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Earthquake risk assessment is a fundamental step towards disaster 

risk management. Recent technologies such as low-cost sensors or 

the advancements in machine learning algorithms have the potential 

to revolutionize the manner in which earthquake damage and risk is 

assessed. In the ASSIMILATE project new sensing technology was 

combined with advanced machine learning algorithms and numerical 

models to develop a framework for vulnerability and damage assess-

ment. The methods and models produced by this project contributed to 

the mitigation of several limitations in the current practice regarding 

vulnerability assessment and rapid loss estimation, and resulted in the 

installation of 10 sensors in the country that are currently measuring 

ground motions and building vibrations.
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01.
Introduction
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Introduction

Seismic vulnerability and risk assessment are essential steps to 

better understand, and eventually mitigate, the impact from ear-

thquakes. Prior to the occurrence of destructive earthquakes, risk 

assessment can support decision makers in the development of retro-

fitting interventions, or in seeking insurance coverage. An inaccurate 

assessment of the risk might lead to an overestimation of the level of 

safety, discouraging houseowners to take measures to reduce their 

risk. After the occurrence of an earthquake, it is critical to rapidly 

assess the potential impact and distribute the available resources 

effectively. Emergency rescue reports from past earthquakes indicate 

that 95% of the successful rescues of people trapped under debris 

occur within the first 48 hours, which emphasizes the need to rapidly 

identify areas in need of support. The assessment of earthquake risk 

and the rapid estimation of damage are challenging tasks affected by 

large uncertainties. It is thus important to explore new technologies 

and tools to improve the process of assessing the seismic safety of 

buildings before and after the occurrence of destructive events.

Recently developed low-cost sensors to measure vibrations 

and open-source artificial intelligence tools have the potential to 

revolutionize the manner in which earthquake damage and risk is 

assessed. These devices have the capability to transfer data in real-

-time, and measure ambient vibrations at the top of buildings or 

ground motion at the foundation. These vibrations can be used to 
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calibrate vulnerability models or to estimate the expected damage 

after the occurrence of destructive events. Despite the usefulness of 

such technology, there are still challenges in its employment, which 

currently prevents its effective application. While the measure-

ment of the dynamic properties of a single building to calibrate a 

numerical model is commonly performed, their integration on vul-

nerability modelling for building portfolios has not been explored. 

Consequently, monitoring data is rarely used for the calibration of 

vulnerability functions for large building portfolios, thus hampering 

their exploitation in risk modelling, which could improve considera-

bly the quality of loss models. On the post-event side, data regarding 

the structural response of buildings is not used on an operational 

basis, and seismic networks are sparse and limited to a few stations 

per urban centre. For example, mainland Portugal has less than 50 

recording stations in its territory, which might prevents the accurate 

estimation of ground shaking in some populated areas.

The reasons for the inability to integrate monitoring data in por-

tfolio risk analyses or to accurately estimate structural damage are 

due to the high costs involved in the installment and maintenance 

of sensors, as well as lack of knowledge regarding the integration of 

large complex datasets (big data) in vulnerability and loss assess-

ment. The former issue is now being overcome with the availability 

of low-cost sensors, while the latter challenge is being revolutioni-

zed by artificial intelligence (and in particular machine learning) 

technology that can process large amounts of data to predict com-

plex outcomes. Some of the open-source tools allow researchers to 

integrate machine learning into their computational frameworks. 

In vulnerability modelling and damage assessment, machine lear-

ning enables the incorporation of a wide range of data regarding 

the dynamic properties of structures to better calibrate numerical 

models, as well as the exploration of a multitude of structural res-

ponse and ground motion parameters to better estimate shaking and 

damage in near-real time.
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In the ASSIMILATE project we combined low-cost devices with 

machine learning technology and numerical models to develop a 

framework for vulnerability and damage assessment. To this end, a 

database of dynamic properties of Portuguese buildings was created, 

and low-cost sensors were installed in several buildings to collect 

additional data, which was used to calibrate numerical models. 

Moreover, data recorded from past events was explored to expand 

the framework to the estimation of damage and losses using moni-

toring data captured in near-real time. The consortium involved in 

this project included partners with decades of experience in seismic 

monitoring, vulnerability modeling and processing of large datasets 

using machine learning. The methods and models produced by this 

project contributed to the mitigation of several limitations in the 

current practice regarding vulnerability assessment and rapid loss 

estimation. The main contributions of this project include:

1) Compilation of a database of dynamic properties for Portuguese 

buildings;

2) Development of a new national exposure model for earthquake 

scenarios and probabilistic seismic risk assessment;

3) Development of vulnerability functions for reinforced concrete 

structures based on period elongation;

4) New sets of fragility and vulnerability functions for the 

(granite and limestone) unreinforced masonry building stock;

5) A new ground motion model for mainland Portugal using 

stochastic simulations that can be combined with low-cost 

sensors;

6) A demonstration of the benefits of seismic monitoring using 

dense seismic networks in the district of Lisbon;

7) A design of a rapid loss assessment system for Portugal, and 

integration of conditioning modules on an open-source tool;

8) An assessment of seismic risk for Portugal covering give risk 

metrics, which can be used to identify areas where low cost 

sensors should be installed;

9) Installation of 10 new seismic monitoring sensors in Portugal, 

which can be used for rapid loss assessment.
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This project had several stakeholders such as the Portuguese 

Civil Protection Authority, the Portuguese Institute of the Sea 

and Atmosphere (which monitors seismic activity), the National 

Laboratory of Civil Engineering, the Global Earthquake Model 

Foundation and SafeHub. It also contributed to the goals of the inter-

national agendas of the Sendai Framework and the United Nations 

17 Sustainable Development Goals, which ask specifically to better 

understand risk and reduce the impact of natural hazards.



CHAPTER II

02.
Exposure Model 
for the Residential 
Building Stock in 
in Portugal
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Exposure Model for the 
Residential Building Stock in 
in Portugal

Exposure models include detailed information about the spatial 

distribution of the built environment, namely its geographical loca-

tion, number of buildings, structural properties, replacement costs, 

and number of occupants. The exposure models for Portugal used 

in previous risk studies were developed using information from the 

2011 national housing census (Silva et al., 2014; Sousa and Costa 

2016), and neglected the commercial and industrial building stock. 

With the release of new data collected in the context of the 2021 

national housing census (https://censos.ine.pt/), it is now important 

to update the existing model and understand how this new infor-

mation can impact the risk estimates. Moreover, within the scope 

of the European H2020 SERA project, an exposure model for the 

commercial and industrial building stock covering Portugal was 

developed (Crowley et al. 2020). In this chapter, we describe how 

the new exposure model for the residential building stock was deve-

loped, and we summarize the main features of the commercial and 

industrial building stock released as part of the SERA project. This 

model was fundamental for the impact analysis performed within 

the scope of ASSIMILATE.
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Residential building stock

The latest housing census for Portugal captures detailed informa-

tion about the residential building stock, including the number of 

buildings at the statistical section (i.e., an administrative division 

defined specifically for the national census), disaggregated by the 

number of storeys and year of construction. In contrast with the 

previous 2011 census data, this newer assessment did not include 

the type of construction of each building (i.e., reinforced concrete, 

masonry with a slab, masonry walls without slab, adobe walls or 

loose stone masonry, and other), which is fundamental to categorize 

each building into a vulnerability class. For this reason, the informa-

tion about the number of buildings within each construction type 

from 2011 was used in the development of the new model. To adjust 

these values to the current number of buildings, we calculated the 

difference in the number of buildings between 2011 and 2021. Then, 

for each parish (freguesia), it was assumed that if this difference is 

negative (i.e., the number of buildings in 2021 is lower than in 2011), 

the buildings that were demolished were either masonry or older 

buildings, and therefore these were excluded from the model. On 

the other hand, when there was an increase in the number of buil-

dings, we assumed that the new buildings were constructed using 

reinforced concrete.

The housing census of 2021 reports approximately 3.5 million 

residential buildings, comprising 6 million dwellings. Considering 

the attributes available for each building (type of construction, year 

of construction and number of storeys), the building portfolio was 

divided into different building classes following the GEM building 

taxonomy (Silva et al. 2022). According to the type of construction, 

the buildings were categorized into 5 main classes: reinforced 

concrete (CR) buildings, brick/stone masonry (with wooden floors 

(MUR+FW), or with concrete f loors (MUR+FC), adobe masonry 

buildings (MUR+ADO), and other/unknown typologies (UNK). 

As shown in Fig. 1, the majority of the building stock is made of 



reinforced concrete (53.7%), housing around 63% of the population.

The year of construction allows understanding the level of 

seismic design in place when the buildings were constructed. By 

comparing the construction year classes available in national hou-

sing census with the evolution of seismic codes in Portugal (e.g. 

Silva et al. 2014), four design levels were defined: no-code (CDN) 

refers to buildings built before 1960, low code (CDL) from 1961 

until 1980, moderate code (CDM) from 1981 until 2010, and high 

code (CDH) refers to structures built after 2011. It is relevant to 

note that around 36% of the building stock has been built before 

the introduction of the 1983 design code (RSA 1983). Fig. 1 shows 

the distribution of buildings for each construction typology, accor-

ding to the construction period and number of storeys. We note 

that even if an adobe or unreinforced masonry building was built 

recently (and would thus fall under the CDM or CDH category), the 

building is still assumed to have limited seismic capacity, as dicta-

ted by the vulnerability model described in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Distribution of buildings according to type of construction, cons-

truction period, and number of storeys
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For the estimation of economic losses, it was necessary to esta-

blish a replacement value for each building, which corresponds to 

the cost required to build a structure with the same characteristics 

and area, based on current construction costs. To calculate the 

total replacement cost of each building, we multiplied the average 

construction cost per square meter by the total area of the building. 

The area of each building was estimated considering the average 

number of dwellings per building and the average area per dwelling. 

Although the census data does not have disaggregated data on the 

number of dwellings per building type, it provides the distribution 

of the number of dwellings according to the building height. This 

allows us to calculate the average number of dwellings for buildings 

with a specific number of storeys. As shown in Table 1, buildings 

with 3 storeys, for example, have on average 2.08 dwellings.

 

Table 1. Average number of dwellings per building per number of storeys

 
1
storey

2
storeys

3
storeys

4
storeys

5
storeys

6
storeys

≥7
storeys

1.04 1.15 2.08 6.55 9.78 11.83 15.41

Regarding the average area per dwelling, it is important to dis-

tinguish separated houses from apartment buildings, as the latter 

tends to have smaller areas. The National Statistical Office (INE) 

provides information concerning the area per dwelling for the seven 

areas def ined by the Coordinating Committee for Regional 

Development (CCRD) in Portugal, with an average value for the 

country of 101 m2. We assumed that this is a reasonable value for 

dwellings in apartment buildings. For separated houses, we reviewed 

hundreds of entries in real estate web portals to define a reasonable 

dwelling area. From this review, and based on the data from INE, 

we assumed that buildings with 1 storey or 2 storeys are houses with 

an average area of 150 m2 and 120 m2 per dwelling, respectively, 

while buildings with 3 storeys or more are apartment buildings with 

an average area per dwelling of 100 m2.
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The construction costs per 
square meter have important 
variations throughout the 
country, depending on the 
building location. The housing 
construction price in 2022, 
calculated according to the 
traditionally accepted method by 
the majority of insurers operating 
in Portugal, are divided in 3 
zones. Zone I includes the district 
capitals, other major cities and 
the islands (830.03 €/m2), zone 
II includes counties located in 
urban areas (725.56 €/m2), and 
Zone III refers to counties located 
in rural areas (657.35 €/m2).

To estimate the number of occupants in each building, we multi-

plied the average number of occupants per dwelling by the number 

of dwellings in each building. The average number of occupants 

per dwelling was calculated by dividing the total population (10.3 

million) by the total number of dwellings (6.0 million), resulting in 

1.72 occupants per dwelling.
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Commercial and Industrial building 
stock

Information regarding the industrial and commercial building stock 

is far less detailed than the residential counterpart, both in terms of 

spatial resolution and construction attributes. This is a trend that 

is common to most countries (Yepes et al. 2023), leaving exposure 

analysts with no alternative but to use simplified methodologies. In 

this project, commercial buildings include offices, wholesale, retail 

(trade), and hotels, while the industrial facilities cover manufactu-

ring, mining, quarrying, and construction activities. As previously 

mentioned, we adopted the commercial and industrial building stock 

for Portugal developed within the scope of the H2020 European 

SERA project. We summarize herein the methodologies that were 

followed for the development of these models, and additional details 

regarding the derivation procedure and assumptions can be found 

in Crowley et al. (2020).

For the development of the commercial building stock, socio-eco-

nomic data was collected from the National Institute of Statistics 

(INE) regarding the number of (commercial) businesses. Assuming 

that each business requires a building or facility, this step led to 

the number of buildings at the second administrative level. Then, 

a mapping scheme was applied to each type of commercial activity 

to attribute a building class to each asset. The cost of each asset 

was determined by assuming an average area and a construction 

cost, which again is dependent on the location of the building. We 

note that some commercial activities (in particular wholesale and 

retail), are located on the ground floor of residential buildings. These 

buildings of mixed use are identified within the national housing 

census (approximately 10% of the residential buildings in Portugal). 

