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A B S T R A C T   

An equivalent single layer approach to model fracture events of multidirectional balanced thin-ply laminates via 
the use of the Phase Field method is explored. The inherent anisotropic nature of a multidirectional laminate is 
taken into account through the use of a structural tensor, defined from scaled directional vectors, which can 
account for the variation in fracture toughness of the laminates in varying directions. The scaling constants are 
defined using the lay-up of the laminate and the intra-laminar fracture toughness of the lamina, minimizing the 
number of input parameters required while also alleviating the structural tensor of a pure numerical and geo-
metric meaning. They have a significant effect in the solution, and are here related to materials properties, not 
only providing a new perspective on their definition but also allowing the reduction of the number of numerical 
parameters used to calibrate the anisotropic PF model. The numerical implementation of the proposed formu-
lation is performed using a simple and robust thermal analogy in Abaqus by exploiting the use of an anisotropic 
conductivity matrix that plays the role of the structural tensor in the anisotropic phase field formulation, which 
reduces the complexity of the simulations. Experimental results, based on open-hole tension and double edge- 
notched tension, are reproduced via simulation validating the model for size effects and for the response to 
off-axis loading. Successful prediction of notch size effects in multidirectional composite laminates is achieved by 
means of an equivalent single layer approach, incl. the off-axis open-hole tension strengths of a directional thin- 
ply laminate. All numerical strength predictions were well within acceptable errors of the respective experi-
mental values.   

1. Introduction 

Carbon fiber reinforced polymer (CFRP) laminates have for years 
attracted the aerospace community due to their high strength to weight 
ratio that can lead to significant structural mass savings in conventional 
designs. Commonly, they consist of sequences of stacked unidirectional 
(UD) plies that have thicknesses around or above 0.125 mm. However, 
advancements in tow spreading techniques (Kawabe et al., 1998) 
brought into play much thinner plies, down to 15 μm (i.e., 0.0015 mm), 
resulting in what is called thin-ply composites. The fracture profile of 
such thin-ply composites differs significantly from that of standard 
CFRPs as was shown by various experimental studies during the emer-
gence of thin-ply composites (Kawabe et al., 1998; Sihn et al., 2007; Tsai 
et al., 2005; Yokozeki et al., 2010). Fiber-dominated events are most 
prominent that macroscopically lead to a quasi-brittle response (Arteiro 

et al., 2020; Tsai et al., 2005), with the resulting crack pattern having the 
form of a single fracture plane upon which any damage mechanisms that 
occur can be assumed lumped on. This simplifies the analysis and thus 
motivated, for this particular type of CFRPs, the use of methods tied to 
the fracture of quasi-brittle materials, in an equivalent single layer (ESL) 
approach (Arteiro et al., 2019; Reinoso et al., 2017). 

Laminate level analysis has generally been linked to analytical 
techniques to provide quick estimates for component sizing, such as the 
early work of Whitney and Nuismer (1974) based on the use of stress- 
based criteria for strength prediction, and, more recently, the work 
using finite fracture mechanics of Camanho et al. (2012). These ap-
proaches can provide accurate strength predictions in boundary value 
problems where the stress field and the stress intensity factor can be 
calculated analytically. More complex cases require a ply-by-ply dis-
cretization and different modeling approaches such as continuum 
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damage mechanics (Laux et al., 2021; Maimí et al., 2007; Schuecker and 
Pettermann, 2006; van der Meer et al., 2010) and the extended finite 
element method (XFEM) (Belytschko and Black, 1999; Iarve et al., 2011; 
Moes et al., 1999; Reifsnider et al., 2020). Other approaches, such as the 
cohesive zone modeling (CZM) (Turon et al., 2006), are mainly used to 
model to model delamination in multidirectional (MD) laminates. The 
application of XFEM and CZM methods using an ESL approach would 
rely on the use of the laminate fracture toughness, a property that is not 
straightforwardly identified in MD laminates subjected to general 
loading scenarios. The Phase Field (PF) approach to fracture, which was 
first applied at an ESL level to thin-ply laminates fracture by Reinoso 
et al. (2017), alleviates the need for predefined fracture planes, and it is 
well-suited to represent anisotropic behavior, both in the elastic prop-
erties and in the fracture toughness. 

The PF method can be conceived as a global energetic approach to 
fracture stemming from the variational expression of Griffith’s energy 
balance. This methodology was seminally introduced by Francfort and 
Marigo (1998), and Bourdin et al (2000). later formulated its regularized 
form to enable its numerical application. Since then, the PF method has 
been applied satisfactorily to a wide range of problems, see (Ambati 
et al., 2015; Carollo et al., 2018; Nguyen et al., 2017; Raina and Miehe, 
2016) and the references therein. However, with regards to a macro-
scopic representation of MD composite laminates, remarkable chal-
lenges stemming from the accurate representation of their anisotropic 
nature remain, both concerning the elastic response and the fracture 
energy during the failure process. This is something the pioneering work 
of Reinoso et al. (2017) did not have to actively pursuit as it only 
addressed quasi-isotropic (QI) laminates, which significantly simplified 
the problem from this perspective. 

Among the first to formulate an anisotropic PF model were Clayton 
and Knap (2015), applying it to fracture of polycrystals that presented 
preferred fracture planes. The authors introduced the addition of a 
structural tensor to restrict damage to these preferred planes by penal-
izing damage on all other planes. Their method was later used in mul-
tiple works, including that of Nguyen et al. (2017) that used the same 
idea adding multiple phase field variables restricted to respective planes 
in polycrystals, and Teichtmeister et al. (2017) that fully explored and 
mathematically explained this approach to modeling fracture energy 
anisotropy. Bleyer and Alessi (2018), Quintanas-Corominas et al. (2019) 
and Pillai et al. (2020) also used individual phase field variables, each 
restricted to a specific direction, in order to model independent damage 
mechanisms that occur in UD composites (or at the ply level), i.e., 
transverse and longitudinal damage, while also addressing anisotropic 
degradation of the stiffness matrix. In all the aforementioned applica-
tions, whether referring to a fracture plane or a damage mechanism, 
what is known a posteriori is the exact plane each phase field variable 
will act on. However, these anisotropic PF approaches present signifi-
cant shortcomings for a direct use in the case of a MD thin-ply laminate, 
modeled at the macroscopic level, i.e., with an ESL representation, as 
they cannot be used in a similar manner, since such a split between the 
different damage mechanisms cannot be assumed, and all of them are 

lumped into an equivalent crack at the laminate level, whose plane is an 
active unknown in the analysis. 

