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Abstract. The aim of this work is the thermodynamic formalism of finitely generated pseu-
dogroup actions on compact metric spaces. We introduce the notions of topological and measure-
theoretical pressures for those actions, which may not admit invariant measures. We prove a
variational principle and discuss the impact of the existence of a homogeneous probability mea-
sure. To clarify the scope of our main results and the relevance of our approach, we address
several examples and list a few applications of interest.

1. Introduction

The thermodynamical formalism was brought from Statistical Mechanics to Dynamical Sys-
tems by the pioneering works of Sinai, Ruelle and Bowen [10, 11, 42]. These authors established a
fruitful correspondence between one-dimensional lattices and uniformly hyperbolic maps, which
conveyed the notion of Gibbs measure and the role of equilibrium states into the realm of dy-
namical systems. The study of the thermodynamical formalism has since been advancing in
two main complementary directions, namely the theory of non-uniformly hyperbolic dynamical
systems and the study of semigroup actions. The latter can be used to model neutral behavior in
partially hyperbolic dynamical systems [26] and appear naturally in the theory of foliations [23].
Our work contributes to the development of the thermodynamic formalism of finitely generated
pseudogroup actions (we refer the reader to Subsection 2.1 for a precise definition), for whom
the extension of the classical theory has raised several difficulties and a global description is still
far from complete.

Regarding group and semigroup actions of continuous endomorphisms of a compact metric
space, it is often the case that there are several definitions of topological and measure-theoretic
pressures which are suitable for each specific type of action. Most of them are unrelated (see for
instance [13, 23, 21, 28, 9, 27, 29, 35, 37, 41, 47, 3] and references therein). A common aim of them
all is to link topological and ergodic properties by some variational principle. For instance, Ruelle
[40] considered finitely generated abelian groups on compact metric spaces, introduced notions
of topological and measure-theoretic pressures, established a variational principle between them
and gave sufficient conditions for the existence and uniqueness of equilibrium states. Later,
Ollagnier and Pinchon [37] generalized that information, having obtained a variational principle
for the entropy of countable amenable group actions, which are known to have invariant Borel
probability measures. More recently, a unified approach for the thermodynamical formalism of
continuous finitely generated group and semigroup actions was established in [8] using methods of
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convex analysis introduced in [6, 7]. Yet, in general, the known connections between topological
and measure-theoretic properties of group and semigroup actions are not enough to provide
a complete description of their complexity. This is mainly due to the fact that these actions
may fail to have Borel probability measures invariant by all the generators, as happens, for
instance, with the semigroup action on the unit circle generated by the north-pole/south-pole
diffeomorphism and an irrational rotation.

Our motivation to develop a thermodynamic formalism for finitely generated pseudogroup ac-
tions builds over the fact that the latter appear naturally in some dynamical and non-dynamical
frameworks. Let us mention two of the most relevant. Firstly, a special class of pseudogroup
actions arises as holonomy maps of foliations and became essential in the study of the geometry
of foliated manifolds since the work of Haefliger [25]. Moreover, whereas Ghys, Langevin and
Walczak introduced in [23] a notion of geometric entropy of a foliation and related it to a new
concept of topological entropy of the holonomy pseudogroup induced by the foliation, a varia-
tional principle linking the entropy of the foliation to a well suited notion of measure-theoretical
entropy remains unproven. Secondly, the local iterated function systems studied in fractal ge-
ometry are strongly related to pseudogroup actions (cf. Subsection 2.1 and [1, 31]), hence we
expect that the Hausdorff dimension of the corresponding attractors may be estimated using
the thermodynamical formalism developed here. Such a characterization is already known for
both dynamical systems and iterated function systems (cf. [12, 18] and references therein).

By developing a thermodynamic formalism for pseudogroup actions we expect to contribute
for a solution to these problems. However, extending the previous research to the context
of pseudogroup actions presents an additional difficulty: whereas semigroup actions deal with
endomorphisms of the same space, pseudogroup actions are defined by collections of local home-
omorphisms whose domains may be distinct. Therefore, these domains may diminish under
composition, and some compositions are not even admissible. A major effect of this complexity
is that the classical Bowen’s dynamical metric (cf. [46, Section 7.2]) may no longer be a distance.
Thus, we had to find a well suited dynamical metric for finitely generated pseudogroups, which
ought to coincide with Bowen’s definition when the pseudogroup is a group.

Inspired by [4, 29, 30], and aiming at a variational principle for finitely generated pseudo-
group actions acting on a compact metric space (X, d), in this work we explore the virtues of
the following concepts:
(a) Carathéodory-Pesin structures, which will be used to define a pressure function (we denote
by CP-pressure) for finitely generated pseudogroup actions, as done in [4] for the topological
entropy.
(b) Brin-Katok local metric entropy (cf. [14]), to find a matching measure-theoretic pressure
function for finitely generated pseudogroup actions, following a similar approach in [4] for the
topological entropy. This new notion will be connected with the previous CP-pressure by a
variational principle.
(c) Ghys-Langevin-Walczak topological entropy of a pseudogroup (cf. [23]), to extend it to a
notion of topological pressure after selecting an adequate dynamical average for the potentials.
This way, we benefit from the role of homogeneous measures (see Definition 2.30), as suggested
by [4, Theorem 4.12].

This paper is organized as follows. In Section 2 we gather a few definitions. The main
contributions of this work are stated in Section 3. Preliminary information on the topological
and measure-theoretical pressures of pseudogroup actions may be read in Section 4. After these
general considerations, Sections 5 and 6 are devoted to enlighten the reader about the role of
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Carathéodory-Pesin structures within the thermodynamic formalism of pseudogroup actions.
The proofs of the main results will occupy Sections 7, 8 and 9. In the latter section we also
analyze the impact of the existence of a homogeneous probability measure on X. Finally, in
Section 10 we address some examples and applications.

2. Main definitions

In this section we introduce finitely generated pseudogroup actions.

2.1. Pseudogroups of local homeomorphisms. Given a compact metric space (X, d), let
Homeo(X) stand for the family of homeomorphisms between open subsets of X such that any
g ∈ Homeo(X) is uniformly continuous. For g ∈ Homeo(X), denote by Dg its domain and by
Rg = g(Dg) its range.

Definition 2.1. [44] A set G ⊂ Homeo(X) is a pseudogroup if it satisfies the following proper-
ties:

(P1) If g, f ∈ G and Rf ∩Dg ̸= ∅, then g ◦ f : f−1(Rf ∩Dg) → g(Rf ∩Dg) belongs in G.

(P2) If g ∈ G, then g−1 ∈ G.

(P3) The identity map of X, say idX : (X, d) → (X, d), is in G.

(P4) If g ∈ G and W ⊂ Dg is an open subset of Dg, then g|W ∈ G.

(P5) If g : Dg → Rg is a homeomorphism between open subsets of X and if, for each point
p ∈ Dg, there exists a neighborhood N of p inside Dg such that g|N ∈ G, then g ∈ G.

For any set G1 ⊂ Homeo(X) for which
⋃
g ∈G{Dg ∪ Rg : g ∈ G} = X, there exists a unique

smallest (in the sense of inclusion) pseudogroupG which containsG1, thus called the pseudogroup
generated by G1. By definition, g ∈ G if and only if g ∈ Homeo(X) and for any x ∈ Dg there are a
positive integer k, maps g1, ..., gk ∈ G1, exponents e1, ..., ek ∈ {−1, 1} and an open neighborhood
U of x in X such that

U ⊂ Dg and g|U =
(
ge11 ◦ ... ◦ gekk

)
|U
.

If the set G1 is finite, we say that G is finitely generated. Throughout this paper we will always
consider finitely generated pseudogroups with symmetric generating sets, that is,

G1 = {idX , g1, g
−1
1 , g2, g

−1
2 , ..., gL, g

−1
L }

for some L ∈ N.
A finitely generated pseudogroup (G,G1) on a compact metric space (X, d) is said to be a

finitely generated group if Dg = Rg = X for every g ∈ G. A finitely generated free group G
with generator set G1 consists of all the finite compositions that can be built with elements of
G1, where different compositions, even if they yield the same map on X, are considered distinct
elements of G.

Given an integer n > 1, write

Gn =
{
gin ◦ ... ◦ gi2 ◦ gi1 : gij ∈ G1 ∀ j ∈ {1, · · · , n}

}
and |Gn| for its cardinality. Since idX ∈ G1, one has idX ∈ Gn for every n ∈ N, Gm ⊂ Gn
whenever m ⩽ n, and ∪g ∈GDg = X.

The notion of pseudogroup action is related to iterated function systems (IFS for short).
Indeed, given a compact metric space (X, d), a finitely generated local iterated function system
(LIFS) is determined by a finite collection of continuous maps G1 = {g1, g2, . . . , gk}, where
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gi : Xi → X, for some nonempty subsets Xi ⊂ X, and the set G of their compositions is
defined as in (P1) above. Local iterated function systems are similar to the semi-pseudogroups
introduced by Waliszewski [45], and are interesting both from the theoretical point of view and
the applications. We refer the reader to [1, 2, 31, 32, 33] and references therein, where one
may find detailed information on connections between LIFS and fractal dimension, model stock
market returns, fractal image compression and biometric identification.

2.2. Topological entropy. There have been several extensions of the notion of entropy for
a map to the setting of finitely generated semigroup actions; for an account on this topic we
refer the reader to [3, 16, 43]. In the context of pseudogroup actions, the topological entropy
htop(G, G1) of a finitely generated pseudogroup action (G,G1) was introduced in [23] and defined
as follows.

Definition 2.2. [23] Given ε > 0 and n ∈ N, two points x, y ∈ X are (n, ε)−separated by
(G,G1) if there exists g ∈ Gn such that x, y ∈ Dg and d(g(x), g(y)) ⩾ ε. A subset E of X is said
to be (n, ε)−separated if any two distinct points in E are (n, ε)−separated. Denote by s(n, ε) the
maximal number of (n, ε)−separated points in X.

We observe that the condition d(g(x), g(y)) ⩾ ε for some g ∈ Gn means that, if g is given by
a composition gin ◦ · · · ◦ gi1 where gin , . . . , gi1 ∈ G1, then

d
(
gin ◦ · · · ◦ gi1(x), gin ◦ · · · ◦ gi1(y)

)
⩾ ε.

Definition 2.3. [23] The topological entropy of a finitely generated pseudogroup (G,G1) is the
limit

htop(G,G1) = lim
ε→ 0+

lim sup
n→+∞

1

n
log s(n, ε). (2.4)

The previous limit as ε goes to 0+ exists, since the map ε > 0 → lim supn→+∞
1
n log s(n, ε) is

monotone. It is known (cf. [44, Section 3.2]) that the topological entropy of a finitely generated
pseudogroup depends on the generating set. However, if G1 and G′

1 are two generating sets of
the same pseudogroup G, then htop(G,G1) = 0 if and only if htop(G,G′

1) = 0.

Definition 2.5. Given ε > 0 and n ∈ N, a subset F of X is said to (n, ε)−span X with
respect to the pseudogroup (G,G1) if for every x ∈ X there exists y ∈ F with d

(
g(x), g(y)

)
< ε

for every g ∈ Gn such that x, y are both in the domain of g. The minimal cardinality of the
(n, ε)−spanning subsets of X is denoted by r(n, ε).

The condition d(g(x), g(y)) < ε for every g ∈ Gn such that x, y are both in the domain of g
ensures that, if such a g is given by a composition g = gin ◦ · · · ◦gi1 where gin , . . . , gi1 ∈ G1, then

max
{
d(x, y), d(gi1(x), gi1(y)), . . . , d(gin ◦ · · · ◦ gi1(x), gin ◦ · · · ◦ gi1(y))

}
< ε.

The topological entropy can be defined in terms of (n, ε)−spanning sets, and the two ap-
proaches are equivalent if (G,G1) is a finitely generated group (cf. Subsection 4.4), that is,

lim
ε→ 0+

lim sup
n→+∞

1

n
log s(n, ε) = lim

ε→ 0+
lim sup
n→+∞

1

n
log r(n, ε).
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2.3. Topological pressure. We now define the topological pressure of a finitely generated
pseudogroup action (G,G1) with respect to a continuous potential, which generalizes the notion
of topological entropy (2.4).

For every x ∈ X and n ∈ N, consider the set

Gxn =
{
g ∈ Gn : x ∈ Dg

}
. (2.6)

We note that g ∈ Gxn if and only if x ∈ Dg and there exist gi1 , gi2 , . . . , gin ∈ G1 such that
g = gin ◦ · · · ◦ gi2 ◦ gi1 . Moreover, Gxn ̸= ∅ for every x ∈ X and n ∈ N, since idX ∈ Gxn due to
property (P3) of Definition 2.1.