This information was used to reduce the number of commercial 

buildings, to avoid double counting the construction area of this 

type of activity.
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The development of the industrial building stock followed a diffe-

rent approach, as originally described in Sousa et al. (2017). For this 

type of buildings, an European land cover dataset (CORINE 2006) 

was used to identify the areas in Portugal where industrial buildings 

might exist, and the number of facilities were identified using data 

from OpenStreeetMap (REF). A statistical process was applied 

to understand which industrial areas had all buildings identified 

(within OpenStreetMap), and which areas were incomplete, and 

thus required the application of an extrapolation procedure based 

on the estimates derived for the complete areas. For the specific case 

of Portugal, this procedure was validated against detailed cadastral 

data regarding industrial buildings from 18 districts (Araujo et al. 

2015). The commercial and industrial exposure models are available 

in the EFEHR exposure repository (https://gitlab.seismo.ethz.ch/

efehr/esrm20_exposure), along with all of the assumptions concer-

ning areas, costs, and mapping schemes.

Appraisal of the exposure model for 
Portugal

Residential buildings represent most of the exposure model for 

Portugal, accounting for 92.4% of the number of buildings, while 

commercial and industrial building represent 4.8% and 2.8%, 

respectively. In terms of replacement cost, residential buildings 

represent a lower fraction (78.9%) due to the high costs of the con-

tents in commercial and industrial buildings. These distributions 

are depicted in Fig. 2.
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Figure 2. Distribution of the number of buildings (left) and replacement 

cost (right) by occupancy

Fig. 3 summarizes some of the main indicators of exposure model 

aggregated at the district level, while Fig. 4 and 5 present the econo-

mic value and number of buildings at the smallest available admi-

nistrative division (i.e., freguesia). These results indicate that more 

than 50% of the economic value of the building stock is concentrated 

only in four districts (Lisbon, Porto, Setubal, and Braga), while the 

number of buildings is more uniformly distributed, with half of the 

building stock located in the top 6 districts. It is interesting to note 

the variation in the percentage of buildings with insufficient seismic 

provisions (from 42% in Madeira to 79% in Portalegre and Beja). It is 

also important to highlight that only 12% of the total number of buil-

dings follow the most recent seismic regulation. These are important 

findings, as they allow identifying concentrations of exposure with 

an expected poor seismic performance, and thus where additional 

risk analyses should be performed.
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Figure 3. Exposure 

indicators of the Portuguese 

building stock per district 
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Figure 4. Economic value at the smallest available administrative division 

(i.e., freguesia)
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Figure 5. Number of buildings at the smallest available administrative division 

(i.e., freguesia)
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Exploring Modal Parameters for 
Vulnerability Analysis

During the past two decades, a significant number of studies have 

been carried out in the field of Non-destructive Damage Evaluation 

(NDE) methods using the changes in the dynamic response of 

a structure. The NDE methods can be classified into different 

levels, according to the complexity of the information available for 

the analysis. Each level of damage identification requires a gra-

dually increasing amount of data and more complex algorithms. 

Consequently, their set-up and effectiveness often require increasing 

costs, with higher error probability, however, rapid damage assess-

ment is the practical issue in assessing the damage of structures for 

making decisions about their functionality Gallipoli et al. (2020). 

Measuring the dynamic parameters of structures and finding the 

relation of its changes with different levels of damage can be a useful 

and cost-effective way to rapidly assess potential damages due to 

earthquakes. Therefore, vulnerability assessment based on the result 

of monitoring structural modal parameters variation can be a useful 

method with a high level of accuracy.

One of the main modal parameters of a structure is the period of 

vibration that is mainly influenced by its total mass and stiffness. 

During an earthquake, damage affects both structural and non-

-structural elements, leading to a decrease in their stiffness. This 

phenomenon is known as "period elongation," and essentially, the 
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more severe the damage, the more significant the increase in the 

period compared to the undamaged state. The extent of period 

elongation is a helpful indicator of the building's damage state and 

vulnerability assessment: higher elongation implies more significant 

damage. The extent of damage to these components, commonly 

termed as a Damage Limit State (DLS), can be assessed either 

through visual inspection or by using numerical analyses that cor-

relate the exceeding of a certain Engineering Demand Parameter 

(EDP) threshold with the attainment of a specific DLS for a specific 

earthquake scenario. 

In this project, we conducted numerical time history and pusho-

ver analyses of reinforced concrete buildings. The pushover analysis 

was used to determine the thresholds for a set of DLS of infilled RC 

structures. The main objective of this part of ASSIMILATE was to 

establish a relationship between period elongation and structural 

damage, which can be analytically measured using finite elements 

methods. The aim is to determine whether the building's period 

elongation can be a reliable indicator for assessing its vulnerabili-

tyand loss estimation after an earthquake. 

Development vulnerability functions 
based on period elongation

Five example buildings located in Portugal were considered for this 

study: 4-storey and 3-storey RC buildings with infill walls with 

different seismic design coefficients (beta equal to i.e., 20, 10, 5 and 

0 %). Information about the geometrical and material properties of 

these archetypes can be found in Table 1 and Figure 1.
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Table 1. General description of buildings information

No of 
building

Length 
X (m)

Length 
Y (m)

Fcd 
(MPa)

Fsyd 
(MPa)

ax 
(m)

ay 
(m)

astair 
(m)

beta Number 
of 
storey

1 25,75 12 7 10,5 5,65 4 3.16 0 3

2 25,75 12 7 10,5 5,65 4 3.16 5 3

3 25,75 12 7 10,5 5,65 4 3.16 10 3

4 25,75 12 7 10,5 5,65 4 3.16 10 4

5 25,75 12 7 10,5 5,65 4 3.16 20 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geometry of case-study building

The non-linear response of buildings was modeled using the 

OpenSees software by adopting a lumped-plasticity approach. 

Structural vulnerability assessment is characterized by significant 

uncertainty due to ground motion, as noted by Shome and Cornell 

(1999). Therefore, particular attention was paid to the selection of 

ground motion records. The conditional spectrum method (CSM) 

proposed by Baker (2011) was utilized to select 180 ground motion 

records used in the numerical analysis. The response spectra of the 

chosen records are displayed in Figure 2.
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Figure 2. Elastic response spectra of the selected ground motion records 

conditional to T=0.3s

 

The seismic loads were applied to the structure's foundation, 

perpendicular to its length. The structural damage was categorized 

into four damage states: slight, moderate, extensive, and complete 

damage. The threshold values for each damage state were deter-

mined based on the anticipated yield and ultimate displacements 

derived from the pushover analysis. The ultimate displacement is 

considered as the point with 20% reduction of base shear. Finally, 

for each capacity curve, a quadrilinear curve was fitted.

Traditionally, vulnerability functions were developed from the 

convolution between fragility models and discrete damage-to-loss 

models (see example in Table 2). However, to preserve the variabi-

lity in the loss estimates, the methodology proposed by Silva (2019) 

which correlates the expected Loss Ratio (LR) at different damage 

states directly with an EDP was adopted. Combining the damage 

thresholds computed from the capacity curve with the damage-to-

-loss model in Table 2 produced a discrete relationship between the 

structural performance and expected loss (depicted in Figure 4 as 

vertical bars).
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Figure 3. Capacity curves for the case study buildings

 

 

Table 2. Discrete damage-to loss model 

 
Damage State Loss Ratio (LR) (%)

Slight Damage (DS1) 5

Moderate Damage (DS2) 20

Extensive Damage (DS3) 60

Complete Damage (DS4) 100
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Figure 4. Relation between the LR (Loss Ratio) and Sd (Sdu and Sdy) for 

each building; a) 3-story with beta=0%; b)3-story with beta=5%; c)3-story 

with beta=10%; d)4-story with beta=10%; e)4-story with beta=20%
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The Open Sees software was chosen due to its capability to 

perform Eigenvalue analysis to determine the period of vibration 

of the structure at any step. We estimated the period elongation 

by comparing the original period (T1) with the period of vibra-

tion at the final time step (T2). After the estimation of the period 

elongation and the expected loss ratio for each ground motion 

record, a new vulnerability function was derived, as presented in 

Figure 5 using the period elongation as the independent variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Period elongation versus loss ratio

Based on the vulnerability results, it is possible to observe that 

the loss ratio increased with different values of period elongation 

depending on the seismic coefficient that the structure was desig-

ned for. Figure 5 revealed that for structures that are designed for 

seismic coefficient equal to 20%, the maximum loss ratio occurred 

at a higher period elongation. Furthermore, the maximum loss value 

is reached after the elongated period reaches 2 for the structure not 

designed for seismic loadings. 
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Another important part of this analysis was the verification 

of the results based on the previous studies by considering some 

variables such as difference in infill panels, materials, structural 

seismic design coefficient and other parameters to approximately 

verify our analysis against experimental results. This verification 

also produces a quantification approach for rapid damage assess-

ment of structures. One of the most relevant measurements on this 

topic was produced by Vidal et al (). The Figure 6 shows the relation 

between maximum, minimum and average period elongation versus 

grades of damage. We concluded that the average variations of T 

>10 % indicate the occurrence of damage in buildings. For average 

variations of T >55 %, the buildings were completely damaged. The 

collapse of structures occurred at maximum period elongation equal 

to 150% which is similar to the conclusion by Calvi et at. (2006). 

These results are also in line with the results of Vidal et al. (2014) 

where 23 reinforced concrete buildings were analyzed before and 

after the Lorca earthquake. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Period elongation versus degree of damage
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These functions can be combined directly with the low-cost 

sensors that were used within the scope of the ASSIMILATE pro-

ject. Once a sensor is installed, it can measure both the period of 

the structure before any damage occurs, and then again after the 

occurrence of a seismic event. If a period elongation is detected, the 

vulnerability functions presented herein can be used to determine 

the most likely level of damage or loss. This approach is superior 

to conventional methodologies that use an intensity measure (e.g., 

peak ground acceleration or spectral acceleration), as period elon-

gation has a direct correlation with loss of structural stiffness due 

to damage initiation.
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Vulnerability Assessment of 
Unreinforced Masonry 

The assessment of the impact of earthquakes on livelihoods requires 

models that can directly relate the expected number of building 

occupants to different injury levels conditional on an intensity 

measure (IM) (i.e., fragility functions). However, the vast majority 

of the existing fragility studies focused on the assessment of struc-

tural damage (Yepes et al. 2016) or economic losses (e.g., collapse 

risk in RC buildings, damage in masonry buildings). This lack of 

fragility or vulnerability functions to evaluate the human impact 

hinders the availability, accuracy, and reliability of fatality modelling 

studies. This aspect was particularly important within the scope of 

the ASSIMILATE project, given that one of the goals was to design 

a rapid loss assessment system to assist the population in case of a 

destructive event. 

Past efforts focusing on assessing human losses have followed 

two main approaches: 1) empirical functions based on databases of 

human losses, and 2) hybrid approaches that combine fragility func-

tions with empirical (or expert judgement) fatality rates. The former 

approach consists of developing statistical models that relate fatality 

rates directly with a magnitude or an IM (e.g., Moment magnitude - 

Mw or Modified Mercalli Intensity - MMI). In the hybrid approach, 

the assessment of human losses or injured is performed through 

the application of ratios that convert the probability of complete 
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structural damage (i.e. a level of damage beyond the possibility of 

repair) into a probability of collapse, which is then further converted 

into a probability of fatality (or injured) based on empirical ratios 

(e.g., Spence 2007, FEMA 2018). This approach has the advantage 

of allowing users to take advantage of existing fragility functions 

originally derived for structural damage (e.g., Ceferino et al. 2018, 

Maio et al. 2020). However, the employment of such rates might lead 

to unrealistic fatality rates, particularly for seismic events where 

extreme ground shaking is generated. This procedure is illustra-

ted in Figure 1. In this example, an existing fragility function for 

complete damage (i.e., herein termed as DS4 following the damage 

scale from Martins and Silva 2020) is converted into a probability of 

collapse using a collapse probability conditional on complete damage 

(P[col|DS4]), and then converted into a probability of fatality using 

a fatality rate conditional on structural collapse (P[F|col]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Procedure to derive a vulnerability function in terms of fatality 

rates, starting from an existing fragility function for structural damage of a 

2-storey unreinforced masonry building
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This approach for the derivation of vulnerability functions for the 

assessment of fatalities can lead to a rapid saturation of the fatality 

rates, even for extremely high IM, potentially underestimating the 

expected losses for strong seismic events. For the example presented 

in Figure 1, even when the probability of complete damage reaches 

100%, the probability of fatality is 1.52%. In contrast, the average 

fatality rates for the collapsed buildings in the 2019 M6.4 Durres 

(Albania) and 2020 M6.7 Elazig (Turkey) earthquakes were appro-

ximately 45% (So and Pomonis 2012), twice the value proposed by 

HAZUS. One of the limitations of this approach is the reliance on tra-

ditional damage states and conventional engineering demand para-

meters (EDPs – e.g., maximum inter-story drift ratio), which cover 

a wide range of damage levels (i.e., from damaged beyond repair to 

full collapse), which will obviously influence the likelihood of injuries 

and fatalities (e.g., Crowley et al. 2017; Abeling and Ingham 2020). 

It is thus important to consider alternative approaches to measure 

the level of damage in buildings exposed to strong ground shaking. 