Taking notice of that, this work aims at providing a different 
perspective in applying the PF method to general, not necessarily QI, MD 
laminates. This entails inherently linking the anisotropic nature of MD 
laminates to the anisotropic PF model without defining fracture paths a 
priori. Instead, the crack path should result from the fracture toughness 
of the laminate along its principal orthotropy directions and from the 
anisotropic PF model (Teichtmeister et al., 2017). The theoretical as-
pects and proposed formulation are explained in Section 2 that is fol-
lowed by the presentation of distinctive numerical results, which are 
compared to experimental data from the literature, to demonstrate the 
capability of the model in Section 3. It is noted that the mathematical 
convention used has matrices represented by a bold capital letter in non- 
italic (i.e., C), vectors bold and italic (i.e.,n) and scalars simple italic (i. 
e., x). 

2. Theoretical aspects 

2.1. Anisotropic phase field fracture model 

The PF approach to fracture is based on the minimization of the total 
potential energy of a cracked solid. Consider the solid of volume, V, that 
contains a crack, Γ, with external tractions, τ, applied to part of its 
boundary, S, defined by the normal vector n̂, as seen in Fig. 1. Assuming 
no body forces act on the volume the total potential energy, complying 
with Griffith’s representation of fracture, has the form: 

Π(u) = Ue +Uf − W (1)  

where W is the work of external forces and tractions, Ue is the bulk 
elastic energy and Uf is the surface energy related to the crack, defined 
as: 

Uf =

∫

Γ

GcdΓ (2)  

where Gc is the fracture toughness. The unknown nature of the crack 
geometry, Γ, does not allow the numerical solution of the problem, so, to 
circumvent that, a scalar-based phase field variable, φ = φ(x), is intro-
duced. This variable is a scalar that takes the value of zero in a pristine 
state and the value of one in a fully damaged state, allowing the crack to 
be represented in a diffuse manner (Fig. 1(b)). This means that the 
surface energy can be represented by a volumetric integral of a surface 
energy density function, γ(φ,∇φ,A), which now represents the crack (Eq. 
(3): 

Uf =

∫

Γ

GcdΓ ≈

∫

V

gcγ(φ,∇φ, A)dV (3)  

where gc is a parameter that does not intrinsically hold a physical 
meaning, but in the case that the material is isotropic it takes the value of 
the Mode I fracture toughness of the material, Gc, and A is a 2nd order 
structural tensor, which enables the representation of an anisotropic 
fracture energy (Teichtmeister et al., 2017). This formulation is often 
referred to as a 1st order anisotropic PF model. The isotropic case is 
recovered if A is equal to the identity tensor, I. More details on A and 
how it is formulated will be elaborated in Section 2.3. 

The form of the crack surface density function, γ, is given by 
Ambrossio-Tortorelli (AT) functionals, in a regularized form, in the 
general sense of Γ-convergence (i.e., a certain functional will tend to 
another when the regularizing parameter tends to zero, so how well Eq. 
(3) holds) as presented and formulated by Bourdin et al. (2000), and 
taking into account anisotropy (Teichtmeister et al., 2017), as: 

Fig. 1. Schematic solid (a) in a typical form (b) with the introduction of the PF 
(diffuse crack). 
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γ(φ,∇φ,A) =
1

4cwl
(
ω(φ) + l2∇φ⋅A⋅∇φ

)
(4)  

where cw is a constant given by 
∫ 1

0

̅̅̅̅̅̅̅̅̅̅
ω(φ)

√
dφ, and ω(φ) is a function that 

by default is given based on the AT functional used to define γ(φ,∇φ,A), 
and must satisfy the conditions: ω(0) = 0 and ω(1) = 1, with the two 
most commonly seen forms ω(φ) = φ (i.e., АΤ1 model) and ω(φ) = φ2 (i. 
e., АΤ2 model), as seen in the literature. l is the regularization param-
eter, or length scale as it is often referred to. 

The length scale can either be interpreted as a purely numerical 
parameter or as an internal characteristic length. The latter was initially 
argued by Pham et al. (2011), who linked the PF method to gradient 
damage models, expressing the length scale in terms of the strength, 
fracture toughness, and elastic modulus of the material. Recently, 
Molnár et al. (2020) considered defining it in terms of characteristic 
lengths that occur in other theoretical fracture models such as finite 
fracture mechanics. Inevitably the results obtained by a PF simulation, 
using such approximations, are dependent on the value of the length 
scale (Tanné et al., 2018). This, especially with regards to experimental 
correlation, is the Achille’s heel of the method as a clear consensus does 
not yet exist on what is more appropriate, and so, care must always be 
given to the selection and use of the length scale parameters. The models 
proposed by Wu (2017) and Lorentz (2017), which recover a cohesive 
zone model, detach the method from a length scale dependency, by 
rendering the strength the explicit material input, however, a restriction 
remains with regards to its relation to the overall geometrical di-
mensions (Lorentz, 2017). Proper understanding of the intricacies of 
each approach is, thus, imperative for appropriate use and selection. 

The elastic energy, Ue, also changes with the introduction of the PF 
variable and becomes: 

Ue =

∫

V

g(φ)
1
2
εT ⋅C⋅εdV (5)  

where C is the material stiffness matrix, ε is the infinitesimal strain 
tensor (in a vector form) and g(φ), is the degradation function, a function 
that degrades the stiffness of the material as damage occurs. In this 
work, the quadratic form g(φ) = (1 − φ)2 is used. 