Denote by C0(X) the space of continuous maps ψ : X → R endowed with the uniform norm,
which we abbreviate into ∥ · ∥∞.

Definition 2.7. Given ψ ∈ C0(X), the topological pressure of the finitely generated pseu-
dogroup (G,G1) with respect to ψ is the limit

Ptop((G,G1), ψ) = lim
ε→ 0+

lim sup
n→+∞

1

n
log

(
sup
En,ε

{ ∑
x∈En,ε

e
1

|Gxn|
∑
g∈Gxn

Sgψ (x)
})

(2.8)

where g = gin ◦ . . . ◦ gi2 ◦ gi1 for some gin , . . . , gi1 ∈ G1, the supremum is taken over the
(n, ε)−separated subsets En,ε of X with respect to (G,G1) and

Sgψ (x) = ψ(x) + ψ
(
gi1(x)

)
+ ... + ψ

(
gin ◦ · · · ◦ gi2 ◦ gi1(x)

)
.

In Definition 2.7, it suffices to take the supremum over those (n, ε)−separated sets which
cannot be enlarged to a (n, ε)−separated set. We also observe that, if (G,G1) is a finitely
generated group, then the previous topological pressure can be defined by using spanning sets
(cf. Subsection 4.4 for more information).

Remark 2.9. It is straightforward to show that the map Γ: ψ ∈ C0(X) 7→ Ptop((G,G1), ψ) is
increasing and translation invariant. More precisely, if φ, ψ ∈ C0(X) and c ∈ R, then:

(a) φ ⩽ ψ ⇒ Ptop((G, G1), φ) ⩽ Ptop((G, G1), ψ).

(b) Ptop((G, G1), ψ + c) = Ptop((G, G1), ψ) + c.

From the previous properties we conclude that Γ is continuous since, for every φ, ψ ∈ C0(X),
one has

Γ(ψ) − ∥φ− ψ∥∞ = Γ(ψ − ∥φ− ψ∥∞) ⩽ Γ(φ) ⩽ Γ(ψ + ∥φ− ψ∥∞) = Γ(ψ) + ∥φ− ψ∥∞.
Therefore, the map ψ ∈ C0(X) 7→ Ptop((G,G1), ψ) − maxx∈X ψ(x) is continuous as well.

2.4. Dynamical metrics. We expected to be able to define the topological entropy and pres-
sure of a pseudogroup using dynamical metrics, thereby generalizing to this setting Bowen’s
approach with dynamical balls [46, Section 7.2]. However, the classical Bowen’s metric, used to
define the pressure function for a single dynamics, may no longer be a distance in the context
of pseudogroup actions. In this subsection we will address this problem.

Recall that idX ∈ G1, so

∀x, y ∈ X, ∀n ∈ N idX ∈ Gxn ∩Gyn. (2.10)

Therefore, the next map is well defined.
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Definition 2.11. Given n ∈ N, let τn : X ×X → [0,+∞[ be the map defined by

τn(x, y) = max
{
d(g(x), g(y)) : g ∈ Gxn ∩Gyn

}
.

For every n ∈ N, the map τn is symmetric, non-negative and, due to (2.10), it satisfies

d(x, y) ⩽ τn(x, y) ∀x, y ∈ X. (2.12)

It is reminiscent of Bowen’s metric, and it is indeed a metric if G is a finitely generated group.
We also note that, a subset E of X is (n, ε)−separated if and only if for any two distinct points
x, y in E one has τn(x, y) ⩾ ε.

Definition 2.13. Given x, y ∈ X and k ∈ N, k ⩾ 2, let

Ak(x, y) =
{

(a1, a2, . . . , ak) ∈ Xk : [a1 = x and ak = y] or [a1 = y and ak = x]
}
.

For each fixed n ∈ N, define dn : X ×X → [0,+∞[ by

dn(x, y) = inf
{ k∑
j=2

τn(aj−1, aj) : k ∈ N \ {1} and (aj)1⩽ j ⩽ k ∈ Ak(x, y)
}
.

We remark that, for every n ∈ N and all x, y ∈ X, one has

dn(x, y) ⩽ τn(x, y) (2.14)

since we may choose k = 2 and a1 = x, a2 = y.

Lemma 2.15. For every n ∈ N, the map dn is a metric in X.

Proof. Let (G,G1) be a finitely generated pseudogroup acting on a compact metric space (X, d).

Claim 1: ∀x, y ∈ X dn(x, y) = 0 ⇔ x = y.

Clearly, dn(x, x) = 0 since 0 ⩽ dn(x, x) ⩽ τn(x, x) = 0. Conversely, assume that dn(x, y) = 0.
Then, given ε > 0, there are k ⩾ 2 and (a1, a2, . . . , ak) ∈ Ak(x, y) such that

k∑
j=2

τn(aj−1, aj) < ε.

Using the triangular identity for the metric d and (2.12), we obtain

d(x, y) ⩽
k∑
j=2

d(aj−1, aj) ⩽
k∑
j=2

τn(aj−1, aj) < ε.

Since ε > 0 is arbitrarily small, we conclude that d(x, y) = 0, hence x = y.

Claim 2: ∀x, y ∈ X dn(x, y) = dn(y, x).

This property of dn is an immediate consequence of the equalities

∀x, y ∈ X Ak(x, y) = Ak(y, x) and τn(x, y) = τn(y, x).

Claim 3: ∀x, y, z ∈ X dn(x, y) ⩽ dn(x, z) + dn(z, y).
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Given x, y, z ∈ X and ε > 0, there are integers k, ℓ ⩾ 2, (a1, a2, . . . , ak) ∈ Ak(x, z) and
(b1, b2, . . . , bℓ) ∈ Aℓ(z, y) such that

k∑
j=2

τn(aj−1, aj) − dn(x, z) < ε/2 and

ℓ∑
j=2

τn(bj−1, bj) − dn(z, y) < ε/2.

We may assume that a1 = x, ak = z, b1 = z and bℓ = y, since the maps τn and dn are symmetric.
Therefore,

dn(x, y) ⩽
k∑
j=2

τn(aj−1, aj) +

ℓ∑
j=2

τn(bj−1, bj)

since
(
a1 = x, a2, . . . , ak = z = b1, b2, . . . , bℓ = y

)
∈ Ak+ℓ(x, y). Therefore,

dn(x, y) ⩽ dn(x, z) + ε/2 + dn(z, y) + ε/2 = dn(x, z) + dn(z, y) + ε.

As ε > 0 is arbitrarily small, we deduce that

dn(x, y) ⩽ dn(x, z) + dn(z, y).

□

2.5. Dynamical balls. In what follows, given n ∈ N and ε > 0, the open dynamical n−ball
centered at x with radius ε, determined by the pseudogroup action (G,G1), is the set

Bn(x, ε) =
{
y ∈ X : dn(x, y) < ε

}
. (2.16)

We might have defined the notions of separated and spanning sets using the metric dn, though
they would convey a new concept of topological entropy. Those new definitions would state that:

(a) Given ε > 0 and n ∈ N, two points x, y ∈ X are (n, dn, ε)−separated if dn(x, y) ⩾ ε. A
subset E of X is said to be (n, dn, ε)−separated if any two distinct points x, y ∈ E are
(n, dn, ε)−separated. In particular, one has

Bn(x, ε/2) ∩ Bn(y, ε/2) = ∅ ∀x, y ∈ E.

Denote by s(n, ε) the maximal number of (n, dn, ε)−separated points in X.

(b) Given ε > 0 and n ∈ N, a subset F of X is said to (n, dn, ε)−span X if for every x ∈ X
there exists y ∈ F with dn(x, y) < ε. In particular, one has

X =
⋃
x∈F

Bn(x, ε). (2.17)

The minimal cardinality of the (n, dn, ε)−spanning subsets of X is denoted by r(n, ε).

From (2.14) we deduce that, given ε > 0 and n ∈ N, any (n, dn, ε)−separated subset E of X is
(n, ε)−separated; likewise, any (n, ε)−spanning subset F of X is (n, dn, ε)−spanning. Therefore,

s(n, ε) ⩾ s(n, ε) and r(n, ε) ⩾ r(n, ε).

Consequently:

(i) Due to (2.17),

F ⊂ X is (n, ε)−spanning ⇒ X =
⋃
x∈F

Bn(x, ε). (2.18)

(2i) htop(G,G1) ⩾ limε→ 0+ lim supn→+∞
1
n log s(n, ε).
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We note that, if (G,G1) is a finitely generated group on a compact metric space, then the
map τn is a metric for every n ∈ N. We will show that, in this setting, τn = dn, and so

htop(G,G1) = lim
ε→ 0+

lim sup
n→+∞

1

n
log s(n, ε).

Lemma 2.19. Let (G,G1) is a finitely generated group on a compact metric space (X, d). Then,

∀n ∈ N, ∀x, y ∈ X d(x, y) ⩽ dn(x, y) = τn(x, y)

and the metric τn is uniformly equivalent to d.

Proof. Fix n ∈ N. We start by showing that the metrics τn and d are uniformly equivalent.
Since idX ∈ Gn, we already know (cf. (2.12)) that

∀x, y ∈ X d(x, y) ⩽ τn(x, y).

Therefore, the identity map id1 : (X, τn) → (X, d) is continuous. Moreover, since each g ∈ Gn is
uniformly continuous, given ε > 0 there is δg > 0 such that

d(x, y) < δg ⇒ d
(
g(x), g(y)

)
< ε.

As Gn is finite, we may take δ = min {δg : g ∈ Gn} > 0 and deduce that

d(x, y) < δ ⇒ τn(x, y) = max
{
d
(
g(x), g(y)

)
: g ∈ Gn

}
< ε.

Thus, the identity map id2 : (X, d) → (X, τn) is continuous. In particular, the space (X, τn) is
compact.

Let us now prove that dn = τn. We already know (cf. (2.14)) that

∀x, y ∈ X dn(x, y) ⩽ τn(x, y).

In addition, since τn is a metric (in particular, it satisfies the triangular inequality), given
x, y ∈ X, an integer k ⩾ 2 and (a1, a2, . . . , ak) ∈ Ak(x, y) such that a1 = x and ak = y, one has

τn(x, a2) + τn(a2, a3) + · · · + τn(ak−1, y) ⩾ τn(x, y) ⩾ d(x, y).

Consequently, as τn is symmetric, both τn(x, y) and d(x, y) are lower bounds of the set{ k∑
j=2

τn(aj−1, aj) : k ∈ N \ {1} and (aj)1⩽ j ⩽ k ∈ Ak(x, y)
}
.

For this reason, its infimum is bigger than or equal to τn(x, y). That is,

∀x, y ∈ X dn(x, y) ⩾ τn(x, y).

The proof of the lemma is complete. □

2.6. Measure-theoretic entropy. Fix a finitely generated pseudogroup (G,G1) on a compact
metric space (X, d), generated by a finite set G1. Denote by M1(X) the space of Borel proba-
bility measures on X and by MG(X) ⊂ M1(X) the subset of probability measures which are
invariant by every element of G.

Definition 2.20. For each probability measure µ ∈ M1(X) and x ∈ X, the lower local metric
entropy of µ at x with respect to the pseudogroup (G,G1) is defined by

hµ((G,G1), x) = lim
ε→ 0+

lim inf
n→+∞

− 1

n
log µ(Bn(x, ε)) (2.21)
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where we specify that, if for some ε > 0 one has µ(Bn(x, ε)) = 0, then log µ(Bn(x, ε)) = 0.
Similarly, the upper local metric entropy of of µ at x with respect to the pseudogroup (G,G1)
is given by

hµ((G,G1), x) = lim
ε→ 0+

lim sup
n→+∞

− 1

n
log µ(Bn(x, ε)). (2.22)

The maps hµ((G,G1), ·) : X → [0,+∞] and hµ((G,G1), ·) : X → [0,+∞] are measurable (cf.
Lemma 4.2 in Section 4), so we may define the lower and upper metric entropy of µ with respect
to the pseudogroup (G,G1) by the averages

hµ(G,G1) =

∫
X
hµ((G,G1), x) dµ(x) (2.23)

hµ(G,G1) =

∫
X
hµ((G,G1), x) dµ(x). (2.24)

2.7. Measure-theoretic pressure. The previous concept is generalized to every continuous
potential as follows.

Definition 2.25. Given µ ∈ M1(X), ψ ∈ C0(X) and x ∈ X, the upper local metric pressure
at x of µ, with respect to the pseudogroup (G,G1) and the potential ψ, is defined by

Pµ((G,G1), ψ, x) = lim
ε→ 0+

lim sup
n→+∞

− 1

n

[
log µ(Bn(x, ε)) − 1

|Gxn|
∑
g ∈Gxn

Sgψ (x)
]
. (2.26)

Similarly, the lower local metric pressure at x of µ, with respect to the pseudogroup (G,G1)
and the potential ψ, is given by

Pµ((G,G1), ψ, x) = lim
ε→ 0+

lim inf
n→+∞

− 1

n

[
log µ(Bn(x, ε)) − 1

|Gxn|
∑
g ∈Gxn

Sgψ (x)
]
. (2.27)

The previous limits, when ε goes to 0+, exist and are measurable functions of x ∈ X (see
Lemma 4.4 in Section 4). Therefore, we may define the lower and upper measure-theoretic
pressure of (G,G1) with respect to µ ∈ M1(X) and ψ ∈ C0(X) by

Pµ((G,G1), ψ) =

∫
X
Pµ((G,G1), ψ, x) dµ(x)

Pµ((G,G1), ψ) =

∫
X
Pµ((G,G1), ψ, x) dµ(x).