So (2016) did a thorough review of damage and fatality data from 

25 fatal earthquakes between 1968 and 2011 and established a cor-

relation between typical volume loss and fatality rates for several 

building classes. Abeling and Ingham (2020) used survey data from 

the M7.1 2010 Darfield and M6.2 2011 Christchurch earthquakes 

to evaluate the correlation between volume loss and fatality ratios. 

In these examples, a strong correlation between volume loss and 

fatality rates was observed. In ASSIMILATE, a framework was 

developed to derive fatality vulnerability functions that combine the 

results of numerical simulations with empirical fatality rates, such 

as the ones proposed by the studies presented previously. Recent 

numerical approaches and laboratory tests were leveraged to develop 

3D models representative of masonry structures. Archetypes were 

selected using statistical models representing the geometric and 

material properties of limestone and granite buildings from Portugal 

(Lovon et al. 2022).This structural typology is particularly prevalent 

in Portugal (accounting approximately for 50% of the residential 

building stock). Nonlinear time-history analyses were performed 
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using a suite of ground motion records, and the results were used 

to estimate the volume loss for each analysis. Then, this metric was 

converted into fatality rates using an existing empirical model. These 

functions and the exposure model presented in Chapter 2 were used 

for the evaluation of the benefits of seismic monitoring in the coun-

try using low-cost sensors. 

Characterization of the masonry building stock

The vulnerability methodology presented in this 

study has been applied to the Portuguese masonry 

building stock, which is the most vulnerable fraction 

of the national building stock, representing almost 

50% of the number of buildings. Figure 2a illustrates 

the date of construction combined with the number 

of storeys of masonry buildings in Portugal. The 

construction of masonry buildings has been 

decreasing in recent decades, but it is still used 

throughout the country, including in regions with 

a relatively high seismic hazard (i.e., PGA ≥ 0.25g 

for the 475-year return period on soil conditions). 

Figure 2b presents the annual growth rate of this 

type of construction in the last 100 years according 

to the level of seismic hazard. The seismic input 

was calculated using the model from Vilanova and 

Fonseca (2007).
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Figure 2. Distribution of masonry buildings per construction period 

and number of storeys, and Compound annual growth rate of masonry 

construction per period at different levels of seismic hazards for a 475-

year return period on soil conditions

a)

b)
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Limestone and granite are the most common types of stones 

employed for masonry construction in Portugal's central and nor-

thern regions, respectively. Lime-sand mortar is usually employed 

for bed joints, yet a minor proportion of buildings, mainly granite 

masonry buildings, present dry joints as this type of joint is asso-

ciated with heritage architecture. Inter-storey systems are made 

either of timber or reinforced concrete in similar proportions, while 

the roof is typically made of timber and ceramic tiles. Most common 

foundations for this building type consist of an enlargement of the 

masonry walls at the base using materials with poorer quality and 

arrangement. 

Lovon et al. (2021) investigated the geometric features of limes-

tone and granite buildings based on a database of 200 existing 

structures. From this review, statistical models were developed for 

a set of 10 geometric features, as presented in Table 1. The mecha-

nical properties of this type of construction have been the subject 

of several past studies, which indicate a large variability for most 

of the parameters. This uncertainty can be attributed to the wide 

diversity of masonry assemblies, differences in the unit size, type of 

mortar, irregularities and degradation. Another important source 

of uncertainty is the type of test performed to obtain those proper-

ties, ranging from static, cyclic, time-history, in-situ, laboratory, 

destructive, semi-destructive and non-destructive. Conscientious of 

this variability, the mechanical properties adopted in this work are 

summarized in Table 1.
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Table 1. Geometric and mechanical properties of limestone and granite 

masonry buildings

Element Description Unit Limestone Granite

Geometric 

properties

Ground floor height m N(2.98,0.46) N(3.60,0.39)

Upper stories height m N(2.90,0.31) N(3.30,0.39)

Length X-direction m Log(6.7,2.70) Log(6.20,0.94)

Length Y-direction m N(8.20,2.10) N(17.0,3.90)

Wall thickness (≤3 stories) m Wei(0.66,0.07) Wei(0.54,0.11)

Wall thickness (>3 stories) m Log(0.69,0.08) N(0.61,0.11)

Average wall thickness 

reduction

- Γ(0.15,0.09) Γ(0.16,0.08)

Opening ratio (ground) - Beta(0.46,0.14) Beta(0.55,0.13)

Opening ratio (upper stories) - Beta(0.27,0.05) Beta(0.43,0.10)

Non-structural walls density - Γ(0.026,0.01) Γ(0.026,0.10)

Bricks

(solid 

elements)

Elasticity modulus GPa 0.76 0.93

Poison ratio - 0.30

Static coefficient of friction - 0.80

Dynamic coefficient of friction - 0.60

Penalty stiffness factor - 1.00

Mortar

(cohesive 

elements)

Normal failure stress MPa 0.12 0.15

Shear failure stress MPa 0.12 0.15

Normal energy release rate N/m 30.00 36.00

Shear energy release rate N/m 30.00 36.00

Normal stiffness GPa 0.76 0.93

Tangential stiffness GPa 0.76 0.93

Beams Timber elasticity modulus GPa 7.00

Design compressive strength MPa 16.00

 
* are the Normal, Lognormal, Weibull, Gamma and Beta distributions, respectively, 

defined by the mean and standard deviation
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Due to the absence of destructive events in the last decades in main-

land Portugal, there is a lack of damage data for these building typo-

logies. Thus, the expected damage patterns must be inferred from 

similar types of construction or experimental campaigns. From the 

review of the literature, we identified two main failure mechanisms. 

The first failure type is herein termed as “zero” mechanism, and it is 

one of the primary causes of building collapse. It consists of the disa-

ggregation of masonry elements due to the poor quality and lack of 

capacity to resist horizontal forces, as depicted in Figure 3. The 

second failure type is the out-of-plane mechanism, which consists of 

the total or partial overturning of a façade. An example of an out-of-

-plane mechanism is shown in the same figure. Other important 

damage mechanisms include vertical instability of the walls, bending 

rupture, corner overturning, and roof pounding (Indirli et al. 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. “Zero” collapse mechanism (left) and out-of-plane failure 

mechanism (right) observed in the Mw 5.9 L’Aquila Earthquake

a) b)
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Framework for fatality vulnerability 
assessment

With the significant advancements in numerical modeling of 

masonry buildings, it is possible to explicitly simulate structural 

collapse. For example, Grant et al. (2021) modeled a 2-storey unrein-

forced masonry building representative of the Groningen region 

(Netherlands) and quantified the probability of explicit collapse 

through nonlinear time-history analysis. This type of analysis allows 

taking advantage of engineering demand parameters (EDPs) that 

characterize the level of destruction explicitly. The framework for 

fatality vulnerability assessment followed in ASSIMILATE starts 

with the generation of single or multiple 3D building models based 

on existing geometric and mechanical models (see Table 1). These 

models are subjected to nonlinear time-history analyses using a set 

of ground motion records, and an algorithm is used to estimate the 

volume loss resulting from each analysis. 

 

Numerical modeling

We created 3D numerical models for 1, 2, 3 and 

4-storey limestone and granite buildings. Using the 

sampled openings area, a façade configuration was 

assigned according to the archetypes depicted in 

Figure 4. The relation between the opening area 

and the layout of the façade was established based 

on the information obtained from the database of 

existing masonry buildings, as described in Lovon 

et al. (2021) A single archetype was selected for the 

vulnerability analysis for the remaining building 

classes due to the high computational cost. We 

adopted the archetypes whose geometrical proper-

ties were closest to the average geometric features 

found in the previous studies.

Figure 4. Façades archetypes and 

openings area
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The strategy adopted herein for the numerical modeling of these 

structures consists in discretizing each building into a set of homoge-

neous elastic blocks attached by zero-thickness cohesive elements, in 

which the inelastic behavior of the building is concentrated, and the 

contact surface after detaching is defined. We used the LS-Dyna50 

software due to its capacity to model explicit structural collapse 

and quantification of volume loss, which is a key demand parameter 

in this study. Illustrative representations of the numerical models 

developed for the three façades previously described are presented in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Sampled buildings exhibiting two, three, and four axes of openings

These numerical models allowed the simulation of several com-

mon collapse mechanisms, including the two main mechanisms pre-

viously described (i.e. “zero” and out-of-plane collapse mechanisms), 

as depicted in Figure 6.
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Figure 6. Examples of failure mechanisms obtained numerically for: a) 

“zero” collapse mechanism and b) out-of-plane collapse mechanisms in 

the upper storey of the front façade

Selection of Ground Motion Records

A set of 48 bi-directional ground motion records were selected from 

the European Engineering Strong Motion Database (ESD), conside-

ring records from stable continental and active shallow crust regions. 

Since the intended use of the fragility and vulnerability functions are 

for regional and national analysis, we avoided site-specific selection 

methods. Considering the tectonic environment in Portugal (e.g. 

Silva et al. 2014), we selected ground motion records with a moment 

magnitude between 5.0 and 7.5 at distances between 10 and 200 

kms. The records cover intensities between 0.05 and 0.95 g of peak 

ground acceleration (PGA), and we aimed at a uniform distribution 

of PGA between this range to avoid a bias towards weaker motion. 

Some of the records were scaled due to the lack of recording with 

strong ground shaking in the ESD.
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Fatality vulnerability assessment

As previously mentioned, most studies on fatality modeling use exis-

ting fragility functions (for complete or near-collapse damage states), 

which usually use engineering demand parameters (EDPs) such as 

maximum inter-storey or global drift. However, past studies indicate 

that the likelihood of mortality is strongly correlated with the level of 

destruction of the buildings, which relates well with the Internal 

Volume Reduction (IVR). This parameter is defined by Okada (1996) 

as the reduction of survival space inside the building, and it can be 

calculated as the plan area of the building in the first two meters. An 

IVR was computed for each storey by implementing an algorithm in 

LS-PrePost, the LS-Dyna post-processor. The algorithm calculates 

the volume inside the survival space before and after each dynamic 

analysis. For the cases where a particular storey collapsed (for exam-

ple, the top floor), a value equal to 1 for the IVR was assumed. 

Moreover, collapse is assumed when the volume loss is higher than 

60 %, as proposed by So (2016) for similar building classes. A routine 

was implemented in LS-Prepost53 in order to calculate both the IVR 

and the volume loss of structural elements.

In this project, two options for the IVR-FR relationship were 

used: the Abeling and Ingham (2020) linear correlation and an 

equation fitted to the IVR-FR data shown in the work of Spence 

and So (2021). The data presented by Spence and So55 considered 

damage and fatality observations from 47 seismic events that occur-

red in regions such as Europe, Latin America, United States and 

Asia. We fitted a numerical expression to this data using a simple 

least squares regression. These models are depicted in Figure 7, 

and both approaches were used for the development of earthquake 

scenarios for Portugal, as described in Section 5.
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Figure 7. Fatality ratio – Internal volume loss relationships

Results 

The structural response of the 8 numerical models were used to 

derive vulnerability functions. Approaches A and B use the rela-

tionships in terms of IM versus IVR derived in this study. However, 

in the first case, we used Abeling and Ingham16’s model to convert 

IVR to FR, whereas in the second case, we used the equation fitted to 

the data shown by Spence and So (2021). For approaches C and D, 

we used the fragility functions for complete damage and collapse 

proposed by Lovon et al (2022) for the same building typologies, 

which were then converted into a probability of fatality using the 

ratios proposed by HAZUS. Approaches A and B aim at demonstra-

ting the value of using an EDP (i.e. IVR) that has a strong correlation 

with fatalities, while methods C and D represent the conventional 

approach to fatality modelling, in which existing fragility functions 

for structural damage are adjusted. All of the fatality vulnerability 

functions are presented in Figure 12 and Figure 13.
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Figure 8. Fatality vulnerability functions for limestone masonry buildings of 

a) 1-storey	 b) 2-storeys	 c) 3-storeys	 d) 4-storeys

a)

c)

b)

d)
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a)

c)

b)

d)

 

Figure 9. Fatality vulnerability functions for granite masonry buildings of 

a) 1-storey	 b) 2-storeys	 c) 3-storeys	 d) 4-storeys
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In general, all methods agree on the minimum threshold level 

of ground shaking for which fatality rates start to increase. This 

is primarily due to the fact that before ground shaking values 

between 0.5g and 0.8g of Sa at 0.4 sec, structural damage is limi-

ted. Approach A is more conservative than approach B, which 

was already expected given that the linear regression proposed by 

Abeling and Ingham16 leads to higher fatality rates for most of the 

IVR values, as shown in Figure 7. The same occurs when comparing 

approach C with D. However, in that case, the difference can be 

explained by the use of the collapse rates from HAZUS in approach 

D (which limits the probability of collapse to a maximum value of 

15%), while approach C uses directly the collapse fragility curves 

from Lovon et al20, which can go up to 100% probability. From 

these results, we argue that approach B is the most balanced and 

suitable method for assessing fatalities. This approach uses the IVR 

as the EDP, which has a stronger correlation with fatalities, and the 

fitted relation of IVR and FR, which despite the limited data, leads 

to a better fit (refer to Figure 7). These functions were used throu-

ghout this project to calculate structural damage, economic losses 

and human losses.