Lastly, the governing equations of the problem in the strong form are 
obtained by applying the principle of virtual work to Eq. (1). Consid-
ering U = Ue + Uf , and σ the stress tensor (in a vector form), given as 
σ = C⋅ε, the following Euler-Lagrange equations (Eq. (6a)) and natural 
boundary conditions (Eq. (6b)) are obtained: 

∇ • σ = 0 in V

∇ •

(
∂U

∂∇φ

)

−
∂U
∂φ

= 0 on S
(6a)  

and 

σ⋅n̂ = τ in V
(

∂U
∂∇φ

)

⋅n̂ = 0 on S
(6b) 

All but the second Euler-Lagrange equation, which is the one that 
governs the damage evolution and is, thus, often referred to as the 
evolution equation, are not fully developed here to remain concise. 
Substituting Eq.2 through Eq.5 into Eq.6a (second terms), one gets: 

gc

4cwl

(
∂ω(φ)

∂φ
− 2l2∇⋅(A⋅∇φ)

)

+
∂g(φ)

∂φ
We = 0 (7)  

where We is the undamaged elastic energy defined as 12εT⋅C⋅ε. Assuming 
the damage model AT2 and the quadradic degradation function, as used 
for the analysis in this work, the previous equation becomes: 

gc

l
(
φ − l2∇⋅(A⋅∇φ)

)
− 2(1 − φ)We = 0 (8) 

The evolution equation was developed here to the form of Eq. (8) as 
it is important for the application of the method within a Finite Element 
Analysis (FEA) context, as will be explained in Section 3. It should be 
noted that for Eq. (8) to fully define the damage evolution, an irre-
versibility of damage, i.e., φ̇ ≥ 0, must be ensured. In order to comply 
with this condition, within the numerical implementation, we use the 
history variable proposed by Miehe et al. (2010) defined as: 

H = max
(
Wt0

e ,W
t
e

)
(9)  

where t0 is the total time at the start of the current increment, and t is the 
current time of the incrementation step. The history variable, that takes 
the place of We in Eq. (8), satisfies the Karush-Kuhn-Tucker conditions: 

Wt
e − H ≤ 0, Ḣ ≥ 0, Ḣ

(
Wt

e − H
)
= 0 (10)  

2.2. Fracture toughness of multidirectional balanced laminates 

Defining the inputs for the PF method from a mechanical standpoint 
becomes straightforward when considering the elastic properties of the 
material using classical approaches such as the classical laminated plate 
theory (CLPT) (Braun et al., 1994; Christensen and Zywicz, 1990; Sun 
and Li, 1988). However, addressing fracture toughness is not as direct. 
For MD laminates, the fracture toughness will vary depending on the 
crack plane orientation, so a way to account for this effect needs to be 
defined. The work of Camanho and Catalanotti (2011) is used here to 
capture the relation between each orientation and fracture toughness. In 
this work, the authors defined the Mode I intra-laminar fracture 
toughness of a MD laminate, i.e., assuming a crack moving perpendic-
ularly to the load application direction, using analytical terms that 

Fig. 2. Schematic of the plate (a) loaded along the 0◦ plies, and (b) loaded perpendicularly to the original 0◦ plies giving the fracture toughness for a crack moving at 
0◦ with respect to the initial reference frame. 
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require the intra-laminar fracture toughness only, G0
c , and elastic con-

stants of a 0◦ ply (lamina), and the lay-up of the laminate. 
Consider the plate shown in Fig. 2(a) and the corresponding global 

reference frame (x, y, z), which corresponds to the principal axes of 
orthotropy of the laminate. The 0◦ plies lie in the loading direction 
which is coincident with the direction of the x-axis, while the rest of the 
plies are at an angle αk with the x-axis, where k is the index used to 
denote each occurring balanced sublaminate. The fracture toughness of 
the laminate, GL

c , for a crack moving along the y-axis, is then given by 
(Camanho and Catalanotti, 2011): 

GL
c =

∑n

k=1
Gk

cvk = G0
cE0

eq

∑n

k=1

(

Ωk
χk

χ0

)2 vk

Ek
eq

(11)  

where: 

Eeq =

̅̅̅̅̅̅̅̅̅̅
ExEy

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ey
Ex

√

+
Ey

2Gxy
− νxy

√ (12)  

where Ex and Ey are the elastic moduli in the principal orthotropy frame, 
Gxy is the shear modulus, νxy and νyx are the corresponding Poisson’s 
ratios, k = 1⋯n, where n is the total number of balanced sublaminates, 
Gk

c is the Mode I fracture toughness of the balanced sublaminate, k, for a 
crack propagating along the y-direction, vk is the ratio of the sub-
laminate thickness and the total thickness of the laminate, Ωk is the 
stress ratio between the 0◦ ply and balanced sublaminate, k, calculated 
from CLPT, and χk and χ0 are the orthotropy correction factors for the 
sublaminate and 0◦ ply, respectively, given by (Bao et al., 1992): 

χ =
1 + 0.1(ρ − 1) − 0.016(ρ − 1)2

+ 0.002(ρ − 1)3

( 1+ρ
2

)1/4 (13)  

where: 

ρ =

̅̅̅̅̅̅̅̅̅̅
ExEy

√

2Gxy
−

̅̅̅̅̅̅̅̅̅̅̅νxyνyx
√ (14)  

2.3. Anisotropic scaling constants 

It is expected that a generally layered MD laminate will have an 
orientation dependent fracture toughness Gc(θ). To account for the 
variation in the fracture toughness for a MD laminate within the PF 
model the derivation presented in the previous subsection is now linked 
to the second-order structural tensor A that governs the damage form 
and effective fracture toughness of the solid. As explained in the work of 
Teichtmeister et al. (2017), the structural tensor can be used to account 
for particular levels of fracture energy anisotropy that are linked to 
intrinsic material symmetries. The intrinsic material symmetries are 
represented by an orthogonal system of what is referred to as preferred 
directions (or planes). For the case of an orthotropic material, such as a 
balanced laminate, the structural tensor can be defined considering two 
directions, a1, a2, as: 