Remark 2.28. We observe that, given ψ ∈ C0(X), one has for every x ∈ X

n min
t∈X

ψ(t) ⩽
1

|Gxn|
∑
g ∈Gxn

Sgψ (x) ⩽ n max
t∈X

ψ(t).

Therefore, for every µ ∈ M1(X),

hµ(G,G1) + min
t∈X

ψ(t) ⩽ Pµ((G,G1), ψ) ⩽ hµ(G,G1) + max
t∈X

ψ(t). (2.29)

Similar estimates are valid for the corresponding notions hµ(G,G1) and Pµ((G,G1), ψ).
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2.8. Homogeneous measures. Let (G,G1) be a finitely generated pseudogroup acting on a
compact metric space (X, d). The following is an important class of Borel measures on X.

Definition 2.30. A probability measure µ on the σ−algebra of Borel subsets of X is said to be
G−homogeneous if the following conditions are valid:

(H1) For every compact set K ⊂ X one has µ(K) < +∞.

(H2) There exists a compact set K0 ⊂ X with µ(K0) > 0.

(H3) For every ε > 0 there are 0 < δ = δ(ε) < ε and λ = λ(ε) > 0 such that

µ(Bn(y, δ)) ⩽ λµ(Bn(x, ε)) ∀x, y ∈ X ∀n ∈ N.

The canonical volume form on a closed, compact, oriented Riemannian manifold determines
a G−homogeneous measure with respect to any finitely generated group of isometries on the
manifold. Another example of a pseudogroup with a G−homogeneous probability measure is
described in [4, Proposition 4.6].

3. Statement of the main results

Our first result is strongly inspired by [4], which concerns the topological and measure-
theoretic entropies, and by [30], whose results were stated in the context of finitely generated
semigroup actions.

Theorem A. Let (G,G1) be a finitely generated pseudogroup acting on a compact metric space
(X, d). For every ψ ∈ C0(X), one has:

(a) Ptop((G,G1), ψ) ⩾ supµ∈M1(X) Pµ((G,G1), ψ).

(b) If, in addition, G is a free group and there is a G−homogeneous, G−invariant, ergodic
probability measure η ∈ MG(X), then

P η((G,G1), ψ) = htop(G,G1) +

∫
X
ψ dη.

The precise computation of the topological pressure of a pseudogroup action usually demands
a substantial knowledge of the minimal cardinality of spanning sets, and so it is not always
feasible. An advantage of Theorem A is the fact that it provides a bound from below for the
topological pressure of a pseudogroup action, as illustrated by Examples 10.3 – 10.5.

The first part of Theorem A is a corollary of a more general statement that will be proved in
Sections 6 and 7. It addresses a notion of pressure conveyed by Carathéodory-Pesin structures,
whose precise definition will be recalled in Section 5.

Theorem B. Let (G,G1) be a finitely generated pseudogroup acting on a compact metric space
(X, d). Then:

(a) For every ψ ∈ C0(X) and any Borel subset Z of X,

PZ((G,G1), ψ) = sup
{
Pµ((G,G1), ψ) : µ ∈ M1(X) and µ(Z) = 1

}
.

(b) For every ψ ∈ C0(X),

Ptop((G,G1), ψ) ⩾ PX((G,G1), ψ).
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We note that, even if the pseudogroup (G,G1) is a group generated by G1 = {idX , f, f
−1},

where f : X → X is a homeomorphism of a compact metric space X, one cannot expect to prove
a general variational principle like item (a) of Theorem B with M1(X) replaced by the set of
f−invariant Borel probability measures on X. Indeed, in [20, Example 1.5] we find a set Z
with zero measure with respect to any f−invariant probability measure, though hZ(G,G1) > 0.
Moreover, even if there are G−invariant probability measures supported on such a set Z, it may
happen that their information is not enough to estimate hZ((G,G1)): see Example 10.6.

4. Auxiliary lemmas

For future use, we gather in this section a few lemmas whose proofs are known in other
settings but need to be adapted to the context of pseudogroup actions.

4.1. Measurability of the local metric entropy. Fix a finitely generated pseudogroup
(G,G1) by local homeomorphisms of a compact metric space (X, d). Recall from Subsection 2.6
that, given a probability measure µ ∈ M1(X) and x ∈ X, the lower local metric entropy of µ
with respect to the pseudogroup (G,G1) at x is defined by

hµ((G,G1), x) = lim
ε→ 0+

lim inf
n→+∞

− 1

n
log µ(Bn(x, ε)). (4.1)

Lemma 4.2. The function hµ((G,G1), ·) : X → [0,+∞] is measurable.

Proof. Take a point x0 ∈ X, a positive integer n, a measure µ ∈ M1(X) and an ε > 0.
It is known that any semi-continuous function is measurable, and that the pointwise limit of
measurable functions is a measurable function as well. Therefore, we start by showing that the
function x ∈ X 7→ fn(x) = µ(Bn(x, ε)) is lower semi-continuous at x0. For this purpose, fix
a ∈ [0, 1[ such that fn(x0) > a. Notice that, for any positive integers k and ℓ with k < ℓ, one has

Bn(x0, ε− 1/k) ⊂ Bn(x0, ε− 1/ℓ) and
⋃
k∈N

Bn(x0, ε− 1/k) = Bn(x0, ε).

Therefore,

lim
k→+∞

µ
(
Bn(x0, ε− 1/k)

)
= µ

(
Bn(x0, ε)

)
and, since fn(x0) > a, we can choose ε1 ∈ ]0, ε[ such that µ(Bn(x0, ε1)) > a.

By assumption, every g ∈ G is uniformly continuous and its domain Dg is open. Thus, for
each g ∈ G such that x0 ∈ Dg there exists δg > 0 such that

x ∈ B(x0, δg) ⇒ x ∈ Dg and g(x) ∈ B
(
g(x0), ε− ε1

)
.

As the pseudogroup is finitely generated, we may take

δn = min {δg : g ∈ Gx0n }.

This way, for every x ∈ B(x0, δn) and any g ∈ Gx0n , we are sure that x ∈ Dg and that
d(g(x), g(x0)) < ε − ε1. In particular, τn(x, x0) < ε − ε1. Hence, by the inequality (2.14),
one has dn(x, x0) < ε− ε1. That is, x ∈ Bn(x0, ε− ε1).

Now take a point y ∈ Bn(x0, ε1). Then

dn(y, x) ⩽ dn(y, x0) + dn(x0, x) ⩽ ε1 + ε− ε1 = ε.
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Consequently, y ∈ Bn(x, ε). We have showed that Bn(x0, ε1) ⊂ Bn(x, ε), and this inclusion
yields

fn(x) = µ
(
Bn(x, ε)

)
⩾ µ

(
Bn(x0, ε1)

)
> a.

So, fn is lower semi-continuous at x0 ∈ X.
□

A similar reasoning shows that the map hµ((G,G1), ·) : X → [0,+∞] is measurable.

4.2. Measurability of the local metric pressure. Recall from Subsection 2.7 that, given
µ ∈ M1(X), ψ ∈ C0(X) and x ∈ X, the upper local metric pressure of µ at x with respect to
the pseudogroup (G,G1) and the potential ψ is defined by

Pµ((G,G1), ψ, x) = lim
ε→ 0+

lim sup
n→+∞

− 1

n

[
log µ(Bn(x, ε)) − 1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]
. (4.3)

Lemma 4.4. For every µ ∈ M1(X), ψ ∈ C0(X) and x ∈ X, the previous limit when ε goes to
0+ exists. Moreover, the map

x ∈ X 7→ Pµ((G,G1), ψ, x)

is measurable.

Proof. Given x ∈ X, if 0 < ε1 < ε2 then

log µ(Bn(x, ε1)) −
1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x) ⩽ log µ(Bn(x, ε2)) −
1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)

so, taking the lim sup as n goes to +∞, we conclude that the function

ε ∈ R+ 7→ lim sup
n→+∞

− 1

n

[
log µ(Bn(x, ε)) − 1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]

is non-increasing. Therefore, the limit as ε → 0+ exists.

We proceed to show that the previous limit varies measurably with x. Fix µ ∈ M1(X) and
define the following sequences of functions

x ∈ X 7→ f1n(x) = µ(Bn(x, ε))

x ∈ X 7→ f2n(x) =
1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x).

Then, for every n ∈ N:

(i) The function x ∈ X 7→ f1n(x) is measurable (cf. the proof of Lemma 4.2).

(ii) The domains of the generators gi ∈ G1 are open subsets ofX, thus the map x ∈ X 7→ |Gxn|
is locally constant and the map x 7→ f2n(x) is continuous.

Altogether, we conclude that x ∈ X 7→ −[ 1n log f1n(x) − 1
nf

2
n(x)] is measurable. Since pointwise

limits of measurable functions are measurable functions, the map x ∈ X 7→ Pµ((G,G1), ψ, x) is
measurable. □

Analogously, one shows that the map x ∈ X → Pµ((G,G1), ψ, x), introduced in (2.27), is well
defined and measurable.
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4.3. Vitaly covering lemmas. A metric space (X, d) is called boundedly compact if all bounded
closed subsets of X are compact (cf. [24, p.9]). In particular, compact metric spaces, Euclidean
spaces Rn and Riemannian manifolds are boundedly compact. We denote the diameter of a
set A ⊂ X by diam(A). The following classical covering lemma for boundedly compact metric
spaces (see e.g. [34, Theorem 2.1]) is essential on further sections.

Lemma 4.5. (Vitaly covering lemma) Let X be a boundedly compact metric space and consider
a set B ⊂ X × R+ such that

sup
{
diam(B(x, r)) : (x, r) ∈ B

}
< +∞.

Then there is a finite or countable subset B̃ ⊂ B such that
{
B(x, r) : (x, r) ∈ B̃

}
is a pairwise

disjoint collection of closed balls and⋃
(x, r)∈B

B(x, r) ⊂
⋃

(x, r)∈ B̃

B(x, 5r).

A dynamically defined Vitaly covering lemma was established by Ma and Wen [30] in the
case of topological dynamical systems, yielding an analogous of Lemma 4.5 where balls were
replaced by Bowen dynamical balls. The argument to prove it extends easily to the dynamical
balls defined in Subsection 2.5 for a finitely generated pseudogroup (G,G1) acting on a compact
metric space (X, d). Therefore:

Lemma 4.6. Given r > 0, let B(r) =
{
Bn(x, r) : x ∈ X,n ∈ N

}
be a collection of dynamical

balls of radius r, determined by a finitely generated pseudogroup (G,G1) acting on a compact
metric space (X, d). For any family F ⊂ B(r) there exists a subfamily G ⊂ F by pairwise disjoint
dynamical balls such that ⋃

Bn(x,r)∈F

Bn(x, r) ⊂
⋃

Bn(x,r)∈G

Bn(x, 3r).

4.4. Spanning vs. separated. Let (G,G1) be a finitely generated pseudogroup acting on a
compact metric space (X, d). Fix ψ ∈ C0(X). Recall that, in Subsection 2.3, we introduced the
notion of topological pressure of (G,G1) at ψ, defined by

Ptop((G,G1), ψ) = lim
ε→ 0+

lim sup
n→+∞

1

n
log

(
sup
En,ε

{ ∑
x∈En,ε

e
1

|Gxn|
∑
g∈Gxn

S
g

ψ (x)
})

where the supremum is taken over (n, ε)−separated sets En,ε of X with respect to (G,G1).
As done with the topological entropy, we could have used separated sets instead of spanning

ones, defining another concept of topological pressure by

Qtop((G,G1), ψ) = lim
ε→ 0+

lim sup
n→+∞

1

n
log

(
inf
Fn,ε

{ ∑
x∈Fn,ε

e
1

|Gxn|
∑
g∈Gxn

S
g

ψ (x)
})

where the infimum is taken over (n, ε)−spanning sets Fn,ε of X with respect to (G,G1). One
can easily check that the functions

ε > 0 7→ sup
En,ε

{ ∑
x∈En,ε

exp [Pψn (x)] : En,ε is (n, ε) − separated
}
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ε > 0 7→ inf
Fn,ε

{ ∑
x∈Fn,ε

exp [Pψn (x)] : Fn,ε is (n, ε) − spanning
}

are monotone, hence their limits as ε goes to 0+ exist. In this subsection we will compare these
two definitions of pressure.