CHAPTER V

05.
A Ground Motion 
Model Using Machine 
Learning
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A Ground Motion Model Using 
Machine Learning

A ground motion model (GMM) is fundamental for the assessment 

of seismic hazard and risk for a given region. These models identify 

the variability of earthquake intensity at different sites as a func-

tion of earthquake magnitude, source-to-site-distance, and soil 

conditions. For regions defined as Active Shallow Crustal (ASCR) 

or Subduction tectonic zones (e.g., Delavaud et al. 2012), there are 

dozens of empirical models due to the abundance of ground motion 

data (e.g., Ambraseys et al. 2005; Akkar and Bommer 2010; Zafarani 

et al. 2018). For regions often classified as Stable Continental Regions 

(SCR) such as Western Iberia, the seismicity rate is considerably 

lower, and the paucity of ground motion recordings hinders the 

development of empirical models in the same manner. To overcome 

the lack of empirical data in SCR, in the 1980s seismologists started 

developing methods to generate ground motion records compatible 

with these regions. The most common approaches include random 

vibration theory (Hanks and McGuire 1981) and stochastic simula-

tions (Boore 1983, 2003).

The current study aims at developing a stochastic-based GMM 

for Western Iberia. The study area comprises mainland and offshore 

Portugal and Southwest of Spain. This region is located near the 

Azores-Gibraltar plate boundary which separates the Eurasian and 

the Nubian plates. Despite the relatively low seismicity, this region 
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has generated large magnitude events such as the 1755 M~8.5 Lisbon 

earthquake or the 1969 M7.8 Algarve earthquake (Vilanova et 

al.2012). This region has been classified as SCR in various studies, 

or at least GMMs for this tectonic regime tend to lead to better 

predictions of ground shaking (e.g., Johnston 1996; Vilanova and 

Fonseca 2007, Vilanova et al. 2012, Silva et al. 2015). Due to the lack 

of specific GMMs, models developed for other SCRs (e.g., Atkinson 

and Boore (2006) for East North America - ENA) have been used 

in seismic hazard and risk assessment studies. Vilanova et al. (2012) 

investigated the adequacy of GMMs developed for ASCRs and SCRs 

for the prediction of spectral acceleration using recorded offshore 

earthquakes in Portugal (e.g., 12 February 2007 M6.0 earthquake), 

and concluded that GMMs for ENA tend to perform relatively well.

Seismic hazard studies for this region use the same set of GMMs 

(mostly from ENA) for both inland and offshore Iberia. However, 

findings from Diaz et al. (2016) showed that the crustal thickness 

in inland and offshore Iberia is in the ranges of 10-15 km and 25-35 

km, respectively, which are considerably lower than the 50 km 

crustal thickness reported in ENA. These results might explain the 

low attenuation of seismic waves in Iberia described in Sousa and 

Oliveira (1996) and Villanova et al. (2012). Furthermore, a recent 

study by Vales et al. (2020) computed anelastic attenuation values 

around Western Iberia using the Portuguese and Spanish ground 

motion database, and indicated attenuation values at f =1 Hz from 

80 to 200, which is much lower than what has been reported for 

ENA. These two important studies highlight the need to explore a 

specific GMM for the region.

Based on the aforementioned findings, we divided the study 

region into two areas: inland and offshore. All ground motion 

records from the Portuguese and Spanish seismic network databases 

(Instituto Português do Mar e da Atmosfera - IPMA and Instituto 

Geográfico Nacional - IGN) were collected and used to calibrate the 

modelling parameters for the stochastic simulations. This process 

led to two sets of modelling parameters (i.e., inland and offshore), 

with the associated aleatory variability. Then, ground motion 
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simulations were performed to estimate the spectral acceleration 

values on rock (Vs30=760 m/s) for a large number of hypothetical 

earthquake scenarios for the region. These synthetic records were used 

to train, verify, and test an Artificial Neural Network (ANN), capable 

of predicting ground shaking in the region with a high level of accu-

racy. The results of the calibrated model were compared with existing 

GMMs developed for other SCRs, as well as with recordings from past 

earthquakes in the region. This model is used in Chapter 7 for the veri-

fication of the benefits of seismic monitoring in the district of Lisbon. 

Seismicity and seismic hazard in 
Southwest Iberia

Iberia is in the southwest of the Eurasian plate, near the collision with 

the Nubian plate. This tectonic environment has generated some of the 

highest offshore magnitude events in Europe, including the 1755 M~8.5 

Great Lisbon, the 1858 M~7.1 Setubal, and the 1969 M7.8 Algarve earth-

quakes (e.g., Vilanova and Fonseca 2007). Destructive inland events have 

also occurred in the past, such as the 1531 M~6.9 Lisbon, the 1909 M6.0 

Benavente, the 1954 M5.0 Albolote, and the recent 2011 M5.1 Lorca 

earthquakes. Significant events have also occurred in the Azores archipe-

lago due to its location at the triple junction where the North American, 

Eurasian, and Nubian plates meet, but this region has been excluded 

from the scope of this study. All these events caused significant damage 

in the respective regions, and in particular the 1755 Lisbon earthquake 

heavily damaged or destroyed more than 50% of the building stock, 

and approximately 10% of the population around Lisbon perished (e.g., 

Oliveira 1988). According to the recent unified declustered earthquake 

catalogue for Europe (Danciu et al. 2020), the majority of the inland 

events occur at relatively shallow depths (<15 km), while both shallow 

and deeper (>25 km) events are common in the offshore zone, along the 

Eurasian and Nubian boundaries. Figure 1 presents the historical and 

instrumental earthquake catalogue for the region covered by this study.
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Figure 1. Instrumental and historical earthquake catalogue for Southwest 

Iberia (Danciu et al. 2020)

Most of the probabilistic seismic hazard models that cover this 

region indicate a peak ground acceleration for the 475-year return 

period on rock (VS30=760 m/s) between 0.15 and 0.20 g (Vilanova 

and Fonseca 2007, Danciu et al. 2020). However, some of these 

studies used ground motion models developed for ENA or active 

shallow regions, which could be leading to an underestimation of 

the seismic hazard, as later discussed in this study.

Methodology

The basis of the well-known stochastic approach for simulation of 

earthquake ground motion records was firstly proposed by Boore 

(1983). During the past decades, this method has been employed 

for the development of several GMMs for SCRs in different parts of 

the world such as ENA (Atkinson and Boore 1995, 2006), United 

Kingdom (Rietbrock et al. 2013), Switzerland (Edwards and Fäh 

2013) and Australia (Allen 2012).
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This approach follows the Brune’s model for the calculation of 

Fourier amplitude spectra of shear waves radiated from the earth-

quake source, based on its seismic moment and stress (Brune 1970). 

Based on the predicted source spectrum, the Fourier amplitude of 

different frequencies can be computed at each site using an attenua-

tion and site function. Through Equation 1, the Fourier amplitude of 

ground motion (A) is calculated as a function of frequency f, distance 

R, and seismic moment M0 of the earthquake event.

 

 

 

 

 

Where f0 is the corner frequency given by, Δσ represents the stress 

drop (in bars) and β is the crustal shear-wave velocity (in km/s). The 

constantcan be computed as, where is the radiation pattern (equal to 

0.55 for shear waves), F is the free-surface amplification (assumed 

as 2.0), V can be used to partition the groundonto two horizontal 

components (0.71),represents the density of the crust, and R stands 

for the hypocentral distance (Boore 2003). In the second term of the 

equation, Z(R) = is the geometrical spreading function. The coeffi-

cient n is usually assumed as 1 near the source and decreases with 

distance according to the Moho depth in the region. The frequency-

-dependent quality factor Q(f) is an inverse measure of anelastic 

attenuation, which depends on the region.is the diminution factor, 

which describes the decay of spectral amplitude at high frequencies. 

Since the goal of this study is to simulate large magnitude offshore 

earthquakes in southwest Iberia, we employed a stochastic finite-

-fault methodology, allowing us to take into account important 

finite-fault features such as the geometry of larger ruptures and its 

effects on the predictions. To this end, a large seismic fault is divided 

into a number of sub-sources and each sub-source is considered as a 

small point source (Hartzell 1978, Atkinson and Boore 2006). The 

ground motions corresponding to each sub-source are calculated 
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by the stochastic point-source method as explained earlier. Then, 

contributions from each sub-source are normalized, delayed, and 

summed in the time domain.

The EXSIM code (Motazedian and Atkinson 2005; Assatourians 

and Atkinson 2007) is used to generate synthetic ground motion 

records for a large suite of earthquake scenarios. EXSIM is a Fortran 

code which uses the stochastic finite-fault approach. To more accu-

rately simulate the impact of finite-fault geometry on the frequency 

content of radiated ground motions, EXSIM employs the concept of 

"dynamic corner frequency," which falls over time as the rupture pro-

pagates (Motazedian and Atkinson 2005). In this section, we des-

cribe the steps that were followed to collect existing ground motion 

data and calibrate the modelling parameters for the simulations.

Data collection and processing

Despite the large historical events described previously, ground 

motion data for this region covers only events with a maximum 

moment magnitude of 6.0. For the case of Portugal, since the 1970s, 

IPMA is responsible for monitoring the seismic activity in the 

Portuguese territory, which covers the extensive Azores-Gibraltar 

plate boundary segment (Carrilho et al. 2021). Currently, 72 strong-

-motion stations are operated in Portugal: 4 in the Madeira Islands, 

28 in the Azores, and 40 in the mainland (Carrilho et al. 2021). For 

the case of the Spanish territory, since 1977 the monitoring of seismic 

activity is managed by IGN. Using 132 stations, this seismic network 

collects ground motion data throughout the Iberian Peninsula, 

Balearics, and the Canary Islands (Amaro-Mellado et al. 2021). In 

this study, we used these databases to extract ground motion records 

for events with a minimum magnitude of 3.0 within the geogra-

phical area with longitude 16°W to 1°E and latitude 36°N to 42°N. 

In total, ground motion data from over 500 events were collected. 

Error! Reference source not found. presents the most important 
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earthquakes (with M > 4.5) used for the calibration of the modelling 

parameters.

For the processing of ground motion data, the recordings had to 

be corrected for the instrument response by applying appropriate 

filters (0.1 Hz, 30 Hz) using the open library Obspy (Beyreuther et al. 

2010). The Signal to Noise Ratio (SNR) was computed for each signal 

by comparing the spectral amplitudes of both recorded signal (signal 

+ noise) and pre-event signal (noise). We used a criterion of SNR 

greater than 3 to exclude noise from the actual recording. Figure 2 

illustrates the distribution of magnitude (Mw), distance (Rjb) and 

depth of the resulting set of ground motion records. Despite the 

coverage of these national seismic networks, the recorded data from 

past major earthquakes is relatively scarce and only covers low-to-

-moderate magnitude earthquakes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Distribution of magnitude (Mw) and distance (Rjb) (left) and 

distribution of depth (right) for the compiled earthquake catalogue
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Ground motion simulations

The most relevant parameters for predicting Fourier amplitude as 

a function of magnitude and distance (as described in Equation 

1) are the stress drop (Δσ), attenuation parameters (Z and Q), and 

diminution factor (к0). By processing the ground motion records for 

the region, we defined statistical models for each one of these para-

meters. We followed closely the procedure demonstrated for regions 

of identical seismicity such as Switzerland (Edwards and Fah, 2013 

) and Australia (Allen, 2012), as described in Taherian et al. (2024). 

Table 1 summarizes all the parameters that were used for the stochas-

tic ground motion simulations, along with the associated references.

Table 1. Median input parameters for ground motion simulation with EXSIM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Median Value Source

Crustal shear wave velocity (β) 3.5 Km/s  

Crustal density (ρ) 2.8 g/cm3  

Stress drop (∆σ) 50 bars (inland) 

140 bars (offshore)

This study

Rupture propagation speed 0.8 β  

Pulsing percentage (%) 50%  

Kappa (к0) 0.025 This study

Geometrical spreading function, 

Rn, n =

 

Inland                                   	 Offshore

-1.1 (R≤70 km)                	 -1.1 (R≤115 km)

0.2 (70 km <R≤100 km)       -1.5 (R> 115 km)

-1.57 (R>100 km)

This study

Quality factor (Q) Q(f)= This study

Distance-dependent duration, d 

R, d =

Inland                                	    Offshore

0.13 (R≤70 km)                  	 0.12 (R≤115 

km)

0.09 (70 km <R≤120 km)   	 0.02 (R> 115 

km)

0.05 (R>120 km)

This study

Hypocenter location and slip 

duration

Random  

Pulsing percentage (%) 50  

Fault geometry Wells and Coopersmith (1994)

Site conditions Rock (Vs=760 m/s) Assumed in this 

study
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Some of these parameters have a large aleatory variability, which 

must be propagated into the ground motion simulations. We 

calculated the variability in the geometric spreading coefficient, 

stress drop, and spectral decay parameters (к0), and assumed 

specific probabilistic distributions as described in Table 2. For 

the sake of simplicity, we assumed the remaining variables as 

deterministic, as investigating the aleatory and epistemic uncertainty 

in these parameters is out of the scope of this study. To avoid 

unrealistic values for the spectral decay parameter (к0) and 

depth of the seismic events, we adopted truncated distributions. 