A = 1 + a1a1⨂a1 + a2a2⨂a2 (15)  

where a1 and a2 are two scaling constants corresponding to the 
respective scaled preferred directions. Teichtmeister et al. (2017) 
showed that these constants significantly influence the crack path and 
effective fracture toughness (expressed in terms of the critical energy 
release rate (ERR)). As explained in the work of Li et al. (2015), the 
variational nature of the PF method inherently assumes that crack 
propagation is governed by a maximum energy release rate (MERR) 
criterion that will provide the angle at which the fracture plane will be 
oriented. Intuitively, this can be demonstrated by finding the point at 
which the polar plot of the inverse of the fracture toughness, Gc(θ), in-
tersects a line that follows the load direction. For more details on this, 
the reader is referred to Li et al. (2015) and Teichtmeister et al. (2017) 
and the references therein. Considering ξ the angle of a1 respective to the 
global x-axis, and θ the angle that the crack follows respective to the 
global x-axis (Fig. 3), the fracture toughness as a function of these angles 
is given through an energetic balance as (Teichtmeister et al., 2017): 

Gc(θ, ξ) = gc

̅̅̅̅
l*

l

√

(16)  

where l* is the effective length scale that is given by: 

l* = l
(
1+ a1sin2(θ − ξ)+ a2cos2(θ − ξ)

)
(17) 

It is noted that the length scale, and corresponding effective length 
scales, must be sufficiently small compared to the dimensions of the 
domain (i.e., the overall dimensions of the modelled component) for this 
representation of anisotropic fracture energy to have meaningful effect 
in the analysis (Scherer et al., 2022; Teichtmeister et al., 2017). In cases 
where the domain is significantly larger than the length scale, the so-
lution localizes and, due to this, directionality becomes pertinent. 
Therefore, the use of the structural tensor to provide anisotropic con-
siderations for the fracture energy refers to only such cases, a fact that 
was also addressed in Teichtmeister et al. (2017). When the length scale 
approaches in size the dimensions of the domain, a homogeneous so-
lution is achieved, and a fully failed domain is obtained. In that sense, 
having anisotropic fracture energy would not pose any reasonable effect 
since directionality dependence is in effect lost. This was in fact shown 
by the recent work in Scherer et al. (2022). To preserve an effect of 
anisotropy, Scherer et al. (2022) used a model based on the work of 
Bleyer and Alessi (2018) and had anisotropic stiffness degradation 
linked to the evolution of the phase field variable. However, as pointed 
out before, the work of Bleyer and Alessi (2018), is based on known 
paths of damage formation and, thus, imposition of a corresponding 
degradation in the stiffness based on the independent evolution of the 
respective PF variables, is possible. But, in a problem, such as the one 

Fig. 3. Schematic of the assumed angles in the proposed formulation.  

Fig. 4. Polar plot of the reverse of Gc(θ) assuming a unit value for gc and a1 =

1, 10, 100 and a2 = 0. 
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studied here where predefined failure planes do not exist, directionally 
dependent stiffness degradation cannot be considered. Since the appli-
cation in this work refers to a macro-scale, component level analysis, 
this is not considered a limitation or concern since Scherer et al. (2022) 
that compared both approaches for the localized solution, showed that 
for a localized solution and the level of anisotropy considered here 
similar results are obtained. 

If the principal axes of orthotropy are considered to coincide with the 
global reference frame (i.e., global x, y axis system), as is done in this 
work, ξ = 0 in Eq. (17) giving a direct distribution of the effective 
fracture toughness, Gc = f(θ) :

Gc(θ) = gc

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + a1sin2(θ) + a2cos2(θ)
√

(18) 

As stated in the relevant references cited throughout this work, this 
refers to a case of weak anisotropy. It also becomes apparent that the 
scaling constants have direct influence on the fracture toughness dis-
tribution accounted for by the model. As demonstrated by Teichtmeister 
et al. (2017) for the specific case of a transversely isotropic material 
where a2 = 0, the scaling constant a1 plays the part of defining how 
strongly the crack follows the preferred direction. For instance, in Fig. 4, 
the polar plots of the reverse of the fracture toughness, Gc(θ)− 1, for 
different values of a1, keeping a2 = 0 and are shown. As a1 is given a 
larger value the “flatter” the ellipse of the inverse of the fracture 
toughness becomes, essentially maximizing the fracture toughness in the 
direction perpendicular to a1 (i.e., 90◦ in the plot). 

However, as can be seen, a direct consequence of assuming trans-
verse isotropy is that the toughness corresponding to the preferred di-
rection a1 is independent of the value chosen for a1. Thus, given a known 
plane of fracture and its fracture toughness, it is enough to set a suffi-
ciently large value of a1 to restrict damage in any direction that lies out 
of the preferred one, a1, by rendering the toughness too high in other 
directions to ever allow any damage. This was in fact the principle used 
by Clayton and Knap (2015), and later by other works (Bleyer and Alessi, 
2018; Pillai et al., 2020; Quintanas-Corominas et al., 2019), to define the 
fracture energy anisotropy, in which the scaling constant held a purely 
numerical character since restriction of damage to specific directions 
was of interest. 