Lemma 4.7. Let (G,G1) be a finitely generated pseudogroup acting on a compact metric space
(X, d). Then

Qtop((G,G1), ψ) ⩽ Ptop((G,G1), ψ) ∀ψ ∈ C0(X).

Proof. Fix ψ ∈ C0(X). We start by observing that, in the previous definitions of Ptop((G,G1), ψ)
andQtop((G,G1), ψ), it suffices to take, for the former, the supremum over those (n, ε)−separated
sets which cannot be enlarged to a (n, ε)−separated set, and, for the latter, the infimum over
those (n, ε)−spanning sets which do not have proper subsets that (n, ε)−span X.

To simplify the notation, for each x ∈ X and n ∈ N we will write

Pψn (x) =
1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x). (4.8)

Since an (n, ε)− separated set E of maximal cardinality is (n, ε)−spanning and the summands

exp [Pψn (x)] are positive, for every ε > 0 and n ∈ N one has

inf
Fn,ε

{ ∑
x∈Fn,ε

exp [Pψn (x)]
}

⩽ sup
En,ε

{ ∑
x∈En,ε

exp [Pψn (x)]
}
.

Consequently, for every ε > 0,

lim sup
n→+∞

1

n
log

(
inf
Fn,ε

{ ∑
x∈Fn,ε

exp [Pψn (x)]
})

⩽ lim sup
n→+∞

1

n
log

(
sup
En,ε

{ ∑
x∈En,ε

exp [Pψn (x)]
})

and so, taking the limit as ε goes to 0+, we get

Qtop((G,G1), ψ) ⩽ Ptop((G,G1), ψ). (4.9)

□

We now address the converse inequality, which is harder to show. Next lemma proves it in
the particular case of finitely generated groups (though its reasoning is also valid if (G,G1) is a
finitely generated semigroup).

Lemma 4.10. Let (G,G1) be a finitely generated group on a compact metric space (X, d). Then

Qtop((G,G1), ψ) ⩾ Ptop((G,G1), ψ) ∀ψ ∈ C0(X).

Proof. The following proof is an adaptation for finitely generated groups of the argument on
page 209 of [46], which concerns the topological pressure of a single map. The additional
assumption that G is a group simplifies the definition of pressure, hence the next computations,
since Gxn = Gn for every x ∈ X.

Given ε > 0 and n ∈ N, let E be an (n, ε)−separated set with maximal cardinality and F be
an (n, ε/2)−spanning set. Define the map ξ : E → F by choosing, for each x ∈ E, some point
ξ(x) ∈ F satisfying

max
{
d
(
g(x), g(ξ(x))

)
: g ∈ Gn

}
< ε/2
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whose existence is guaranteed since F is (n, ε/2)−spanning. We claim that ξ is injective. Oth-
erwise, if there are two distinct points x1, x2 ∈ E for which ξ(x1) = ξ(x2), then for any g ∈ Gn
one has

d
(
g(x1), g(x2)

)
⩽ d

(
g(x1), g(ξ(x1))

)
+ d

(
g(x2), g(ξ(x1))

)
< ε/2 + ε/2 = ε

and so
max

{
d
(
g(x1), g(x2)

)
: g ∈ Gn

}
< ε

contradicting the assumption that E is (n, ε)−separated.

Fix a potential ψ ∈ C0(X). As ψ is uniformly continuous, given δ > 0 there is 0 < ε(δ) < δ
such that, for every 0 < ε ⩽ ε(δ),

d(x, y) < ε/2 ⇒
∣∣ψ(x) − ψ(y)

∣∣ < δ.

Then, for every x ∈ X, n ∈ N and g = gin ◦ gin−1 ◦ .... ◦ g1 ∈ Gn,∣∣Sgψ (x) − S
g

ψ (ξ(x))
∣∣ =

=
∣∣[ψ(x) + · · · + ψ(gin ◦ · · · ◦ gi2 ◦ gi1(x))

]
−
[
ψ(ξ(x)) + · · · + ψ(gin ◦ · · · ◦ gi2 ◦ gi1(ξ(x)))

]∣∣
⩽

∣∣ψ(x) − ψ(ξ(x))
∣∣+ · · · +

∣∣ψ(gin ◦ · · · ◦ gi2 ◦ gi1(x)) − ψ(gin ◦ · · · ◦ gi2 ◦ gi1(ξ(x)))
∣∣

< (n+ 1)δ.

Therefore, ∣∣∣ 1

|Gn|
∑
g ∈Gn

S
g

ψ (x) − 1

|Gn|
∑
g ∈Gn

S
g

ψ (ξ(x))
∣∣∣ < (n+ 1)δ

that is, ∣∣Pψn (x) − Pψn (ξ(x))
∣∣ < (n+ 1)δ. (4.11)

Now, by the injectivity of ξ, we have card(ξ(E)) ⩽ card(F ); hence∑
y ∈F

exp [Pψn (y)] ⩾
∑
x∈E

exp [Pψn (ξ(x))].

Moreover,∑
x∈E

exp [Pψn (ξ(x))] =
∑
x∈E

exp[Pψn (ξ(x)) − Pψn (x)] exp [Pψn (x)]

⩾ min
{

exp [Pψn (ξ(x)) − Pψn (x)] : x ∈ E
} ∑
x∈E

exp [Pψn (x)]

⩾ exp [−(n+ 1)δ]
∑
x∈E

exp [Pψn (x)]

where the last inequality is due to (4.11). Consequently,∑
y ∈F

exp [Pψn (y)] ⩾ exp[−(n+ 1)δ]
∑
x∈E

exp [Pψn (x)]

inf
F

∑
y ∈F

exp [Pψn (y)] ⩾ exp[−(n+ 1)δ]
∑
x∈E

exp [Pψn (x)]

inf
F

∑
y ∈F

exp [Pψn (y)] ⩾ exp[−(n+ 1)δ] sup
E

∑
x∈E

exp [Pψn (x)].
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Taking logarithms of both sides and lim sup as n goes to +∞, we get

lim sup
n→+∞

1

n
log
(

inf
F

∑
y ∈F

exp [Pψn (y)]
)

⩾ lim sup
n→+∞

1

n
log
(

exp[−(n+ 1)δ] sup
E

∑
x∈E

exp [Pψn (x)]
)

= −δ + lim sup
n→+∞

1

n
log
(

sup
E

∑
x∈E

exp [Pψn (x)]
)
.

Finally, letting ε → 0+ we obtain

Qtop((G,G1), ψ) ⩾ −δ + Ptop((G,G1), ψ).

Since δ > 0 is arbitrarily small, the proof of the lemma is complete. □

Bringing together Lemmas 4.7 and 4.10, we conclude that:

Proposition 4.12. Let (G,G1) be a finitely generated group on a compact metric space (X, d).
Then

Qtop((G,G1), ψ) = Ptop((G,G1), ψ) ∀ψ ∈ C0(X).

5. Carathéodory-Pesin structures

In this section we introduce a notion of pressure of a finitely generated pseudogroups using
Carathéodory-Pesin structures (cf. [38, 39]). Carathéodory-Pesin structures were somehow
inspired by Bowen’s definition of the topological entropy of a continuous map in a way entirely
similar to the definition of Hausdorff measure and dimension. More precisely, in [38] Pesin
elaborated over the theory of the so called Carathéodory structures and proved that a continuous
endomorphism of a compact metric space dynamically defines a Carathéodory structure whose
upper capacity coincides with the topological entropy of the map. This approach has then been
successfully applied to many other classes of dynamical systems and group actions, using a
strategy very similar to Pesin’s but often skipping the details, and thus raising many doubts on
the mathematical validity of those generalizations. Therefore, for the sake of completeness and
elucidation, we proceed with a self-contained and comprehensive verification of all axioms that
define a Carathéodory-Pesin structure.

Consider a finitely generated pseudogroup (G,G1) generated by a finite set G1 of local home-
omorphisms of a compact metric space (X, d). Fix an arbitrary subset Z ⊂ X. Given N ∈ N
and ε > 0 denote by IN (ε) ⊂ Z × {n ∈ N : n ⩾ N} a finite or countable set such that Z is
covered by dynamical balls Bnj (xj , ε), where (xj , nj) ∈ IN (ε) and nj ⩾ N . In other words,

Z ⊂
⋃

(xj ,nj)∈ IN (ε)

Bnj (xj , ε).

Denote by CZ(N, ε) the family of all such subsets IN (ε). For notational simplicity, we will write
j ∈ IN (ε) to identify the pair (xj , nj) ∈ IN (ε).

Definition 5.1. For a subset Z ⊂ X, a continuous map ψ : X → R, a positive integer N ∈ N,
s ⩾ 0 and ε > 0, define

MZ(s, ε, ψ,N) = inf

{ ∑
j ∈ IN (ε)

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

: IN (ε) ∈ CZ(N, ε)

}

where g = ginj ◦ · · · ◦ gi2 ◦ gi1 and |Gxjnj | stands for the cardinality of the set G
xj
nj .
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Lemma 5.2. Given s ⩾ 0 and ε > 0, the limit

MZ(s, ε, ψ) = lim
N→+∞

MZ(s, ε, ψ,N)

is well defined and satisfies

MZ(s, ε, ψ) = sup
{
MZ(s, ε, ψ,N) : N ∈ N

}
.

Proof. If IN+1(ε) ∈ CZ(N + 1, ε), then it clearly satisfies IN+1(ε) ∈ CZ(N, ε). Thus

MZ(s, ε, ψ,N + 1) = inf
IN+1(ε)∈CZ(N+1,ε)

{ ∑
j ∈ IN+1(ε)

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)

}

⩾ inf
IN+1(ε)∈CZ(N,ε)

{ ∑
j ∈ IN+1(ε)

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]}

⩾ inf
IN (ε)∈CZ(N,ε)

{ ∑
j ∈ IN (ε)

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]}

= MZ(s, ε, ψ,N).

This shows that the sequence (MZ(s, ε, ψ,N))N ∈N is non-decreasing and proves the lemma. □

We claim that the function s → MZ(s, ε, ψ) behaves like an s−Hausdorff measure: there
exists a unique critical parameter where it drops from infinity to zero. This is a consequence of
the following result.

Lemma 5.3. Given s < t, then

MZ(s, ε, ψ) < +∞ ⇒ MZ(t, ε, ψ) = 0

MZ(t, ε, ψ) > 0 ⇒ MZ(s, ε, ψ) = +∞.

Proof. Fix t > s and assume that MZ(s, ε, ψ) < +∞. Notice that, for each family IN (ε),∑
j ∈ IN (ε)

exp
[
− t nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

=
∑

j ∈ IN (ε)

exp
[
− (t− s)nj − s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

⩽ exp[−N (t− s)]
∑

j ∈ IN (ε)

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]
.

Therefore, taking the infimum, one gets the inequalities

MZ(t, ε, ψ,N) ⩽ exp[−N (t− s)]MZ(s, ε, ψ,N) ⩽ exp[−N (t− s)]MZ(s, ε, ψ)

which, letting N go to +∞, yield MZ(t, ε, ψ) = 0. This proves item (a) of Lemma 5.3.
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We proceed to prove item (b). Assume that MZ(t, ε, ψ) > 0. We start by noticing that∑
j ∈ IN (ε)

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

⩾ exp[N (t− s)]
∑

j ∈ IN (ε)

exp
[
− t nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

⩾ exp[N (t− s)] inf
IN (ε)∈CZ(N,ε)

∑
j ∈ IN (ε)

exp
[
− t nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]
.

Taking the infimum with respect to IN (ε) ∈ CZ(N, ε) and then letting N → +∞, we obtain

MZ(s, ε, ψ,N) ⩾ exp[N (t− s)]MZ(t, ε, ψ,N)

which guarantees that

MZ(s, ε, ψ) ⩾ lim
N→+∞

exp[N (t− s)]MZ(t, ε, ψ) = +∞.

This completes the proof of the lemma. □

Lemma 5.3 indicates that the parameter MZ(ε, ψ) given by

MZ(ε, ψ) = sup
{
s ⩾ 0: MZ(s, ε, ψ) = +∞

}
= inf

{
s ⩾ 0: MZ(s, ε, ψ) = 0

}
(5.4)

is well defined. Moreover:

Lemma 5.5. The limit limε→ 0+ MZ(ε, ψ) exists.