Table 2. Aleatory variability in key modelling parameters 

 

 

 
 
 
 
 
 
 
 
Application of ANN to predict ground 
shaking

Different functional forms have been used in the last decades to 

predict ground shaking using empirical or syntethic ground motion 

records. In general, these expressions are comprised of 3 compo-

nents (i.e., event, path and site terms) and two random variables (i.e. 

between and within event aleatory variability). One of the advanta-

ges of such formulations is the fact that it allows extrapolating the 

Parameter Distribution type Mean Standard deviation

Stress drop Lognormal 1.70

2.18

0.30

0.30

Kappa Truncated normal  0.025 (0.01-0.05) 0.015

Geometrical spreading normal  Inland                                       

-1.1 (R≤70 km)

0.2 (70 km <R≤100 km)       

-1.55 (R>100 km)                                              

Offshore

-1.1 (R≤115 km)

-1.5 (R> 115 km)

0.15

0.20

0.30

0.15

0.30

Site conditions Truncated normal 10 km 

(2 km – 30 km)

Inland: 13 km

Offshore: 20 km
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preditive model to combinations of magnitude, source-to-site dis-

tance, and site conditions not necessarily well covered by the ground 

motion data, as each term has a physical meaning. For the study 

presented herein, this advantage is less relavant given that the sto-

chastic simulation adopted herein allows generating records for all 

combinations of magnitude and distance. For this reason, we used 

the mixed-effects method (e.g., Stafford 2014) to calibrate a machine 

learning algorithm to predict ground shaking. In addition to the 

satisfacyory accuracy, uncertainty and computional performance, 

such models can be easily extended to the prediction of additional 

metrics beyond ground shaking (such as building responses).

Machine learning algorithms, and in particular Artificial Neural 

Networks (ANN), have been widely used in the past decade for the 

prediction of ground shaking (e.g., Xie et al. 2020; Derras et al. 

2014). These algorithms can recognize complex nonlinear patterns 

in large datasets (Bishop CM 2006), and do not rely on a specific 

functional form. Due to the abundance of open libraries, their appli-

cation to ground motion modelling is relatively straightforward, 

and allows the consideration of a wide range of input parameters. 

The neural network used in this study is a feed-forward ANN with 

sequential layers made up of processing units performing mathe-

matical operations known as neurons (e.g., Haykin 2009). Each 

neuron is described by a collection of synaptic weights and a bias, 

which collectively make up the neural network's parameters. The 

bias is a constant that is added to the result before it is transferred 

to the activation function, which is shared by all neurons in a given 

layer, and the synaptic weights are multipliers of the outputs of the 

preceding layer. The objective of the ANN training is to establish the 

parameters of the network by minimizing a loss function, using the 

backpropagation algorithm. 

In this chapter, the methodology described in Kalakonas and 

Silva (2022) was employed to train the ANN for ground motion 

modelling using the widely applied mixed-effects approach. This 

methodology follows closely the algorithm proposed by Khosravikia 

and Clayton (2021), with the exception of the likelihood maximiza-
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tion algorithm, which is adopted from Bates et al. 2015. In particu-

lar, the ANN parameters are calculated assuming a fixed-effects 

regression and the random-effects, and their variances are estimated 

by likelihood maximization. The estimated between-event terms are 

substracted from the simulated ground motion data and the ANN is 

retrained on the updated database until the likelihood is maximized.

According to Atik et al. (2010), these random effect factors are 

taken to be independent random variables with standard normal 

distributions and standard deviations τ and ϕ. Regarding the deter-

mination of the ANN hyperparameters (i.e., number of hidden layers 

and neurons, activation functions, etc,), the methodology proposed 

by Kalakonas and Silva (2021) was followed. In this process, the 

cross-validation approach is used to split the entire database into 

training and testing subsets and evaluate the model's performance. 

In particular, a 5-fold cross validation was utilized, in which the 

assembled database was divided arbitrarily into 5 equal subsets 

(e.g., Kalakonas and Silva 2022). Five ANNs were successively trai-

ned using four folds for training and one fold for testing the model's 

prediction on the omitted data. The average of the five trained 

ANNs was used to produce the cross-validation regression metrics, 

providing a reliable method to identify and prevent overfittingand 

underfitting. Each stage and modeling decision is summarized here 

for the sake of clarity and reproducibility:

1. 	Pre-processing of input parameters and IMs: When the 

input and output data ranges are similar, ANN training 

is significantly more effective. For this reason, a one-hot 

encoding was used for FT while the log10 was applied to Rjb 

(in km), Dhyp (in km), and all IMs (in cm, cm/s, and cm/s2).

2. 	Optimization algorithm and loss function: The mean squared error 

(MSE) was selected as the loss function which was minimized by 

the adaptive moment estimation algorithm (ADAM).

3. 	Number of hidden layers and activation functions: One hidden 

layer was used due to its sufficiency to approximate any real 

function according to the universal approximation theorem 

(e.g., Auer et al. 2008). The hyperbolic tangent (tanh) and the 
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linear function were employed in the hidden and the output 

layer, respectively.

4. 	Number of neurons: The best number of neurons for the 

hidden layer was found by a trial-and-error process, leading 

to 8 neurons, while more neurons resulted in overfitting.

We trained the neural network using the open-source library 

TensorFlow in a Python environment (e.g., Abadi et al. 2016). Table 1 

presents the average regression metrics for the 5 trained models. The 

evaluation of the potential over- or underfitting errors due to the choice 

of the hyperparameters was computed from the fixed-effect regression 

prior to the application of the mixed-effect algorithm. The results of the 

mixed-effects regression algorithm are presented in Table 2.

Table 3. Mean regression metrics of the trained ANN models using a 

5-fold cross validation

  

 

 

 

 

 

 

 

T (s) Total sigma R2 Training R2 Testing MSE Training MSE Testing

PGV 0.992 0.991 0.991 0.069 0.069

PGA 1.038 0.990 0.990 0.061 0.061

0.015 0.984 0.994 0.994 0.060 0.061

0.020 1.086 0.990 0.990 0.064 0.064

0.040 1.100 0.989 0.989 0.069 0.069

0.050 1.078 0.989 0.989 0.068 0.068

0.067 1.060 0.989 0.989 0.069 0.068

0.100 1.027 0.990 0.990 0.066 0.066

0.125 1.016 0.991 0.990 0.065 0.065

0.200 1.001 0.991 0.991 0.061 0.061

0.250 1.000 0.992 0.991 0.060 0.061

0.400 0.999 0.992 0.992 0.058 0.059

0.500 0.993 0.993 0.993 0.056 0.057

0.625 0.984 0.994 0.994 0.054 0.055

0.769 0.988 0.994 0.994 0.056 0.056

1.000 0.983 0.994 0.994 0.056 0.056

1.250 0.988 0.994 0.994 0.059 0.060

2.000 0.986 0.994 0.994 0.065 0.065

3.125 0.979 0.994 0.994 0.071 0.071

4.000 0.971 0.995 0.995 0.073 0.073
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The R2 coefficient is often used to measure the correlation between 

the recorded iMs and those predicted by the ML models. (e.g., 

Dhanya and Raghukanth 2018). The simulated PGA and SA(1.0s) 

values are displayed versus the AN’'s trained values in Figure 

9. The AN’'s predictive power is demonstrated by the high R2 

values. This strong correlation was observed across all ground 

shaking intensities, both during the training and testing pha-

ses. Additional analyses regarding the reliability of the resulting 

ground motion model are presented in the following section. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3. Stochastically simulated versus predicted correlation plot for the 

two selected iMs using the entire database

As previously explained, the aleatory uncertainty of the model was 

evaluated through the mixed-effect model. Figure 4 shows the standard 

deviation of the random effects versus the period of vibration (T) in 

sec. According to these results, the total sigma (σ) is dominated by the 

between-event term (τ) across all periods of vibration. This outcome 

contrasts with observations from empirical ground motion models in 

which usually the within-event term (ϕ) has a stronger influence in 

the total sigma. The reason for this discrepancy is twofold. First, in the 

approach presented herein, all possible combinations of magnitude and 

distance are considered, and for each combination different simulation 

parameters are sampled. This will naturally lead to a large between 
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even variability, as all possible outcomes will be accounted for. Cotton 

et al. (2013) discussed the important role of the sigma of stress drop 

on the between-event uncertainty (τ) suggested by different GMMs, 

and concluded that assuming a high uncertainty in the stress drop 

will lead to high between event uncertainty. Secondly, and potentially 

more important, all simulations in this study were performed 

assuming rock conditions (i.e., VS30 = 760 m/s), so the uncertainty in 

the site classification that is usually present in empirical models (e.g., 

error or bias in the estimation of VS30 values) will not exist in our 

analyses. We note that the same trend has been reported by various 

studies that also used a stochastic approach for the generation of the 

ground motion recordings (e.g., Edwards and Fäh 2013; Rietbrock 

et al. 2013).

 

 

 

 

 

 

 

 

 

 

Figure 4. Standard deviation estimates of the components of aleatory 

uncertainty

This machine learning model to predict ground shaking in the 

Portuguese territory is one of the main outcomes of the ASSIMILATE 

project, and it was fundamental in the investigation of the identifi-

cation of locations where seismic sensors should be deployed in the 

district of Lisbon.
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The Benefits of Seismic 
Monitoring

In the ASSIMILATE project, we explored the benefits of installing 

low cost sensors to improve our knowledge and data availability 

about building vibrations and ground motion. We worked directly 

with a provider of seismic sensors that can be integrated within a 

seismic network. These networks are fundamental to better unders-

tand the nature and potential impact of earthquakes, as well as to 

plan the development of disaster risk management measures. Prior 

to the occurrence of destructive earthquakes, seismic monitoring can 

support seismologists and earthquake engineers in the development 

of probabilistic seismic hazard analysis (PSHA) models, calibration 

of ground motion models (GMMs), or the creation of earthquake 

scenarios. These networks can support the issuance of early warnings 

(e.g., Wald 2020; Cremen et al. 2022; Silva et al. 2022, 2023) or 

the rapid assessment of the expected economic losses, damage, and 

casualties (e.g., Jaiswal and Wald 2013). The former action has the 

potential to reduce casualties by allowing the population to pursue 

protective measures (e.g., McBride et al. 2022), whereas the latter 

can support several emergency operations. These can include the 

identification of regions where response teams should be deployed, 

advise agencies and utilities about the need to activate contingency 

plans, support international organizations such the World Bank, the 

United States Agency for International Development (USAID) or the 
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European Union in releasing financial support, and advise the (re)

insurance industry about eventual large claims. 

Numerous rapid loss assessment systems have been created in 

the last two decades at various scales including urban (e.g., Istanbul 

- Erdik et al. 2003), regional (e.g., Romanian-Bulgarian border - 

Erduran et al. 2012), national (e.g., Japan - Hoshiba et al. 2011; 

Portugal - Silva et al. 2015; United States - Wald et al. 2020), con-

tinental (Europe through the RISE project - www.rise-eu.org), and 

global (PAGER - Jaiswal and Wald 2010; WAPMERR - Wyss 2004). 

Generally, these systems rely on three primary components for esti-

mating losses and damages: 1) an exposure model defining the spatial 

distribution, value, and vulnerability attributes of the assets; 2) a suite 

of vulnerability functions that establish the likelihood of damage 

or loss based on an intensity measure (IM); and 3) sets of ground 

motion fields or hazard footprints. The generation of the ground 

shaking component can be performed through various strategies, 

ranging from the simple application of a GMM using an epicenter 

estimated shortly after a seismic event (e.g., Silva et al. 2015) to more 

intricate processes that integrate data from seismic stations to reduce 

bias and uncertainty in resulting losses (e.g., Engler et al. 2022).

The estimation of the ground shaking is undeniably the most 

influential and constrainable factor (Crowley et al. 2008; Kalakonas 

et al. 2020). Several studies have evaluated the influence of the 

epistemic and aleatory uncertainty from the GMMs in earthquake 

scenarios (e.g., Fiorini et al. 2012, Silva 2016), and concluded that the 

former can lead to differences in the loss results by a factor of 2 to 4, 

while the latter (i.e., sigma from the GMMs) can cause a variability 

in the losses of 1 order of magnitude. Fiorini et al. (2012) calculated 

the number of unusable buildings (on soil) and indicated values ran-

ging from 1,000 to nearly 45,000 buildings. This large variability in 

impact estimates renders the results less useful for most purposes. A 

localized impact might be dealt by local authorities, while a more 

widespread impact might require assistance from the central gover-

nment or even the international community. Using the example for 

Italy, 1,000 unusable buildings could translate into 3,000 people left 
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homeless, while 45,000 could represent more than 100,000 people 

displaced.

It is thus important to explore methods to reduce the uncertainty 

and bias in the estimation of the ground shaking. Worden et al. (2018), 

Silva and Horspool (2019), and Engler et al. (2022) discuss how data 

from seismic stations can be combined with spatial and inter-period 

correlation models to improve the reliability of ground shaking fields. 

However, the performance of these methods depends heavily on the 

density and reliability of the seismic network in the affected area. 