In the orthotropic case though, where the path the crack will assume 
is not known a priori but is dependent on the values of the fracture 
toughness in the principal directions, a1, a2, and loading direction, the 
scaling constants must not be defined in the same numerical approach as 
in transverse isotropy. In that sense, the previous analytical framework 
for calculating the fracture toughness of MD balanced laminates can be 
directly used to calculate the scaling constants. This will render them 
material dependent and alleviate them of a purely numerical character, 
while also reducing the number of numerical parameters the model 
depends on. Using Eq. (18) for Gc(θ = 0◦

) and Gc(θ = 90◦

) the scaling 
constants a1 and a2 can be calculated based on the fracture toughness 
given by Eq. (11) for cracks moving in those directions. For clarity at this 
point, it is noted that when referring to GL,0◦

c = Gc(90◦

) the calculation 
for the fracture toughness was done based on a load acting in the x-axis 
(i.e., 0◦). To get GL,90◦

c = Gc(0
◦

) for the laminate the calculations in Eq. 
(11) are repeated but for the “rotated” coordinate system (i.e., the lay-up 
sequence is offset by 90◦, Fig. 2(b)) with the load now acting along the 
y-axis. Thus, the scaling constants are given as: 

a1 =

(
Gc(90◦

)

gc

)2

− 1 =

(
GL,0◦

c

gc

)2

− 1 (19a)  

a2 =

(
Gc(0

◦

)

gc

)2

− 1 =

(
GL,90◦

c

gc

)2

− 1 (19b) 

Setting gc equal to the fracture toughness of the 0◦ ply, gc = G0
c , and 

simplifying Eq. (19a) and (19b) the scaling constants become: 

a1,2 =

(

E0
eq

∑

0◦ ,90◦

(

Ωk
χk

χ0

)2 vk

Ek
eq

)2

− 1 (20)  

where the subscript in the summation, denotes the orientation of load 
when the calculation of the fracture toughness is made as explained 
above, e.g., 0◦ refers to a load acting in the x-axis and the fracture 
toughness is for a crack moving along the y-axis. It is pointed out once 
again that the x-axis is considered to follow the 0◦ plies present in the 
laminate meaning the lay-up sequence is expressed in terms of angles 
with respect to the assumed x-axis. For the fracture toughness for a crack 
along the 0◦ direction the lay-up is essentially expressed with respect to 
the y-axis (Fig. 2(b)). 

It becomes apparent that a1,2 can be calculated solely based on the 
lay-up and elastic properties of the lamina and the fracture toughness of 
the 0◦ ply, which now become the inputs of the model. It is important to 
note that this derivation is valid for balanced laminates, assuming that 
the laminate fracture toughness can be obtained from the pure mode I 
fracture toughness along the two principal axes of orthotropy, following 
the specific simple form of the fracture toughness distribution obtained 
through the use of the second-order structural tensor from Teichtmeister 
et al. (2017). In other words, considerations of mixed-mode states to the 
total fracture toughness of the laminate are neglected in the current 
approach. Mixed-mode loading would require more intricate forms of 
the fracture toughness distribution and further exploration of the 
connection of fracture modes and elastic anisotropy. This will be high-
lighted in some of the examples that follow. 

3. Representative applications and validation 

3.1. Numerical implementation 

The proposed PF model is implemented in the implicit solver Aba-
qus/Standard using a user defined material subroutine (UMAT), 
extending the implementation of Navidtehrani et al. (2021), with the 
addition of a user defined thermal behavior subroutine (UMATHT) to 
add the anisotropic considerations. The approach is based on an analogy 
of the PF problem to that of heat transfer for a solid with a temperature 
field T, for which a heat transfer process is governed by the following 
equation (Abaqus, 2020, 2019): 
∫

V

(
ρU̇ − ∇⋅(K⋅∇T)

)
dV =

∫

VS

qdVS +

∫

V
rdV (21)  

where VS is the surface area of the solid, ρ is the density of the material, 
U̇ is the material time rate of the internal energy, q is the heat flux per 
unit area of the body flowing into the body,r is the heat supplied 
internally into the body per unit volume, and, finally,K is the conduc-
tivity matrix (if isotropic conductivity is assumed then K = k⋅I and can 
thus be replaced by a scalar with the value of the uniform conductivity 
k). If steady state conditions and only volumetrically generated heat are 
assumed, U̇ = 0 and q = 0, and then Eq. (21) results in: 
∫

V
− ∇⋅(K⋅∇T)dV =

∫

V
rdV (22)  

which would lead to the governing Euler equation in the volume: 

− ∇⋅(K⋅∇T) = r (23) 

However, from Eq. (8) we can get: 

∇⋅(A⋅∇φ) =
φ
l2 −

2(1 − φ)
gcl

We (24) 

So, it becomes apparent that the Fourier law term (∇⋅(K⋅∇T) ) of Eq. 
(23) can be directly compared to the term (∇⋅(A⋅∇φ) ) of Eq. (24) (and 
Eq.7–8), thus the conductivity matrix can play the role of the structural 
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tensor in the anisotropic PF formulation. To internally update the con-
ductivity matrix (i.e., structural tensor) the UMATHT is added to treat 
the thermal behavior of the material. The history variable defined in Eq. 
(9) ensures the irreversibility condition of the PF variable. Specific to 
Abaqus, it is noted that the use of a UMATHT, that provides the defi-
nition of a user defined thermal behavior, requires specific mandatory 
variables to be defined. First and foremost, density must be defined in 
the input file, which is set equal to one to hold the thermal analogy. 
Within the UMATHT itself, the following variables must be defined: u, 
internal energy per unit mass; dudt, variation of thermal energy with 
respect to temperature; dudg, variation of thermal energy with respect to 
gradients of temperature; flux; heat flux vector; dfdt, variation of the 
heat flux vector with temperature; and dfdg, variation of the heat flux 
vector with respect to temperature gradients, and equal to the conduc-
tivity. Their values and form, given to respect the heat transfer analogy 
for the PF implementation in Abaqus, is shown in Table 1. 

After defining the UMATHT following the guidelines above, it can be 
used in a straightforward manner as an addition to the UMAT formu-
lated by Navidtehrani et al. (2021) from which all other aspects, pre-
sented for the isotropic case, still hold, making this a rather robust and 
simple implementation of the anisotropic PF method for FEA. To the best 
of the authors’ knowledge, this extension has not been done so far. The 
ability to alter the structural tensor internally, as it is another variable 
requiring definition, not only allows the application of this methodology 
but also adds additional versatility in potential applications, e.g., 
application of a maximum principal stress or strain fracture criterion to 
define fracture planes, all while keeping the benefit of using Abaqus’s 
built-in elements and features. 