Proof. Fix a positive integer N , Z ⊂ X and 0 < ε1 ⩽ ε2. Afterwards, choose a covering
{Bnj (xj , ε1)}j ∈ I of the set Z with nj ⩾ N for all j ∈ I. As 0 < ε1 ⩽ ε2, we have

Z ⊂
⋃
j ∈ I

Bnj (xj , ε1) ⊂
⋃
j ∈ I

Bnj (xj , ε2)

hence there exists a subset I2 ⊂ I such that

Z ⊂
⋃
j ∈ I2

Bnj (xj , ε2).

Consequently,∑
j ∈ I

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]
⩾
∑
j ∈ I2

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

from which we deduce that
MZ(s, ε1, ψ) ⩾ MZ(s, ε2, ψ).

The last inequality implies that

MZ(ε1, ψ) = inf{s ⩾ 0: MZ(s, ε1, ψ) = 0} ⩾ inf{s ⩾ 0: MZ(s, ε2, ψ) = 0} = MZ(ε2, ψ).

Thus, the function ε 7→ MZ(ε, ψ) is non-increasing, and so the limit limε→ 0+ MZ(ε, ψ) does
exist. □

The previous lemma motivates the following definition.
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Definition 5.6. Given ψ ∈ C0(X) and Z ⊂ X, the CP-pressure of a finitely generated pseu-
dogroup (G,G1), when restricted to Z, with respect to the potential ψ, is the limit

PZ((G,G1), ψ) = lim
ε→ 0+

MZ(ε, ψ).

It is not hard to check that this pressure function has the following properties (details in [38]).

Lemma 5.7. Consider a continuous potential ψ : X → R and sets Z1, Z2 ⊂ X.

(a) If Z1 ⊂ Z2, then PZ1((G,G1), ψ) ⩽ PZ2((G,G1), ψ).

(b) If Z =
⋃
k∈N Zk, then PZ((G,G1), ψ) = sup

{
PZk((G,G1), ψ) : k ∈ N

}
.

6. A partial variational principle

In this section we adapt the argument in [30, Theorem 1] to finitely generated pseudogroups.
Analogous properties were obtained for the topological entropy of finitely generated semigroups
and for non-autonomous dynamical systems in [4, 5], respectively, and for the measure-theoretic
pressure of finitely generated free semigroup actions in [43].

Theorem 6.1. Let (G,G1) be a finitely generated pseudogroup acting on a compact metric space
(X, d) and Z be a Borel subset of X. For every µ ∈ M1(X), s ⩾ 0 and ψ ∈ C0(X), one has:

(a) If Pµ((G,G1), ψ, x) ⩽ s for every x ∈ Z, then PZ((G,G1), ψ) ⩽ s.

(b) If µ(Z) > 0 and Pµ((G,G1), ψ, x) ⩾ s for every x ∈ Z, then PZ((G,G1), ψ) ⩾ s.

Proof. Let (G,G1) be a finitely generated pseudogroup, Z be a Borel subset of X and µ be a
Borel probability measure on X.

(a) Assume that there is s ⩾ 0 such that Pµ((G,G1), ψ, x) ⩽ s for every x ∈ Z. Given ε > 0
and k ∈ N, consider the set

Zεk =
{
x ∈ Z : lim sup

n→+∞
− 1

n

[
log µ(Bn(x, r)) − 1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]
⩽ s+ ε, ∀r ∈ ]0, 1/k[

}
.

Thus,

Z =
⋃
k∈N

Zεk.

Now fix k and r ∈ ]0, 1/3k[. Notice that, by the definition of Zεk, for any x ∈ Zεk there exists a
strictly increasing sequence (nj(x))j ∈N satisfying

log µ(Bnj(x)(x, r)) −
1

|Gxnj(x)|
∑

g ∈Gx
nj(x)

S
g

ψ (x) ⩾ −(s+ ε)nj(x). (6.2)

Moreover, for any N ∈ N, the set Zεk is contained in the union of the elements of the family

F =
{
Bnj(x)(x, r) : x ∈ Zεk and nj(x) ⩾ N

}
.

Combining equation (6.2) with Lemma 4.6, we find a (at most countable) subfamily by pairwise
disjoint dynamical balls, say G =

{
Bnj (xj , r)

}
j ∈ J ⊂ F , such that

Zk ⊂
⋃
j ∈ J

Bnj (xj , 3 r)
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and

µ
(
Bnj (xj , r)

)
⩾ exp

[
− (s+ ε)nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]
.

Therefore,

MZεk
(s+ ε, 3 r, ψ,N) ⩽

∑
j ∈ J

exp
[
− (s+ ε)nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

⩽
∑
j ∈ J

µ
(
Bnj (xj , r)

)
⩽ 1

where the last inequality is due to the disjointness of the elements in G. Taking the limit as
N → +∞, we get

MZεk
(s+ ε, 3r, ψ) ⩽ 1

so, by (5.4), we conclude that

MZεk
(3r, ψ) ⩽ s+ ε ∀r ∈ ]0, 1/3k[.

Letting r → 0+, we obtain
PZεk((G,G1), ψ) ⩽ s+ ε.

Thus, by Lemma 5.7,

PZ((G,G1), ψ) = sup
{
PZεk((G,G1), ψ) : k ∈ N

}
⩽ s+ ε.

As ε > 0 may be chosen arbitrary, the proof of item (a) of Theorem 6.1 is complete.

(b) Assume now that µ(Z) > 0 and there is s ⩾ 0 such that Pµ((G,G1), ψ, x) ⩾ s for any x ∈ Z.
Fix ε > 0 and define the sequence of sets (Eεk)k∈N by

Eεk =
{
x ∈ Z : lim inf

n→+∞
− 1

n

[
log µ(Bn(x, r)) − 1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]
> s− ε, ∀r ∈ ]0, 1/k[

}
.

By the assumption, the sequence (Eεk)k∈N increases to Z, so, by the continuity of µ,

lim
k→+∞

µ(Eεk) = µ(Z) > 0.

Thus, there exists k0 ∈ N such that µ(Eεk0) > 1
2µ(Z) > 0. Take the sequence of subsets

(Eεk0,N )N ∈N defined by

Eεk0,N =
{
x ∈ Z : − 1

n

[
log µ(Bn(x, r))− 1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]
> s−ε, ∀n ⩾ N, ∀ r ∈ ]0, 1/k0[

}
.

The sequence (Eεk0,N )N ∈N increases to Eεk0 and so, using once more the continuity of the measure
µ, we can choose a positive integer N∗ such that

µ(Eεk0,N∗) >
1

2
µ(Eεk0) > 0.

Therefore, for any xj ∈ Eεk0,N∗ , every nj ⩾ N∗ and all r ∈ ]1, 1/k0[, one has

log µ
(
Bnj (xj , r)

)
− 1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj) < −(s− ε)nj
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or, equivalently,

µ
(
Bnj (xj , r)

)
< exp

[
− (s− ε)nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]
. (6.3)

Now consider the countable covering H of Eεk0,N∗ defined by

H =
{
Bnj (yj , r/2) : yj ∈ Eεk0,N∗ , nj ⩾ N∗, r ∈ ]0, 1/k0[ and Bnj (yj , r/2) ∩ Eεk0,N∗ ̸= ∅

}
j ∈ J

.

For any j ∈ J , one can choose xj ∈ Bnj (yj , r/2) ∩ Ek0,N∗ such that Bnj (yj , r/2) ⊂ Bnj (xj , r)
and, by (6.3),

µ
(
Bnj (yj , r/2)

)
⩽ µ

(
Bnj (xj , r)

)
< exp

[
− (s− ε)nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]
.

Consequently,

MZ(s− ε, r/2, ψ,N) ⩾ MEε
k0,N

∗ (s− ε, r/2, ψ,N)

⩾
∑
j ∈ J

exp
[
− (s− ε)nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

⩾
∑
j ∈ J

µ
(
Bnj (yj , r/2)

)
⩾ µ(Eεk0,N∗) > 0.

Taking the limit as N → +∞, we conclude that MZ(s− ε, r/2, ψ) > 0, which yields

MZ(r/2, ψ) > s− ε.

As ε > 0 is arbitrary, taking the limit as r → 0+ we obtain PZ((G,G1), ψ) > s. This proves
item (b) of Theorem 6.1. □

7. A variational principle

The first part of Theorem A is a consequence of the variational principle that Theorem B
establishes, besides the connection between the topological pressure and the CP-pressure of a
pseudogroup action which we will show in the next section.

Theorem 7.1. Let (G,G1) be a finitely generated pseudogroup acting on a compact metric space
(X, d). Then:

(a) For every ψ ∈ C0(X) and any Borel subset Z of X,

PZ((G,G1), ψ) = sup
{
Pµ((G,G1), ψ) : µ ∈ M1(X) and µ(Z) = 1

}
.

(b) For every ψ ∈ C0(X),

Ptop((G,G1), ψ) ⩾ PX((G,G1), ψ).

To prove item (a) of Theorem 7.1, we start by introducing the weighted topological pressure
for finitely generated pseudogroups, which yields an alternative formulation of the CP-pressure.
This strategy has similarities with the one of [43, Theorem 1.2], in the sense that it builds over a
modification of a very elegant argument by Feng and Huang (cf. [20, Lemma 4.3]). The proof of
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item (b) of Theorem 7.1 will be postponed to Section 8, after recalling the dynamically defined
Carathéodory-Pesin structures and the notion of capacity pressure.

7.1. Weighted topological pressure. Fix a subset Z ⊂ X and a pseudogroup (G,G1) of
local homeomorphisms of a compact metric space (X, d), generated by a finite set G1. Let N
be a natural number and ε > 0. Denote by IN (ε) ⊂ Z × N a finite or countable set indexing a
covering of Z by dynamical balls Bnj (xj , ε) such that xj ∈ Z and nj ⩾ N for every j. Denote
by CZ(N, ε) the family of all coverings IN (ε) of the set Z. Unless it leads to misunderstandings,
we will write I instead of IN (ε).

For a set A ⊂ X denote by χA : X → [0, 1] the map defined by χA(x) = 1 if x ∈ A and
χA(x) = 0 otherwise. Consider the sets

FN,ε =
{(
cj , Bnj (xj , ε)

)
: cj ∈ R and Bnj (xj , ε) ∈ IN (ε)

}
and let GN,ε be the family of all sets FN,ε.

Definition 7.2. For a subset Z ⊂ X, a continuous map ψ : X → R, N ∈ N, s ⩾ 0 and ε > 0,

WZ(s, ε, ψ,N) = inf
{∑
j ∈ I

cj exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

: χZ ⩽
∑
j ∈ I

cj χBnj (xj ,ε)

}
where the infimum is taken over all finite or countable families FN,ε of GN,ε.

Lemma 7.3. The limit

WZ(s, ε, ψ) = lim
N→+∞

WZ(s, ε, ψ,N)

exists and

lim
N→+∞

WZ(s, ε, ψ,N) = sup
N ∈N

WZ(s, ε, ψ,N).

Proof. The proof is similar to the one of Lemma 5.2, so we shall omit it. □

Lemma 7.4. Given s < t, then

WZ(s, ε, ψ) < +∞ ⇒ WZ(t, ε, ψ) = 0

WZ(t, ε, ψ) > 0 ⇒ WZ(s, ε, ψ) = +∞.

Proof. The proof is similar to the one of Lemma 5.3, so we shall omit it. □

One can now define the weighted ε−pressure of the pseudogroup (G,G1) with respect to the
potential ψ on the subset Z as the unique critical point of the function

s ⩾ 0 7→ WZ(s, ε, ψ)

thus generalizing the concept of weighted topological entropy introduced in [20].

Definition 7.5. The weighted topological pressure of (G,G1) restricted to Z ⊂ X, with respect
to the potential ψ ∈ C0(X) is given by

WZ((G,G1), ψ) = lim
ε→ 0+

WZ(ε, ψ)

where

WZ(ε, ψ) = sup
{
s ⩾ 0: WZ(s, ε, ψ) = +∞

}
= inf

{
s ⩾ 0: WZ(s, ε, ψ) = 0

}
.
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We proceed by showing that, for finitely generated pseudogroup actions, the weighted topo-
logical pressure coincides with the CP-pressure.

Proposition 7.6. For any finitely generated pseudogroup (G,G1), acting on a compact metric
space (X, d), any subset Z ⊂ X and any potential ψ ∈ C0(X), one has

WZ((G,G1), ψ) = PZ((G,G1), ψ).

This proposition is a direct consequence of the following uniform estimates between weighted
pressure and the CP-pressure at small scales.

Lemma 7.7. Consider a finitely generated pseudogroup (G,G1) acting on a compact metric
space (X, d), a subset Z ⊂ X and ψ ∈ C0(X). For every s ⩾ 0, ε > 0 and δ > 0, there exists
N0 ∈ N such that

MZ(s+ δ, 4ε, ψ,N) ⩽ WZ(s, ε, ψ,N) ⩽ MZ(s, ε, ψ,N) ∀N ⩾ N0.

