events shorter than 3 days and longer than 12 days, as shown in Fig. 4. 
This could respond to the percentage of events with these durations 
being significantly different for the four datasets. For example, 48 h- 
events represent the 36 % in Gipuzkoa and 12 % in Cantabria, but only 4 
% and 1 % in Asturias and N Portugal, respectively. Similarly, Gipuzkoa 
dataset includes only a few events longer than 7 days, and Cantabria 
includes none, while 69 % and 85 % of the events from Asturias and N 
Portugal present even longer durations.

These relevant differences between the four datasets are mainly 
attributed to: (1) the disparity of criteria used to define the critical du-
rations, and (2) the different size and level of completeness of the four 
landslide databases, in which the very short and long rainfall conditions 
are often under or overrepresented. Therefore, the previously described 
characteristics discourage the join analysis of the four ED datasets to 
calculate new thresholds for NW Iberia. Furthermore they suggest the 

limited interest of a joint comparison of the equations based on each 
dataset. We consider that these equations are relevant as descriptors of 
the critical rainfall conditions in each area. However, the reduced size of 
the base datasets in some cases along with the general lack of validation 
analysis and systematic updates hamper its use for further purposes at its 
current stage of development.

On the other hand, our analysis shows the similarity of the four 
datasets for the events with durations in the range of 3 to 12 days, with a 
smaller difference in the number of data (114 in Gipuzkoa, 85 in Can-
tabria, 186 in Asturias, and 100 in Portugal).

Limiting the comparison to the ED conditions of events in the range 
of 3–12 days, the same pattern of duration can be observed in the entire 
data population, with a higher number of short events in Gipuzkoa and 
Cantabria than those in the Principality of Asturias and N Portugal 
(Fig. 5A). However, the difference in accumulated precipitation is 
attenuated with respect to the total dataset, with average values of 95  
mm in Gipuzkoa, 111 mm in Cantabria, 118 mm in Asturias, and 135  
mm in the N of Portugal (Fig. 5B). Indeed, the similarity is remarkable 
between the accumulated precipitation values corresponding to the first 
quartile in four data distributions (67 mm in Gipuzkoa, 78 mm in 
Cantabria, 73 mm in Asturias, and 76 mm in Portugal). This similarity 
was unexpected, considering the variety of statistical methodological 
approaches applied in each work. Leaving aside the bias induced by the 
critical rainfall events with longer and shorter durations, this result 
suggests common landslide-triggering conditions for the study area, 
being consistent with the almost homogeneous geographical and cli-
matic characteristics present throughout the NW of the Iberian 
Peninsula.

The joint analysis of the four selected ED datasets highlights both the 
potential and limitations of the available data. While the large number 
of documented cases allows for the identification of general patterns, the 
lack of systematic validation and periodic updates limits their predictive 
applicability. Additionally, statistical factors influencing threshold def-
initions may obscure the actual role of climatic and geological condi-
tions in landslide triggering. These findings underscore the need for 
standardized data selection and analysis criteria to enhance threshold 
reliability.

Despite methodological differences among the studies analyzed, 
integrating data from the literature could improve the accuracy of 

Fig. 5. Duration and accumulated precipitation values for the occurrence of landslides triggered by events of 3 to 12 day duration.
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rainfall thresholds for landslide triggering. However, this approach has 
limitations, as variations in the spatial and temporal accuracy of land-
slide records and rainfall data introduce uncertainties. In particular, 
thresholds derived from different methodologies should not be com-
bined indiscriminately, as this could distort their interpretation.

7. Conclusions

In the present work we provide a review that highlights the sub-
stantial number of empirical rainfall thresholds (85) calculated for the 
NW of the Iberian Peninsula in relation to the triggering of landslides. 
Nonetheless, until now, obtaining an overall view of the knowledge 
acquired on this subject has been challenging due to the lack of spatial 
and temporal continuity in these research works, the poor dissemination 
of some of them, and the variety of methodologies used.

Our analysis highlights the significant interest of the compiled 
thresholds as descriptors of the different rainfall-triggering conditions 
across NW Iberia. However, the observed methodological differences 
and the general absence of validation and systematic update of the 
compiled equations limit their comparability and practical application 
for forecasting purposes. In contrast, the comparison of the critical ED 
conditions calculated at a regional scale for Gipuzkoa, Cantabria, 
Asturias, and N Portugal for different authors reveals greater similarity 
than expected—in view of the use of different inventories and analytical 
methodologies—for events between 3 and 12 days. This fact is consis-
tent with the largely shared geographical and climatic conditions across 
the NW Iberian Peninsula. Even so, the lack of methodological consis-
tency makes it difficult to use these ED conditions to determine a general 
threshold for rain-induced landslides triggering as well as a more 
comprehensive analysis of how physical-based factors influence rainfall- 
triggered landslides in the area.

Future research progress towards the achievement of operational 
thresholds for NW Iberia would require: (1) homogenization of the 
methodological approaches, (2) systematic increase and update of 
landslide databases, and (3) systematic validation and update of the 
threshold equations.
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