3.2. Verification with experimental results 

3.2.1. Size effects 

3.2.1.1. Open hole tension. An initial step towards the validation of the 
proposed formulation is based on the experimental results presented by 
(Arteiro et al., 2013). The authors tested laminates manufactured with 
thin-plies in an Open-Hole Tension (OHT) configuration that is shown in 
Fig. 5. The model is implemented in Abaqus and plane strain elements 
CPE4T and CPE3T are used for the discretization. As mentioned in 
Section 3.1 the temperature degree of freedom is necessary to imple-
ment the PF method (i.e., due to the analogy between the governing 
equations of the temperature and PF variable). The full details about the 
experiments can be found in Arteiro et al. (2013) and are omitted here 
for the sake of brevity. The results for Lay-up 1, [(0/ − 45)/(0/45) ]6T, a 
QI laminate of NCF C-Ply™ T700/AR-2527 epoxy system, with the 
lamina and equivalent laminate properties reported in Table 2 (x de-
notes the longitudinal and y the transverse direction respectively) are 
considered. The equivalent properties are computed using a weighted 
average approach of the mechanical properties over the thickness di-
rection as explained in Braun et al. (1994), which is used to compute an 
equivalent stiffness, C, for the laminate, in the general sense of macro- 
mechanical homogenization (Tsai, 2021). The intralaminar fracture 
toughness of the lamina, G0

c , is 114.2 N/mm. The dimensions of the 
specimens are reported in Table 3. 

Using these properties and following the process of Section 2.2-2.3 it 
is possible to obtain the orthotropic PF scaling constants for the struc-
tural tensor, a1 = a2 = − 0.9079 (Eq. (20). As expected, the scaling 
constants are equal since the laminate is QI and the fracture toughness, 
36.3 N/mm, is equal for all orientations, very close to the reported 
experimental value (Arteiro et al., 2013). The length scale in this work is 
taken as a numerical parameter that is obtained for a laminate by fitting 
a certain set of experimental results. For the QI laminate of these OHT 
experiments its value is chosen to be l = 0.88 mm and was calculated to 
fit the first set of experimental results (Size A) satisfactorily. The 
dependence of the obtained response on the value of the length scale is 
shown in Fig. 6(a) where the responses for l = 0.40,0.60,0.88 mm are 
all shown to illustrate the procedure. For the subsequent sizes the length 
scale is not altered to aid in assessing the ability of the model to predict 
size effects. As shown in Fig. 5(b), around the notch and along the line 
extending from the horizontal diameter, the finest mesh size is used 
(0.04 mm average element length). This was also kept as the minimum 
element size in the rest of the examples that follow. 

Table 4 provides a comparison of the average measured strength and 
the strength predicted from FEA alongside the respective errors. Fig. 6 
shows the comparison of the experimental and numerical stress versus 
displacement curves. As can be observed, the experimental results are 
captured well, with the strength prediction of Size B being the one that 
resulted in the highest error. These results highlight the ability of the 
model to capture size effects. 

The crack form predicted from the simulation can be seen in Fig. 6 

Table 1 
Definition of required internal UMATHT 
variables.  

Variable Definition 

u= u − (r/ρ)
dudt= 0 
dudg= 0 
flux= − K⋅∇T 
dfdg= − K 
dfdt= 0  

Fig. 5. (a) OHT specimen configuration and (b) discretization followed around 
the hole. 

Table 2 
Material properties for the T700/AR-2527 lamina and laminate of Lay-up 1.   

Ex(GPa) Ey(GPa) Gxy(GPa) vxy 

Lamina 111.0 7.4 4.2 0.3 
Laminate 42.402 42.402 16.241 0.3  

Table 3 
Tested OHT specimen sizes.   

w(mm) d(mm) L(mm) 

Size A 12 3 250 
Size B 24 6 250 
Size C 40 10 250  
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(d), shown specifically for the specimen of Size C. As seen in the 
experimental results shown in Fig. 7, the crack follows a straight path 
that lies along the axis perpendicular to the load application direction. In 
the simulation the same is observed. A deviation near the edge can be 
seen (Fig. 6(d)), which, after a study of the effect of different parameters 
of the simulation (e.g., model size, mesh, incrementation parameters), is 
attributed to inherent numerical instabilities of the solver. Fig. 8 shows 
OHT simulation results, for the same material and anisotropic model 
parameters, for a specimen with altered length, shorter compared with 
the original one (Fig. 6(d)). The effect near the edge decreases signifi-
cantly. Despite this difference, the obtained strength remains the same. 
Thus, this observed deviation was not given any significance other than 
that of a numerical artifact that was attributed to the numerical solution 
scheme adopted to solve the coupled system of equations. 

3.2.1.2. Double edge notched tension. In addition to the OHT results 
presented in Section 3.2.1.1, Double Edge-Notched Tension (DENT) 
experimental results are also reproduced. The experimental results are 
those from Furtado et al. (2020) that tested DENT cross-ply, [0/90]ns, 
laminates of variable ply thicknesses of the T700/M21 material system. 
The experimental results for the system referred to as H75, with a ply 
thickness of 0.075 mm, of a lay-up of [0/90]8s, are modeled. The material 

properties and specimen dimensions are seen in Table 5 and 6 respec-
tively, while the configuration is shown in Fig. 9(a). Once again, the 
laminate elastic properties are calculated using the using a weighted 
average approach of the mechanical properties over the thickness di-
rection by Braun et al. (1994). The value for the intra-laminar fracture 
toughness of the lamina is G0

c = 67.0 N/mm, reported as the initiation 
value in Furtado et al. (2020). 