Proof. Our reasoning is similar to the proofs of Proposition 3.2 in [20] and Proposition 4.1 in
[43] (which also follows closely the former).

We start by showing the first inequality. This part of the argument is an adaptation of the
proof of Lemma 8.16 in [34], where the relation between Hausdorff dimension and Hausdorff
weighted dimension is established.

Fix a subset Z ⊂ X, ψ ∈ C0(X), s ⩾ 0, ε > 0 and δ > 0. Select N0 ∈ N such that N0 ⩾ 2
and n2 exp[−n δ] ⩽ 1 for every n ⩾ N0. Choose a family{

(cj , Bnj (xj , ε))
}
j ∈ I

where I is countable, xj ∈ X, cj ∈ ]0,+∞[ and nj ⩾ N0. Take t > 0 and, for each k, n ∈ N,
consider the sets

In =
{
j ∈ N : nj = n

}
In,k =

{
j ∈ In : j ⩽ k

}
Zn,t =

{
x ∈ Z :

∑
j ∈ In

cj χBn(xj , ε) > t
}

Zn,k,t =
{
x ∈ Z :

∑
j ∈ In,k

cj χBn(xj , ε) > t
}
.

Since In,k is a finite set, by approximating the cj ’s from above we may assume that each cj ∈ N.
Let m be the least positive integer with m > t. Given k ∈ N, choose a family of balls

B =
{
Bn(xj , ε) : j ∈ In,k

}
.

By induction, we define m+ 1 functions

v0, v1, ..., vm : B → Z

and m subfamilies B1,B2, ...,Bm of B in the following way:

(i) For every Bn(xj , ε) ∈ B, let

v0(Bn(xj , ε)) = cj
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and define the subfamily B1 as the union of pairwise disjoint dynamical balls satisfying
the condition ⋃

Bn(xj ,ε)∈B

Bn(xj , ε) ⊂
⋃

Bn(xj ,ε)∈B1

Bn(xj , 3ε)

a valid step due to Lemma 4.6.

(2i) Proceed recursively, defining, for j = 1, 2, ...,m, pairwise disjoint subfamilies Bj of B
such that

Bj ⊂
{
Bn(xj , ε) ∈ B : vj−1(Bn(xj , ε)) ⩾ 1

}
Zn,k,t ⊂

⋃
Bn(xj ,ε)∈Bj

Bn(xj , 3ε),

as well as a finite sequence of functions vj such that

vj(Bn(xj , ε)) =

{
vj−1(Bn(xj , ε)) − 1, if Bn(xj , ε) ∈ Bj
vj−1(Bn(xj , ε)), if Bn(xj , ε) ∈ B \ Bj .

Notice that, for j < m, we have

Zn,k,t ⊂
{
xj :

∑
Bn(xj ,ε)∈B

vj(Bn(xj , ε)) ⩾ m− j
}

and so every point x ∈ Zn,k,t belongs to some ball Bn(x, ε) ∈ B with vj(Bn(x, ε)) ⩾ 1. In
particular,

m∑
j=1

|B| exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

=

m∑
j=1

∑
Bn(xj ,ε)∈Bj

[vj−1(Bn(xj , ε)) − vj(Bn(xj , ε))] exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

⩽
∑

Bn(xj ,ε)∈Bj

m∑
j=1

[vj−1(Bn(xj , ε)) − vj(Bn(xj , ε))] exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

⩽
∑

Bn(xj ,ε)∈B

v0(Bn(xj , ε)) exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

=
∑

j ∈ In,k

cj exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]
.
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Select now j0 ∈ {1, 2, ...,m} such that |Bj0 | = min{|Bj | : j ∈ {1, 2, ...,m}}. Then

|Bj0 | exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

⩽
1

m

∑
j ∈ In,k

cj exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

⩽
1

t

∑
j ∈ In,k

cj exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]
.

Let

Jn,k,t =
{
j ∈ I : Bn(xj , ε) ∈ Bj0

}
.

Since Zn,k,t is a nested sequence of sets convergent to Zn,t as k → +∞, there exists k0 ⩾ 1 such
that Zn,k,t ̸= ∅ for every k > k0. Define

En,k,t =
{
xj : j ∈ Jn,k,t

}
.

From the sequence of compact sets {En,k,t}k∈N in the compact metric space X one can choose
a subsequence {En,kℓ,t}ℓ∈N converging in the Hausdorff distance to some compact set En,t ⊂ X
as ℓ goes to +∞. Since, for every ℓ ∈ N, any two points in En,kℓ,t are (n, ε)−separated, so do
the points in En,t. Thus, En,t is a finite set. Additionally, En,kℓ,t = En,t for large ℓ. Therefore,
for large enough ℓ one has

Zn,kℓ,t ⊂
⋃

j ∈ Jn,kℓ,t

Bn(xj , 3ε) =
⋃

xj ∈En,kℓ,t

Bn(xj , 3ε) ⊂
⋃

xj ∈En,t

Bn(xj , 7ε/2).

Thus, for large enough ℓ,

Zn,kℓ,t ⊂
⋃

xj ∈En,t

Bn(xj , 4ε).

Note that the equality En,kℓ,t = En,t, which holds for large ℓ, yields

|En,t| exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

⩽
1

t

∑
j ∈ In

cj exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

and

MZn,t(s+ δ, 4ε, ψ,N) ⩽ |En,t| exp
[
− n(s+ δ) +

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

⩽
1

tenδ

∑
j ∈ In

cj exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

⩽
1

tn2

∑
j ∈ In

cj exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

where the last inequality is a consequence of the assumption that n2 exp[−n δ] ⩽ 1 for all
n ⩾ N0.
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Fix t ∈ ]0, 1[ and N ⩾ N0. Since Z 7→MZ(s, ε, ψ,N) is an outer measure and

Z ⊂
+∞⋃
n=N

Zn,n−2t

then

MZ(s+ δ, 4ε, ψ,N) ⩽
+∞∑
n=N

MZn,n−2t
(s+ δ, 4ε, ψ,N)

⩽
+∞∑
n=N

1

t

∑
j ∈ In

cj exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

⩽
1

t

∑
j ∈ I

cj exp
[
− s n+

1

|Gxjn |

∑
g ∈G

xj
n

S
g

ψ (xj)
]

⩽ WZ(s, ε, ψ,N).

The previous estimate is precisely the first inequality in the statement of Lemma 7.7.

The second inequality is simpler to prove. Fix N ∈ N and notice that, taking nj ⩾ N and
cj = 1 for j ∈ I, we get∑

j ∈ I
χBnj (xj ,ε) ⩾ χZ ⇒ Z ⊂

⋃
j ∈ I

Bnj (xj , ε).

Consequently,

inf
{∑
j ∈ I

cj exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

:
∑
j ∈ I

cj χBnj (xj ,ε) ⩾ χZ

}

⩽ inf
{∑
j ∈ I

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

:
∑
j ∈ I

χBnj (xj ,ε) ⩾ χZ

}

⩽ inf
{∑
j ∈ I

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

: Z ⊂
⋃
j ∈ I

Bnj (xj , ε)
}
.

This ensures that WZ(s, ε, ψ,N) ⩽ MZ(s, ε, ψ,N), as claimed. The proof of Lemma 7.7 is
complete. □

7.2. Proof of Theorem 7.1(a). Fix a non-empty compact set Z ⊂ X and ψ ∈ C0(X). Let
µ ∈ M1(X) be a Borel probability measure such that µ(Z) = 1. First we will prove that

PZ((G,G1), ψ) ⩾ Pµ((G,G1), ψ). (7.8)

Taking into account that

Pµ((G,G1), ψ) =

∫
Z
Pµ((G,G1), ψ, x) dµ(x)

we deduce that, given δ > 0, the set

Zµδ =
{
x ∈ Z : Pµ((G,G1), ψ, x) ⩾ Pµ((G,G1), ψ) − δ

}
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is a positive µ−measure subset of X and, by definition,

Pµ((G,G1), ψ, x) ⩾ Pµ((G,G1), ψ) − δ ∀x ∈ Zµδ .

Therefore, Theorem 6.1 implies that

PZµδ
((G,G1), ψ) ⩾ Pµ((G,G1), ψ) − δ.

Taking the supremum over all Borel probability measures µ satisfying µ(Z) = 1, we conclude
that

PZ((G,G1), ψ) ⩾ PZµδ
((G,G1), ψ) ⩾ sup

{
Pµ((G,G1), ψ) − δ : µ ∈ M1(X) and µ(Z) = 1

}
.

Since δ > 0 is arbitrary, this proves (7.8).

To finish the proof of Theorem 7.1 (a), we are left to show the converse inequality, namely

PZ((G,G1), ψ) ⩽ sup
{
Pµ((G,G1), ψ) : µ ∈ M1(X) and µ(Z) = 1

}
. (7.9)

Taking into account that, for every t ∈ R,

PZ((G,G1), ψ + t) = PZ((G,G1), ψ) + t

Pµ((G,G1), ψ + t) = Pµ((G,G1), ψ) + t

we may assume without loss of generality that PZ((G,G1), ψ) > 0. Therefore, by Proposition 7.6,

WZ((G,G1), ψ) = PZ((G,G1), ψ) > 0.

Take s ∈ ]0,WZ((G,G1), ψ)[, ε > 0 and N ∈ N such that WZ(s, ε, ψ,N) > 0. We observe that
the fact that WZ(s, ε, ψ,N) > 0 is essential in the proof of the next proposition; we will use it
when K = Z.

Proposition 7.10. Consider a finitely generated pseudogroup (G,G1) acting on a compact
metric space (X, d), a non-empty compact subset Z ⊂ X and a continuous potential ψ : X → R
such that PZ((G,G1), ψ) > 0. Assume that s ⩾ 0, N ∈ N and ε > 0 are such that c =
WK(s, ε, ψ,N) > 0. Then there exists a Borel probability measure µ0 ∈ M1(X) satisfying µ(Z) =
1 and

µ0(Bn(x, ε)) ⩽
1

c
exp

[
− s n+

1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]

∀x ∈ Z, ∀n ⩾ N.

Proof. Fix a compact subset Z ⊂ X and s ⩾ 0, N ∈ N and ε > 0 as in the statement of the
proposition. Define a functional P : C0(X) → R by

P(h) =
1

c
inf
{∑
j ∈ I

cj exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

: hχZ ⩽
∑
j ∈ I

cj χBnj (xj ,ε)

}
where the infimum is taken over all finite or countable families I = FN,ε of GN,ε (recall Defini-
tion 7.2). Let 1 denote the constant function equal to 1 with domain X.

Claim 1: For every f1, f2 ∈ C0(X), one has:

(C1) P(f1 + f2) ⩽ P(f1) + P(f2).
(C2) P(t f1) = tP(f1) for every t ⩾ 0.
(C3) P(1) = 1.
(C4) 0 ⩽ P(f1) ⩽ ∥f1∥.
(C5) P(f1) = 0 for every f1 ∈ C0(X) with f1 ⩽ 0.
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The proof of the previous properties is not hard and is left to the reader. Denote by Cons(X)
the space of all constant functions defined onX. By the Hahn-Banach Theorem we can extend the
linear functional t ∈ R 7→ tP(1) from the space Cons(X) to a linear functional L : C0(X) → R
satisfying

L(1) = P(1) = 1 and − P(−f) ⩽ L(f) ⩽ P(f) ∀ f ∈ C0(X).

Notice that, if f ∈ C0(X) is such that f ⩾ 0, then P(−f) = 0, and so L(f) ⩾ 0. Thus, by the
Riesz representation theorem there exists a Borel probability measure µ0 ∈ M1(X) such that

L(h) =

∫
X
h dµ0 ∀h ∈ C0(X).

Claim 2: µ0(Z) = 1.

Indeed, take a compact set E ⊂ X \ Z. By the Urysohn’s lemma there exists h0 ∈ C0(X)
such that 0 ⩽ h0 ⩽ 1, h0(x) = 1 for x ∈ E and h0(x) = 0 for x ∈ Z. Thus, h0 χZ ≡ 0 and,
consequently, P(h0) = 0. Hence, µ0(E) ⩽ L(h0) ⩽ P(h0) = 0. Since E ⊂ X \ Z is an arbitrary
compact set, by the regularity of the measure µ0 we conclude that µ0(X \Z) = 0, thus proving
the claim.

We are left to estimate the measure µ0 of dynamical balls. Fix x ∈ Z and n ∈ N. Using
Urysohn’s lemma once more, for each compact subset E ⊂ Bn(x, ε) there exists fE ∈ C0(X)
such that 0 ⩽ fE ⩽ 1, fE(y) = 1 for any y ∈ E and fE(y) = 0 for any y ∈ X \Bn(x, ε). Then

µ0(E) ⩽
∫
χE dµ0 ⩽ L(fE) ⩽ P(fE).