Dense seismic networks are rare and only exist in specific parts of the 

world (e.g., China, Italy, Japan, Taiwan, New Zealand, the west coast 

of the United States). Typically, less than ten stations exist in any given 

region, or even none in less-developed nations. The lack of seismic sta-

tions is partially due to the costs of installing and maintaining a large 

network, but the rise in low-cost sensors might change how rapid loss 

assessment systems can be designed. Notwithstanding the significant 

costs in maintaining real-time operations and data archiving and dis-

tribution, this new technology might allow the installment of dense 

networks in regions that are currently poorly monitored.

We demonstrate the impact of integrating data from increasingly 

dense networks in the assessment of ground shaking, damage, and 

losses. Due to the lack of ground shaking data for Portugal, to demons-

trate these benefits within ASSIMILATE, we used ground motion 

recordings from the 1999 M7.7 Chi-Chi and ground motion fields 

generated using stochastic simulations (e.g., Boore 2003; Motazedian 

and Atkinson 2005; D’Amico et al. 2012) for Taiwan. We evaluated 

the reduction in the estimation error of the event bias and ground 

shaking, considering seismic networks with different densities. In 

the following chapter, we demonstrate this technology considering 

economic losses and damages for the district of Lisbon (Portugal).



80Assimilate | 

Integrating seismic stations data in 
ground motion fields

As previously discussed, the main source of uncertainty in the eva-

luation of earthquake impact scenarios is definitely in the ground 

shaking component (e.g., Crowley et al. 2008; Silva 2016). Two sour-

ces of uncertainty characterize this process: epistemic and aleatory. 

The former is related to our lack of knowledge or data regarding 

the expected ground shaking in the region, and it is usually incor-

porated in earthquake scenarios by considering multiple GMMs. 

Alternatively, a GMM (backbone model) that depends on different 

parameters (that are region-dependent) can be used, as recently 

proposed for the European territory (Kotha et al. 2020). In theory, 

with additional information, this source of uncertainty could be 

reduced. The second type of uncertainty is related to the randomness 

of the ground shaking process, and it cannot be completely reduced. 

A ground shaking intensity measure (IM) at a given site is usually 

calculated through the following expression:

	 Log(IM)=μ(M,R,θ)+ζ	 (1)

Where IM represents an intensity measure such as peak ground 

acceleration (PGA), peak ground velocity (PGV), spectral acceleration 

(SA), amongst others. μ(M,R,θ) stands for the mean logarithm of the 

IM, as a function of the magnitude (M), a measure of distance (R) 

and other parameters (θ) like site conditions or faulting mechanism. 

ζ represents the total residual of Log(IM). By treating the the total 

residual as a linear mixed-effects model (Abrahanson and Youngs 

1992; Engler et al. 2022), equation (1) can be adjusted as follows:

	 Log(IM)=μ(M,R,θ)+B+W	 (2)

Where B represents the between-event residual (i.e., representing 

the variability in the ground shaking amongst events with the same 
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magnitude) and W stands for the within-event residual (i.e., repre-

senting the variability within the same event, for sites at the same 

distance and soil conditions). These residuals usually follow a normal 

distribution, and for the assessment of earthquake damage or losses, 

they can be randomly sampled using Monte Carlos simulations or 

numerically integrated using the respective standard deviations 

associated with each GMM.

Preferably, a dense network of recording stations would exist in 

the areas heavily affected by damaging earthquakes that would 

enable loss modelers to estimate the expected impact with limited 

uncertainty in the ground shaking. In such idealized situations, 

GMMs or a rupture model would not be necessary. In reality, the 

density of seismic networks is frequently insufficient, even in coun-

tries with well-developed networks (assuming the station data are 

all immediately available, which has not always been the case). In 

these cases, it is necessary to use GMMs to calculate ground shaking 

in locations far from seismic stations. However, as discussed in the 

literature on this topic (Worden et al. 2018; Silva and Horspool 2019; 

Engler et al. 2022), cross-spatial correlation models can be employed 

to infer the ground shaking at sites without a station nearby.

In ASSIMILATE, we evaluated the benefits of integrating data 

from seismic stations in the calculations of ground shaking, building 

damages and economic losses considering different seismic events 

and seismic network densities. In our evaluation, we considered 

several seismic events and calculated the mean between-event (μB) 

term (also known as the event bias) for each event and each IM based 

on data from seismic stations (real or hypothetical), 

For the evaluation of the benefits of incorporation data from 

dense seismic networks, ground motion recordings caused by strong 

earthquakes in regions with hundreds of seismic stations should 

be used. However, except for a few examples, such cases are rare. 

In this section, we demonstrate how the error in the estimation of 

the ground shaking and the between-event term (μBk)) can be sig-

nificantly reduced with a sufficient number of seismic stations for 

two examples: 1) considering the ground motion data recorded in 
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the 1999 M7.7 Chi-Chi (Taiwan) earthquake, and 2) by generating 

thousands of ground motion fields for Taiwan using a seismic hazard 

model (Chan et al. 2020) and stochastic simulations (e.g., D’Amico 

et al. 2012).

Application to the 1999 M7.7 Chi-Chi 
(Taiwan) earthquake

The 1999 M7.7 Chi-Chi earthquake was a shallow event produced by 

the Chelungpu thrust fault, whose ground shaking was recorded by 

more than 400 seismic stations distributed throughout the island (Ji 

et al. 2003; Zhang et al. 2010). This event has been the subject of 

dozens of ground motion modeling and loss assessment studies due 

to the availability of information regarding the seismic stations, the 

associated ground motion recordings, and the loss and damage 

impact. In this chapter, we used the seismic station data available in 

the USGS ShakeMap Atlas (Marano et al. 2023), which covers 421 

stations for this event (see Figure 1a). We used the global GMM of 

Cauzzi et al. (2015), the spatial correlation model from Jayaram and 

Baker (2009), and the inter-period correlation model from Goda and 

Atkinson (2009) to estimate the mean between-event (μB) term for 

this event. We used the earthquake rupture geometry proposed by Ji 

et al. (2010), which is comprised of three fault segments, as illustrated 

in Figure 1. The accurate estimation of this bias requires a large 

number of records with a particular spatial distribution (Crowley et 

al., 2008; Stafford 2014). In other words, a reduced number of 

records might lead to an under or over-estimation of this bias, and 

consequently to a miscalculation of the associated impact. Given the 

large number of observations for the Chi-Chi earthquake, we assu-

med that the μB calculated using the recordings from the entire 

seismic network is the “true” bias for each IM for this event. To test 

how the incorporation of an increasing amount of data from seismic 

stations can improve the estimation of the bias and ground shaking 
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in the region, we consistently separated the data from the 421 stations 

into two groups: 1) observations – comprised of up to 50 stations, and 

2) target sites – comprised of 371 locations. This split was randomly 

performed hundreds of times to consider different spatial distribu-

tions of the two groups (see Figure 1b) for an illustration of a random 

generation of the two groups). 

 

 

 

 

 

 

 

 

Figure 1. a) PGA recorded at 421 stations during the 1999 M7.7 Chi-

Chi (Taiwan) earthquake. The vertical projection of the seismic rupture is 

represented by the red rectangle, following the geometry proposed by Ji et 

al. (2003). b) estimated ground shaking (PGA) at the target sites (represented 

by circles), conditioned on 25 seismic stations (upwards triangles). The 25 

stations that also belonged to the pool of 50 observations but were not 

considered in the estimation of the ground shaking are represented by 

downwards triangles

a) b)
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We estimated the error in the calculation of the mean bias (εμB) 

and ground shaking (εIM) with an increasing number of seismic 

stations. The error in the mean bias was computed by comparing 

the estimated bias with the “true” bias (i.e., considering all seismic 

stations in the region). The error in the ground shaking was compu-

ted by comparing the estimated ground shaking with the recorded 

shaking at the target sites. As previously mentioned, to test different 

spatial distributions of observations, we randomly generated 100 

realizations of the two groups (observations and target sites). For the 

case of the ground shaking error, we also considered a case where no 

stations are considered (i.e., unconditioned ground shaking). This 

case allows investigating the potential error when estimating ground 

shaking with no data from recording stations. This is typically 

the case in regions with no seismic networks, or when estimating 

ground shaking shortly after the occurrence of earthquakes, when 

the data might still be inaccessible. The distribution of εμB and εIM 

are presented in Figure 2 for PGA using whisker plots to properly 

illustrate the entire distribution of the absolute errors.

 

 

 

 

 

Figure 2. Whisker plots illustrating the statistical distribution of: a) error in 

the estimation of the mean event bias (εμB) and b) error in the estimation 

of the PGA at the target sites (εIM)

a) b)
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The statistical distribution of the error in the bias and ground 

shaking estimation indicates a significant decrease with at least 

10 stations in the region, and only minor benefits with a number of 

seismic stations above 25. For the specific case of μB, there are cur-

rently no recommendations in the literature regarding the minimum 

number of recordings that should be used to define this fundamental 

parameter (e.g., Crowley et al. 2008), but in our analyses, 25 stations 

were sufficient to obtain an estimate with a median error below 

15%. In terms of ground shaking, we note that not conditioning 

the ground shaking leads, on average, to errors above 150%, while 

including at least 2 stations reduces this error by almost half. More 

importantly, we noted that increasing the number of stations does 

not cause a significant reduction in the ground shaking error. In fact, 

for the case of 50 seismic stations, the average error is still in the 

order of 60% for PGA. Such large differences between the estimated 

and observed ground shaking can cause a severe under- or over-

-estimation of the associated impact, as later demonstrated in this 

study. We investigated the potential causes for the large εIM, even 

when incorporating data from many seismic stations. We observed 

that target sites without a seismic station within a 10 km radius tend 

to have a median εIM above 60%. This trend is illustrated in Figure 

3, where the results considering 50 (random) seismic stations are 

presented. The left panel shows the distance between each target 

site and the closest seismic station, while the right panel shows the 

median εIM for each target site. 
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Figure 3. a) Distance between the target sites and the closest seismic 

station, and b) median error in the estimation of the ground shaking at the 

target sites, conditioned on the 50 seismic stations

The evaluation of the error with the distance to the closest seismic 

station indicates that dense networks might be necessary to accura-

tely assess the ground shaking in the affected region, in particular 

for the rapid assessment of damages and losses, as further discussed 

in Section 3. Whilst the findings presented in this section are useful, 

they obviously represent a single seismic event, and are conditional 

on the previously described modelling assumptions (e.g., ground 

motion models, seismic rupture geometry, correlation models). In 

the following section, we performed the same tests, but considering 

hundreds of seismic events randomly generated using a probabilis-

tic seismic hazard model for Taiwan and stochastic simulations to 

compute the hypothetical ground shaking.

a) b)
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Application considering probabilistic 
seismic hazard for Taiwan

In this section we aim at evaluating the benefits of seismic monitoring 

in the estimation of ground shaking, considering hundreds of events 

with different characteristics, as well as a number of stations spanning 

from zero (i.e., no stations - unconditioned ground shaking) to 421 

(i.e. the entire seismic network of Taiwan, according to the network 

configuration at the time of the 1999 M7.7 Chi-Chi earthquake). We 

used the probabilistic seismic hazard model from Chan et al. (2020) 

for Taiwan and the OpenQuake-engine (Pagani et al. 2014) to generate 

1,000 years of seismic events with a minimum moment magnitude of 

5.25, as depicted in Figure 4. Since ground motion recordings for all 

the generated events do not obviously exist, we used the EXSIM code 

(Motazedian and Atkinson 2005) to perform stochastic simulations 

and compute the spatial distribution of ground shaking in the entire 

country, as summarized in this section.

EXSIM is a stochastic finite-source simulation algorithm availa-

ble as open-source code, which generates synthetic ground motion 

records for specific earthquake scenarios (e.g., Motazedian and 

Atkinson 2005; Assatourians and Atkinson 2007). The methodo-

logy involves dividing a fault plane, sized according to its seismic 

moment, into an array of subsources. Each subsource is treated as 

a point source, and time series from these subsources are simulated 

using the point-source stochastic model developed by Boore (1983, 

2003). The model simulates ground motion using random Gaussian 

noise with a specified duration and an underlying spectrum derived 

from the Brune (1970) point-source model. The resulting time series 

from all subsources are combined in the time domain, considering 

appropriate time delays for rupture front propagation (Atkinson and 

Assatourians, 2015). Brune’s model defines the Fourier spectrum 

based on seismic moment (M0) and stress drop (∆σ), with attenua-

tion in the frequency domain according to an empirical model. This 

empirical attenuation model characterizes the path effects, and it is 

composed of two components: geometrical spreading (G) and ane-
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lastic attenuation (Q). The first term describes the ground motion 

attenuation as a function of distance, while the latter is a frequency-

-dependent attenuation parameter. The spectra are additionally 

attenuated using a spectral decay parameter (к).

There have been several studies to calibrate the modelling para-

meters for stochastic simulation for earthquakes in Taiwan. Some 

of these studies used stochastic simulations to find the best estimate 

of key modelling parameters to simulate specific events, such as the 

1999 M7.1 Chi-Chi earthquake (Roumelioti and Beresnev 2003), the 

2013 Nantou earthquake (Joshi et al. 2015), and the 2016 Meinong 

earthquake (Chen et al. 2017). We adopted the modelling parameters 

proposed by D’Amico et al. (2012), whose results were calibrated 

considering data from 170 aftershocks from the Chi–Chi earthquake. 