A similar modeling strategy as before is followed to set up the FE 
model, with a length scale of 1.2 mm being used, the one providing a 
satisfactory fit to the first set of experimental results for Size A. In this 
case, the scaling constants are given as a1 = a2 = − 0.075. They turn out 
to be equal since the fracture toughness values used to obtain them refer 
to the principal axes of orthotropy of the material for which the laminate 
presents the same fracture toughness. Fig. 10 presents a comparison of 
the fracture toughness distribution for the laminate as obtained with the 
proposed PF formulation versus the virtual crack closure technique 
(VCCT) (Krueger, 2004). Please refer to Appendix A regarding the 
determination of the laminate fracture toughness distribution using 
VCCT. 

It becomes apparent that the method properly captures the fracture 
toughness at directions coincident with the principal axes of orthotropy 
but does not succeed in other directions. This would require the use of 
more complex formulations, like the higher order methods as referred to 
by Li et al. (2015), Li and Maurini (2019), Scherer et al. (2022) and 
Teichtmeister et al. (2017). This significantly complicates the analysis 
and was not explored here because the objective is to capture the size 
effect on experimental results executed under on-axis loading for this 
laminate. Future experimentation and modeling efforts could improve 
this or shed light to what the best approach could be. 

The strengths were predicted within acceptable errors and the 

Fig. 6. OHT results (a) w = 12 mm (b) w = 24 mm (c) w = 40 mm (d) numerical fracture profile.  

Table 4 
OHT experimental and numerical results comparison.   

Experimental Av. (MPa) FEA Prediction (MPa) Error (%) 

Size A 431.80 463.28 6.70 
Size B 373.90 412.46 9.30 
Size C 365.60 379.07 3.50  
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respective results can be seen in Table 7. The typical crack pattern, 
numerical and experimental, is shown in Fig. 9(b)-(c), respectively. It is 
noted that comparing the computational time required by the contin-
uum damage model used by Furtado et al. (2020) and the PF model 
presented here, the latter achieves the same results within 25 % of the 
time the former requires, all awhile having a much simpler model set-up. 

3.2.2. Off-axis behavior 
The previous brief discussion on the accuracy of the representation of 

the variation of fracture toughness for a cross-ply laminate (Fig. 10) 
presents a limitation of the capability of the model if cases of off-axis 
loading (i.e., loading that does not happen along one of the principal 
axes of orthotropy of the material) are considered. Both previous ex-
amples highlighted the ability of the method to accurately predict size 
effects in notched composite laminates. However, these predictions 
referred to on-axis loading only. With respect to toughness, both present 

the same fracture toughness on the two principal axes of orthotropy and, 
for the QI one, no variation is seen. To the best of the authors’ knowl-
edge, there is no application where a model has been used at an ESL level 
to model the off-axis response and fracture of a MD, thin-ply laminate. 
The model presented is a first attempt in that direction by providing a 
means to account for fracture toughness variability in different orien-
tations, and its accuracy is verified using the experimental results pre-
sented for off-axis OHT of a thin-ply laminate at 30◦, 60◦ and 90◦

performed by Furtado et al. (2021). 
The OHT specimens are in similar shape to that shown in Fig. 5(a) 

with w = 36 mm, d = 12 mm and have a nominal length of L = 250 mm. 
The material system of question is the T700/M21 75gsm thin-ply UD 
tape mentioned previously as H75 with the lay-up now being a hard 
laminate with the lay-up [45/-45/0/45/-45/90/0/45/-45/90/0]$ (the 
lay-up is center symmetric with the middle ply not repeating itself) 
giving the equivalent stiffnesses reported in Table 8. It is noted that, to 
achieve the results for loading in the off-axis direction, all that is 
required is an internal definition within Abaqus of the material orien-
tation (i.e., assigning an orientation to the solid section of the material of 
the plate). Alternatively, this could be achieved by setting ξ ∕= 0 (Eq. 
16–17) and equal to the value of the off-axis angle of loading. Both 
procedures would render the same results. 

By applying Eq. (20), the scaling constants come out to be 
a1 = − 0.9171 and a2 = − 0.9399. This produces the distribution of the 
fracture toughness seen in Fig. 11. 

The numerical results for strength obtained are presented against the 
experimental values in Table 9. As can be observed, the predictions lie 
well within acceptable errors (under 5 %) with respect to the experi-
mental data. It is noted that, once again, the strength of the on-axis test 
was used to obtain the optimal value of the length scale which for this 
laminate was l = 0.8 mm. 

Looking at Fig. 11, that once again compares the fracture toughness 
as obtained via VCCT (please refer to Appendix A) and that assumed by Fig. 7. Failed OHT specimens (Arteiro et al., 2013).  

Fig. 8. Numerical fracture profiles for models with different lengths keeping all other analysis and geometrical parameters (width and hole diameter) constant: (a) 
original length, (b) length reduced to 50%, and (c) length reduced to 30%. 

Table 5 
Material properties for the T700/М21 lamina and cross-ply laminate.   

Ex(GPa) Ey(GPa) Gxy(GPa) vxy 

Lamina 146.6 8.7 4.6 0.34 
Laminate 77.82 77.82 4.6 0.04  

Table 6 
Tested DENT specimen sizes.   

w(mm) a0(mm) L(mm) 

Size A 10 3 250 
Size B 20 6 250 
Size D 40 12 250 
Size E 50 15 250  

A. Mitrou et al.                                                                                                                                                                                                                                  



International Journal of Solids and Structures 273 (2023) 112221

9

the PF formulation, this is not directly obvious as the fracture toughness 
distributions differ. But this difference is not of significant magnitude, 
contrary to the cross-ply case (Fig. 10) that has higher levels of anisot-
ropy (with respect to fracture energy). In that case, the proposed model, 
based on second-order structural tensors to represent anisotropic frac-
ture energy, is expected to “fail” for the off-axis cases. Thus, it is 
recognized that there must exist a limit of applicability of the model to 

Fig. 9. (a) Schematic of the DENT specimen (b) typical numerical result (c) experimental crack pattern (Furtado et al., 2020).  