Notice that, for every (at most) countable set I and nj ⩾ N , one has

inf
{∑
j ∈ I

cj exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

: fE χZ ⩽
∑
j ∈ I

cj χBnj (xj ,ε)

}

⩽ inf
{∑
j ∈ I

exp
[
− s nj +

1

|Gxjnj |

∑
g ∈G

xj
nj

S
g

ψ (xj)
]

: fE χZ ⩽
∑
j ∈ I

χBnj (xj ,ε)

}

⩽ exp
[
− s n+

1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]

where the last inequality is due to the fact that fE χZ ⩽ χBn(x,ε). So

µ0(E) ⩽ P(fE) ⩽
1

c
exp

[
− s n+

1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]
.

Taking into account the regularity of µ0, we may add that, for every x ∈ Z and every n ⩾ N ,

µ0
(
Bn(x, ε)

)
= sup

{
µ0(E) : E ⊂ Bn(x, ε) is compact

}
⩽

1

c
exp

[
− s n+

1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]
. (7.11)

The proof of the proposition is complete. □
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Take the Borel probability measure µ0 ∈ M1(X) such that µ0(Z) = 1 provided by Proposi-
tion 7.10. From (7.11), we easily deduce that, for every n ∈ N,

− 1

n

[
log µ0(Bn(x, ε)) − 1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]
⩾ s+

1

n
log c

and so Pµ0((G,G1), ψ, x) ⩾ s for every x ∈ Z. Therefore,

Pµ0((G,G1), ψ) =

∫
X
Pµ0((G,G1), ψ, x)dµ0(x) ⩾ s

and

sup
{
Pµ((G,G1), ψ) : µ ∈ M1(X) and µ(Z) = 1

}
⩾ s.

Finally, since s can be chosen arbitrarily close to PZ((G,G1), ψ) = WZ((G,G1), ψ), we obtain
the inequality (7.9). The proof of Theorem 7.1 (a) is complete. □

We are left to show Theorem 7.1 (b). We postpone this proof to the next section, after the
presentation of a special dynamically defined Carathéodory-Pesin structure which conveys a
reformulation of the notion of topological pressure of a pseudogroup.

8. Capacity pressure vs. topological pressure

Consider a finitely generated pseudogroup (G,G1) acting on a compact metric space (X, d)
and a potential ψ ∈ C0(X). Recall from Subsection 4.4 that

Qtop((G,G1), ψ) = lim
ε→ 0+

lim sup
n→+∞

1

n
log

(
inf
Fn,ε

{ ∑
x∈Fn,ε

e
1

|Gxn|
∑
g∈Gxn

S
g

ψ (x)
})

where g = gin ◦ · · · ◦ gi2 ◦ gi1 , the supremum is taken over all (n, ε)−spanning sets Fn,ε ⊂ X and

S
g

ψ (x) = ψ(x) + ψ(gi1(x)) + ...+ ψ(gin ◦ · · · ◦ gi2 ◦ gi1(x)).

Taking into account that, for every t ∈ R,

Qtop((G,G1), ψ + t) = Qtop((G,G1), ψ) + t

we may assume without loss of generality that Qtop((G,G1), ψ) > 0.

In what follows we will keep the abbreviation (4.8). Given ε > 0 and a positive integer N ,
denote by

{
BN (xi, ε)

}
xi ∈ I∗N (ε)

a finite or countable family of dynamical balls satisfying⋃
xi ∈ I∗N (ε)

BN (xi, ε) = X

and by C∗
X(N, ε) the collection of all sets I∗N (ε). For any s ⩾ 0 and ψ ∈ C0(X) let

M∗(s, ε, ψ,N) = inf
{ ∑
xj ∈ I∗N (ε)

exp[−sN + Pψn (xj)] : I
∗
N (ε) ∈ C∗

X(N, ε)
}

M∗(s, ε, ψ) = lim sup
N→+∞

M∗(s, ε, ψ,N).
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By an argument entirely similar to the one used to show Lemma 5.3 we deduce that the map
s 7→ M∗(s, ε, ψ) behaves like as s−Hausdorff measure, that is, it has a unique critical point
cψ(ε), where it drops from +∞ to 0; hence

cψ(ε) = sup {s ⩾ 0: M∗(s, ε, ψ) = +∞}.

Moreover, by a standard reasoning, as in the proof of Lemma 5.5, we guarantee the existence of
the limit

cψ = lim
ε→ 0+

cψ(ε).

Definition 8.1. The number cψ = c (G,G1)ψ is called the (upper) capacity pressure of (G,G1)
with respect to the potential ψ ∈ C0(X).

Proposition 8.2. Consider a finitely generated pseudogroup (G,G1) acting on a compact metric
space (X, d) and an arbitrary ψ ∈ C0(X). Then

c (G,G1)ψ ⩽ Qtop((G,G1), ψ).

Proof. Fix ψ ∈ C0(X) and, to simplify the notation, let α(ψ) = c (G,G1)ψ. Given ε > 0 and
γ > 0, choose a sequence (mk)k∈N of positive integers such that

M∗(α(ψ) − γ, ε) = lim
k→+∞

M∗(α(ψ) − γ, ε,mk) = +∞.

Thus, for every sufficiently large k, the quantity M∗(α(ψ) − γ, ε,mk) is arbitrary large. In
particular,

M∗(α(ψ) − γ, ε,mk) > 1.

Therefore,

inf
{ ∑
xj ∈ I∗mk (ε)

exp [−(α(ψ) − γ)mk + Pψmk(xj)] : I
∗
mk

(ε) ∈ C∗
X(mk, ε)

}
> 1

and

inf
Fmk,ε

{ ∑
xj ∈Fmk,ε

exp [−(α(ψ) − γ)mk + Pψmk(xj)] : X =
⋃

xj ∈Fmk,ε

Bmk(xj , ε)
}
> 1

where the infimum is taken over all (mk, ε)−spanning subsets of X and we are summoning the
infomation in (2.18) regarding the connection between spanning sets and coverings of X by open
dynamical balls. Consequently,

inf
Fmk,ε

{ ∑
xj ∈Fmk,ε

exp [Pψmk(xj)] : X =
⋃

xj ∈Fmk,ε

Bmk(xj , ε)
}
> exp [−(α(ψ) − γ)mk]

Taking logarithms and dividing both sides by mk, we obtain

1

mk
log
(

inf
Fmk,ε

{ ∑
xj ∈Fmk,ε

exp [Pψmk(xj)] : X =
⋃

xj ∈Fmk,ε

Bmk(xj , ε)
})

⩾ α(ψ) − γ.
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Since γ is arbitrarily small, taking lim sup as k goes to +∞ and lim when ε → 0+, we deduce
that

Qtop((G,G1), ψ) ⩾

⩾ lim
ε→ 0+

lim sup
k→+∞

1

mk
log
(

inf
Fmk,ε

{ ∑
xj ∈Fmk,ε

exp [Pψmk(xj)] : X =
⋃

xj ∈Fmk,ε

Bmk(xj , ε)
})

⩾ α(ψ) = c (G,G1)ψ.

□

8.1. Proof of Theorem 7.1(b). We can now connect the three notions PX((G,G1), ψ), c (G,G1)ψ
and Ptop((G,G1), ψ), for every ψ ∈ C0(X), and thereby conclude the proof of Theorem 7.1.

Proposition 8.3. For a finitely generated pseudogroup (G,G1) acting on a compact metric
space (X, d) and an arbitrary ψ ∈ C0(X), one has

PX((G,G1), ψ) ⩽ c (G,G1)ψ ⩽ Ptop((G,G1), ψ).

Proof. Fix ψ ∈ C0(X) and ε > 0. Notice that, for every positive integer N , any finite or
countable covering {BN (xi, ε) : xi ∈ X} belongs both to I∗N (ε) and IN (ε). Thus, for every s ⩾ 0,

MX(s, ε, ψ,N) = inf
{ ∑
j ∈ IN (ε)

exp [−sN + PψN (xj)] : IN (ε) ∈ CX(N, ε)
}

⩽ inf
{ ∑
j ∈ I∗N (ε)

exp [−sN + PψN (xj)] : I
∗
N (ε) ∈ C∗

X(N, ε)
}

= M∗(s, ε, ψ,N).

Therefore,

MX(s, ε, ψ) ⩽ M∗(s, ε, ψ) ∀ s ⩾ 0

and so

MX(ε, ψ) ⩽ cψ(ε) ∀ ε > 0.

Taking the limit when ε→ 0+, we get

PX((G,G1), ψ) ⩽ c (G,G1)ψ.

Consequently, Proposition 8.2 and Lemma 4.7 imply that

PX((G,G1), ψ) ⩽ c (G,G1)ψ ⩽ Qtop((G,G1), ψ) ⩽ Ptop((G,G1), ψ).

The proof of Theorem 7.1(b) is complete. □

An immediate consequence of Theorem 7.1 is Theorem A(a), namely:

Corollary 8.4. Let (G,G1) be a finitely generated pseudogroup acting on a compact metric
space (X, d). Then, for every ψ ∈ C0(X),

Ptop((G,G1), ψ) ⩾ sup
µ∈M1(X)

Pµ((G,G1), ψ).
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9. G−Homogeneous probability measures

In this section we complete the proof of Theorem A. We start by extending [4, Lemma 4.10]
to the upper local measure-theoretic pressure defined in Subsection 2.7.

Lemma 9.1. Let (G,G1) be a finitely generated pseudogroup acting on a compact metric space
(X, d) and endowed with a G−homogeneous probability measure η. Then, for every x, y ∈ X,

P η((G,G1), ψ, x) = P η((G,G1), ψ, y).

Proof. Fix ψ ∈ C0(X) and γ > 0. Since η is G−homogeneous, there exist 0 < ε < γ and λ1 > 0
such that

η
(
Bn(y, ε)

)
⩽ λ1 η

(
Bn(x, γ)

)
and there are 0 < δ < ε and λ2 > 0 such that

η
(
Bn(x, δ)

)
⩽ λ2 η

(
Bn(y, ε)

)
∀x, y ∈ X ∀n ∈ N

for every x, y ∈ X and n ∈ N. Hence,

η
(
Bn(x, δ)

)
⩽ λ2 η

(
Bn(y, ε)

)
⩽ λ1 λ2 η

(
Bn(x, γ)

)
and (recall the abbreviation (4.8))

η
(
Bn(x, δ)

)
exp−[Pψn (x)] ⩽ λ2 η

(
Bn(y, ε)

)
exp−[Pψn (x)] ⩽ λ1 λ2 η

(
Bn(x, γ)

)
exp−[Pψn (x)]

for every x, y ∈ X and n ∈ N. Applying logarithm to both sides of the above inequalities,
dividing by −n and taking the lim sup when n→ +∞, we get, respectively,

log η
(
Bn(x, δ)

)
− Pψn (x) ⩽ log λ2 + log η

(
Bn(y, ε)

)
− Pψn (x)

⩽ log (λ1 λ2) + log η
(
Bn(x, γ)

)
− Pψn (x)

and

lim sup
n→+∞

− 1

n

[
log η

(
Bn(x, δ)

)
− Pψn (x)

]
⩾ lim sup

n→+∞
− 1

n

[
log η

(
Bn(y, ε)

)
− Pψn (x)

]
⩾ lim sup

n→+∞
− 1

n

[
log η

(
Bn(x, γ)

)
− Pψn (x)

]
.

Let

Aε(x, y) = lim sup
n→+∞

− 1

n

[
log η

(
Bn(y, ε)

)
− Pψn (x)

]
.

Since δ < ε < γ, taking the limit as γ → 0+ we obtain

P η((G,G1), ψ, x) ⩽ lim
ε→ 0+

Aε(x, y) ⩽ P η((G,G1), ψ, x).

This means that the transformation

(x, y) 7→ lim
ε→ 0+

A(x, y)

does not depend on y. In particular, when y = x we get

lim
ε→ 0+

A(y, y) = P η((G,G1), ψ, y) and P η((G,G1), ψ, x) = P η((G,G1), ψ, y).

Thus,
P η((G,G1), ψ, x) = P η((G,G1), ψ) ∀x ∈ X.

□
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9.1. Proof of Theorem A(b). We are ready to prove the second part of Theorem A. It
generalizes Corollary 4.13 of [4], whose proof depends on the validity of Proposition 4.12, and
which asserts that, if (G,G1) is a finitely generated group on a compact metric space endowed
with a G−homogeneous probability measure η, then

htop(G,G1) = hη (G,G1).