The simulated spectra were amplified using the site amplification 

model developed by Chao et al. (2019) for Taiwan. Table 1 summari-

zes the input parameters for the stochastic simulations.

Table 1. EXSIM input parameters for ground motion simulation for Taiwan 

(D’Amico et al. 2012)

Damage State Loss Ratio (LR) (%)

Crustal shear wave velocity (β) 3.2 Km/s

Crustal density (ρ) 2.8 g/cm3

Stress drop (∆σ) 60 bars (Mw <= 5.5)

80 bars (5.5 < Mw < 7.0)

90 bars (Mw >= 7.0)

Rupture propagation speed 0.8 β

Pulsing percentage (%) 50%

Kappa (к0) 0.05 s

Geometrical spreading function, Rn, n =

 

60 bars (Mw <= 5.5)

80 bars (5.5 < Mw < 7.0)

90 bars (Mw >= 7.0)

Quality factor (Q) Q (f) = 350.0 f0.32

Distance-dependent duration, d R, d = 0.05

Hypocenter location and slip duration Random

Pulsing percentage (%) 50
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We estimated ground shaking at the location of every seismic station, 

as well as on an evenly spaced grid with a 4x4 km2 spatial resolution 

covering all districts of Taiwan. To improve the computational per-

formance, locations with fewer than 100 people (according to the 

population dataset WorldPop ) were excluded. This led to a total of 

1232 sites where ground shaking was calculated. Moreover, we also 

excluded events that did not generate significant ground shaking or 

that were located too far from Taiwan. As an example, Figure 4 illus-

trates the ground shaking (in terms of PGA) for a seismic event with 

a moment magnitude of 7.1 in the Longitudinal Valley fault.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  a) Stochastic event set for Taiwan using the seismic hazard 

model proposed by Chan et al. (2020) and b) ground shaking (in terms of 

PGA in g) at the target sites (represented by circles) and seismic stations 

(represented by the triangles) for a M7.1 event located in the Longitudinal 

Valley fault

a) b)
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Each ground motion field generated using the stochastic simulation 

was assumed as the “true” ground shaking caused by the associated 

event. Likewise, the event bias was calculated considering the shaking 

at the 1232 sites and assumed to be the “true” bias. Then, a different 

number of seismic stations was considered to condition the shaking 

in the region, using the same ground motion and correlation models 

described in the previous section. We compared the event bias μB 

(estimated using a given number of seismic stations) with the “true” 

bias, and the estimated ground shaking (conditioned on a given 

number of seismic stations) with the “true” ground shaking at each 

site. The resulting the errors (εμB and εIM) are presented in Figure 5.

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Whisker plots illustrating the statistical distribution of: a) error in 

the estimation of the mean bias (εμB) and b) error in the estimation of the 

ground shaking at the target sites (εIM)

a) b)
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The results using the stochastic event set for Taiwan indicate a 

clear reduction in both errors, in particular in the estimation of the 

event bias μB. The error in the estimation of the ground shaking 

εIM, indicates practically no benefit with an increase from 100 to 

421 stations. To properly understand this rather surprising finding, 

it is important to recognize that the error in the estimation of ground 

shaking at each site depends on the adjustment of both the between 

(B) and within-event (W) terms of the ground motion model, as des-

cribed by Equation (2). For the former term, it is clear from Figure 

5a that 100 stations are already sufficient to estimate the event bias, 

so adding more stations barely improves the adjustment of B. The 

within-event term, as previously explained, can only be reduced if 

a nearby station exists. In Taiwan, seismic stations are naturally 

concentrated in populated places, with some stations less than two 

kilometers apart in cities such as Taipei, Kaohsiung, Hualien, or 

Taitung. This spatial configuration means that when the number of 

stations is increased beyond 100, it is often the case that identical 

ground motion data is being added to the estimation process, which 

does not necessarily improve the adjustment of W for sites with no 

seismic stations nearby. In fact, 32 % of the target sites do not have 

a seismic station within a radius of 5 km, which is a distance beyond 

which the spatial correlation in the ground motion residuals decrea-

ses significantly for PGA and Spectra Acceleration at short periods 

(e.g., Goda and Hong 2008; Jayaram and Baker 2009). This finding 

does not mean that the seismic stations in Taiwan are somehow 

redundant or that their distribution is illogical. In this exercise all 

sites are assumed as equally important in the estimation of εIM, 

while obviously some areas have greater population and more buil-

ding and infrastructure, and thus should be better monitored. The 

appraisal of the benefits of seismic monitoring should also consider 

what exists at each site if loss estimation is a priority, as explored in 

the following section.
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Designing a Rapid Loss 
Assessment System in Portugal

The previous chapter demonstrated the benefits of seismic monito-

ring in the reduction of the error in the ground shaking estimation. 

In this chapter, we extend that study to the evaluation of the potential 

benefits in reducing the error in the impact assessment. One of the 

reasons for conditioning ground shaking (as performed by the USGS 

ShakeMap system – Worden et al. 2018) is the potential to improve 

the assessment of economic losses, damages, and fatalities (e.g., Silva 

and Horspool 2019), particularly in the hours or days after the occur-

rence of destructive events. These potential benefits are visible in the 

evolution of the economic and loss estimates issued by the USGS 

PAGER system (Wald et al. 2008), which get closer to the reported 

impact once data from seismic networks is incorporated in the 

impact assessment (Wald et al. 2022).

In this part of the ASSIMILATE project, we quantified the 

potential error in the estimation of economic losses, damages, and 

fatalities considering the district of Lisbon, Portugal, with the aim to 

explore the benefits of dense networks in large urban centers, whose 

seismic stations can be strategically allocated to maximize resour-

ces. The following sections describe the various components of the 

impact analysis and the methodology to test this hypothesis. Then, 

we explore different strategies to distribute sensors in the region of 

interest, and discuss the proposed design for the system for Lisbon.
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Exposure and vulnerability models

Damage and loss assessments require an exposure model of the 

region of interest, a set of vulnerability or fragility functions, and one 

or multiple ground shaking fields. We used the exposure model ori-

ginally described in Chapter 2. This model was developed using 

housing and socio-economic data from the 2011 and 2021 housing 

census, and it characterized the building stock at the smallest availa-

ble administrative division (“freguesia”). This model was then further 

disaggregated on an evenly spaced grid following a 0.02x0.02 deci-

mal degrees spatial resolution. For the vulnerability component, we 

employed the vulnerability functions from the global vulnerability 

database of the Global Earthquake Model (GEM - Martins and Silva 

2020) for the reinforced concrete building stock and the unreinfor-

ced masonry vulnerability functions described in Chapter 4. All 

models are publicly available through repositories as described in the 

associated publications. The economic value and number of buildings 

at the third administrative level for the Lisbon district are presented 

in Figure 1. These maps indicate an accumulation of the economic 

value of the building stock in the south of the district, where taller 

and more modern buildings are frequent in the municipalities of 

Lisbon, Cascais, Sintra, and Oeiras. In contrast, the distribution of 

the number of buildings, regardless of their cost, is more uniformly 

distributed, with significant concentrations in the western part of 

the district, in the municipalities of Cascais, Sintra, Mafra, and 

Torres Vedras. The spatial distribution of the building stock and 

population is critical when considering a strategic distribution of 

seismic stations, as demonstrated in this section.
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Figure 1. Spatial distribution of: a) economic value (in billion USD), and a) 

number of buildings (in thousands) at the third administrative level (i.e., freguesia)

Ground shaking estimation and 
conditioning

We randomly sampled 10,000 years of earthquake ruptures with a 

minimum moment magnitude of 5.25 around the Lisbon district 

using the European Seismic Hazard Model (ESHM20 – Danciu et al. 

2021) and the OpenQuake-engine (Pagani et al. 2014). Given the lack 

of ground motion recordings for Portugal, we followed the same 

stochastic simulation approach described in Chapter 5 for the gene-

ration of the ground motion fields. We computed ground shaking on 

an evenly spaced grid with a 2x2 km2 spatial resolution. To improve 

computational performance, locations with fewer than 100 people 

(according to the population dataset WorldPop) were excluded, lea-

ding a total of 1,114 sites. Ground shaking was also calculated at the 

locations of the 7 seismic stations currently installed in the district of 

Lisbon (see Figure 7), as part of the national seismic network 

a) b)



98Assimilate | 

(Carrilho et al. 2021). Again, we excluded events that did not generate 

significant ground shaking. The modelling parameters were specifi-

cally derived for Western Iberia, as described in Taherian et al. 

(2024), and summarized in Table 2. 

Table 2. Modelling parameters assumed for the ground shaking stochastic 

simulations for the Lisbon District

 

 

 

 

 

Figure 2. a illustrates the generated stochastic event set around the 

district of Lisbon, while Figure 2b presents one realization of the dis-

tribution of PGA for a random event, with an epicenter and magnitude 

identical to the historical 1909 M6.0 Benavente earthquake. For each 

sampled event, we assumed that the ground shaking generated using 

the stochastic simulation is the “true” ground shaking for that event. 

Parameter Median Value

Crustal shear wave velocity (β) 3.5 Km/s

Crustal density (ρ) 2.8 g/cm3

Stress drop (∆σ) 50 bars (inland) / 140 bars (offshore)

Rupture propagation speed 0.8 β

Pulsing percentage (%) 50%

Kappa (к0) 0.025

Geometrical spreading function, Rn, n =

 

Inland                     Offshore

-1.1 (R≤70 km)            -1.1 (R≤115 km)

0.2 (70 km <R≤100 km)   -1.5 (R> 115 km)

-1.57 (R>100 km)

Quality factor (Q) Q (f) 

Distance-dependent duration, d R, d = Inland                                   Offshore

0.13 (R≤70 km)                 0.12 (R≤115 km)

0.09 (70 km <R≤120 km) 0.02 (R> 115 km)

0.05 (R>120 km)

Hypocenter location and slip duration 0.13 (R≤70 km)                  

Pulsing percentage (%) 0.09 (70 km <R≤120 km)   

0.05 (R>120 km)
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Figure 2. Stochastic event set for a region around the district of Lisbon using 

the seismic hazard model proposed by Danciu et al. (2021) and b) ground 

shaking (in terms of PGA in g) at the target sites (represented by circles) for 

an hypothetical earthquake with a location and magnitude identical to the 

historical 1909 M6.0 Benavente earthquake. The existing seismic network 

in the district of Lisbon is represented by the white triangles

Evaluation of the benefits of seismic 
monitoring in impact assessment

For each sampled event, we calculated the economic losses, number 

of collapsed buildings, and fatalities using the “true” ground shaking. 

Then, for the evaluation of how the incorporation of data from seis-

mic stations could improve the accuracy of the impact assessment for 

the region, we followed the steps below:

1.	 The “true” ground shaking at the location of the seismic 

stations was collected and assumed to be the only ground 

motion data available shortly after the occurrence of an 

a) b)



100Assimilate | 

earthquake (along with the epicenter, magnitude, and moment 

tensor). 

2.	 Using the estimated seismic rupture (i.e., epicenter, magnitude, 

and geometry based on the dip, rake and strike angles), the 

data from the seismic stations, one ground motion model, and 

a spatial and inter-period correlation model, we generated 100 

realizations of conditioned ground shaking in the district. We 

used the Akkar et al. (2014) GMM and the same correlation 

models previously described. We generated conditioned 

cross-correlated ground motion fields for PGA and spectral 

acceleration (SA) at 0.3, 0.6 and 1.0 seconds (i.e., the intensity 

measures used by the vulnerability models).

3.	 Using the ground shaking conditioned on the data from the 

seismic stations, we calculated the same loss metrics (i.e., 

economic losses, number of collapsed buildings, and fatalities).

4.	 We compared these loss metrics with the ones calculated 

using the “true” ground shaking to evaluate the reduction in 

the error due to the incorporation of seismic station data. 

As presented in the previous chapter, we considered an increasing 

number of seismic stations in the region to evaluate how the error 

decreases with the additional ground motion data. However, for the 

assessment of losses, it is illogical to distribute (hypothetical) seismic 

stations randomly. It is expected that a seismic network will have a 

greater number of stations in populated places, or where important 

infrastructure exists. In this study, we spatially distributed the seismic 

stations proportional to five exposure or risk metrics as listed below: 

1.	 Economic value of the building stock.

2.	 Number of buildings.

3.	 Population.

4.	 Number of vulnerable buildings.

5.	 Earthquake risk. 

For the fourth criterion, we considered unreinforced masonry buil-

dings and reinforced concrete structures without seismic provisions 

as the vulnerable buildings. For the last criterion, we used the average 

annualized economic losses (AAL) for Portugal, calculated within the 
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scope of the Global Seismic Risk Model of GEM (Silva et al. 2020 

– see country profile at https://github.com/gem/risk-profiles/tree/

master/Europe/Portugal). In this process, n number of (hypothetical) 

seismic stations are assigned to the n grid cells with the highest value 

of the associated metric, while maintaining a minimum distance of 

5 km between stations. The resulting seismic networks considering 

2, 5, 10 and 20 stations distributed according to the 5 criteria are 

illustrated in Figure 3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Distribution of hypothetical seismic stations considering five 

criteria (economic value, buildings, population, vulnerability, and risk) and 

an increasing number of stations

a) b)
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In addition to the network configurations presented in Figure 3, we 

also considered a case in which no seismic stations were considered 

(i.e., unconditioned ground shaking) and a case in which only the 

existing seismic stations are used (see Figure 2). The error (εimpact 

metric) due to the uncertainty and bias in the ground shaking was 

calculated for economic losses, number of collapsed buildings and 

fatalities, as presented in Figure 4.
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Figure 4. Average error in the estimation of 3 impact metrics (economic 

losses, number of collapsed buildings and fatalities) considering 6 cases for 

the number of seismic stations (i.e., no stations, *existing seismic network, and 

2, 5, 10, 20 and 30 hypothetical stations and 5 criteria to spatially distribute 

the hypothetical stations (i.e. proportional to the economic value, number of 

buildings, population, number of vulnerable buildings and seismic risk)

The results from Figure 9 demonstrate that conditioning ground 

shaking at strategically allocated seismic stations can significan-

tly reduce the error due to the uncertainty and bias in the ground 

shaking component. Note that simply including 2 stations in the 

region can already reduce the error by half, if those 2 stations have 

been included in locations where the most vulnerable buildings exist. 