Fig. 10. Polar plot of the fracture toughness Gc(θ) that is assumed by the PF 
method and VCCT for the cross-ply laminate. 

Table 7 
DENT experimental and numerical results comparison.   

Experimental Av. (MPa) FEA Prediction (MPa) Error (%) 

Size A 289.51 274.70 5.12 
Size B 208.85 217.76 − 4.27 
Size D 164.56 164.54 0.01 
Size E 136.11 147.19 − 8.14  

Table 8 
Material properties for the t700/μ21 lamina and hard laminate.   

Ex(GPa) Ey(GPa) Gxy(GPa) vxy 

Lamina 146.6 8.7 4.6 0.34 
Laminate 54.0 48.3 4.6 0.39  

Fig. 11. Polar plot of the fracture toughness Gc(θ) that is assumed by the PF 
method and VCCT for the H75/hard laminate. 

Table 9 
Off-axis OHT experimental and numerical results comparison.  

Off-axis angle Experimental Av. (MPa) FEA Prediction (MPa) Error (%) 

On-axis (0◦) 333.00 319.98 4.07 
30o 334.00 318.62 4.83 
60o 301.00 315.20 − 4.51 
90o 302.00 305.87 − 1.27  
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general loading cases for MD thin-ply laminates that present high levels 
of anisotropy with respect to fracture energy. 

Finally, in the off-axis OHT testing it is noted that a crack profile that 
deviated from the horizontal axis (direction perpendicular to load 
application direction) was observed, contrary to isotropic or on-axis 
OHT results. As mentioned, the proposed PF model would not impose 
a fracture plane but rather obtain the crack angle as an output, and so, a 
comparison of the predicted fracture path to that obtained in the ex-
periments for the 30◦ and 60◦ off-axis loading tests is presented in 
Fig. 12. The images are superposed on half of the face of the specimen 
(since the numerical result is symmetric along the center axis of the 
hole). This figure shows the satisfactory agreement of the crack path 
obtained by the proposed PF formulation (considering the initial trend 
of the crack while neglecting the near boundary regions) and that 
observed from the experiments. This highlights the necessity to include 
considerations of anisotropic fracture energy as an isotropic consider-
ation would not be able to predict the slanted crack observed. 

4. Conclusion and remarks 

A new methodology to apply the PF method in an ESL approach to 
the case of fracture of balanced MD thin-ply laminates was developed. 
The proposed method entails redefining existing anisotropic PF formu-
lations to obtain the parameters of the model using as inputs lamina 
properties and lay-up information, while also accounting for the varia-
tion of the fracture toughness in different laminate directions. 

The second-order structural tensor of the anisotropic PF model, 
defined by scaled vectors of preferred material directions, was linked to 
the material symmetry and laminate fracture toughness, by defining a 
new formulation to obtain the scaling constants: using an analytical 
approach to calculate the fracture toughness of a MD laminate, the 
fracture toughness in two principal material directions is obtained, 
enabling the calculation of the scaling constants accordingly. The 
scaling constants, thus, become material dependent, something that 
consequently reduces the number of numerical parameters the model is 
dependent on. The methodology also significantly simplifies any cal-
culations as well as test matrices required to obtain the inputs of the 
model as it only requires the lay-up and ply elastic properties and 

Fig. 12. Comparison of experimental and numerical crack paths for (a) 30o off-axis loading and (b) 60o off-axis loading.  

Fig. A1. Schematic of the (a) CT configuration (b) finite element model (c) close-up at the elements and nodes of the initial crack tip.  
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fracture toughness and the definition of the length scale which is 
recognized to add an additional parameter. 

The procedure is implemented for FEA using Abaqus, and a UMAT +
UMATHT approach is followed. The UMATHT is used to include the 
anisotropic PF model via a UMAT approach while allowing the user to 
internally update and define the structural tensor. The code is available 
upon request. 

To validate the proposed formulation, experimental results available 
in the literature were compared with those obtained from FEA. Two 
cases, OHT and DENT tests, demonstrated the ability of the proposed 
formulation to accurately capture size effects for MD laminates. More-
over, experimental data from off-axis OHT of a non-QI laminate were as 
well accurately captured. Both strength and crack path predictions lied 
well along the experimental results. 

Future work includes the extension of this methodology, e.g., using 
higher order methods, to accurately capture the anisotropic fracture 
energy required to model in full the off-axis behavior of generally 
layered MD laminates of any level of anisotropy. 
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Appendix A:. Use of the VCCT to determine the fracture 
toughness of the laminate 

The methodology proposed here, which assumes the orthotropic 
structural tensor for the crack density function, produces and can only 
assume an elliptical form for the distribution of the inverse of the frac-
ture toughness. However, whether this is or is not representative of the 
actual realistic fracture toughness distribution is to be determined. In 
this work, the VCCT (Krueger, 2004) is used to obtain the fracture 
toughness of the laminates for various crack orientations with respect to 
the principal material axes. A compact tension (CT) configuration of unit 
length (1 mm edge) shown in Fig. A.1(a) was used and was simulated in 
Abaqus using the discretization shown in Fig. A.1(b). Each part of the CT 
specimen is separate, and they are bonded at the mid plane for half of the 
length for which in Abaqus a tie constraint of the surfaces is considered. 

The material was assigned an orientation with respect to the crack 
orientation for which the fracture toughness is to be known. This was 
done for angles from 0◦ to 90◦ with increments of 5◦. After the analysis 
was run for a certain value of the displacement, the respective ERR value 
is saved. Using as reference the ERR of the laminate at 0◦, a ratio is 
calculated to produce the values of the fracture toughness for various 
angles. This was then fitted in MATLAB, using a sum of sines function 
with 8 terms (sin8), to produce the fracture toughness distribution form 
obtained by VCCT. 
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