Fix ψ ∈ C0(X) and consider, for every x ∈ X, the sequence of averages (so called n−th
Cesàro averages of the n−th spherical averages of ψ at x) defined by

n ∈ N 7→ ℜψn(x) =
1

n

1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x).

Given an ergodic probability measure µ ∈ MG(X), it is known that, under suitable assumptions

on the pseudogroup action, the sequence of averages
(
ℜψn(x)

)
n∈N converges at µ−almost every

x ∈ X to
∫
ψ dµ. We refer the reader e.g. to [22, 36] for more information regarding those

pointwise ergodic theorems.

Assume that (G,G1) is a free group and that η ∈ MG(X) is a G−homogeneous ergodic

probability measure. By [15], the sequence
(
ℜψn(x)

)
n∈N converges to

∫
X ψ dη for η−almost

every x. Denote by Y the subset with η(Y ) = 1 of those points x. Select x ∈ Y . Then, by
Lemma 9.1 and Corollary 4.32 of [4], one has

P η((G,G1), ψ) = P η((G,G1), ψ, x)

= lim
ε→ 0+

lim sup
n→+∞

− 1

n

[
log µ(Bn(x, ε)) − 1

|Gxn|
∑
g ∈Gxn

S
g

ψ (x)
]

= lim
ε→ 0+

[
lim sup
n→+∞

− 1

n
log µ(Bn(x, ε)) −

∫
X
ψ dη

]
.

= hη((G,G1), x) +

∫
X
ψ dη

= hη(G,G1) +

∫
X
ψ dη

= htop(G,G1) +

∫
X
ψ dη.

This ends the proof of Theorem A.

Question: Assume that (G,G1) be a finitely generated pseudogroup, acting on a compact
metric space (X, d) and endowed with a G−homogeneous probability measure η. Is it true that,
for every ψ ∈ C0(X), one has

Ptop((G,G1), ψ) = P η((G,G1), ψ) ?

10. Examples

In this final section we provide several examples by which we illustrate the complexity of
computing the topological pressure for pseudogroup actions and some applications of our main
results.
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Example 10.1. Our first example indicates that the topological entropy of a finitely generated
pseudogroup action may be positive even if all its generators have zero entropy.

Consider the interval [0, 1] with the Euclidean distance and the open subintervals J1 = ]0, 1/3[
and J2 = ]2/3, 1[. Let g1 : ]0, 1[→ J1 and g2 : ]0, 1[→ J2 be the homeomorphisms given by

g1 : ]0, 1[ → ]0, 13 [
x 7→ x

3

and
g2 : ]0, 1[ → ]23 , 1[

x 7→ x
3 + 2

3

.

Take G1 = {id[0,1], g1, g
−1
1 , g2, g

−1
2 } and let G be the pseudogroup generated by G1. We will

show, by adapting a reasoning in [23, page 131], that htop(G,G1) ⩾ log 2.

Given n ∈ N and positive integers i1, i2, · · · , in equal to 1 or 2, define

Ji1, i2, ··· , in = gi1 ◦ gi2 ◦ · · · ◦ gin
(
]0, 1[

)
.

Fix x0 ∈ ]0, 1[ and denote

x (i1, i2, · · · , in) = gi1 ◦ gi2 ◦ · · · ◦ gin (x0).

Then the set
En, x0 =

{
x (i1, i2, · · · , in) : iℓ ∈ {1, 2} ∀1 ⩽ ℓ ⩽ n

}
has cardinal 2n and is (n, ε)−separated for every 0 < ε < 1

3 . Indeed, let z ̸= w be two points in
En, x0 , say

z = x (i1, i2, · · · , ik, ik+1, · · · , in) and w = x (i1, i2, · · · , ik, jk+1, · · · , jn)

where 0 ⩽ k ⩽ n and jk+1 ̸= ik+1. Then the map

g = g−1
ik

◦ g−1
ik+1

◦ · · · ◦ g−1
i1

is in G and is defined in the interval Ji1, i2, ··· , in , to which both z and w belong. Moreover,
g(z) ∈ Jik+1

and g(w) ∈ Jjk+1
. Since jk+1 ̸= ik+1, if 0 < ε < 1/3 then∣∣ g(z) − g(w)

∣∣ > 1/3 > ε.

So, z and w are (n, ε)−separated. Thus, s(n, ε) ⩾ 2n, which implies that htop(G,G1) ⩾ log 2.

Example 10.2. In view of Example 10.1 we may inquire whether the topological entropy of
a pseudogroup reflects the existence of generators with zero topological entropy, even in the
context where some of the generators have positive topological entropy. This is precisely what
happens in the following example.

Consider the space Σ2 = {0, 1}Z with the distance

d
(
(an)n∈Z, (bn)n∈Z) =

∑
n∈Z

|an − bn|
2|n|

.

Let σ : Σ2 → Σ2 and T : Σ2 → Σ2 be the homeomorphisms given by

σ
(
(an)n∈N

)
=
(
an+1)n∈N and T

(
(an)n∈N

)
=
(
ân)n∈N

where ân = 1 if an = 0 and ân = 0 if an = 1. Let G be the group generated by G1 ={
idΣ2 , σ, σ

−1, T, T−1
}

and µ =
(
1
2 ,

1
2

)Z
be the symmetric Bernoulli measure in Σ2. Since T is

an isometry, for every x ∈ Σ2 and ε > 0, one has

Bn(x, ε) =
{
y ∈ Σ2 : d

(
σj(x), σj(y)

)
< ε, ∀ − n ⩽ j ⩽ n

}
= σn

(
B̃2n+1

(
σ−n(x), ε

))
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where
B̃k
(
z, ε
)

=
{
y ∈ Σ2 : d

(
σj(y), σj(z)

)
< ε, ∀ 0 ⩽ j ⩽ k

}
denotes the Bowen’s one sided dynamical ball for the shift σ, with length k ⩾ 1, radius ε > 0
and center z ∈ Σ2. Now observe that

hµ((G,G1), x) = lim
ε→0+

lim inf
n→+∞

− 1

n
logµ(Bn(x, ε)) = 2 log 2

for every x ∈ Σ2 while, using the Brin-Katok formula [14],

hµ(σ) = hµ(σ, x) = lim
ε→0+

lim inf
n→+∞

− 1

n
logµ(B̃n(x, ε)) = log 2

at µ-almost every x ∈ Σ2. Altogether, this shows that

hµ(G,G1) = 2 log 2 = 2hµ(σ) = 2hµ(σ)

which turns out to be the expected value if G1 was reduced to {idΣ2 , σ, σ
−1}.

Example 10.3. The precise computation of the topological pressure of a pseudogroup action
usually demands a thorough understanding of the collection of spanning sets with respect to the
pseudogroup action. The next example explore Theorem A as a tool to provide a lower bound
for the topological pressure of a pseudogroup action.

Consider the interval [0, 1] with the Euclidean distance and the subintervals I1 = [0, 1/3[,
I2 = ]1/3, 2/3[ and I3 = ]2/3, 1]. Let G be the pseudogroup generated by the collection of
homeomorphisms {id[0,1], g1, g

−1
1 , g2, g

−1
2 , g3, g

−1
3 }, where

g1 :
[
0, 13
[

→
[
0, 23
[

x 7→ 2x
g2 :

]
1
3 ,

2
3

[
→

]
2
3 , 1
[

x 7→ x+ 1
3

g3 :
]
2
3 , 1
]

→ [0, 1[
x 7→ 3 − 3x

.

These generators have a Markov property, in the sense that

g1(I1) ⊃ I1 ∪ I2, g2(I2) = I3 and g3(I3) ⊃ I1 ∪ I2 ∪ I3.
In particular, the equality g2(I2) = I3 guarantees that, for every x ∈ ]0, 1[, n ∈ N \ {1} and
g = gin ◦ · · · ◦ gi2 ◦ gi1 ∈ Gxn, one has

#
{

1 ⩽ j ⩽ n : ij = 2
}
< n/2.

Indeed, taking into account the domains of g1, g2 and g3, we are sure that

gij = g2 and j < n ⇒ gij+1 = g3.

Since g2 is an isometry and the absolute value of the derivatives of both g1 and g3 is bounded
from below by 2, then

Bn(x, ε) ⊂ B(x, 2−
n
2 ε) ∀x ∈ ]0, 1[, ∀ ε > 0, ∀n ∈ N \ {1}.

Thus, taking µ as the Lebesgue measure on the interval [0, 1], Theorem A yields, when ψ ≡ 0,

htop(G,G1) ⩾ hµ(G,G1) ⩾ inf
x∈ ]0,1[

hµ((G,G1), x) ⩾ (log 2)/2.

Therefore, from Remark 2.9 we conclude that, for every ψ ∈ C0([0, 1]) which is C0-close enough
to the constant map equal to zero,

Ptop((G,G1), ψ) > max
x∈ [0,1]

ψ.
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We stress that, within the setting of dynamical systems and under mild assumptions, the latter
inequality is sufficient for the existence of conformal measures (see [19] for more details).

Example 10.4. Consider now a compact metric space (X, d) and let G be a pseudogroup
generated by a finite set of local isometries on X. Then, for every x ∈ X, n ∈ N and ε > 0,
one has Bn(x, ε) = B(x, ε) and the maximal number of (n, ε)−separated points in X does not
depend on n. Therefore, htop(G,G1) = 0. Moreover, for every µ ∈ M1(X) and x ∈ X,

− 1

n
log µ(Bn(x, ε)) = − 1

n
log µ(B(x, ε)).

So, for every x ∈ X,

hµ((G,G1), x) = lim
ε→ 0+

lim sup
n→+∞

− 1

n
log µ(Bn(x, ε)) = lim

ε→ 0+
lim sup
n→+∞

− 1

n
log µ(B(x, ε)) = 0.

Thus, hµ(G,G1) = 0. In a similar way we show that hµ(G,G1) = 0.

As stated in Remark 2.28, for every µ ∈ M1(X) and every ψ ∈ C0(X), one has

hµ(G,G1) + min
x∈X

ψ(x) ⩽ Pµ((G,G1), ψ) ⩽ hµ(G,G1) + max
x∈X

ψ(x).

and similar inequalities for hµ(G,G1) and Pµ((G,G1), ψ). In this example, since hµ(G,G1) =
0 = hµ(G,G1) for every µ ∈ M1(X), we obtain

min
x∈X

ψ(x) ⩽ Pµ((G,G1), ψ) ⩽ Pµ((G,G1), ψ) ⩽ max
x∈X

ψ(x)

for every µ ∈ M1(X) and ψ ∈ C0(X). Therefore, by Theorem A, for every ψ ∈ C0(X) one has

Ptop((G,G1), ψ) ⩾ min
x∈X

ψ(x).

Example 10.5. Consider the 2−dimensional sphere S2 of radius one, with the Haar measure,
which we denote by η. Take two irrational rotations R1 : S2 → S2 and R2 : S2 → S2. Let G be
the free group generated by G1 = {idS2 , R1, R

−1
1 , R2, R

−1
2 }. Since G is generated by isometries,

one has Bn(x, ε) = B(x, ε) for every x ∈ S2, n ∈ N and ε > 0. Thus, the measure η is
G−homogeneous. Moreover, like in Example 10.4 we have hη(G,G1) = 0. More generally, given
ψ ∈ C0(S2),

min
x∈S2

ψ(x) ⩽ P η((G,G1), ψ) ⩽ max
x∈S2

ψ(x).

In addition, as η is a G−homogeneous, G−invariant and ergodic probability measure, we also
conclude from [4, Theorem 4.12] and Theorem A that, for every ψ ∈ C0(X),

P η((G,G1), ψ) =

∫
S2
ψ dη.

Example 10.6. The next example shows that even if G-invariant probability measures exist
they may carry low entropy, hence fail to be the candidates to describe the thermodynamic
formalism.

Consider the 2−dimensional sphere S2 and an Axiom A diffeomorphism g1 : S2 → S2 with
htop(g1) > 0. Take two distinct periodic points of g1, say p, q. Choose now a Morse-Smale
diffeomorphism g2 : S2 → S2 so that p and q are fixed points of g2 and the only periodic orbits
of g2. Take the group G generated by G1 =

{
idS2 , g1, g2, g

−1
1 , g−1

2

}
and note that

htop(G,G1) ⩾ htop(g1) > 0.
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Moveover, the space of G−invariant probability measures is precisely

MG(S2) =
{
tδp + (1 − t)δq : t ∈ [0, 1]

}
.

In addition, one has

h tδp+(1−t)δq (G,G1) = 0

for every t ∈ [0, 1]. Consequently,

htop(G,G1) ⩾ hS2(G,G1) by Theorem B(b)

= sup
µ∈M1(S2)

{
hµ(G,G1)

}
by Theorem B(a)

= htop(g1) by [38, Theorem 11.5]

> 0

= sup
µ∈MG(S2)

{
hµ(G,G1)

}
.
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