Our results indicate that the most beneficial criterion to distribute 

stations, that is, allocating them according to the current seismic 

risk, leads to the lowest error once at least 5 stations are considered. 

This is a rather expected outcome given that this criterion considers 

not just the vulnerability and value/quantity of the building stock, 

but also the associated earthquake hazard and soil conditions. We 

further investigated why this criterion did not lead to satisfactory 

results when only two stations were considered. As depicted in 

Figure 8, this criterion allocates 1 of the 2 stations in a large muni-

cipality Northeast of Lisbon, where the seismic hazard is especially 

high due to the proximity to the Lower Tagus Valley faults and the 

presence of soft soils. While this station contributes to reducing 

the error at this municipality, it is too far (> 25 km) from all other 

municipalities to influence the conditioning of the ground shaking. 

We also note that, depending on the risk metric and distribution 

criterion, it is possible to achieve lower errors in comparison to the 

existing network just with more strategically placed sensors. Finally, 

we also tested a case with 30 hypothetical stations, to demonstrate 

that beyond 20 stations, there are diminishing benefits further 

densification spaced stations.
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Earthquake Risk in Portugal

The ASSIMILATE project focused on different components of the 

earthquake risk assessment problem, leading to the development of 

new exposure datasets, new sets of vulnerability functions, and tes-

ting of existing seismic hazard models for the country. For this reason, 

we considered that it was also relevant to combine all components 

and investigate the spatial distribution of seismic risk in the country. 

This information is fundamental to expand the design of the rapid 

loss assessment system in the country. As described in the previous 

chapter, in order to maximize the number of sensors, it is fundamen-

tal to distribute the available sensors proportional to the seismic risk 

in the country.

In this chapter, the assessment of earthquake risk was perfor-

med using the Probabilistic Event-based Risk calculator of the 

OpenQuake-engine (Silva et al. 2014c). This calculator generates 

a large number of stochastic event sets (SES) using the probabilis-

tic seismic hazard model. We used the hazard model described in 

Section 3, and generated 100,000 SESs with a one-year duration, 

randomly sampling different branches of the source model and 

ground motion logic tree according to the associated weights. For 

each event in the SES, a ground motion field was generated, consi-

dering both the spatial and inter-period correlation in the ground 

motion residuals using the correlation models from Jayaram and 

Baker (2010) and Goda and Atkinson (2009), respectively. The 
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ground shaking at the location of each asset was combined with 

the associated vulnerability functions and exposure information to 

compute the expected loss for each event in the SES. These results 

were used to compute event loss tables, loss exceedance curves and 

average annualised losses. 

Fig. 1 presents the average annualised results aggregated at the 

district level for five risk metrics: economic losses, buildings with 

complete damage (or lost), built-up area lost, fatalities, and popula-

tion left homeless.These results indicate that most of the earthquake 

risk in Portugal is concentrated in the districts of Lisbon, Setúbal, 

Santarém, Faro (i.e., Algarve) and in the Azores islands. This trend 

is due to the significant seismic hazard in these regions, associated 

with a high concentration of buildings, population, and economic 

value (see Chapter 2).

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Average annualised results aggregated at the district level for 

five risk metrics (in this order): economic losses, buildings with complete 

damage, built-up area lost, fatalities and population left homeless
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Figures 2 to 5 present four annualized risk metrics at the second 

administrative level (i.e., concelho). We note that the risk calculations 

were performed at a finer resolution (i.e., freguesia), but we decided 

to aggregate the results at a coarser division for the sake of clarity. 

The spatial pattern of the risk metrics indicates a higher potential for 

losses in the Southwest of the country, the Lower Tagus Valley, and 

the Azores Archipelago.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Average annualised economic losses at the second 

administrative division (i.e., concelho) 
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Figure 3. Average annualised number of buildings with complete 

damage at the second administrative division (i.e., concelho)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Average annualised loss of built up areaat the second 

administrative division (i.e., concelho) 



111 | Chapter VIII

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Average annualised human losses at the second administrative 

division (i.e., concelho)

 

 

 

Table 1 summarizes the selected earthquake risk metrics at the natio-

nal level, in terms of average annualised losses (AAL). The AAL has 

also been normalized by the total exposed values to evaluate the 

average annualised loss ratio (AALR).

Table 1. Summary of the main earthquake risk metrics for Portuga.

Loss type AAL R (‰)

Total losses (M€) 187.76 0.211

Human losses 16.08 0.002

Built-up area lost (m2) 82348 0.099

Buildings lost 448 0.117

Population left homeless 1791 0.173
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The economic losses were disaggregated based on the main types of 

construction and component (structural/nonstructural components 

and contents), as illustrated in Fig 3. More than half of the economic 

losses are due to damage in the reinforced concrete building stock, 

partially due to the fact that a third of these buildings were built 

before the introduction of the first modern seismic regulation in 

Portugal (i.e. 1983), but mostly due to the higher costs in comparison 

with the other typologies. In fact, when these losses are normalized 

by the economic value, it is clear that unreinforced masonry and 

adobe have a higher likelihood to suffer damage due to earthquakes.

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Distribution of the average annual economic losses (left) and 

loss ratios (right) for different types of construction and components

In comparison with past studies, Silva et al. (2014) estimated an 

average annual loss of 288M EUR, while Sousa (2006) indicated an 

annual loss of 257M EUR, both studies only considering the residen-

tial building stock. These estimates are considerably higher than the 

annual loss proposed herein (188M EUR, in particular considering 

that the present study also covers commercial and industrial facili-

ties, and losses due to damage to contents. One of the reasons for this 

reduction is the lower seismic hazard, especially for the Northeast 

of the country whose hazard is below 0.1g (in terms of PGA) for the 
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475 years return period. The direct comparison of the vulnerability 

functions for 4 building classes presented in these studies also show 

a higher vulnerability for the past studies. Finally, it is also worth 

mentioning that despite the increase in the number of buildings from 

2011 to 2021, the newer construction was assumed to follow modern 

design regulations, whose vulnerability is considerably lower. The 

AAL indicated by the work of Sousa and Costa (2016) (147M EUR) is 

more in line with the values presented herein, though again only the 

residential building stock was considered. A thorough comparison 

between these studies was not possible due to the fact the indivi-

dual components were not available for additional analysis. These 

discrepancies highlight the need to perform seismic risk assessment 

using open-source tools and openly accessible models to allow the 

scientific community to further scrutinize each component of the 

model and reproduce the risk results presented herein under the 

same assumptions.
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Conclusions and main 
achievements

During 34 months, the research team of the ASSIMILATE project 

investigated critical issues and proposed innovative models and 

methods to better understand the seismic vulnerability and risk of 

the Portuguese building stock using low-cost sensors and machine 

learning, and defined a strategy to build a rapid loss assessment 

system for the district of Lisbon, that can be expanded to other parts 

of the country. The exposure model developed for the residential 

building stock using the 2021 Building Census data estimated a 

replacement cost of approximately 905 billion EUR, which is about 

3.7 times the 2022 Portuguese gross domestic product. The majority 

of the building stock is located in the Metropolitan Area of Lisbon 

and Porto, with the seismic hazard (in terms of PGA) in the former 

area above 0.15g for the 475 years return period. This new exposure 

model developed within this project highlights areas where additional 

risk studies should be performed, or where systems to rapidly assess 

earthquake impact should be deployed.

This project proposed for the first time vulnerability functions 

defined in terms of period elongation, as opposed to conventional 

intensity measures such as peak ground acceleration or spectral 

acceleration. This new approach to estimate building damage has 

the potential to considerably decrease uncertainty and bias due to 

the possibility to explicitly account for changes in the structural 
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integrity of the asset. We covered the most mid-rise reinforced con-

crete structures in the country, which are the typologies in which 

variations in the period vibration will be more noticeable. Moreover, 

more than half of the population live in this type of construction. 

For the unreinforced masonry building stock, we developed 3D 

complex numerical models to develop fragility functions to estimate 

damage and fatalities. According to recent literature, these typolo-

gies are typically responsible for most of the fatalitiesin destructive 

earthquakes. 

On the ground shaking counterpart, we developed a machine 

learning ground motion model using all of the ground motion recor-

dings from the Portuguese and Spanish ground motion databases. 

This is one of the first models developed for the region using sto-

chastic simulations, whose parameters were specifically developed 

for inland and offshore events for Portugal. The developed model 

was compared with the existing ground motion models for other 

stable continental regions as well as the available models for low-

-to-moderate hazard regions in Europe, some of which have been 

used in the past in seismic hazard and risk analysis for the country. 

In general, we noted that most models tend to underestimate the 

ground shaking for the offshore events, and overestimate for the 

inland events. This trend could mean that the seismic hazard due 

to inland seismicity might be overestimated, while the contribution 

of the offshore events to the national seismic hazard and risk could 

be underestimated.

Using these models, we investigated the benefits that seismic 

monitoring might bring to a region in terms of error and bias reduc-

tion. Due to the lack of strong ground shaking for Portugal, we tested 

this hypothesis using recorded ground shaking from the 1999 M7.7 

Chi-Chi (Taiwan) earthquake. Our results indicated a median error 

below 25% in the estimation of the event bias (or inter-event resi-

dual) when at least 25 stations are considered. For PGA, a significant 

reduction in the ground shaking estimation error was also observed. 

This observation highlights that even in regions with dense seismic 

networks such as Taiwan, significant shaking uncertainties remain. 
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Then, to extend this study to our region of interest (District of Lisbon), 

we evaluated how seismic monitoring can reduce the error in the 

estimation of impact metrics such as damage buildings, fatalities and 

economic losses. We concluded that including at least 10 stations for a 

region as large as the district of Lisbon (~2,800 km2) can reduce the 

estimation error by one order of magnitude, compared with the case in 

which no stations are used (i.e., unconditioned ground shaking). It was 

also possible to observe that distributing the seismic stations proportio-

nal to the number of vulnerable buildings or the estimated earthquake 

risk led to the most evident reduction in the error. In contrast, allocating 

seismic stations based only on the economic value of the building stock, 

number of buildings, or population count led to larger errors, unless an 

excessive number of stations was used. 

Finally, we combined these components together to calculate earth-

quake risk in the entire territory. Such outcome is useful to inform the 

development of risk mitigation strategies for the country, but also to 

understand where seismic sensors should be deployed to rapidly estimate 

ground shaking (and consequently the associated impact), as previously 

described. In terms of earthquake risk, the estimated average annual 

economic losses of 188M EUR are considerable for the country. To put in 

perspective, this loss is equivalent to one third of the construction cost of 

the new hospital in Lisbon, one of the largest in the country. The human 

impact (average annual human losses) is relatively low, mostly due to the 

fact that the building stock is mostly comprised of structures with 1-2 

storeys, which tend to have lower collapse and fatality rates. The seismic 

risk map highlights the Lower Tagus Valley, the South of Portugal, and 

the Azores islands as high-risk regions, with adobe and unreinforced 

masonry typologies identified as the most vulnerable. 

The results of this project have been presented in peer-reviewed arti-

cles and national/international conferences, as listed below. Moreover, 

the research team met on several occasions with stakeholders and par-

tners of this project including the City Hall of Lisbon, the Association of 

Municipalities of Lisbon, the National Laboratory of Civil Engineering, 

the Portuguese Authority for Civil Protection, Safehub Inc and the 

Global Earthquake Model Foundation.
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1.	 Silva V, Taherian A, Oliveira CS. (2022). Earthquake early 		

	 warning for Portugal: Part 1 - Where does it matter? Bulletin of 	

	 Earthquake Engineering, 20:5545–5565. https://doi.		

	 org/10.1007/s10518-022-01400-4

2.	 Silva V, Taherian A, Oliveira CS. (2023). Earthquake early 		

	 warning for Portugal: Part 2 - Where is it beneficial? Bulletin of 	

	 Earthquake Engineering, 20:5545–5565. https://doi.		

	 org/10.1007/s10518-023-01715-w

3.	 Lovon H, Silva V, Vicente R, Ferreira TM (2023). Seismic 		

	 Vulnerability Assessment of Portuguese Masonry Buildings. 		

	 Structures, 55:853-865, https://doi.org/10.1016/j.			 
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